A Hybrid Topology Architecture for P2P Systems

Aameek Singh
Georgia Institute of Technology
aameek@cc.gatech.edu

Abstract

A core area of P2P systems research is the topology of
the overlay network. It has ranged from random un-
structured networks like Gnutella [8] to Super-Peer [9]
architectures to the recent trend of structured overlays
based on Distributed Hash Tables (DHTs) [4, 12, 11].
While the unstructured networks have excessive lookup
costs and un-guaranteed lookups, the structured systems
offer no anonymity and delegate control over data items
to unrelated peers. In this paper, we present an in-the-
middle hybrid architecture which uses a mix of both
topologies to create a decentralized P2P infrastructure.
The system provides scalable and guaranteed lookups
in addition to mutual anonymity and also allows host-
ing content with the content-owner. We validate our ar-
chitecture through a thorough analytical and empirical
performance analysis of the system.

1 Introduction

In recent years, Peer-to-Peer (P2P) systems have re-
ceived a great deal of attention from both research and
industrial communities. The paradigm of allowing users
to provide and avail services directly without any inter-
mediaries, has seen successful applications in file shar-
ing [8, 9, 2], distributed computing [13, 7], data dissem-
incation [1, 6] and many other areas [14, 10]. The im-
portant characteristics of P2P systems are its network
topology and routing protocols. While Gnutella like
systems follow an unstructured random overlay without
any system policy to enforce topology, the new gener-
ation P2P systems based on DHTs like Chord [4], Pas-
try [12], CAN [11] enforce certain topologies to provide
guarantees of lookup and bounds on lookup costs.

However, both kinds of topologies have their advan-
tages and disadvantages. We compare the two on three
important P2P characteristics:

1. Lookups: The unstructured Gnutella like systems
follow a network flooding mechanism in which a query
is either sent to every peer in the network, which is
extremely expensive or is prematurely terminated after
a certain number of hops leading to un-guaranteed
lookups. On the other hand, the structured systems map
every data item to some peer and store that mapping in

Ling Liu
Georgia Institute of Technology
lingliu@cc.gatech.edu

distributed hash tables (routing tables). Their routing
protocols are proven to be scalable in both number of
hops and state information maintained at peers.

2. Anonymity: The unstructured systems follow a
message forwarding protocol and keep local knowledge
at peers (information about neighbours only). This
provides an important feature of anonymity, the word
that has almost become synonymous with P2P systems.
This anonymity is provided by the inability of peers to
identify where any message originates or terminates,
since the local knowledge property ensures that a peer
only knows the neighbor, it received the message from,
without any possibility of knowing if that neighbour
initiated it or if it is just forwarding a message it
received further from one of its neighbors. Similary
for termination of messages. A peer never knows
whether the message terminated at its neighbor or was
forwarded further into the network.

It is easy to see that structured DHT based systems
do not provide anonymity. Since they map data items
directly to peers and store this information in routing
tables, it is easy to identify the destination of a message
by looking at the data item it is requesting.

3. Content Hosting: In unstructured systems, the con-
tent is hosted by the peer who owns the content. The
owner replies for the queries for that content and con-
trols all access to it. On the other hand, in DHT based
systems, the access to content is controlled by a peer
where that data item hashes onto using the DHT based
policy, which is very unlikely to be the owner peer.

In this paper, we provide an architecture of a decen-
tralized P2P system, which uses a mix of both struc-
tured and unstructured topologies, ensuring the nice
properties of both. It provides guaranteed and scalable
lookups, while also ensuring mutual anonymity, pro-
tecting the privacy of both service requester and service
providers. In addition, it follows similar content hosting
semantics as unstructured systems, allowing complete
control of data with its owner. The paper is organized as
follows. We present the design of the system in Section-
2. We analyze the system performance in Section-3 and
conclude in Section-4.

2 System Design

We first identify the features of structured and unstruc-
tured topologies that allow for the aforementioned prop-
erties. Itis easy to see how unstructured systems provide
anonymity. Whenever Peer-A receives a message from
Peer-B, the only information about its origin is that it
came from the group of peers, Peer-B is connected to.
And the information with Peer-B about its destination
is the group of peers, Peer-A is connected to. Thus, the
responsibility of origin/destination is cloaked by spread-
ing it to a group. This presents an interesting insight. If
instead of mapping data items to peers, as done in cur-
rent DHT based systems, we map data items to a group
of peers, we can provide mutual anonymity. Also inter-
estingly, we only need to have these groups at the query
end-points, i.e. only the origin and destination needs to
be cloaked. Thus, for routing within these groups, we
can use the scalable routing mechanisms of the DHT
based systems. In addition, mapping items to groups
also allows for flexible content hosting. Now, an owner
can keep a data item as long as the data item hashes onto
the group it is in. The way in which we achieve this, is
described in detail later.

The above mentioned insights serve as the main mo-
tivation for our system. We provide mutual anonymity
by adding-on unstructured Gnutella-like topologies on
top of a DHT-based P2P network and mapping items
onto these groups. We call such topologies clouds, for
the cloaking effect they have to shield the service re-
quester and service provider. In addition, we use normal
DHT-based routing to link a service requester’s cloud to
a service provider’s cloud to ensure good lookup perfor-
mance. Now, every peer will initiate a query within a
cloud (provides anonymity); the query will then go onto
the DHT ring to reach the service provider’s cloud (good
lookup performance); and is transmitted to the service
provider in Gnutella-like fashion (anonymity). The re-
ply is similarly traced back. Such a design associates
with itself a host of challenging issues, including (a)
how to maintain routing properties in spite of two dif-
ferent topologies - the unstructured clouds and the un-
derlying DHT overlay and (b) how to ensure scalable
and guaranteed lookups with performance comparable
to Chord [4] like pure DHT systems.

2.1 Clouds: Creation and Routing

In our system, all peers, in addition to being a part of the
DHT ring, form small unstructured clouds by connect-
ing to other peers in a Gnutella like fashion. For exam-
ple, Figure-1 shows two clouds with nodes being part of
both the cloud and the DHT ring (blue nodes form one
cloud and white nodes another).

A cloud is a small unstructured Gnutella-like net-
work. Since now a key is mapped to a cloud using
normal DHT operations, it is essential to represent the

clouds on the DHT ring i.e. to find an entry point into
the cloud. This is accomplished using the concept of
rendezvous nodes, similar to the work done in P2P mul-
ticast[1, 6]. Each cloud has a name and using some hash
function, it is hashed onto the DHT ring. The node re-
sponsible for that region (according to the normal DHT
policy) is found and it acts as an entry point into the
cloud. This node is called the rendezvous node and is re-
quired to be a member of that cloud. Because of the con-
sistent hashing properties of the DHT based systems [3],
the load on a node due to its rendezvous properties will
be approximately equally distributed amongst all the
nodes. Also, in case some rendezvous node leaves, a
new one is found by virtue of the dynamics handling of
the DHT protocols and it simply replaces the old one in
the cloud. Note that given a cloud name, it is always
possible to find its rendezvous nodes, by just doing a
DHT lookup for its hashed name.

Figure 1: Add-on Clouds over DHTs

To create a cloud, the desired name for the cloud is
hashed onto the ring using multiple hash functions and
thus multiple rendezvous nodes are found. These nodes
connect to each other to form a small Gnutella network.
The number of hash functions used depends upon the
desired initial membership of a cloud and can be set as
a system parameter’. Any node wishing to join a cloud,
uses any one of the hash functions to get to a rendezvous
node which then bootstraps it into the cloud, similar to
the bootstrapping process of Gnutella. To allow peers to
get a list of clouds currently active in the network, each
peer caches the cloud names it sees queries/replies from
and this list is shared with an incoming peer.

An important question still remains. How can we link
the service provided by any member of the cloud to that
cloud? It is essential since we need a mechanism en-
suring that a query for a service reaches the cloud of
the service provider. This can be a complicated task de-

!"This number effects the amount of initial anonymity of the cloud.
For example, if there was only one rendezvous node, then clearly at
the time of cloud creation, no immediate anonymity can be provided.

pending upon the kind of services being supported by
the system. We have classified the types of services into
three categories:

1. Semantic Groups: This is a kind of service in which
services being offered by peers in a cloud are semanti-
cally linked to each other. For example, for a file sharing
application, the peers belonging to a same cloud could
be sharing music from a single artist. The artist’s name
is used as the cloud name and queries for its songs are
tagged with the cloud name. The DHT lookup will lead
to the rendezvous node for that cloud and the query is
forwarded to it.

2. Services with Discovery of Service Mechanisms:
While it may be possible to link a query to a cloud se-
mantically for many cases, there may be cases when it
is not possible, for example, only the song is known and
not its artist. For such a group of services, there might
exist a discovery of service mechanism, which links the
query item to a cloud, e.g. a central directory service.
This category is actually a generalization of the seman-
tic groups category, in which the discovery was due to
the semantic nature of the services being offered.

3. Dynamic Services: This is a class of services with-
out a service discovery mechanism or where it is pro-
hibitory to use a centralized mechanism. For example,
a co-operative decentralized web crawling application
like [14], where peers dynamically decide which web
site to crawl accordingly to a DHT based system policy.
In such a case, it is not feasible to have a centralized
directory service for the prohibitory performance costs.
Now, for a given URL there is no way to determine the
name of the cloud responsible for crawling that URL,
which is important to prevent repeated crawling of the
URLs. For such services, we use R-Rings.

Notice that for the first two categories, it is the respon-
sibility of the peer to join an appropriate cloud. For the
third category, the peer can join any cloud.

2.1.1 Mapping Services to Clouds: R-Rings

Let us take a look at mechanisms that can be used to
support dynamic services. One of the ways is by just as-
signing the data item to the cloud of the peer, it hashes
onto using the DHT policies. For the web crawling ex-
ample, if the URL hashes onto some Peer-A, then the
cloud, of which Peer-A is a member of, will be respon-
sible for crawling that URL. Clearly this is not an effi-
cient policy, because of the fact that peers can be very
dynamic. Thus if Peer-A leaves the system, and now
the URL hashes onto Peer-B, then a new cloud might
become responsible. To make this work, we will have
to maintain lots of state information to remember the
cloud name it hashed onto previously. This will quickly
become unscalable.

This problem occurs since the routing of query items
is based on peers, which tend to be very dynamic in na-

ture. On the other hand, a cloud is static and it persists
even when existing members leave or new ones join.
Therefore, any mechanism in which the routing occurs
based on cloud names, will be successful to handle this
issue. This leads to the idea of Rendezvous Rings.

An R-Ring is a special DHT ring, consisting of one
rendezvous node from each cloud. The idea is to create
a smaller ring comprising only of representatives of the
clouds (rendezvous node) and each representative takes
up a position on the ring dictated not by its identity but
by the name of the cloud. Thus, while the representa-
tives may change the positions they occupy remain the
same. The position can be fixed by hashing the name
of the cloud, which remains static. Now, if we route
queries on this R-Ring, we can ensure that any data item
always hashes onto the same cloud.

The process of creating an R-Ring is similar to that
of the main DHT rings and the protocols are well un-
derstood. It is created whenever the system is initial-
ized. However, note that this can lead to significant
loads on the rendezvous nodes selected to take a part
on the R-Ring. To prevent this, we balance load across
various rendezvous nodes of the cloud by constructing
an R-Ring for each rendezvous node of the cloud. All
rendezvous nodes will occupy the positions specified by
hash of the cloudname in each of the R-Rings they be-
long to, so that all of them yield the same mappings of
keys to clouds. Then a query can be routed on any of
these R-Rings thus balancing the load between different
rendezvous nodes for each cloud.

2.2 Routing Protocols

In this section, we discuss the exact protocols with
which a query is generated, routed and responded to.
Also we discuss other issues like sizes of clouds and the
system parameters used to control it.

2.2.1 Query: Crossover Peers

A query in the system originates in a cloud and is later
brought out either on the DHT ring (services with dis-
covery of service mechanisms) or the R-Rings (dynamic
services) and it terminates in another cloud. An impor-
tant issue in this regard is the selection of the peer which
will perform the first crossover from the cloud to the
ring. There are a number of important considerations
- (1) the crossover should not be done by the querying
peer, since it takes away its anonymity (2) it should be
done in a way that load caused by querying is shared al-
most equally among the members of the cloud and (3)
to prevent multiple copies of the query in the system, it
should be done by a unique peer.

We enable this using a random walk in the cloud.
Concretely, the querying peer makes the query message,
sets up a random TTL? for the message and forwards it

2Number of application-level hops, as used in Gnutella

to one of its neighbors, selected randomly. The TTL
is selected randomly to cloak the origin of the message.
The neighbor decrements the TTL by 1 and again selects
one of its neighbors randomly and forwards the mes-
sage to it. Now after a few hops, the TTL will reduce
to zero. The peer, at which that happens, is responsi-
ble for crossing over and taking the query to the ring.
Such a peer is called a crossover peer. This mechanism
ensures that there is only a unique peer performing the
query. Secondly, because of the random walk the load
will be distributed equally amongst the members of the
cloud. Also similar to Gnutella, the peers in the query
path cache its information, which is used to forward the
reply back to the querying peer.

In case of services with discovery of service mecha-
nisms, the query is tagged with a cloud name. There-
fore, at the crossover, only a DHT lookup on the cloud
name would suffice. In case of dynamic services, the
query goes out on an R-Ring and the crossover peer
might not have its routing table (only the rendezvous
nodes have routing tables for R-Rings). Then, it can
query a rendezvous node of its cloud for only the first
step of the lookup and the crossover peer can continue
the rest of the query in the typical DHT iterative fash-
ion. We call this phase the ring phase. At the end of the
ring phase, the crossover peer would have found the ren-
dezvous node for the cloud of the service provider. The
query is then forwarded to the rendezvous node, which
will broadcast the query in its cloud. This broadcast,
similar to Gnutella broadcasts, can be an expensive step
effecting the scalability of the system. We tackle this
issue in Section-2.2.2.

The crossover peer, while forwarding the query to the
rendezvous node of the response cloud, includes its IP
address and a port number where a reply can directly be
sent. Clearly, this does not compromise any anonymity
because the crossover peer is not the peer initiating the
query. However, this saves us critical time and num-
ber of messages, since the reply can be directly sent to
the crossover peer without any intermediate ring phase.
Then, the reply can be forwarded back to the querying
peer.

In the response cloud, every peer would get the query
message because of the broadcast. The peer wishing
to provide the desired service can then make the re-
ply message (with IP address and port information for
the querying crossover peer) and start a random walk
with a random TTL, similar to the walk used while ini-
tiating a query. This way the service provider is also
anonymized. It is important to note that the system pro-
vides guaranteed lookup of data i.e. for every data item
available, a lookup will always succeed. This is because
the query is first routed to the appropriate cloud using
the discovery of service mechanisms or R-Rings and
then broadcasted in that cloud, which ensures that every

peer in the cloud receives the query and can respond.
2.2.2 Size of the Clouds

As mentioned before, since the query is broadcasted in
the response cloud, we need to make sure that the size of
the cloud does not become too large to make the broad-
cast costs prohibitive. In order to control the size of the
cloud, we use two parameters:

e R-Diameter: It is the maximum distance of any
peer from any rendezvous node. The distance is
measured in number of application level hops in
the underlying topology. It is denoted by rg;4m and
serves as the “length” dimension of the cloud. This
parameter is important, since any query broad-
casted by the rendezvous node will have an upper
bound of 74;4m,m on the number of hops required to
reach any peer of the cloud.

e Degree: It is the maximum number of neighbors, a
peer can have in the cloud. It is denoted by m and
serves as the “breadth” dimension, controlling the
density of the cloud.

Restricting 74;4m and m to reasonable values will re-
strict the size of the cloud. In Section-3, we will show
empirically how these parameters effect the overall costs
and try to get best possible values.

To enforce these parameters, every peer keeps a vec-
tor of its distance from the rendezvous nodes and stops
accepting new neighbors when the limits are reached.
The distance vector is easy to compute in a recursive
fashion. In every ping cycle®, a peer computes its dis-
tance vector from the distance vectors of its neighbors.
Now a peer which has m neighbors or is at rg;qm, dis-
tance from a rendezvous node will not accept any new
incoming peers and the cloud is said to be saturated.
Small temporary aberrations can be tolerated, since they
will be short-lived and hence, not cause a major perfor-
mance dip.

3 Performance Analysis

3.1 Scalability

We show the scalability of our system in both number of
hops and number of messages transmitted analytically,
in Appendix-A. For our empirical study, we created var-
ious Chord networks varying the number of nodes from
a few to 5,000. We then added-on clouds to each topol-
ogy. Each peer becomes a member of some cloud and
a cloud is created when all existing ones are saturated.
Then we ran a large number of queries in the system and
computed the average costs. The queries were selected
randomly, that is, a peer belonging to some cloud is ran-
domly selected to query for a service by another random

3Gnutella requires each members to periodically ping its neighbors
to check for node failures. As a result, no extra messages are used.

peer. Figure-2 shows the various costs for dynamic ser-
vices (based on R-Rings). As it can be seen the costs for
our System and Chord follow the same trend and dif-
fer by a constant. In this figure, we used an 74;4,, of 7
and m of 5. We have also depicted the number of hops
on the R-Ring. This number is smaller than for Chord,
since the number of clouds formed (size of R-Ring) was
smaller than the total number of nodes in the system
(size of Chord ring).

16 T T T T T

10+ Chord —+—
System —»—
R-Ring —»—

8

ol ,

s - - -
2

0

Average Number of Hops

2000 3000 4000 5000

Number of Nodes

0 1000 6000

Figure 2: System Scalbility: Hops

The constants are due to the random walks in the
query cloud and the response cloud and the tracing
back of the reply. Since their lengths are bounded by
Tdiam, the average difference would always be close to
% *(3%7Tgiqm) = 10 in this case. This shows that our sys-
tem is as scalable as typical DHT systems and confirms
our analysis.

Next we look at scalability in terms of aggregate num-
ber of messages transmitted for a single query transac-
tion. This includes the messages exchanged during the
random walks, tracing back of the reply and most crit-
ically the broadcast of the query. Figure-3 shows that
our system is as scalable as DHT systems. The over-
all trend is similar to Chord, in which case number of
messages is equal to the number of hops. Also, a big
component of the costs is the number of messages in
the Response Cloud, which includes the primary costs
of broadcasting. The number of messages in the Query
Cloud and on the R-Ring are small in comparison. Note
that for bigger networks (P2P networks are millions in
strength), the gap would be insignificant. For smaller
networks, we can have different cloud topologies e.g. a
hierarchy of DHT rings and unstructured clouds at the
lowest level.

3.2 Effect of System Parameters

Figure-4 shows the average number of hops when 7 g;41m
is varied from 3 to 9 with m fixed at 5 for a 5,000
node topology. Increasing rg;q,m, allows more peers to
be added in a single cloud, increasing the cloud size.
From the figure, we see an interesting trend. While the
cost of Chord stays the same (rg;4m, does not effect the
main DHT ring), our system begins to take more number

70 T T T T T

o O

40

Chord —+—

System —%—

Response Cloud —»%—
Query Cloud, R-Ring —8—

+ +

Average Number of Messages Transmitted

3000 4000 5000

Number of Nodes

0 1000 2000 6000

Figure 3: System Scalability: Messages

of hops even when the number of hops on the R-Ring
decreases.

18 T T T T T T T T
£l x_x/x—X—x/x—x
o

14+
z
' 127 Chord —+—
8 L System —%—
E 10 R-Ring —*—
Z st
5 6f
g m
> 4
<

2 -

R-Diameter

Figure 4: Effect of R-diameter on number of hops

This happens because with the increase in r g;4y, , €ven
though the total number of clouds drops (because each
cloud can accommodate more), the average lengths of
the random walks and the number of hops before the
broadcast reaches the responding peer in the response
cloud also increases. This increase offsets the decrease
in R-Ring lookup hops. While this would indicate that
we should keep 74;4:m to a minimum, notice that it ef-
fects the level of anonymity offered by a cloud. Very
small 7g;4m values lead to very small clouds and that
provides little anonymity.

Next, we look at how 744, effects the total number
of messages transmitted. Figure-5 shows the average
number of messages transmitted for a similar topology.
As can be seen, with the increase in rg;qm, the num-
ber of messages increases linearly, with the main com-
ponent being the messages transmitted in the response
cloud.

Next, we plot similar graphs for varying values of the
degree m with r ;4. fixed at 7 (5,000 nodes). Figure-6
depicts the effect of the degree on the average number of
hops. Note that the increase in m decreases the average
number of hops and infact there is a drastic decrease in
the number of hops on the R-Ring. This occurs since
increasing m allows clouds to become very dense and
allows more and more peers to join the same cloud. This
reduces the number of clouds very quickly.

100

80 + Chord —+—

System —»—
Response Cloud —»—
60 [Query Cloud, R-Ring —&—

40 f

20

Number of Messages Transmitted

0) L L L L L L
1 2 3 4 5 6 7 8 9 10
R-diameter

Figure 5: Effect of R-diameter on number of messages

14 \—_)(_‘\
12 F

10+ Chord —+—
System —»—
R-Ring —»—

Average Number of Hops

Degree
Figure 6: Effect of Degree on number of hops

However, with the clouds becoming more dense,
there is a penalty to be paid in regards to the number
of messages transmitted. This is because now, a large
number of messages will be transmitted in a response
cloud because of the broadcast of query messages. This
can actually be seen in Figure-7, where increasing m
drastically increases the total number of messages, with
the biggest component being the broadcasting. In addi-
tion, larger m demands more resources from the peers,
since they keep m open connections at all times.

100

80 + Chord —+—

System —»—
Response Cloud —%—
60 F Query Cloud, R-Ring —8—

40

20

Average Number of Messages Transmitted

Degree

Figure 7: Effect of Degree on number of messages

This analysis indicates that we can control system
performance by varying the two parameters with vary-
ing m providing fast changes and varying 7g;qm al-
lowing for smaller fine tuning. Also, it appears that
smaller rg;4,, and m values, as limited by the amount
of anonymity required, would be the best.

4 Conclusions and Future Work

We have presented the design and development a decen-
tralized sytem that provides mutually anonymous ser-
vices over structured P2P networks and still ensures
scalable lookup and guaranteed location of data. We
first identified critical topology properties which are es-
sential for mutual anonymity and introduce clouds to
incorporate such properties into our systems. We de-
scribed a number of mechanisms to enhance the scal-
ability and efficiency of routing between and within
clouds, ensuring the guaranteed lookup of data. We
showed that our system is as scalable as DHT based
systems in terms of both number of hops and aggre-
gate messaging costs (differing only by constants) and
also studied the effect of various system parameters. In
future, we intend to work on security aspects of the sys-
tem, aiming to provide mutually anonymous and secure
services over structured decentralized overlays.

References

[1] M. Castro, P.Druschel, A. Kermarrec, and A. Row-
stron. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. [EEE
JSAC, 2002.

[2] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong.
Freenet: A distributed anonymous information
storage and retrieval system. LNCS, 2001.

[3] D. Karger et al. Consistent hashing and random
trees: Distributed caching protocols for relieving
hot spots on the world wide web. In STOC, 97.

[4] I. Stoica et al. Chord: A scalable peer-to-peer
lookup service for internet applications. In Pro-
ceedings of SIGCOMM Annual Conference on
Data Communication, Aug 2001.

[5] N. Harvey et al. Skipnet: A scalable overlay net-
work with practical locality properties. In Pro-
ceedings of USITS, 2003.

[6] S.Ratnasamy et al. Application-level multicast us-
ing content addressable networks. LNCS, 2001.

[7] B. Gedik and L. Liu. Peercq: A decentralized and
self-configuring peer-to-peer information monitor-
ing system. In Proceedings of ICDCS, 2003.

[8] Gnutella. http://gnutella.wego.com/, 2002.

[9] Kazaa. http://www.kazaa.com/, 2002.

[10] A. Keromytis, V. Misra, and D. Rubenstein. Sos:

Secure overlay services. In Proceedings of SIG-

COMM, 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp,

and S. Shenker. A scalable content-addressable

network. In Proceedings of SIGCOMM Annual

Conference on Data Communication, Aug 2001.

A. Rowstron and P. Druschel. Pastry: Scalable,

distributed object location and routing for large-

scale peer-to-peer systems. In International Con-
ference on Distributed Systems Platforms, 2001.

[11]

[12]

[13] SETI@Home. http://setiathome.ssl.berkeley.edu/,
1999.

[14] A. Singh, M. Srivatsa, L. Liu, and T. Miller.
Apoidea: A Decentralized Peer-to-Peer Architec-
ture for Crawling the World Wide Web. Lecture
Notes in Computer Science, 2924, 2004.

A Analytical Analysis of Scalability

We analyze system scalability in terms of both the num-
ber of hops each query transaction requires and the ag-
gregate number of messages used. A single query trans-
action includes the costs for both the query message
and the reply message to reach their appropriate des-
tinations. First, we look at the number of hops. We can
divide the cost in the following components:

o Query Cloud Hops: It is the number of hops in
the querying cloud. It is denoted by hguery. If
the length of the initial random walk is g,4nq4, then
clearly hquery = 2 * grand, since the reply is traced
back on the same path.

e Ring Lookup Hops: It is the number of hops on
the DHT ring or the R-Ring, once the crossover
happens. It is denoted by hying.

e Response Cloud Hops: It is the number of hops
in the response cloud. It is denoted by hy¢sp and is
equal to the sum of hops due to the broadcast of the
query in the response cloud (hpeqs¢) and the ran-
dom walk initiated for the reply message (rrqnd);
that is, hresp = Npcast + Trand-

Also remember that there can be two more hops re-
quired when (1) the crossover peer in the querying cloud
queries the rendezvous node for the first hop for an R-
Ring and (2) a peer in the response cloud sends the reply
directly to the crossover peer. Hence, the total number
of hops is given by:

/’lOpS = hquery + hrz’ng + hresp +2
hops = 2 * @rand + hring + Npcast + Trand + 2

Now, we restrict the random walks by rg;om, since
that would traverse the whole length of the cloud.
Therefore, 1 < grand < Tdiam and 1 < Trand < Tdiam.
Also, 0 < hpeast < Tdiam, SINCE Tgiam is the farthest
the responding peer can be. As a result,
hOpS S 2% Tdiam + hring + Tdiam + Tdiam + 2
hOpS S 4 % Tdiam + 2+ hring

Also we know that h,ing = O(logN), where N is the
number of nodes on the ring. In case, the query occurs
on the DHT ring, NV is the total number of nodes in the
system. In case of R-Rings, N is the number of clouds,
since there is one node per cloud in the R-Ring. Also,
typical 7g;qm values will be small constants like 7. As a
result, hops = O(logN), which implies that our system
is as scalable as DHTs.

The analysis is interesting, specially for dynamic ser-
vices. It shows that the total costs are O(logN), where

N is the number of clouds as opposed to the total num-
ber of nodes for normal DHTs. In case the number of
clouds is less than the total number of nodes by a big
margin, it can compensate for differing constants and
potentially take lesser number of hops than normal DHT
based systems! However, the caveat is that lesser num-
ber of clouds implies greater number of nodes in each
cloud, which would require increasing r 4;4,, and m val-
ues to accommodate them. This increases the differing
constants and also increases the messaging costs.

For aggregate number of messages used, similar anal-
ysis will hold. In the query cloud and the ring phase
there is one message per hop. The only difference is
because of the broadcast of the query in the response
cloud. Since size of the clouds* is bounded by constant
parameters, our system will still be similarly scalable.
We omit the exact proof because of space constraints.
Note that the differing constant in this case would be
much higher because of the broadcast in the response
cloud.

“In a saturated cloud with Gnutella like topology, there can be at
most m"diam nodes

