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ABSTRACT

With the rapid increase of data in many areastetig on large
datasets has become an important problem in datgsis Since
cluster analysis is a highly iterative processstdu analysis on
large datasets prefers short iteration on a retivsmall
representative  set.  Thus, a two-phase
“sampling/summarization — iterative cluster anaysis often
applied in practice. Since the clustering resulty dabels the
small representative set, there are problems witeneing the
result to the entire large dataset, which are angmored by the
traditional clustering research. This extendingfien named as
labeling process. Labeling irregular shaped clsster
distinguishing outliers and extending cluster bamdare the
main problems in this stage. We address these grabland
propose a visualization-based approach to dealiit them
precisely. This approach partially involves humato ithe process
of defining and refining the structure “ClusterMaBased on this
structure, the ClusterMap algorithm scans the ladgiaset to
adapt the boundary extension and generate theecliatels for
the entire dataset. Experimental result shows@haterMap can
preserve cluster quality considerably with low camgpional cost,
compared to the distance-comparison-based labelgugithms.

Categories and Subject Descriptors

1.5.3 [Clustering]: Labeling algorithms for large datasets. H.1.2

[User/Machine Systems Human factors in clustering large
datasets

General Terms
Algorithms, Human Factors
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Data Clustering, Cluster Labeling, Cluster Visuatiian, Human
Factors in Clustering
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1. INTRODUCTION

Over the past decade, large datasets have beeectedll or
produced in many application domains, such as fugimtics,
physics, geology, and marketing, and some havéeekbihe level
of terabytes or petabytes [22]. Therefore, therea igrowing
demand for efficient and precise clustering techegjthat can
adapt to the large datasets.

Several clustering algorithms have aimed at pracgdbe entire
dataset in linear or near linear time, for examplgveCluster
[14], DBSCAN [10], and DENCLUE [11]. However, theere
some drawbacks with these approaches. First, tisteclanalysis
process often requires multiple runs of the clils¢ealgorithms to
find the optimal partitioning scheme. Even thougltlastering
algorithm has linear computational complexity, rimgn such
algorithm on a large dataset multiple times id stilolerable for
many users. Second, existing clustering algorittofien work
efficiently in finding clusters in spherical or elgated shapes but
they cannot handle the arbitrarily cluster shapey well, nor
validate them effectively [13]. Some algorithmscisias OPTICS
[15], try to find the arbitrarily shaped clustebsit their non-linear
complexity often makes them only applicable to $mamedium
datasets.

Bearing the above problems in mind, a number ofr@gghes
were proposed to perform clustering algorithms lo@ $ample
datasets or data summaries instead of the entge tataset. For
example, CURE [2] applies random sampling to get shmple
data and then runs a hierarchical clustering algorion the
sample data. BIRCH [19] summarizes the entire éaiato a CF-
tree and then runs a hierarchical clustering aligorion the CF-
tree. This “sampling/summarization — iterative tdusanalysis”
framework has been commonly recognized as a pahctiay in

large-scale cluster analysis. Since the size cdsgitis reduced
with the sampling/summarization techniques, any icbip
clustering algorithms and cluster validation tecueis that have
acceptable non-linear computational complexity lsarapplied in
cluster analysis. Therefore, clustering large ddtdas seemly
promisingly solved with this framework. Howevergtprevious
research on clustering almost ignored the followprgblem —
how is the clustering result applied to #mirelarge dataset?

1.1 Labeling Clusters in Large Datasets: the

Problem
One of the main problems with the two-phase frantkvi® the
gap between the clustering result of the repretieatdataset and
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Figure 1-1. Cluster analysis and labeling

the requirement of retrieving cluster labels foe tbntire large
dataset. Some typical questions asked by the apiplis are 1)
what is the cluster label for the particular dagn? and 2) what
are the data items that belong to the particulastet? Therefore,
when the queries involve the items that are not tle

representative dataset, we also need to deal Wwém twithout
introducing inconsistency to the clustering struetu

Traditionally, the post-clustering stage is namaakling process.
However, labeling is often ignored by the clustgniasearch. Part
of the reason is the clustering problem itself i sot well-
solved. With the emerging of more and more effectilustering
algorithms, which are typically not in linear corepity, the post-
clustering stage will become critical to large data especially
when the points at the cluster boundary area grefisant to the
applications. Sampling or summarization theory rsakée
representative set “representative” enough to thlgmificant
clustering structure. However, when the sample isizmly about
1% or even less than 1% of the original datasetisib becomes
necessary to listen to the opinions of the majoityforeseeable
problem in labeling large amount of data is tha¢ ttluster
boundary will be extended more or less by incorfigathe
labeled data points. Boundary extension might tegul the
connection of different clusters and thus we magdn® merge
them. Since the boundary is extending, the outl@gmund the
boundary should also be treated carefully. Figw2 dnd 1-3
demonstrate the boundary extension problem.

The problems caused by cluster boundary extengierhard to
handle mainly due to the difficulty in describiniget boundary
precisely in multidimensional space (>3D). The itiadal

labeling algorithms [2, 19] are based on the veough

description of cluster boundary, namely, a centroida set of
representative boundary points. A typical labeliatgorithm

assigns each new data item to a cluster that haso@ or one
representative boundary point closest to the data.iCentroid-
based labeling uses cluster center only to repteaeduster.
Representative-point-based labeling uses reprasenfzints on

Figure 1-2. Cluster boundary in a small
representative set (data points are white)

Figure 1-3. Cluster boundary is extended in
thentire large dataset

cluster boundary to describe the cluster, whictbéster than
centroid-based labeling since it provides morerimfation about
the boundary. Obviously, precise description ofristary depends
on the number of representative points in terntdiftérent cluster
shapes, which could be large for irregular shapé#hile
representative points are employed to describe derynit is also
not easy to describe the boundary extension whee ared more
items are labeled~urthermore, neither representative-point-based
nor centroid-based labeling caleal with outliers satisfactorily.
Figure 1-4 shows the lack of ability to dealingtwthe outliers
when representative-point-based labeling is applied

One important metric in evaluating labeling psecision that

measures the consistency between the labelingtrasal the
naturally extended clustering structure on the dadataset. In
other words, this reflects how precisely the questil) and 2) get
answered with the labeling result. Any rough latgltechnique
makes the meaningful intermediate clustering resapplicable
to the entire large dataset. Another important imeis the

complexityof algorithm. Since labeling deals with the entamge

dataset, it has to be linear or at least neardlineatime

complexity.

To sum up, existing labeling algorithms have thdofeing
difficulties when applied to large datasets

« Identifying irregularly shaped clusters is a hardiglem in
clustering, and it is also a challenge labelingts in large
dataset.

e With the existing centroid-based or boundary-pbiased
labeling algorithms, it is difficult to identify & cluster
outliers.

e If precise boundary description is considered, wtiensize
of dataset becomes very large compared to theseptative
dataset, the boundary extension problem shouldabellad
carefully.

To solve the above problems, we also need to keepind that

igure 1-4. Outliers are labeled as the
members of tmearby clusters.



the algorithm should be still in linear or nearelam complexity
with the improved precisian

1.2 Our Approach

In this paper, we propose a nhew labeling appro&tiisterMap,
which extends VISTA cluster rendering system [1, 2] for
labeling large datasets. The VISTA approach hasvsheeveral
unique features: 1) identifying the irregular cérstshapes
effectively via visualization; 2) validating and fireng any
algorithmic results visually to improve the clustguality; 3)
incorporating the domain knowledge conveniently;hdying a
flexible framework to incorporate algorithms and nfan
interaction into the cluster analysis process. Viselialization-
based ClusterMap labeling makes a couple of newriboions
to the post-clustering stage:

= We are the first to address the importance of lagefor
cluster analysis of large datasets, and the prableith the
distance-based labeling algorithms.

=  We introduce visualization into the labeling stagéjch is
intuitive and flexible. ClusterMap is based on VIS@luster
rendering result and thus it can describe the raryitcluster
shapes precisely, which reduces the labeling eaosed by
imprecise cluster representations.

= We develop a two-step ClusterMap processing alyorit
which eliminates the influence of boundary extensand
allows the users to interactively examine the elsy
structure for entire dataset. The “snapshots” afs@rMap
also enable the user to monitor the evolving ofstelu
structure caused by incorporating the processetkite

The rest of this paper is organized as follows. Shiesection 1.3
gives some related work. Section 2 briefly des&ib4STA

system and its extension for large datasets. We pinesent the
visualization-based labeling algorithm ClusterMapsiection 3.
Section 4 reports the experimental result, dematisy the high
quality of cluster preserving with low complexityy busing

ClusterMap. Finally, we conclude our work in sect®

1.3 Related Work

A general cluster analysis framework is describedhie review
paper [9] of clustering techniques, which showst thluster
analysis is usually an iterative process, and #ee always prefers
faster algorithms or short response time. Thusnancon problem
with large-scale clustering is the long responseetiEven a fast
algorithm running in linear time would let the useaiting for a
while in an iterative cycle. CURE [2] and BIRCH [l&mploy the
“sampling/summarization — clustering” framework deal with
the large-scale clustering problem. The two-phesméwork also
facilitates the incorporation of other tools, sashVISTA cluster
rendering system [1], for better understanding asfthing of
arbitrarily shaped clusters.

Dealing with arbitrarily shaped clusters is weltognized as a
hard problem in clustering research community. 8dvaustering
algorithms have aimed at this particular probleathsas, CURE
[2], CHAMELEON [17], DBSCAN [11], DBCLASD [16],
WaveCluster [14], DENCLUE [12] and so on. But thvegre only
reported effective in low dimensional dataset osiimall/medium
datasets. In conclusion, the automatic algorithamsdeal with the
arbitrarily shaped clusters to some extent, butréiselts are quite
limited.

A semi-automatic algorithm OPTICS [15], which desvfrom
DBSCAN [11] algorithm shows visualization can bewaseful
in cluster analysis. However, OPTICS is not appliegfor large
datasets unless applying the multi-phase framew®@kher
visualization systems, such as HD-Eye system [@8lich are
also limited by the size of the dataset, will néleel labeling step
when applied to large datasets.

Existing cluster representations can be classifietb four

categories: centroid-based, boundary-point-basegr€sentative-
point-based), classification-tree-based and ruketa
representations [9]. Since the classification-trased and rule-
based methods are equivalent (each path in thsifatasion tree

can be represented as a rule) and inapplicableaimyrsituations,
they are not widely used in practice. Using centtoi represent a
cluster is the most popular scheme, since many-ritigts

produce only centroids for clusters. Obviouslywvirks only for

the clusters having compact spherical shapes. Bemwative-

point-based approach works better than centroidgesiit

describes the clusters in more detail. But how é&fing the

representative points precisely for arbitrarily [sha clusters is as
difficult as the clustering problem.

2. EXTENDING THE VISUAL

FRAMEWORK FOR LARGE DATASETS

The VISTA visual framework [20, 21] has shown thaeractive

visual cluster rendering can be very effective @entifying

irregular cluster shapes and validating/refining @gorithmic
results. We extend the visual framework to allowgessing large
datasets under the framework of “sampling — visthastering —
labeling with clusters”. The extended visual framewis like

Figure 2-1.
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Figure 2-1. The extended visual framework

The large dataset is first sampled to get a subsetanageable
size, which is then used as an input to the seleatéomatic
clustering algorithms and the VISTA system. Theosdtgmic

clustering result provides helpful information inswal cluster
rendering process. The user interacts with the YASisual

cluster rendering system to find the satisfactoisualization,

which visualizes the clusters in well-separateédsr&ince human
vision is very sensible to the gap between poinud$, which
imply the boundary of clusters, the interactivedening works
very well in defining vague boundary or irregulduster shapes.



A ClusterMap is then defined on the satisfactorystr
visualization and used as the initial pattern inusBérMap
labeling. Finally, the labeling process will adape boundary
extension and cluster refining in one pass throtlgh entire
dataset. An additional pass might be needed togamize the
entire datasets for fast processing of queriesfufiher observe
the small clusters that may be omitted in samppngcess, the
filtering component filters out the labeled outliesnd performs
sampling/visual rendering on the sampled outligi@ira We will
also briefly discuss small cluster processing irtiea 3.

2.1 VISTA System

To understand the ClusterMap algorithm better, aedrto briefly
review the VISTA system. The main problem in cluste
visualization is cluster preserving, e.g. visualigi multi-
dimensional datasets in 2D/3D visual space, whiésgrving the
cluster structure. The past research and practiceved that
preserving cluster structure precisely in statgualization, if not
impossible, is very difficult and computationally ostly
[3,4,5,6,12]. A more practical way is to allow theser to
interactively explore the dataset [3] to distinguike unpreserved
cluster structure, such as cluster overlappingkdnalusters and
fake clusters (outliers in the original space aspped to the same
visual area). VISTA visual cluster rendering systdm20, 21]
has shown how the interactions can be appliedno diusters.
The visualization model is the core of the systdmses a linear
(or affine) mapping [18] -e-mapping with normalization to avoid
the breaking of clusters after tHedimensional to 2D space
mapping. The interactive operations are used td fire visible
“gaps” which help to discriminate the possible tdus
overlapping. By finding the gaps and investigating raw labels
provided by automatic clustering algorithms, ie&sy to identify
the overlapping and fake clusters. The experimbate shown
that visual cluster rendering can improve the ustdading of
clusters, validate and refine the algorithmic dusig result
effectively.

In current version of VISTA, the system process$esEuclidean
datasets only (where the distance/similarity fuorctis defined by
Euclidean distance) since they are the most comdatasets in
the applications. Therefore, by default, we referBuclidean
datasets in the following discussion.

2.2 VISTA Mappings

The ClusterMap labeling is tightly related to thelSVA
visualization model. The VISTA visualization mod=insists of
two linear mappings — max-min normalization follavby a-
mapping.

Max-min normalization is used to normalize the columns in the

datasets in order to eliminate the predominantceféd large-
valued columns. Max-min normalization with boundsr{, max]
scales valug to [-1, 1] as follows:

V' = 2* (v - min)/(max- min) -1, (1)

vis the original value and is the normalized value.

a-mapping mapsk-D points to 2D visual space while providing
the convenience of visual parameter tuning. We ritesa-

mapping as follows. Let a 2D poif (x, y) represent the image of
a k-dimensional K-D) max-min normalized data point

P(Xy..-%....%), % O [-1, 1] in 2D spaceQ(x, y) is determined by
the average of the vector sum lovectors S, -x, where S; =

(cos@), sin®)), i= 1.k, 6; O [0, 2r] are the star coordinates [6]
that represent thledimensions on 2D visual space.

a-mapping: Q (x, y)is determined by (2)
{x.y}=

{(c/k)iaixicos@)—xo, (c/k)iaixisin(a)—yo}

q; (i =1,2,..k, —1=a; <1) in the definition are the dimension
adjustment parameters, one for each ofktldémensionsé, is set
to 2ri initially and can be adjusted either, but usu#lis not
necessary.xg, Y) is the center of the display area anis the
scaling of the radius of display area-mapping is a linear
mapping which ensures the visible gaps in 2D vigatbn are
also the gaps in k-D space.

3. CLUSTERMAP ALGORITHM

3.1 The Basic ClusterMap Algorithm

ClusterMap is a convenient extending of VISTA atusendering
system. When visual cluster rendering producessfaatory
visualization, we can set the boundary of a clubtedrawing a
boundary to enclose it. Each cluster is assignad wiunique
cluster identifier. After the cluster regions ararked, the entire
display area can be saved (represented) as a 2Dabrgy (Figure
3-1). Each cell in the 2D array is labeled by aantifier — a
cluster ID (>0) if it is in cluster region, or trautlier ID (=0),
otherwise. Since the size of array is restrictedh®yscreen size,
we do not need a lot of space to save it. For el@ntipe display
area is only about 688*688 pixels on 1024*768 gstresightly
larger for higher resolution, but always boundedabfew mega
pixels. As shown in Figure 3-1, the Cluster Mapagris often a
sparse matrix too, which can be stored more spfiiceently if
necessary. Figure 3-2 is a visually defined Cliggr of the 4D
“iris” dataset. The boundaries of cluster C1, C2 428 were
defined interactively.

In addition to store the 2D array, we need to sieemapping
parameters for the labeling purpose. The paramitelisde:

*  The max-min bounds of each column: Cyrand Cmin
There arek pairs of such parameters totally, whéris
the dimensionality of the dataset.

e The center of the visualization, e.8g, (o)

e« Theka parameters:dy, as,..., ai)

e The scaling factoc

«  The angles of the coordinaté8,, 6,,..., 6,)

ClusterMap representation has several advantagess, iR most
situations, the ClusterMap provides more detailsinththe
centroid-based or representative-point-based
representation, thus it is possible to preserve pfeeision of
intermediate clustering result in labeling phasecddd, the
cluster boundaries can be adjusted convenientlgdpt to any
special situations or to incorporate domain knogteds the way
we use the VISTA system. Third, with ClusterMapresgntation

cluste
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Figure 3-1. lllustration of basic ClusterMap,
which has three clusters defined

the outliers can be better distinguished. We stesl ClusterMap
can also adapt the extension of cluster boundatkéerfollowing
section.

The best way to discuss the features of the CMsterabeling is
to compare it with the two typical cluster-labelingethods we
have mentioned: Centroid-Based labeling (CBL) and
Representative-Point-Based labeling (RPBL). To llabeoint,
CBL compares the distances of this point to thetroas of
clusters. The point is labeled with the clusterdDthe nearest
centroid. RPBL utilizes the representative poineneyated by
clustering process or fetched from the clusteriegults. It looks
up the nearest neighbour of this point among gltesentative
points and labels the point with the cluster IDtbé nearest
representative point. Both algorithms are kind ofugh in
describing the clusters and have difficulty in d#sog the
arbitrarily shaped clusters or distinguishing arsi

In comparison, the ClusterMap labeling is intuitwéetter and
very straightforward. Having the ClusterMap loadiedo the
memory, each item in the entire large dataset #rsed and
mapped onto one ClusterMap cell. The mapping falltive same
mapping model used in the visual rendering systemth applies
the max-min normalization first, and then followdsy o—
mapping. Suppose the raw dataset is stored in ddidxk matrix,
whereN is the number of rows aridis the number of columns.
We rewrite the formulas as follows:

Normalization xj = m*(x; — Cmin) -1,

(3
m; = 2/(Cmax— Cmin)
. k k (4)
@ _mapping: X, =D PX; * X =X, Y = 2. PY; X = Y,
=1 =1

where px=c*aj*cos@)/k, py = c*a;j*sin(@)/k and; can be pre-
computed, and other parameters are the same asdiéifore.

Concretely, the algorithm reads thth item (%;...Xy) from thek-

D raw dataset, normalizes and maps it with form(8asnd (4) to

a 2D cell coordinate (xy;). Reading the value stored in the cell
(X, ¥;), we gets the cluster ID label, which will be eith0 for
outliers, or a positive integer for a cluster. Fast processing
cluster related queries, we can also create blitbek o store the

Fgure 3-2. ClusterMap of
the 4D “iris” dataset.

Figure 3-3. Buil 2D R-tree over
ClusterMap grid fa fast retrieval

cluster members and build 2D R-tree index overgti@ (Figure
3-3).

Given the formulas (3) and (4), we can roughlyraate the cost
of ClusterMap labeling. We count the number of seaey
multiplication to estimate the cost, for exampleneok-D
Euclidean distance calculation coktswltiplication. Map reading
and parameter reading cost constant time. For gaohin the
dataset, the max-min normalization coktsnultiplication with
formula (3). Thea-mapping function costk multiplication
respectively to calculate, y coordinates with formula (4).
Locating the cell in ClusterMap to get the corresfing cluster
ID costs constant time. Hence, the total costtierdntire dataset
is 3kN, whereN is the number of rows in the dataset.

Table 1: Cost estimation of the three algorithms.

k | Dimensionality

N | Total rows in raw dataset

n | The number of clusters

m | The number of representative points for each auste
f1 | The cost of ClusterMa8kN

f2 | The cost of CURE RPBInmMkN> f2 >log,(nm)* kN
f3 | The cost of CBLnkN> f3 >log,(n)*kN

When kd-tree [25] or other multi-dimensional tree is usked
organize the representative points or centroids, gee near-
optimal complexity for the distance-comparison laggbeling
algorithms. The cost to find the nearest neightpmint in kd-tree

is at leastlog,(hm) distance calculation for RPBL and at least
log,(n) for CBL, wheren andm as defined in table 2. For a typical
RPBL as reported in the CURE paper, only when thmber of
representative points is greater than 1&n>£10), the
representative-point method can represent clustaughly for
regular non-spherical cluster shapes (mainly, thengated
shapes), and the more irregular the cluster shape ntore
representative points needed to describe the sfiapes, the cost
of RPBL will be at leastikN, even higher than ClusterMap.

So all the three algorithms are in O(N) complexithich is ideal
for processing large datasets. The main advanth@usterMap
labeling is the precision of clustering structuregerved for the
entire dataset. We will show in experiments how mube
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Figure 3-4. Boundary extension with the
increase of dataset size

ClusterMap labeling can reduce the error rate chbgerregular
shape clusters, outliers, and boundary extensimmpared to the
other two algorithms.

3.2 Adaptive ClusterMap for Boundary

Extension

In the basic ClusterMap labeling, we assume thsteftboundary
(or a relaxed boundary as Figure 3-2 shows) defiordthe
sample set will not change a lot in labeling. Hoerewith the
number of labeled items increasing, the boundarly wofien
extend more or less if the boundary is defined tiygtand
precisely on the sample set. An example has bemmrsim Figure
1-2 and 1-3. The boundary extension may also résutterging
of two close clusters or enclosing the nearby erdliinto the
clusters. Figure 3-4 sketches that the possiblensidn happens
in ClusterMap with the attending of labeled items.

Boundary extension is maintained by monitoringpgbet density
around the boundary area. We have the initial bagndefined in
VISTA at the beginning. We name the cells withire ttluster
boundary as the “cluster cells” and the cells adotire boundary
area as the “boundary cells”. The initial boundaslls are
precisely defined in a short distanceaway from the boundary
defined by VISTA. All non-cluster cells are “outliecells”
including the boundary cells. We defitlee density of a celbn
map as the number of items having been mappedsad¢h. The
density of boundary cells should be monitored ideorto make
decision on boundary extension. A threshold derdityell, d, is
defined as two times of the average density ofi@utells. If the
density of a boundary cell grows dawith the attending of labeled
items, the boundary cell is turned to a clustek, cesulting in the
extension of boundary. The non-cluster cells withi@s-distance
from the old boundary cell then become the new Hanncells.
Since the boundary is on the 2D cells, we can abes the basic
distance unit and “city block” distance [26] as tHéstance
function to defines-distance.¢ is often a small number, for
example, 1 or 2 “city block” distance from the @nt boundaryd
is growing as well as the density in non-clusteaas growing so
the measuring of boundary extension keeps consistégh the
density of non-cluster area.

To support the above adaptive algorithm, we neeextend the
basic structure of ClusterMap. First of all, fockaell, we need
one more field to indicate if it is a monitored nclnster cell. We

Figure 3-5. lllustration of monitored area where e=1

also need to keep track of the number of pointnéabnto each
cell, which is saved in density map Since the average noise
level will inevitably rise with the increase of kled items,o
should be periodically updated according to theraye noise
level. The following algorithm briefly describes ethadaptive
ClusterMap labeling.

1. e-distance (boundaiy — boundary ),
g = # of outlier cells,
n, = # of outlier points,
d0=2%,19,
a new point> n with formulas (3) and (4)
densityf) ++,
if O cluster
then if » O boundaryi) and densityy) > o
then 5 — cluster{);
fory' O e-distancef) n #' O cluster {)
n’'— boundary i)

Oo =01

0. n, = N, — densityf)
else

11. No =Ny +1

BOoo®~NoGOrWN

12. 0 =2*n, /g,
13. Goto 2. and repeat until processed all points

Algorithm 1. The first scan over the entire dataseto adapt the
boundary extension

Boundary extension can behave abnormally, whichhtnige
caused by inappropriate initial cluster boundaryribg the first
scan, “snapshots” of ClusterMap are saved and Nysuanitored
by the user. Snapshots are a series of evolvingt&@Maps,
which incorporate the boundary extension, savedoate time
interval during labeling. The user can terminate thbeling
process early if the snapshots show bad trendsxample, the
cluster boundary becomes vague soon after labsbinge points
and we cannot distinguish the clusters any morermsb
boundary extension should be slow and uniformiytrithisted
around the boundary. After first scan, the user alm® make
decision on merging clusters or creating new ctasfer small
emerging clusters, which are often ignored by the
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sampling/summarization process. Since this papepisocused
on the interaction part, we will not describe theeations in
details.

You may also concern that data ordering will affectundary
extension. For example, a sequence of data is rdappefocused
boundary area at early stage thus extends the boyriout later
on no more points are mapped to that area. Asudt réss area is
falsely extended as a part of cluster. This probiam be avoided
by randomizing the processing sequence.

The first scan generated an adapted ClusterMapsé&tend scan
can be performed to build up a R-tree index onrtiag for the
items as Figure 3-3 shows. Clustering applicatiomsld involve

similarity search [24] and this additional indexusture will be

helpful for such applications. However, we can atd@p the

second scan and leave the computational cost aeang ad-hoc
queries if the queries come infrequently.

3.3 Observe and Label the Small Clusters
Sampling can possibly cause the loss of small etage]. In this
section we briefly describe how to capture the boiabters in an
iterative method.

During the first scan of ClusterMap labeling, wencgheck if
there are small clusters emerging from the outliers the
“snapshots”. If there are small clusters emergimg,can use the
following filtering method to observe the emergsmall clusters
in details. Since after the first scan clusters #mel extended
boundary are well defined, we can subtract themrmftbe large
dataset and observe the rest outlier dataset ditje outlier

Figure 4-5. RPBL on Shuttle

Figa 4-6. Documented clusters on Shuttle

dataset is still large, it is sampled and obseinedISTA cluster

rendering system. Since the size of outlier datsisetild be much
smaller than that of the original dataset, the damyill show

more details of the outliers and the smaller chssteuld be well
preserved after sampling. Again, the observed etssire marked
in another ClusterMap. We can repeat this proceskthe size of
the outliers become uninterestingly small. Due he tspace
limitation, we do not discuss the details or experits about this
problem in the paper.

4. EXPERIMENTS

This section presents two sets of experiments. firse set of
experiments shows ClusterMap can handle the lapelfiutliers
and irregular shaped clusters much better. Thenseset of
experiments demonstrates the advantage of ClusgemMdealing
with cluster boundary extension for large datasets.

4.1 Datasets and Experiment Setup

Three datasets are used for the two sets of theriexgnts. One is
the simulated dataset DS1 used in CURE. DS1 is al&@set
having five regular clusters, including three sjtadrclusters, two
connected elliptic clusters, and many outliersodin experiments,
DS1 is used to evaluate the effect of outliers ba kabeling
algorithms. The second dataset is a real dataSétuttle dataset
(STATLOG version, test dataset). It is a 9-dimenalodataset
with very irregular cluster distribution. There a®ven clusters in
this dataset, among which one is very large withraximately
80% of data items, and two are moderately largeh wit
approximately 15% and 5% of data items, respegtivie others
are tiny. Shuttle dataset is used to evaluate ffeetef clustering



result on the labeling process. These two datdsste original
labels, so we can calculate exact error rate \mighariginal labels
and generated labels. The third dataset is a sietlldb-
dimensional large dataset LDS in size of 6*t8ms (up to 4G),
which contains five spherical clusters and soméesst Figure 4-
7 shows a 10K sample set visualized with VISTA eyst The
first two datasets should show how ClusterMap awvoitle
common problems of the traditional algorithms. Thied dataset
is used to show that adaptive ClusterMap works wth very
large datasets.

The three algorithms,
implemented in C++. RPBL is based on the CURE ehirsg
algorithm, which was known as the best RPBL adafidechon-
spherical cluster. We run CURE clustering with fodowing
parameters: the number of representative poing0isnd alpha
(shrink factor) is set to 0.5 as suggested. We als® ANN
(Approximate Nearest Neighbour) C++ library fromildsity of
Maryland at College Park to constricktree for RPBL and CBL.

4.2 Outliers and Irregular Cluster Shapes

We have discussed three different algorithms: Rsgprative-
Point Based Labeling (RPBL), Centroid-Based Laliel@BL),

and ClusterMap. In this section we study the pentorce and
error rates of ClusterMap experimentally, comparedhe two
commonly used algorithms RPBL and CBL.

We run VISTA to get the ClusterMap in the resolatiof
688*688. The cost to rebuild a ClusterMap structarsmemory is
about 340~360ms. In contrast the cost to blddree is about
1~2ms. Both DS1 and shuttle datasets show theestistation is
appropriate — all three are linear and the basitst€iMap is
slightly fast (Figure 4-1 and 4-2). Linear comptgxis good
enough for a one-time building process.

The DS1 dataset is used to show the effect of evstlto the
algorithms. The error rate of RPBL is on averad@glover DS1;
the error rate of the CBL has the error rate oP&.8vhile the
error rate of ClusterMap has only about 1.5%, migster than
the other two. ClusterMap also shows a more stahier rate.
From the visualization of the labeling results, algserved that
CBL suffers from the large circle cluster and @i Most RPBL
errors come from the outliers. Since RPBL resulbéster than
CBL we only show the visualization of RPBL resyfsgure 1-4).
The visualization of RPBL labeling shows that thdliers are
labeled as the member of the nearby cluster, wisidine main

Performance on LDS Dataset

CBL, RPBL, and ClusterMap are

reason why RPBL yields higher error rate.

Shuttle dataset has very irregular clusters. Wismall number of
“landmark points” [20], we can easily and correctligfine the
clusters with VISTA. We use the shuttle datasetshow the
limitation of the popular RPBL algorithm to the yeirregular
cluster shapes. Figure 4-4 shows that the errerafaRPBL raises
to the level, similar to that of CBL (about 17%)luSterMap
labeling keeps consistent with the VISTA clusterdering result
and thus has only 4.2% of incorrect labels, muetelothan the
other two algorithms.

In the visualization of RPBL on 10000-item subd&ggre 4-5),
we can see it divides the original cluster c3 iM@ parts and
cannot discriminate c1 and c2. We give the corcectroids for
CBL, however, centroids simply cannot represent ithegular
cluster distribution, which makes the error rateyyegh.

4.3 Boundary Extension on Large Dataset
This experiment on the large dataset LDS mainlywshdhe
scalability of adaptive ClusterMap algorithms ahé fadvantage
of ClusterMap in handling boundary extension. LDx@wates 5
spherical clusters, two big and three small clsstas well as ~1%
background noise. LDS is well designed so that are predefine
the control labels for entire dataset with smaiberThe actual
boundaries are larger than the visible ones orsémaple set as
shown in Figure 4-7. We did not consider the megydietween
the close clusters, such as B and C, since it isoasidered by
RPBL and CBL. The progressive result of performaaice error
rate is shown in Figure 4-8 and 4-9. The perforrmanave shows
that the adaptive ClusterMap costs slightly lesntithe other
algorithms. Since the clusters are spherical, #veling error of
RPBL and CBL comes from the improper boundary deson
and the outliers. In this regular cluster distribot representative
points and centroids have the similar effect irst#u description,
and thus, RPBL and CBL have almost the same rasi#igure 4-
9 shows. The error of ClusterMap mainly comes fitbie minor
imprecision around the boundary are. It is normfzt tthe
boundary produced by adaptive ClusterMap mighth®perfect
in such a noised dataset. However, one of the &@Mstp’s
advantages is that the users can always check ama the
ClusterMap in such situations.

5. CONCLUSION

With the emerging of more and more large datasgtstering

Error Rate on LDS

Figure 4-7. Visualization of 10K
samples of LDS

Figure 4-8. Brformance on LDS
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large datasets has become a major problem in dalssés. The
three-phase framework “sampling/summarization -raftee

cluster analysis — labeling large datasets witlstels” provides a
feasible solution for cluster analysis on largeadats. Labeling
large datasets with clusters bridges the effedivster analysis to
the large dataset. There are some difficult probleoming with

the labeling problem - labeling arbitrarily shapetusters,

distinguishing outliers, and adapting the extensafncluster

boundary. In this paper, we addressed these prshdech propose
a visual framework for large-scale cluster analysighich

combines VISTA visual cluster rendering system @hasterMap

labeling algorithm. The experimental result showsis@rMap

algorithm usually preserves more clustering stmgctthan the
existing methods.

It is well believed that human participation shobklp clustering
problem. However, there are very few projects destrating the
visualization power on clustering, and our workqugly shows
how human can help in preserving the clusterindityuar large
dataset.
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