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ABSTRACT  
With the rapid increase of data in many areas, clustering on large 
datasets has become an important problem in data analysis. Since 
cluster analysis is a highly iterative process, cluster analysis on 
large datasets prefers short iteration on a relatively small 
representative set. Thus, a two-phase framework 
“sampling/summarization – iterative cluster analysis” is often 
applied in practice. Since the clustering result only labels the 
small representative set, there are problems with extending the 
result to the entire large dataset, which are almost ignored by the 
traditional clustering research. This extending is often named as 
labeling process. Labeling irregular shaped clusters, 
distinguishing outliers and extending cluster boundary are the 
main problems in this stage. We address these problems and 
propose a visualization-based approach to dealing with them 
precisely. This approach partially involves human into the process 
of defining and refining the structure “ClusterMap”. Based on this 
structure, the ClusterMap algorithm scans the large dataset to 
adapt the boundary extension and generate the cluster labels for 
the entire dataset. Experimental result shows that ClusterMap can 
preserve cluster quality considerably with low computational cost, 
compared to the distance-comparison-based labeling algorithms.   

Categories and Subject Descriptors 
I.5.3 [Clustering]: Labeling algorithms for large datasets. H.1.2 
[User/Machine Systems]: Human factors in clustering large 
datasets  

General Terms 
Algorithms, Human Factors 

Keywords 
Data Clustering, Cluster Labeling, Cluster Visualization, Human 
Factors in Clustering 

1. INTRODUCTION 
Over the past decade, large datasets have been collected or 
produced in many application domains, such as bioinformatics, 
physics, geology, and marketing, and some have reached the level 
of terabytes or petabytes [22]. Therefore, there is a growing 
demand for efficient and precise clustering techniques that can 
adapt to the large datasets.   

Several clustering algorithms have aimed at processing the entire 
dataset in linear or near linear time, for example, WaveCluster 
[14], DBSCAN [10], and DENCLUE [11]. However, there are 
some drawbacks with these approaches. First, the cluster analysis 
process often requires multiple runs of the clustering algorithms to 
find the optimal partitioning scheme. Even though a clustering 
algorithm has linear computational complexity, running such 
algorithm on a large dataset multiple times is still intolerable for 
many users. Second, existing clustering algorithms often work 
efficiently in finding clusters in spherical or elongated shapes but 
they cannot handle the arbitrarily cluster shapes very well, nor 
validate them effectively [13]. Some algorithms, such as OPTICS 
[15], try to find the arbitrarily shaped clusters, but their non-linear 
complexity often makes them only applicable to small or medium 
datasets.   

Bearing the above problems in mind, a number of approaches 
were proposed to perform clustering algorithms on the sample 
datasets or data summaries instead of the entire large dataset. For 
example, CURE [2] applies random sampling to get the sample 
data and then runs a hierarchical clustering algorithm on the 
sample data. BIRCH [19] summarizes the entire dataset into a CF-
tree and then runs a hierarchical clustering algorithm on the CF-
tree. This “sampling/summarization – iterative cluster analysis” 
framework has been commonly recognized as a practical way in 
large-scale cluster analysis. Since the size of dataset is reduced 
with the sampling/summarization techniques, any typical 
clustering algorithms and cluster validation techniques that have 
acceptable non-linear computational complexity can be applied in 
cluster analysis. Therefore, clustering large dataset is seemly 
promisingly solved with this framework. However, the previous 
research on clustering almost ignored the following problem – 
how is the clustering result applied to the entire large dataset? 

1.1 Labeling Clusters in Large Datasets: the 
Problem  
One of the main problems with the two-phase framework is the 
gap between the clustering result of the representative dataset and 
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the requirement of retrieving cluster labels for the entire large 
dataset. Some typical questions asked by the applications are 1) 
what is the cluster label for the particular data item? and 2) what 
are the data items that belong to the particular cluster? Therefore, 
when the queries involve the items that are not in the 
representative dataset, we also need to deal with them without 
introducing inconsistency to the clustering structure. 

Traditionally, the post-clustering stage is named labeling process. 
However, labeling is often ignored by the clustering research. Part 
of the reason is the clustering problem itself is still not well-
solved. With the emerging of more and more effective clustering 
algorithms, which are typically not in linear complexity, the post-
clustering stage will become critical to large dataset, especially 
when the points at the cluster boundary area are significant to the 
applications. Sampling or summarization theory makes the 
representative set “representative” enough to the significant 
clustering structure. However, when the sample size is only about 
1% or even less than 1% of the original dataset, it also becomes 
necessary to listen to the opinions of the majority. A foreseeable 
problem in labeling large amount of data is that the cluster 
boundary will be extended more or less by incorporating the 
labeled data points. Boundary extension might result in the 
connection of different clusters and thus we may need to merge 
them. Since the boundary is extending, the outliers around the 
boundary should also be treated carefully. Figure 1-2 and 1-3 
demonstrate the boundary extension problem.  

The problems caused by cluster boundary extension are hard to 
handle mainly due to the difficulty in describing the boundary 
precisely in multidimensional space (>3D). The traditional 
labeling algorithms [2, 19] are based on the very rough 
description of cluster boundary, namely, a centroid or a set of 
representative boundary points. A typical labeling algorithm 
assigns each new data item to a cluster that has centroid or one 
representative boundary point closest to the date item. Centroid-
based labeling uses cluster center only to represent a cluster. 
Representative-point-based labeling uses representative points on 

cluster boundary to describe the cluster, which is better than 
centroid-based labeling since it provides more information about 
the boundary. Obviously, precise description of boundary depends 
on the number of representative points in terms of different cluster 
shapes, which could be large for irregular shapes. While 
representative points are employed to describe boundary, it is also 
not easy to describe the boundary extension when more and more 
items are labeled. Furthermore, neither representative-point-based 
nor centroid-based labeling can deal with outliers satisfactorily. 
Figure 1-4 shows the lack of ability to dealing with the outliers 
when representative-point-based labeling is applied.  

One important metric in evaluating labeling is precision that 
measures the consistency between the labeling result and the 
naturally extended clustering structure on the large dataset. In 
other words, this reflects how precisely the questions 1) and 2) get 
answered with the labeling result. Any rough labeling technique 
makes the meaningful intermediate clustering result inapplicable 
to the entire large dataset. Another important metric is the 
complexity of algorithm. Since labeling deals with the entire large 
dataset, it has to be linear or at least near-linear in time 
complexity.  

To sum up, existing labeling algorithms have the following 
difficulties when applied to large datasets: 

• Identifying irregularly shaped clusters is a hard problem in 
clustering, and it is also a challenge labeling clusters in large 
dataset.  

• With the existing centroid-based or boundary-point-based 
labeling algorithms, it is difficult to identify the cluster 
outliers.  

• If precise boundary description is considered, when the size 
of dataset becomes very large compared to the representative 
dataset, the boundary extension problem should be handled 
carefully. 

To solve the above problems, we also need to keep in mind that 

             

      Figure 1-2. Cluster boundary in a small        Figure 1-3. Cluster boundary is extended in     Figure 1-4. Outliers are labeled as the 
representative set (data points are white)       the entire large dataset              members of the nearby clusters.  

 

       

Sampling/
summarization

Clustering
Cluster

Evaluation

Labeling Clusters
in the Large

Dataset

Iterative Cluster Analysis

 

Figure 1-1. Cluster analysis and labeling  



the algorithm should be still in linear or near-linear complexity 
with the improved precision.  

1.2 Our Approach  
In this paper, we propose a new labeling approach, ClusterMap, 
which extends VISTA cluster rendering system [1, 20, 21] for 
labeling large datasets. The VISTA approach has shown several 
unique features: 1) identifying the irregular cluster shapes 
effectively via visualization; 2) validating and refining any 
algorithmic results visually to improve the cluster quality; 3) 
incorporating the domain knowledge conveniently; 4) having a 
flexible framework to incorporate algorithms and human 
interaction into the cluster analysis process. The visualization-
based ClusterMap labeling makes a couple of new contributions 
to the post-clustering stage: 

� We are the first to address the importance of labeling for 
cluster analysis of large datasets, and the problems with the 
distance-based labeling algorithms.   

� We introduce visualization into the labeling stage, which is 
intuitive and flexible. ClusterMap is based on VISTA cluster 
rendering result and thus it can describe the arbitrary cluster 
shapes precisely, which reduces the labeling error caused by 
imprecise cluster representations.  

� We develop a two-step ClusterMap processing algorithm, 
which eliminates the influence of boundary extension and 
allows the users to interactively examine the clustering 
structure for entire dataset. The “snapshots” of ClusterMap 
also enable the user to monitor the evolving of cluster 
structure caused by incorporating the processed items. 

The rest of this paper is organized as follows. The subsection 1.3 
gives some related work. Section 2 briefly describes VISTA 
system and its extension for large datasets. We then present the 
visualization-based labeling algorithm ClusterMap in section 3. 
Section 4 reports the experimental result, demonstrating the high 
quality of cluster preserving with low complexity by using 
ClusterMap. Finally, we conclude our work in section 5.  

1.3 Related Work 
A general cluster analysis framework is described in the review 
paper [9] of clustering techniques, which shows that cluster 
analysis is usually an iterative process, and the user always prefers 
faster algorithms or short response time. Thus, a common problem 
with large-scale clustering is the long response time. Even a fast 
algorithm running in linear time would let the user waiting for a 
while in an iterative cycle. CURE [2] and BIRCH [19] employ the 
“sampling/summarization – clustering” framework to deal with 
the large-scale clustering problem. The two-phase framework also 
facilitates the incorporation of other tools, such as VISTA cluster 
rendering system [1], for better understanding and refining of 
arbitrarily shaped clusters.  

Dealing with arbitrarily shaped clusters is well-recognized as a 
hard problem in clustering research community. Several clustering 
algorithms have aimed at this particular problem, such as, CURE 
[2], CHAMELEON [17], DBSCAN [11], DBCLASD [16], 
WaveCluster [14], DENCLUE [12] and so on. But they were only 
reported effective in low dimensional dataset or in small/medium 
datasets. In conclusion, the automatic algorithms can deal with the 
arbitrarily shaped clusters to some extent, but the results are quite 
limited.  

A semi-automatic algorithm OPTICS [15], which derives from 
DBSCAN [11] algorithm shows visualization can be very useful 
in cluster analysis. However, OPTICS is not applicable for large 
datasets unless applying the multi-phase framework. Other 
visualization systems, such as HD-Eye system [23], which are 
also limited by the size of the dataset, will need the labeling step 
when applied to large datasets.  

Existing cluster representations can be classified into four 
categories: centroid-based, boundary-point-based (representative-
point-based), classification-tree-based and rule-based 
representations [9]. Since the classification-tree-based and rule-
based methods are equivalent (each path in the classification tree 
can be represented as a rule) and inapplicable in many situations, 
they are not widely used in practice. Using centroid to represent a 
cluster is the most popular scheme, since many algorithms 
produce only centroids for clusters. Obviously, it works only for 
the clusters having compact spherical shapes. Representative-
point-based approach works better than centroids since it 
describes the clusters in more detail. But how to define the 
representative points precisely for arbitrarily shaped clusters is as 
difficult as the clustering problem. 

2. EXTENDING THE VISUAL 
FRAMEWORK FOR LARGE DATASETS  
The VISTA visual framework [20, 21] has shown that interactive 
visual cluster rendering can be very effective in identifying 
irregular cluster shapes and validating/refining the algorithmic 
results. We extend the visual framework to allow processing large 
datasets under the framework of “sampling – visual clustering – 
labeling with clusters”. The extended visual framework is like 
Figure 2-1.  
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Figure 2-1. The extended visual framework 

The large dataset is first sampled to get a subset in manageable 
size, which is then used as an input to the selected automatic 
clustering algorithms and the VISTA system. The algorithmic 
clustering result provides helpful information in visual cluster 
rendering process. The user interacts with the VISTA visual 
cluster rendering system to find the satisfactory visualization, 
which visualizes the clusters in well-separated areas. Since human 
vision is very sensible to the gap between point clouds, which 
imply the boundary of clusters, the interactive rendering works 
very well in defining vague boundary or irregular cluster shapes. 



A ClusterMap is then defined on the satisfactory cluster 
visualization and used as the initial pattern in ClusterMap 
labeling. Finally, the labeling process will adapt the boundary 
extension and cluster refining in one pass through the entire 
dataset. An additional pass might be needed to reorganize the 
entire datasets for fast processing of queries. To further observe 
the small clusters that may be omitted in sampling process, the 
filtering component filters out the labeled outliers and performs 
sampling/visual rendering on the sampled outliers again. We will 
also briefly discuss small cluster processing in section 3. 

2.1 VISTA System 
To understand the ClusterMap algorithm better, we need to briefly 
review the VISTA system. The main problem in cluster 
visualization is cluster preserving, e.g. visualizing multi-
dimensional datasets in 2D/3D visual space, while preserving the 
cluster structure. The past research and practice showed that 
preserving cluster structure precisely in static visualization, if not 
impossible, is very difficult and computationally costly 
[3,4,5,6,12]. A more practical way is to allow the user to 
interactively explore the dataset [3] to distinguish the unpreserved 
cluster structure, such as cluster overlapping, broken clusters and 
fake clusters (outliers in the original space are mapped to the same 
visual area). VISTA visual cluster rendering system [1, 20, 21] 
has shown how the interactions can be applied to find clusters. 
The visualization model is the core of the system. It uses a linear 
(or affine) mapping [18] – α-mapping with normalization to avoid 
the breaking of clusters after the k-dimensional to 2D space 
mapping. The interactive operations are used to find the visible 
“gaps” which help to discriminate the possible cluster 
overlapping. By finding the gaps and investigating the raw labels 
provided by automatic clustering algorithms, it is easy to identify 
the overlapping and fake clusters. The experiments have shown 
that visual cluster rendering can improve the understanding of 
clusters, validate and refine the algorithmic clustering result 
effectively.  

In current version of VISTA, the system processes the Euclidean 
datasets only (where the distance/similarity function is defined by 
Euclidean distance) since they are the most common datasets in 
the applications. Therefore, by default, we refer to Euclidean 
datasets in the following discussion. 

2.2 VISTA Mappings 
The ClusterMap labeling is tightly related to the VISTA 
visualization model. The VISTA visualization model consists of 
two linear mappings – max-min normalization followed by α-
mapping.  

Max-min normalization  is used to normalize the columns in the 
datasets in order to eliminate the predominant effect of large-
valued columns. Max-min normalization with bounds [min, max] 
scales value v to [-1, 1]  as follows: 

 1min)(maxmin)(*2 −−−=′ vv ,  (1) 

v is the original value and v’ is the normalized value. 

 

αααα-mapping maps k-D points to 2D visual space while providing 
the convenience of visual parameter tuning. We describe α-
mapping as follows. Let a 2D point Q (x, y) represent the image of 
a k-dimensional (k-D) max-min normalized data point 

P(x1,…xi…,xk), xi ∈ [-1, 1] in 2D space. Q(x, y) is determined by 

the average of the vector sum of k vectors is
v
·xi, where is

v
= 

(cos(θi), sin(θi)), i= 1..k, 
θ

i ∈ [0, 2π] are the star coordinates [6] 
that represent the k dimensions on 2D visual space.  

______________________________________________ 

αααα-mapping:  Q (x, y)is determined by (2) 

{x, y} =  
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 αi (i = 1,2,…k, –1≤αi ≤1) in the definition are the dimension 
adjustment parameters, one for each of the k dimensions. 

θ
i is set 

to 2π/i initially and can be adjusted either, but usually it is not 
necessary. (x0, y0) is the center of the display area and c is the 
scaling of the radius of display area. α-mapping is a linear 
mapping which ensures the visible gaps in 2D visualization are 
also the gaps in  k-D space. 

3. CLUSTERMAP ALGORITHM 
3.1 The Basic ClusterMap Algorithm 
ClusterMap is a convenient extending of VISTA cluster rendering 
system. When visual cluster rendering produces satisfactory 
visualization, we can set the boundary of a cluster by drawing a 
boundary to enclose it. Each cluster is assigned with a unique 
cluster identifier. After the cluster regions are marked, the entire 
display area can be saved (represented) as a 2D byte array (Figure 
3-1). Each cell in the 2D array is labeled by an identifier – a 
cluster ID (>0) if it is in cluster region, or the outlier ID (=0), 
otherwise. Since the size of array is restricted by the screen size, 
we do not need a lot of space to save it. For example, the display 
area is only about 688*688 pixels on 1024*768 screen, slightly 
larger for higher resolution, but always bounded by a few mega 
pixels. As shown in Figure 3-1, the Cluster Map array is often a 
sparse matrix too, which can be stored more space-efficiently if 
necessary. Figure 3-2 is a visually defined ClusterMap of the 4D 
“iris” dataset. The boundaries of cluster C1, C2 and C3 were 
defined interactively.  

In addition to store the 2D array, we need to save the mapping 
parameters for the labeling purpose. The parameters include: 

• The max-min bounds of each column: Cmaxj and Cminj. 
There are k pairs of such parameters totally, where k is 
the dimensionality of the dataset.  

• The center of the visualization, e.g. (x0, y0)  

• The k α parameters: (α1, α2,…, αk) 

• The scaling factor c 

• The angles of the coordinates, (θ1, θ2,…, θk)  

ClusterMap representation has several advantages. First, in most 
situations, the ClusterMap provides more details than the 
centroid-based or representative-point-based cluster 
representation, thus it is possible to preserve the precision of 
intermediate clustering result in labeling phase. Second, the 
cluster boundaries can be adjusted conveniently to adapt to any 
special situations or to incorporate domain knowledge as the way 
we use the VISTA system. Third, with ClusterMap representation 



the outliers can be better distinguished. We shall see ClusterMap 
can also adapt the extension of cluster boundary in the following 
section. 

The best way to discuss the features of the ClusterMap labeling is 
to compare it with the two typical cluster-labeling methods we 
have mentioned: Centroid-Based labeling (CBL) and 
Representative-Point-Based labeling (RPBL). To label a point, 
CBL compares the distances of this point to the centroids of 
clusters. The point is labeled with the cluster ID of the nearest 
centroid. RPBL utilizes the representative points generated by 
clustering process or fetched from the clustering results. It looks 
up the nearest neighbour of this point among all representative 
points and labels the point with the cluster ID of the nearest 
representative point. Both algorithms are kind of rough in 
describing the clusters and have difficulty in describing the 
arbitrarily shaped clusters or distinguishing outliers. 

In comparison, the ClusterMap labeling is intuitively better and 
very straightforward. Having the ClusterMap loaded into the 
memory, each item in the entire large dataset is scanned and 
mapped onto one ClusterMap cell. The mapping follows the same 
mapping model used in the visual rendering system, which applies 
the max-min normalization first, and then followed by α–
mapping. Suppose the raw dataset is stored in form of N×k matrix, 
where N is the number of rows and k is the number of columns. 
We rewrite the formulas as follows: 

______________________________________________ 

Normalization:  x'ij = πj*(x ij – Cminj) -1,      (3) 

                   πj = 2/(Cmaxj – Cminj)     

0
1

ijj0
1

ijj  x'* py, x'* px_ yyxxmapping
k

j
i

k

j
i − =− = : ∑∑

==

α    (4) 

where pxj =c*αj*cos(θj)/k, pyj = c*αj*sin(θj)/k and πj can be pre-
computed, and other parameters are the same as defined before. 

______________________________________________ 

Concretely, the algorithm reads the i-th item (xi1…xik) from the k-
D raw dataset, normalizes and maps it with formulas (3) and (4) to 
a 2D cell coordinate (xi, yi). Reading the value stored in the cell 
(xi, yi), we gets the cluster ID label, which will be either 0 for 
outliers, or a positive integer for a cluster. For fast processing 
cluster related queries, we can also create block files to store the 

cluster members and build 2D R-tree index over the grid (Figure 
3-3).  

Given the formulas (3) and (4), we can roughly estimate the cost 
of ClusterMap labeling. We count the number of necessary 
multiplication to estimate the cost, for example, one k-D 
Euclidean distance calculation costs k multiplication. Map reading 
and parameter reading cost constant time. For each item in the 
dataset, the max-min normalization costs k multiplication with 
formula (3). The α-mapping function costs k multiplication 
respectively to calculate x, y coordinates with formula (4). 
Locating the cell in ClusterMap to get the corresponding cluster 
ID costs constant time. Hence, the total cost for the entire dataset 
is 3kN, where N is the number of rows in the dataset.   

Table 1: Cost estimation of the three algorithms. 

k   Dimensionality 

N Total rows in raw dataset 

n The number of clusters 

m The number of representative points for each cluster 

f1 The cost of ClusterMap, 3kN 

f2 The cost of  CURE RPBL, nmkN > f2 > log2(nm)* kN 

f3 The cost of CBL, nkN ≥ f3 > log2(n)*kN 

 

When kd-tree [25] or other multi-dimensional tree is used to 
organize the representative points or centroids, we get near-
optimal complexity for the distance-comparison based labeling 
algorithms. The cost to find the nearest neighbour point in kd-tree 
is at least log2(nm) distance calculation for RPBL and at least 
log2(n) for CBL, where n and m as defined in table 2. For a typical 
RPBL as reported in the CURE paper, only when the number of 
representative points is greater than 10 (m>=10), the 
representative-point method can represent clusters roughly for 
regular non-spherical cluster shapes (mainly, the elongated 
shapes), and the more irregular the cluster shape the more 
representative points needed to describe the shape. Thus, the cost 
of RPBL will be at least 4kN, even higher than ClusterMap.  

So all the three algorithms are in O(N) complexity, which is ideal 
for processing large datasets. The main advantage of ClusterMap 
labeling is the precision of clustering structure preserved for the 
entire dataset. We will show in experiments how much the 

  

C1

C2

C3

  

2D R-Tree

ClusterMap
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ClusterMap labeling can reduce the error rate caused by irregular 
shape clusters, outliers, and boundary extension, compared to the 
other two algorithms. 

3.2 Adaptive ClusterMap for Boundary 
Extension  
In the basic ClusterMap labeling, we assume the cluster boundary 
(or a relaxed boundary as Figure 3-2 shows) defined on the 
sample set will not change a lot in labeling. However, with the 
number of labeled items increasing, the boundary will often 
extend more or less if the boundary is defined tightly and 
precisely on the sample set. An example has been shown in Figure 
1-2 and 1-3. The boundary extension may also result in merging 
of two close clusters or enclosing the nearby outliers into the 
clusters. Figure 3-4 sketches that the possible extension happens 
in ClusterMap with the attending of labeled items. 

Boundary extension is maintained by monitoring the point density 
around the boundary area. We have the initial boundary defined in 
VISTA at the beginning. We name the cells within the cluster 
boundary as the “cluster cells” and the cells around the boundary 
area as the “boundary cells”. The initial boundary cells are 
precisely defined in a short distance ε  away from the boundary 
defined by VISTA. All non-cluster cells are “outlier cells” 
including the boundary cells. We define the density of a cell on 
map as the number of items having been mapped to this cell. The 
density of boundary cells should be monitored in order to make 
decision on boundary extension. A threshold density of cell, 

δ
, is 

defined as two times of the average density of outlier cells. If the 
density of a boundary cell grows to 

δ
 with the attending of labeled 

items, the boundary cell is turned to a cluster cell, resulting in the 
extension of boundary. The non-cluster cells within the ε -distance 
from the old boundary cell then become the new boundary cells. 
Since the boundary is on the 2D cells, we can use cell as the basic 
distance unit and “city block” distance [26] as the distance 
function to define ε -distance. ε  is often a small number, for 
example, 1 or 2 “city block” distance from the current boundary. 

δ
 

is growing as well as the density in non-cluster area is growing so 
the measuring of boundary extension keeps consistent with the 
density of non-cluster area.  

To support the above adaptive algorithm, we need to extend the 
basic structure of ClusterMap. First of all, for each cell, we need 
one more field to indicate if it is a monitored non-cluster cell. We 

also need to keep track of the number of points falling onto each 
cell, which is saved in a density map. Since the average noise 
level will inevitably rise with the increase of labeled items, 

δ
 

should be periodically updated according to the average noise 
level. The following algorithm briefly describes the adaptive 
ClusterMap labeling. 

__________________________________________ 

1.     ε -distance (boundary i) →  boundary (i),  
        go = # of outlier cells, 
        no = # of outlier points, 
        

δ
 = 2*no /go 

2.     a new point →  η  with formulas (3) and (4) 
3.     density(η ) ++,  
4.     if   η  ∉ cluster     
5.     then    if   η  ∈ boundary (i)  and  density (η ) > 

δ
 

6.    then  η  →  cluster(i); 
7.  for η ’∈ ε -distance(η ) ∩  η ’∉ cluster (i)  
8.                                           η ’ →  boundary (i) 
9.  go  = go –1 
10.  no = no – density(η ) 
      else  
11.      no = no +1   
 
12.     

δ
 = 2*no /go  

13.  Goto 2. and repeat until processed all points 
______________________________________________ 

Algorithm 1. The first scan over the entire dataset to adapt the 
boundary extension 

Boundary extension can behave abnormally, which might be 
caused by inappropriate initial cluster boundary. During the first 
scan, “snapshots” of ClusterMap are saved and visually monitored 
by the user. Snapshots are a series of evolving ClusterMaps, 
which incorporate the boundary extension, saved at some time 
interval during labeling. The user can terminate the labeling 
process early if the snapshots show bad trends, for example, the 
cluster boundary becomes vague soon after labeling some points 
and we cannot distinguish the clusters any more. Normal 
boundary extension should be slow and uniformly distributed 
around the boundary. After first scan, the user can also make 
decision on merging clusters or creating new clusters for small 
emerging clusters, which are often ignored by the 
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Figure 3-4. Boundary extension with the                  Figure 3-5. Illustration of monitored area where ε =1 
increase of dataset size 



sampling/summarization process. Since this paper is not focused 
on the interaction part, we will not describe the operations in 
details.  

You may also concern that data ordering will affect boundary 
extension. For example, a sequence of data is mapped to a focused 
boundary area at early stage thus extends the boundary, but later 
on no more points are mapped to that area. As a result, this area is 
falsely extended as a part of cluster. This problem can be avoided 
by randomizing the processing sequence.  

The first scan generated an adapted ClusterMap. The second scan 
can be performed to build up a R-tree index on the map for the 
items as Figure 3-3 shows. Clustering applications could involve 
similarity search [24] and this additional index structure will be 
helpful for such applications. However, we can also skip the 
second scan and leave the computational cost at answering ad-hoc 
queries if the queries come infrequently. 

3.3 Observe and Label the Small Clusters 
Sampling can possibly cause the loss of small clusters [2]. In this 
section we briefly describe how to capture the small clusters in an 
iterative method.  

During the first scan of ClusterMap labeling, we can check if 
there are small clusters emerging from the outliers on the 
“snapshots”. If there are small clusters emerging, we can use the 
following filtering method to observe the emerging small clusters 
in details. Since after the first scan clusters and the extended 
boundary are well defined, we can subtract them from the large 
dataset and observe the rest outlier dataset only. If the outlier 

dataset is still large, it is sampled and observed in VISTA cluster 
rendering system. Since the size of outlier dataset should be much 
smaller than that of the original dataset, the sample will show 
more details of the outliers and the smaller clusters could be well 
preserved after sampling. Again, the observed clusters are marked 
in another ClusterMap. We can repeat this process until the size of 
the outliers become uninterestingly small. Due to the space 
limitation, we do not discuss the details or experiments about this 
problem in the paper. 

4. EXPERIMENTS 
This section presents two sets of experiments. The first set of 
experiments shows ClusterMap can handle the labeling of outliers 
and irregular shaped clusters much better. The second set of 
experiments demonstrates the advantage of ClusterMap in dealing 
with cluster boundary extension for large datasets.  

4.1 Datasets and Experiment Setup 
Three datasets are used for the two sets of the experiments. One is 
the simulated dataset DS1 used in CURE. DS1 is a 2D dataset 
having five regular clusters, including three spherical clusters, two 
connected elliptic clusters, and many outliers. In our experiments, 
DS1 is used to evaluate the effect of outliers on the labeling 
algorithms. The second dataset is a real dataset – Shuttle dataset 
(STATLOG version, test dataset). It is a 9-dimensional dataset 
with very irregular cluster distribution. There are seven clusters in 
this dataset, among which one is very large with approximately 
80% of data items, and two are moderately large with 
approximately 15% and 5% of data items, respectively. The others 
are tiny. Shuttle dataset is used to evaluate the effect of clustering 
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 Figure 4-1. Cost on DS1                    Figure 4-2. Cost on Shuttle data     Figure 4-3. Error rate on DS1 
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result on the labeling process. These two datasets have original 
labels, so we can calculate exact error rate with the original labels 
and generated labels. The third dataset is a simulated 5-
dimensional large dataset LDS in size of 6*107 items (up to 4G), 
which contains five spherical clusters and some outliers. Figure 4-
7 shows a 10K sample set visualized with VISTA system. The 
first two datasets should show how ClusterMap avoids the 
common problems of the traditional algorithms. The third dataset 
is used to show that adaptive ClusterMap works well with very 
large datasets. 

The three algorithms, CBL, RPBL, and ClusterMap are 
implemented in C++. RPBL is based on the CURE clustering 
algorithm, which was known as the best RPBL adapted for non-
spherical cluster. We run CURE clustering with the following 
parameters: the number of representative points is 20 and alpha 
(shrink factor) is set to 0.5 as suggested. We also use ANN 
(Approximate Nearest Neighbour) C++ library from University of 
Maryland at College Park to construct kd-tree for RPBL and CBL.  

4.2 Outliers and Irregular Cluster Shapes 
We have discussed three different algorithms: Representative-
Point Based Labeling (RPBL), Centroid-Based Labeling (CBL), 
and ClusterMap. In this section we study the performance and 
error rates of ClusterMap experimentally, compared to the two 
commonly used algorithms RPBL and CBL.  

We run VISTA to get the ClusterMap in the resolution of 
688*688. The cost to rebuild a ClusterMap structure in memory is 
about 340~360ms. In contrast the cost to build kd-tree is about 
1~2ms. Both DS1 and shuttle datasets show the cost estimation is 
appropriate – all three are linear and the basic ClusterMap is 
slightly fast (Figure 4-1 and 4-2). Linear complexity is good 
enough for a one-time building process.   

The DS1 dataset is used to show the effect of outliers to the 
algorithms. The error rate of RPBL is on average 4.5% over DS1; 
the error rate of the CBL has the error rate of 6.8%; while the 
error rate of ClusterMap has only about 1.5%, much lower than 
the other two. ClusterMap also shows a more stable error rate. 
From the visualization of the labeling results, we observed that 
CBL suffers from the large circle cluster and outliers. Most RPBL 
errors come from the outliers. Since RPBL result is better than 
CBL we only show the visualization of RPBL results (Figure 1-4). 
The visualization of RPBL labeling shows that the outliers are 
labeled as the member of the nearby cluster, which is the main 

reason why RPBL yields higher error rate.  

Shuttle dataset has very irregular clusters. With a small number of 
“landmark points” [20], we can easily and correctly define the 
clusters with VISTA. We use the shuttle dataset to show the 
limitation of the popular RPBL algorithm to the very irregular 
cluster shapes. Figure 4-4 shows that the error rate of RPBL raises 
to the level, similar to that of CBL (about 17%). ClusterMap 
labeling keeps consistent with the VISTA cluster rendering result 
and thus has only 4.2% of incorrect labels, much lower than the 
other two algorithms.  

In the visualization of RPBL on 10000-item subset (Figure 4-5), 
we can see it divides the original cluster c3 into two parts and 
cannot discriminate c1 and c2. We give the correct centroids for 
CBL, however, centroids simply cannot represent the irregular 
cluster distribution, which makes the error rate very high.  

4.3 Boundary Extension on Large Dataset 
This experiment on the large dataset LDS mainly shows the 
scalability of adaptive ClusterMap algorithms and the advantage 
of ClusterMap in handling boundary extension. LDS simulates 5 
spherical clusters, two big and three small clusters, as well as ~1% 
background noise. LDS is well designed so that we can predefine 
the control labels for entire dataset with small error. The actual 
boundaries are larger than the visible ones on the sample set as 
shown in Figure 4-7. We did not consider the merging between 
the close clusters, such as B and C, since it is not considered by 
RPBL and CBL. The progressive result of performance and error 
rate is shown in Figure 4-8 and 4-9. The performance curve shows 
that the adaptive ClusterMap costs slightly less than the other 
algorithms. Since the clusters are spherical, the labeling error of 
RPBL and CBL comes from the improper boundary description 
and the outliers. In this regular cluster distribution, representative 
points and centroids have the similar effect in cluster description, 
and thus, RPBL and CBL have almost the same result as Figure 4-
9 shows. The error of ClusterMap mainly comes from the minor 
imprecision around the boundary are. It is normal that the 
boundary produced by adaptive ClusterMap might not be perfect 
in such a noised dataset. However, one of the ClusterMap’s 
advantages is that the users can always check and tune the 
ClusterMap in such situations.       

5. CONCLUSION 
With the emerging of more and more large datasets, clustering 
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large datasets has become a major problem in data analysis. The 
three-phase framework “sampling/summarization – iterative 
cluster analysis – labeling large datasets with clusters” provides a 
feasible solution for cluster analysis on large datasets. Labeling 
large datasets with clusters bridges the effective cluster analysis to 
the large dataset. There are some difficult problems coming with 
the labeling problem - labeling arbitrarily shaped clusters, 
distinguishing outliers, and adapting the extension of cluster 
boundary. In this paper, we addressed these problems and propose 
a visual framework for large-scale cluster analysis, which 
combines VISTA visual cluster rendering system and ClusterMap 
labeling algorithm. The experimental result shows ClusterMap 
algorithm usually preserves more clustering structure than the 
existing methods.   

It is well believed that human participation should help clustering 
problem. However, there are very few projects demonstrating the 
visualization power on clustering, and our work uniquely shows 
how human can help in preserving the clustering quality for large 
dataset.  
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