
ClusterMap: Labeling Clusters in Large Datasets via
Visualization
Keke Chen Ling Liu

College of Computing, Georgia Institute of Technology
801 Atlantic Dr.

Atlanta, GA 30329
1-404-385-2030

{kekechen, lingliu}@cc.gatech.edu

ABSTRACT
With the rapid increase of data in many areas, clustering on large
datasets has become an important problem in data analysis. Since
cluster analysis is a highly iterative process, cluster analysis on
large datasets prefers short iteration on a relatively small
representative set. Thus, a two-phase framework
“sampling/summarization – iterative cluster analysis” is often
applied in practice. Since the clustering result only labels the
small representative set, there are problems with extending the
result to the entire large dataset, which are almost ignored by the
traditional clustering research. This extending is often named as
labeling process. Labeling irregular shaped clusters,
distinguishing outliers and extending cluster boundary are the
main problems in this stage. We address these problems and
propose a visualization-based approach to dealing with them
precisely. This approach partially involves human into the process
of defining and refining the structure “ClusterMap”. Based on this
structure, the ClusterMap algorithm scans the large dataset to
adapt the boundary extension and generate the cluster labels for
the entire dataset. Experimental result shows that ClusterMap can
preserve cluster quality considerably with low computational cost,
compared to the distance-comparison-based labeling algorithms.

Categories and Subject Descriptors
I.5.3 [Clustering]: Labeling algorithms for large datasets. H.1.2
[User/Machine Systems]: Human factors in clustering large
datasets

General Terms
Algorithms, Human Factors

Keywords
Data Clustering, Cluster Labeling, Cluster Visualization, Human
Factors in Clustering

1. INTRODUCTION
Over the past decade, large datasets have been collected or
produced in many application domains, such as bioinformatics,
physics, geology, and marketing, and some have reached the level
of terabytes or petabytes [22]. Therefore, there is a growing
demand for efficient and precise clustering techniques that can
adapt to the large datasets.

Several clustering algorithms have aimed at processing the entire
dataset in linear or near linear time, for example, WaveCluster
[14], DBSCAN [10], and DENCLUE [11]. However, there are
some drawbacks with these approaches. First, the cluster analysis
process often requires multiple runs of the clustering algorithms to
find the optimal partitioning scheme. Even though a clustering
algorithm has linear computational complexity, running such
algorithm on a large dataset multiple times is still intolerable for
many users. Second, existing clustering algorithms often work
efficiently in finding clusters in spherical or elongated shapes but
they cannot handle the arbitrarily cluster shapes very well, nor
validate them effectively [13]. Some algorithms, such as OPTICS
[15], try to find the arbitrarily shaped clusters, but their non-linear
complexity often makes them only applicable to small or medium
datasets.

Bearing the above problems in mind, a number of approaches
were proposed to perform clustering algorithms on the sample
datasets or data summaries instead of the entire large dataset. For
example, CURE [2] applies random sampling to get the sample
data and then runs a hierarchical clustering algorithm on the
sample data. BIRCH [19] summarizes the entire dataset into a CF-
tree and then runs a hierarchical clustering algorithm on the CF-
tree. This “sampling/summarization – iterative cluster analysis”
framework has been commonly recognized as a practical way in
large-scale cluster analysis. Since the size of dataset is reduced
with the sampling/summarization techniques, any typical
clustering algorithms and cluster validation techniques that have
acceptable non-linear computational complexity can be applied in
cluster analysis. Therefore, clustering large dataset is seemly
promisingly solved with this framework. However, the previous
research on clustering almost ignored the following problem –
how is the clustering result applied to the entire large dataset?

1.1 Labeling Clusters in Large Datasets: the
Problem
One of the main problems with the two-phase framework is the
gap between the clustering result of the representative dataset and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’04, November 8-13, 2004, Washington, DC, USA
Copyright 2004 ACM 1-58113-874-1/04/0011…$5.00.

the requirement of retrieving cluster labels for the entire large
dataset. Some typical questions asked by the applications are 1)
what is the cluster label for the particular data item? and 2) what
are the data items that belong to the particular cluster? Therefore,
when the queries involve the items that are not in the
representative dataset, we also need to deal with them without
introducing inconsistency to the clustering structure.

Traditionally, the post-clustering stage is named labeling process.
However, labeling is often ignored by the clustering research. Part
of the reason is the clustering problem itself is still not well-
solved. With the emerging of more and more effective clustering
algorithms, which are typically not in linear complexity, the post-
clustering stage will become critical to large dataset, especially
when the points at the cluster boundary area are significant to the
applications. Sampling or summarization theory makes the
representative set “representative” enough to the significant
clustering structure. However, when the sample size is only about
1% or even less than 1% of the original dataset, it also becomes
necessary to listen to the opinions of the majority. A foreseeable
problem in labeling large amount of data is that the cluster
boundary will be extended more or less by incorporating the
labeled data points. Boundary extension might result in the
connection of different clusters and thus we may need to merge
them. Since the boundary is extending, the outliers around the
boundary should also be treated carefully. Figure 1-2 and 1-3
demonstrate the boundary extension problem.

The problems caused by cluster boundary extension are hard to
handle mainly due to the difficulty in describing the boundary
precisely in multidimensional space (>3D). The traditional
labeling algorithms [2, 19] are based on the very rough
description of cluster boundary, namely, a centroid or a set of
representative boundary points. A typical labeling algorithm
assigns each new data item to a cluster that has centroid or one
representative boundary point closest to the date item. Centroid-
based labeling uses cluster center only to represent a cluster.
Representative-point-based labeling uses representative points on

cluster boundary to describe the cluster, which is better than
centroid-based labeling since it provides more information about
the boundary. Obviously, precise description of boundary depends
on the number of representative points in terms of different cluster
shapes, which could be large for irregular shapes. While
representative points are employed to describe boundary, it is also
not easy to describe the boundary extension when more and more
items are labeled. Furthermore, neither representative-point-based
nor centroid-based labeling can deal with outliers satisfactorily.
Figure 1-4 shows the lack of ability to dealing with the outliers
when representative-point-based labeling is applied.

One important metric in evaluating labeling is precision that
measures the consistency between the labeling result and the
naturally extended clustering structure on the large dataset. In
other words, this reflects how precisely the questions 1) and 2) get
answered with the labeling result. Any rough labeling technique
makes the meaningful intermediate clustering result inapplicable
to the entire large dataset. Another important metric is the
complexity of algorithm. Since labeling deals with the entire large
dataset, it has to be linear or at least near-linear in time
complexity.

To sum up, existing labeling algorithms have the following
difficulties when applied to large datasets:

• Identifying irregularly shaped clusters is a hard problem in
clustering, and it is also a challenge labeling clusters in large
dataset.

• With the existing centroid-based or boundary-point-based
labeling algorithms, it is difficult to identify the cluster
outliers.

• If precise boundary description is considered, when the size
of dataset becomes very large compared to the representative
dataset, the boundary extension problem should be handled
carefully.

To solve the above problems, we also need to keep in mind that

 Figure 1-2. Cluster boundary in a small Figure 1-3. Cluster boundary is extended in Figure 1-4. Outliers are labeled as the
representative set (data points are white) the entire large dataset members of the nearby clusters.

Sampling/
summarization

Clustering
Cluster

Evaluation

Labeling Clusters
in the Large

Dataset

Iterative Cluster Analysis

Figure 1-1. Cluster analysis and labeling

the algorithm should be still in linear or near-linear complexity
with the improved precision.

1.2 Our Approach
In this paper, we propose a new labeling approach, ClusterMap,
which extends VISTA cluster rendering system [1, 20, 21] for
labeling large datasets. The VISTA approach has shown several
unique features: 1) identifying the irregular cluster shapes
effectively via visualization; 2) validating and refining any
algorithmic results visually to improve the cluster quality; 3)
incorporating the domain knowledge conveniently; 4) having a
flexible framework to incorporate algorithms and human
interaction into the cluster analysis process. The visualization-
based ClusterMap labeling makes a couple of new contributions
to the post-clustering stage:

� We are the first to address the importance of labeling for
cluster analysis of large datasets, and the problems with the
distance-based labeling algorithms.

� We introduce visualization into the labeling stage, which is
intuitive and flexible. ClusterMap is based on VISTA cluster
rendering result and thus it can describe the arbitrary cluster
shapes precisely, which reduces the labeling error caused by
imprecise cluster representations.

� We develop a two-step ClusterMap processing algorithm,
which eliminates the influence of boundary extension and
allows the users to interactively examine the clustering
structure for entire dataset. The “snapshots” of ClusterMap
also enable the user to monitor the evolving of cluster
structure caused by incorporating the processed items.

The rest of this paper is organized as follows. The subsection 1.3
gives some related work. Section 2 briefly describes VISTA
system and its extension for large datasets. We then present the
visualization-based labeling algorithm ClusterMap in section 3.
Section 4 reports the experimental result, demonstrating the high
quality of cluster preserving with low complexity by using
ClusterMap. Finally, we conclude our work in section 5.

1.3 Related Work
A general cluster analysis framework is described in the review
paper [9] of clustering techniques, which shows that cluster
analysis is usually an iterative process, and the user always prefers
faster algorithms or short response time. Thus, a common problem
with large-scale clustering is the long response time. Even a fast
algorithm running in linear time would let the user waiting for a
while in an iterative cycle. CURE [2] and BIRCH [19] employ the
“sampling/summarization – clustering” framework to deal with
the large-scale clustering problem. The two-phase framework also
facilitates the incorporation of other tools, such as VISTA cluster
rendering system [1], for better understanding and refining of
arbitrarily shaped clusters.

Dealing with arbitrarily shaped clusters is well-recognized as a
hard problem in clustering research community. Several clustering
algorithms have aimed at this particular problem, such as, CURE
[2], CHAMELEON [17], DBSCAN [11], DBCLASD [16],
WaveCluster [14], DENCLUE [12] and so on. But they were only
reported effective in low dimensional dataset or in small/medium
datasets. In conclusion, the automatic algorithms can deal with the
arbitrarily shaped clusters to some extent, but the results are quite
limited.

A semi-automatic algorithm OPTICS [15], which derives from
DBSCAN [11] algorithm shows visualization can be very useful
in cluster analysis. However, OPTICS is not applicable for large
datasets unless applying the multi-phase framework. Other
visualization systems, such as HD-Eye system [23], which are
also limited by the size of the dataset, will need the labeling step
when applied to large datasets.

Existing cluster representations can be classified into four
categories: centroid-based, boundary-point-based (representative-
point-based), classification-tree-based and rule-based
representations [9]. Since the classification-tree-based and rule-
based methods are equivalent (each path in the classification tree
can be represented as a rule) and inapplicable in many situations,
they are not widely used in practice. Using centroid to represent a
cluster is the most popular scheme, since many algorithms
produce only centroids for clusters. Obviously, it works only for
the clusters having compact spherical shapes. Representative-
point-based approach works better than centroids since it
describes the clusters in more detail. But how to define the
representative points precisely for arbitrarily shaped clusters is as
difficult as the clustering problem.

2. EXTENDING THE VISUAL
FRAMEWORK FOR LARGE DATASETS
The VISTA visual framework [20, 21] has shown that interactive
visual cluster rendering can be very effective in identifying
irregular cluster shapes and validating/refining the algorithmic
results. We extend the visual framework to allow processing large
datasets under the framework of “sampling – visual clustering –
labeling with clusters”. The extended visual framework is like
Figure 2-1.

VISTA Visual
Cluster

Rendering
System

Automatic
Clustering
Algorithms

Samping/
Filtering

Adaptive
ClusterMap

Labeling

The User

Data

Clustering
Results

Interaction
Visual Validation
Cluster Refining

Refining the
ClusterMap

ClusterMap

Figure 2-1. The extended visual framework

The large dataset is first sampled to get a subset in manageable
size, which is then used as an input to the selected automatic
clustering algorithms and the VISTA system. The algorithmic
clustering result provides helpful information in visual cluster
rendering process. The user interacts with the VISTA visual
cluster rendering system to find the satisfactory visualization,
which visualizes the clusters in well-separated areas. Since human
vision is very sensible to the gap between point clouds, which
imply the boundary of clusters, the interactive rendering works
very well in defining vague boundary or irregular cluster shapes.

A ClusterMap is then defined on the satisfactory cluster
visualization and used as the initial pattern in ClusterMap
labeling. Finally, the labeling process will adapt the boundary
extension and cluster refining in one pass through the entire
dataset. An additional pass might be needed to reorganize the
entire datasets for fast processing of queries. To further observe
the small clusters that may be omitted in sampling process, the
filtering component filters out the labeled outliers and performs
sampling/visual rendering on the sampled outliers again. We will
also briefly discuss small cluster processing in section 3.

2.1 VISTA System
To understand the ClusterMap algorithm better, we need to briefly
review the VISTA system. The main problem in cluster
visualization is cluster preserving, e.g. visualizing multi-
dimensional datasets in 2D/3D visual space, while preserving the
cluster structure. The past research and practice showed that
preserving cluster structure precisely in static visualization, if not
impossible, is very difficult and computationally costly
[3,4,5,6,12]. A more practical way is to allow the user to
interactively explore the dataset [3] to distinguish the unpreserved
cluster structure, such as cluster overlapping, broken clusters and
fake clusters (outliers in the original space are mapped to the same
visual area). VISTA visual cluster rendering system [1, 20, 21]
has shown how the interactions can be applied to find clusters.
The visualization model is the core of the system. It uses a linear
(or affine) mapping [18] – α-mapping with normalization to avoid
the breaking of clusters after the k-dimensional to 2D space
mapping. The interactive operations are used to find the visible
“gaps” which help to discriminate the possible cluster
overlapping. By finding the gaps and investigating the raw labels
provided by automatic clustering algorithms, it is easy to identify
the overlapping and fake clusters. The experiments have shown
that visual cluster rendering can improve the understanding of
clusters, validate and refine the algorithmic clustering result
effectively.

In current version of VISTA, the system processes the Euclidean
datasets only (where the distance/similarity function is defined by
Euclidean distance) since they are the most common datasets in
the applications. Therefore, by default, we refer to Euclidean
datasets in the following discussion.

2.2 VISTA Mappings
The ClusterMap labeling is tightly related to the VISTA
visualization model. The VISTA visualization model consists of
two linear mappings – max-min normalization followed by α-
mapping.

Max-min normalization is used to normalize the columns in the
datasets in order to eliminate the predominant effect of large-
valued columns. Max-min normalization with bounds [min, max]
scales value v to [-1, 1] as follows:

 1min)(maxmin)(*2 −−−=′ vv , (1)

v is the original value and v’ is the normalized value.

αααα-mapping maps k-D points to 2D visual space while providing
the convenience of visual parameter tuning. We describe α-
mapping as follows. Let a 2D point Q (x, y) represent the image of
a k-dimensional (k-D) max-min normalized data point

P(x1,…xi…,xk), xi ∈ [-1, 1] in 2D space. Q(x, y) is determined by

the average of the vector sum of k vectors is
v
·xi, where is

v
=

(cos(θi), sin(θi)), i= 1..k,
θ

i ∈ [0, 2π] are the star coordinates [6]
that represent the k dimensions on 2D visual space.

__

αααα-mapping: Q (x, y)is determined by (2)

{x, y} =

−

 − ∑∑

==

k

1i
0

k

1i
0)sin()/(,)cos()/(yxkcxxkc iiiiii θαθα

__

 αi (i = 1,2,…k, –1≤αi ≤1) in the definition are the dimension
adjustment parameters, one for each of the k dimensions.

θ
i is set

to 2π/i initially and can be adjusted either, but usually it is not
necessary. (x0, y0) is the center of the display area and c is the
scaling of the radius of display area. α-mapping is a linear
mapping which ensures the visible gaps in 2D visualization are
also the gaps in k-D space.

3. CLUSTERMAP ALGORITHM
3.1 The Basic ClusterMap Algorithm
ClusterMap is a convenient extending of VISTA cluster rendering
system. When visual cluster rendering produces satisfactory
visualization, we can set the boundary of a cluster by drawing a
boundary to enclose it. Each cluster is assigned with a unique
cluster identifier. After the cluster regions are marked, the entire
display area can be saved (represented) as a 2D byte array (Figure
3-1). Each cell in the 2D array is labeled by an identifier – a
cluster ID (>0) if it is in cluster region, or the outlier ID (=0),
otherwise. Since the size of array is restricted by the screen size,
we do not need a lot of space to save it. For example, the display
area is only about 688*688 pixels on 1024*768 screen, slightly
larger for higher resolution, but always bounded by a few mega
pixels. As shown in Figure 3-1, the Cluster Map array is often a
sparse matrix too, which can be stored more space-efficiently if
necessary. Figure 3-2 is a visually defined ClusterMap of the 4D
“iris” dataset. The boundaries of cluster C1, C2 and C3 were
defined interactively.

In addition to store the 2D array, we need to save the mapping
parameters for the labeling purpose. The parameters include:

• The max-min bounds of each column: Cmaxj and Cminj.
There are k pairs of such parameters totally, where k is
the dimensionality of the dataset.

• The center of the visualization, e.g. (x0, y0)

• The k α parameters: (α1, α2,…, αk)

• The scaling factor c

• The angles of the coordinates, (θ1, θ2,…, θk)

ClusterMap representation has several advantages. First, in most
situations, the ClusterMap provides more details than the
centroid-based or representative-point-based cluster
representation, thus it is possible to preserve the precision of
intermediate clustering result in labeling phase. Second, the
cluster boundaries can be adjusted conveniently to adapt to any
special situations or to incorporate domain knowledge as the way
we use the VISTA system. Third, with ClusterMap representation

the outliers can be better distinguished. We shall see ClusterMap
can also adapt the extension of cluster boundary in the following
section.

The best way to discuss the features of the ClusterMap labeling is
to compare it with the two typical cluster-labeling methods we
have mentioned: Centroid-Based labeling (CBL) and
Representative-Point-Based labeling (RPBL). To label a point,
CBL compares the distances of this point to the centroids of
clusters. The point is labeled with the cluster ID of the nearest
centroid. RPBL utilizes the representative points generated by
clustering process or fetched from the clustering results. It looks
up the nearest neighbour of this point among all representative
points and labels the point with the cluster ID of the nearest
representative point. Both algorithms are kind of rough in
describing the clusters and have difficulty in describing the
arbitrarily shaped clusters or distinguishing outliers.

In comparison, the ClusterMap labeling is intuitively better and
very straightforward. Having the ClusterMap loaded into the
memory, each item in the entire large dataset is scanned and
mapped onto one ClusterMap cell. The mapping follows the same
mapping model used in the visual rendering system, which applies
the max-min normalization first, and then followed by α–
mapping. Suppose the raw dataset is stored in form of N×k matrix,
where N is the number of rows and k is the number of columns.
We rewrite the formulas as follows:

__

Normalization: x'ij = πj*(x ij – Cminj) -1, (3)

 πj = 2/(Cmaxj – Cminj)

0
1

ijj0
1

ijj x'* py, x'* px_ yyxxmapping
k

j
i

k

j
i − =− = : ∑∑

==

α (4)

where pxj =c*αj*cos(θj)/k, pyj = c*αj*sin(θj)/k and πj can be pre-
computed, and other parameters are the same as defined before.

__

Concretely, the algorithm reads the i-th item (xi1…xik) from the k-
D raw dataset, normalizes and maps it with formulas (3) and (4) to
a 2D cell coordinate (xi, yi). Reading the value stored in the cell
(xi, yi), we gets the cluster ID label, which will be either 0 for
outliers, or a positive integer for a cluster. For fast processing
cluster related queries, we can also create block files to store the

cluster members and build 2D R-tree index over the grid (Figure
3-3).

Given the formulas (3) and (4), we can roughly estimate the cost
of ClusterMap labeling. We count the number of necessary
multiplication to estimate the cost, for example, one k-D
Euclidean distance calculation costs k multiplication. Map reading
and parameter reading cost constant time. For each item in the
dataset, the max-min normalization costs k multiplication with
formula (3). The α-mapping function costs k multiplication
respectively to calculate x, y coordinates with formula (4).
Locating the cell in ClusterMap to get the corresponding cluster
ID costs constant time. Hence, the total cost for the entire dataset
is 3kN, where N is the number of rows in the dataset.

Table 1: Cost estimation of the three algorithms.

k Dimensionality

N Total rows in raw dataset

n The number of clusters

m The number of representative points for each cluster

f1 The cost of ClusterMap, 3kN

f2 The cost of CURE RPBL, nmkN > f2 > log2(nm)* kN

f3 The cost of CBL, nkN ≥ f3 > log2(n)*kN

When kd-tree [25] or other multi-dimensional tree is used to
organize the representative points or centroids, we get near-
optimal complexity for the distance-comparison based labeling
algorithms. The cost to find the nearest neighbour point in kd-tree
is at least log2(nm) distance calculation for RPBL and at least
log2(n) for CBL, where n and m as defined in table 2. For a typical
RPBL as reported in the CURE paper, only when the number of
representative points is greater than 10 (m>=10), the
representative-point method can represent clusters roughly for
regular non-spherical cluster shapes (mainly, the elongated
shapes), and the more irregular the cluster shape the more
representative points needed to describe the shape. Thus, the cost
of RPBL will be at least 4kN, even higher than ClusterMap.

So all the three algorithms are in O(N) complexity, which is ideal
for processing large datasets. The main advantage of ClusterMap
labeling is the precision of clustering structure preserved for the
entire dataset. We will show in experiments how much the

C1

C2

C3

2D R-Tree

ClusterMap

Figure 3-1. Illustration of basic ClusterMap, Figure 3-2. ClusterMap of Figure 3-3. Build 2D R-tree over
 which has three clusters defined the 4D “iris” dataset. ClusterMap grid for fast retrieval

ClusterMap labeling can reduce the error rate caused by irregular
shape clusters, outliers, and boundary extension, compared to the
other two algorithms.

3.2 Adaptive ClusterMap for Boundary
Extension
In the basic ClusterMap labeling, we assume the cluster boundary
(or a relaxed boundary as Figure 3-2 shows) defined on the
sample set will not change a lot in labeling. However, with the
number of labeled items increasing, the boundary will often
extend more or less if the boundary is defined tightly and
precisely on the sample set. An example has been shown in Figure
1-2 and 1-3. The boundary extension may also result in merging
of two close clusters or enclosing the nearby outliers into the
clusters. Figure 3-4 sketches that the possible extension happens
in ClusterMap with the attending of labeled items.

Boundary extension is maintained by monitoring the point density
around the boundary area. We have the initial boundary defined in
VISTA at the beginning. We name the cells within the cluster
boundary as the “cluster cells” and the cells around the boundary
area as the “boundary cells”. The initial boundary cells are
precisely defined in a short distance ε away from the boundary
defined by VISTA. All non-cluster cells are “outlier cells”
including the boundary cells. We define the density of a cell on
map as the number of items having been mapped to this cell. The
density of boundary cells should be monitored in order to make
decision on boundary extension. A threshold density of cell,

δ
, is

defined as two times of the average density of outlier cells. If the
density of a boundary cell grows to

δ
 with the attending of labeled

items, the boundary cell is turned to a cluster cell, resulting in the
extension of boundary. The non-cluster cells within the ε -distance
from the old boundary cell then become the new boundary cells.
Since the boundary is on the 2D cells, we can use cell as the basic
distance unit and “city block” distance [26] as the distance
function to define ε -distance. ε is often a small number, for
example, 1 or 2 “city block” distance from the current boundary.

δ

is growing as well as the density in non-cluster area is growing so
the measuring of boundary extension keeps consistent with the
density of non-cluster area.

To support the above adaptive algorithm, we need to extend the
basic structure of ClusterMap. First of all, for each cell, we need
one more field to indicate if it is a monitored non-cluster cell. We

also need to keep track of the number of points falling onto each
cell, which is saved in a density map. Since the average noise
level will inevitably rise with the increase of labeled items,

δ

should be periodically updated according to the average noise
level. The following algorithm briefly describes the adaptive
ClusterMap labeling.

__

1. ε -distance (boundary i) → boundary (i),
 go = # of outlier cells,
 no = # of outlier points,

δ
 = 2*no /go

2. a new point → η with formulas (3) and (4)
3. density(η) ++,
4. if η ∉ cluster
5. then if η ∈ boundary (i) and density (η) >

δ

6. then η → cluster(i);
7. for η ’∈ ε -distance(η) ∩ η ’∉ cluster (i)
8. η ’ → boundary (i)
9. go = go –1
10. no = no – density(η)
 else
11. no = no +1

12.

δ
 = 2*no /go

13. Goto 2. and repeat until processed all points
__

Algorithm 1. The first scan over the entire dataset to adapt the
boundary extension

Boundary extension can behave abnormally, which might be
caused by inappropriate initial cluster boundary. During the first
scan, “snapshots” of ClusterMap are saved and visually monitored
by the user. Snapshots are a series of evolving ClusterMaps,
which incorporate the boundary extension, saved at some time
interval during labeling. The user can terminate the labeling
process early if the snapshots show bad trends, for example, the
cluster boundary becomes vague soon after labeling some points
and we cannot distinguish the clusters any more. Normal
boundary extension should be slow and uniformly distributed
around the boundary. After first scan, the user can also make
decision on merging clusters or creating new clusters for small
emerging clusters, which are often ignored by the

cells

cells

Figure 3-4. Boundary extension with the Figure 3-5. Illustration of monitored area where ε =1
increase of dataset size

sampling/summarization process. Since this paper is not focused
on the interaction part, we will not describe the operations in
details.

You may also concern that data ordering will affect boundary
extension. For example, a sequence of data is mapped to a focused
boundary area at early stage thus extends the boundary, but later
on no more points are mapped to that area. As a result, this area is
falsely extended as a part of cluster. This problem can be avoided
by randomizing the processing sequence.

The first scan generated an adapted ClusterMap. The second scan
can be performed to build up a R-tree index on the map for the
items as Figure 3-3 shows. Clustering applications could involve
similarity search [24] and this additional index structure will be
helpful for such applications. However, we can also skip the
second scan and leave the computational cost at answering ad-hoc
queries if the queries come infrequently.

3.3 Observe and Label the Small Clusters
Sampling can possibly cause the loss of small clusters [2]. In this
section we briefly describe how to capture the small clusters in an
iterative method.

During the first scan of ClusterMap labeling, we can check if
there are small clusters emerging from the outliers on the
“snapshots”. If there are small clusters emerging, we can use the
following filtering method to observe the emerging small clusters
in details. Since after the first scan clusters and the extended
boundary are well defined, we can subtract them from the large
dataset and observe the rest outlier dataset only. If the outlier

dataset is still large, it is sampled and observed in VISTA cluster
rendering system. Since the size of outlier dataset should be much
smaller than that of the original dataset, the sample will show
more details of the outliers and the smaller clusters could be well
preserved after sampling. Again, the observed clusters are marked
in another ClusterMap. We can repeat this process until the size of
the outliers become uninterestingly small. Due to the space
limitation, we do not discuss the details or experiments about this
problem in the paper.

4. EXPERIMENTS
This section presents two sets of experiments. The first set of
experiments shows ClusterMap can handle the labeling of outliers
and irregular shaped clusters much better. The second set of
experiments demonstrates the advantage of ClusterMap in dealing
with cluster boundary extension for large datasets.

4.1 Datasets and Experiment Setup
Three datasets are used for the two sets of the experiments. One is
the simulated dataset DS1 used in CURE. DS1 is a 2D dataset
having five regular clusters, including three spherical clusters, two
connected elliptic clusters, and many outliers. In our experiments,
DS1 is used to evaluate the effect of outliers on the labeling
algorithms. The second dataset is a real dataset – Shuttle dataset
(STATLOG version, test dataset). It is a 9-dimensional dataset
with very irregular cluster distribution. There are seven clusters in
this dataset, among which one is very large with approximately
80% of data items, and two are moderately large with
approximately 15% and 5% of data items, respectively. The others
are tiny. Shuttle dataset is used to evaluate the effect of clustering

Performance on DS1

0

500

1000

1500

2000

4 8 12 16 20 24 28 32
Sample Size (x103 items)

T
im

e
(m

s)

ClusterMap
RPBL-kdtree
CBL-direct
CBL-kdtree

Performance on Shuttle Dataset

0

500

1000

1500

2000

4 8 12 16 20 24 28 32
Sample Size (x103 items)

T
im

e
(m

s)

ClusterMap
RPBL-kdtree
CBL-direct
CBL-kdtree

Error Rate on DS1

0

2

4

6

8

4 8 12 16 20 24 28 32
Sample Size (x103 items)

E
rr

o
r

R
at

e
(%

)

ClusterMap
RPBL
CBL

 Figure 4-1. Cost on DS1 Figure 4-2. Cost on Shuttle data Figure 4-3. Error rate on DS1

Error Rate on Shuttle Dataset

0
2
4
6
8

10
12
14
16
18
20

5 10 15 20 25 30 35 40
Sample Size (x103 items)

E
rr

o
r

R
at

e
(%

)

ClusterMap
RPBL
CBL

 Figure 4-4. Error rate on Shuttle Figure 4-5. RPBL on Shuttle Figure 4-6. Documented clusters on Shuttle

result on the labeling process. These two datasets have original
labels, so we can calculate exact error rate with the original labels
and generated labels. The third dataset is a simulated 5-
dimensional large dataset LDS in size of 6*107 items (up to 4G),
which contains five spherical clusters and some outliers. Figure 4-
7 shows a 10K sample set visualized with VISTA system. The
first two datasets should show how ClusterMap avoids the
common problems of the traditional algorithms. The third dataset
is used to show that adaptive ClusterMap works well with very
large datasets.

The three algorithms, CBL, RPBL, and ClusterMap are
implemented in C++. RPBL is based on the CURE clustering
algorithm, which was known as the best RPBL adapted for non-
spherical cluster. We run CURE clustering with the following
parameters: the number of representative points is 20 and alpha
(shrink factor) is set to 0.5 as suggested. We also use ANN
(Approximate Nearest Neighbour) C++ library from University of
Maryland at College Park to construct kd-tree for RPBL and CBL.

4.2 Outliers and Irregular Cluster Shapes
We have discussed three different algorithms: Representative-
Point Based Labeling (RPBL), Centroid-Based Labeling (CBL),
and ClusterMap. In this section we study the performance and
error rates of ClusterMap experimentally, compared to the two
commonly used algorithms RPBL and CBL.

We run VISTA to get the ClusterMap in the resolution of
688*688. The cost to rebuild a ClusterMap structure in memory is
about 340~360ms. In contrast the cost to build kd-tree is about
1~2ms. Both DS1 and shuttle datasets show the cost estimation is
appropriate – all three are linear and the basic ClusterMap is
slightly fast (Figure 4-1 and 4-2). Linear complexity is good
enough for a one-time building process.

The DS1 dataset is used to show the effect of outliers to the
algorithms. The error rate of RPBL is on average 4.5% over DS1;
the error rate of the CBL has the error rate of 6.8%; while the
error rate of ClusterMap has only about 1.5%, much lower than
the other two. ClusterMap also shows a more stable error rate.
From the visualization of the labeling results, we observed that
CBL suffers from the large circle cluster and outliers. Most RPBL
errors come from the outliers. Since RPBL result is better than
CBL we only show the visualization of RPBL results (Figure 1-4).
The visualization of RPBL labeling shows that the outliers are
labeled as the member of the nearby cluster, which is the main

reason why RPBL yields higher error rate.

Shuttle dataset has very irregular clusters. With a small number of
“landmark points” [20], we can easily and correctly define the
clusters with VISTA. We use the shuttle dataset to show the
limitation of the popular RPBL algorithm to the very irregular
cluster shapes. Figure 4-4 shows that the error rate of RPBL raises
to the level, similar to that of CBL (about 17%). ClusterMap
labeling keeps consistent with the VISTA cluster rendering result
and thus has only 4.2% of incorrect labels, much lower than the
other two algorithms.

In the visualization of RPBL on 10000-item subset (Figure 4-5),
we can see it divides the original cluster c3 into two parts and
cannot discriminate c1 and c2. We give the correct centroids for
CBL, however, centroids simply cannot represent the irregular
cluster distribution, which makes the error rate very high.

4.3 Boundary Extension on Large Dataset
This experiment on the large dataset LDS mainly shows the
scalability of adaptive ClusterMap algorithms and the advantage
of ClusterMap in handling boundary extension. LDS simulates 5
spherical clusters, two big and three small clusters, as well as ~1%
background noise. LDS is well designed so that we can predefine
the control labels for entire dataset with small error. The actual
boundaries are larger than the visible ones on the sample set as
shown in Figure 4-7. We did not consider the merging between
the close clusters, such as B and C, since it is not considered by
RPBL and CBL. The progressive result of performance and error
rate is shown in Figure 4-8 and 4-9. The performance curve shows
that the adaptive ClusterMap costs slightly less than the other
algorithms. Since the clusters are spherical, the labeling error of
RPBL and CBL comes from the improper boundary description
and the outliers. In this regular cluster distribution, representative
points and centroids have the similar effect in cluster description,
and thus, RPBL and CBL have almost the same result as Figure 4-
9 shows. The error of ClusterMap mainly comes from the minor
imprecision around the boundary are. It is normal that the
boundary produced by adaptive ClusterMap might not be perfect
in such a noised dataset. However, one of the ClusterMap’s
advantages is that the users can always check and tune the
ClusterMap in such situations.

5. CONCLUSION
With the emerging of more and more large datasets, clustering

A

B

C

D

E

Performance on LDS Dataset

0

200

400

600

800

1000

1 2 3 4 5 6
Sample Size (x107 items)

T
im

e
(s

ec
)

ClusterMap
RPBL-kdtree
CBL-direct
CBL-kdtree

Error Rate on LDS

0

2

4

6

8

1 2 3 4 5 6
Sample Size (x107 items)

E
rr

o
r

R
at

e
(%

)

ClusterMap
RPBL
CBL

Figure 4-7. Visualization of 10K Figure 4-8. Performance on LDS Figure 4-9. Error rate on LDS
 samples of LDS

large datasets has become a major problem in data analysis. The
three-phase framework “sampling/summarization – iterative
cluster analysis – labeling large datasets with clusters” provides a
feasible solution for cluster analysis on large datasets. Labeling
large datasets with clusters bridges the effective cluster analysis to
the large dataset. There are some difficult problems coming with
the labeling problem - labeling arbitrarily shaped clusters,
distinguishing outliers, and adapting the extension of cluster
boundary. In this paper, we addressed these problems and propose
a visual framework for large-scale cluster analysis, which
combines VISTA visual cluster rendering system and ClusterMap
labeling algorithm. The experimental result shows ClusterMap
algorithm usually preserves more clustering structure than the
existing methods.

It is well believed that human participation should help clustering
problem. However, there are very few projects demonstrating the
visualization power on clustering, and our work uniquely shows
how human can help in preserving the clustering quality for large
dataset.

6. ACKNOWLEDGMENTS
This research is partially supported by NSF CNS CCR, NSF ITR,
DoE SciDAC, DARPA, CERCS Research Grant, IBM Faculty
Award, IBM SUR grant, HP Equipment Grant, and LLNL LDRD.

Any opinions, findings, and conclusions or recommendations
expressed in the project material are those of the authors and do
not necessarily reflect the views of the sponsors.

7. REFERENCE
[1] Chen, K. and Liu, L. Cluster Rendering of Skewed Datasets

via Visualization. In Proceedings of ACM Symposium on
Applied Computing 2003 (SAC03), Melborne, FL. 2003

[2] Guha, G., Rastogi, R., and Shim, K. CURE: An efficient
clustering algorithm for large databases. In Proceedings of
the 1998 ACM SIGMOD, Seattle, WA. 1998

[3] Keim, D. Visual Exploration of Large Data Sets.
Communications of the ACM, August 2001, V. 44. No. 8

[4] Cook, D.R, Buja, A., Cabrea, J. and Hurley, H. Grand tour
and projection pursuit. Journal of Computational and
Graphical Statistics, 4(3) 155-172, 1995

[5] Yang, L. Interactive Exploration of Very Large Relational
Datasets through 3D Dynamic Projections, in Proc. of
SIGKDD2000, Boston, MA, 2000

[6] Kandogan, E. Visualizing Multi-dimensional Clusters,
Trends, and Outliers using Star Coordinates, in Proc. of
SIGKDD2001, San Francisco, CA, 2001.

[7] Jain, A. and Dubes, R. Algorithms for Clustering Data.
Prentice hall, Englewood Cliffs, NJ, 1988

[8] Grinstein, G., Ankerst, M. and Keim, D. Visual Data Mining:
Background, Applications, and Drug Discovery
Applications, Tutorial at ACM SIGKDD2002, Edmonton,
Canada. 2002

[9] Jain, A., Murty, M.N. and Flynn, P.J. Data Clustering: A
Review. ACM Computing Surveys, 31(3), P264-323, 1999

[10] Ester, M., Kriegel, H., Sander, J. and Xu, X. A Density-
based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise, in Proc. of VLDB96, Bombay, India,
1996

[11] Hinneburg, A. and Keim, D. An Efficient Approach to
Clustering in Large Multimedia Databases with Noise, in
Proc. of KDD98, NYC, NY, 1998

[12] Shneiderman, B. Inventing Discovery Tools: Combinning
Information Visualization With Data Mining. Information
Visualization, 1, p5-12, 2002

[13] Halkidi, M., Batistakis, Y., and Vazirgiannis, M. Cluster
Validity Methods: Part I&II, SIGMOD Record, Vol31,
No.2&3, 2002

[14] Sheikholeslami, G., Chatterjee, S. and Zhang, A.
Wavecluster: A multi-resolution clustering approach for very
large spatial databases, In Proc. VLDB98, NYC, NY, 1998

[15] Ankerst, M., Breunig, M., Kriegel, H. and Sander, J.
OPTICS: Ordering Points To Identify the Clustering
Structure. In Proc. of SIGMOD1999, Philadelphia, PA, 1999

[16] Xu, X., Ester, M., Kriegel, H. and Sander, J. A Distribution-
based Clustering Algorithm for Mining in Large Spatial
Databases. In Proc. of ICDE98, Orlando, FL, 1998

[17] Karypis, G., Han, E. and Kumar, V. CHAMELEON: A
Hierarchical Clustering Algorithm Using Dynamic
Modelling. IEEE Computer, 32(8), 68-75, 1999

[18] Gallier, J. Geometric methods and applications: for
computer science and engineering. Springer-Verlag, NY,
2001

[19] Zhang, T., Ramakrishnan, R. and Livny, M. BIRCH: An
efficient data clustering method for very large databases, In
Proc. of SIGMOD96, 103-114, Montreal, Canada, 1996

[20] Chen, K. and Liu, L. A visual framework invites human into
clustering process. In Proc. of Statistical and Scientific
Database Management (SSDBM03), Boston, MA, 2003

[21] Chen, K. and Liu, L. Validating and Refining Clusters via
Visual Rendering. In Proc. of Intl. Conf. on Data Mining
(ICDM03), Melborne, FL, 2003

[22] Huber, P. Massive data sets workshop: The morning after
Massive Data Set, National Academy Press, 1996

[23] Hinneburg, A., Keim, D. and Wawryniuk, M. Visual Mining
of High-dimensional data. IEEE Computer Graphics and
Applications. 19(5), 1999

[24] Li, C., Chang, E., Garcia-Molina, H. and Wiederhold, G.
Clustering for Approximate Similarity Search in High-
Dimensional Spaces, IEEE Trans. on Knowledge and Data
Engineering, 14(4), 792-808, 2002

[25] Freidman, J.H., Bentley, J.L., and Finkel, R.A. An algorithm
for finding best matches in Logarithmic Expected Time.
ACM Trans. on Mathematical Software. 3(3), 1977

[26] Sonka, M., Hlavac, V. and Boyle, R. Image Processing,
Analysis, and Machine Vision. Brooks/Cole Publishing,
Pacific Grove, CA, 1999

