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Abstract

Clustering is an important technique for understanding of large multi-dimensional datasets. Most of

clustering research to date has been focused on developing automatic clustering algorithms and cluster

validation methods. The automatic algorithms are known to work well in dealing with clusters of regular

shapes, e.g. compact spherical shapes, but may incur higher error rates when dealing with arbitrarily

shaped clusters. Although some efforts have been devoted to addressing the problem of skewed datasets,

the problem of handling clusters with irregular shapes is still in its infancy, especially in terms of di-

mensionality of the datasets and the precision of the clustering results considered. Not surprisingly, the

statistical indices works ineffective in validating clusters of irregular shapes, too. In this paper, we address

the problem of clustering and validating arbitrarily shaped clusters with a visual framework (VISTA). The

main idea of the VISTA approach is to capitalize on the power of visualization and interactive feedbacks

to encourage domain experts to participate in the clustering revision and clustering validation process.

The VISTA system has two unique features. First, it implements a linear and reliable visualization model

to interactively visualize multi-dimensional datasets in a 2D star-coordinate space. Second, it provides a

rich set of user-friendly interactive rendering operations, allowing users to validate and refine the cluster

structure based on their visual experience as well as their domain knowledge.

1 Introduction

Over the past decades most of the clustering research has been focused on automatic clustering algorithms

and statistical validity indices[15]. The automatic methods are known to work well in dealing with clus-

ters of regular shapes, e.g. compact spherical shapes, but incur high error when dealing with arbitrarily

shaped clusters. Concretely, problems with the automatic clustering/validation algorithms can be briefly

summarized as follows:

• It is hard to handle the arbitrarily shaped clusters, which are common in applications. Some new

algorithms like CURE [14], WaveCluster [30] and DBSCAN [10], have addressed this problem and

try to solve it in restricted situations, such as in low dimensional datasets, or the cluster shapes are

elongated/enlarged regular ones. Yet it is still considered as an unsolved hard problem due to the

complexity in multi-dimensional (>3D) space and the unpredictable skewed cluster distributions.

• The arbitrarily shaped clusters also make the traditional statistical cluster validity indices ineffective

[15], which leaves it difficult to determine the optimal cluster structure. For example, the compactness

index, designed for spherical clusters, of an elongated shape is not high but the quality of cluster could

be considered as good in practice.
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Figure 1: Iterative cluster analysis

• In applications, some irregularly shaped clusters may be formed by combining two regular clusters or

by splitting one large cluster with the incorporation of domain knowledge. However, it is inconvenient

to incorporate domain knowledge in or allow the user to steer the clustering process with automatic

algorithms.

One feature of the automatic clustering algorithms is that it almost excludes human from the clustering

process, which is good in terms of reducing user’s workload, but which is not so good since the user cannot

easily manipulate the process. What the user can do is usually setting the parameters before the clustering

algorithm running, waiting for the algorithm producing the results, validating the results and repeating the

entire process if the results are unsatisfactory. Once the clustering algorithm starts running, the user cannot

monitor or steer the cluster process, which also makes it hard to incorporate domain knowledge into the

clustering process and especially inconvenient for large-scale clustering since the iterative cycle is long.

This exclusion makes the existing clustering framework inefficient and unintuitive for the user to deal with

the application-specific clustering tasks.

Since clustering is an unsupervised process, the quality of clustering result needs to be evaluated by “clus-

ter validity methods”. The validity methods are heavily related to the geometry or density nature of clus-

ters, such as the compactness or density of clusters, the distances between clusters, and so on [18, 15].

Particularly, cluster validity indices can be used to decide the optimal number of clusters. Some typical

indices includes root-mean-square standard deviation (RMSSTD) for compactness of clusters, R-squared

(RS) for dissimilarity between clusters, and SDbw for compound evaluation of compactness and dissim-

ilarity [29, 15]. Smaller RMSSTD and SDbw values or larger RS values suggest better cluster quality.

Although these indices were proved effective in determining the optimal number ofcompact well-separated

sphericalclusters, they do not work well for arbitrarily shaped clusters. A simple example in Figure 2−4

shows that the perfect clustering result of non-spherical clusters is often not consistent with the evaluation

result. The 2D synthetic dataset shown in the figures consists of two clusters, both containing the same

number of items and one of which is an elongated ellipse. With Euclidean distance the indices RMSSTD,

RS and SDbw all suggest the k-means clustering (Figure 3) is better, which is, however, not recommended

intuitively. A partition of three clusters (Figure 4) even gives better index values than partitions of two,

which is not correct at all. These indices simply do not work in evaluating the irregular clusters. Although

it is possible to find appropriate indices to deal with certain shapes, the statistical methods are not flexible

enough to adapt any unanticipated shapes, especially when you do not know the sketch of clusters.

Since the geometry and density features of clusters derived from the distance (similarity) relationship, de-

termines the validity of clustering results, no wonder that visualization is the most intuitive method for val-

idating clusters, especially the clusters in irregular shape. Many clustering algorithms in literature employ

the 2D-plot of the clustering results to validate their effectiveness on 2D experimental datasets. However,

the cluster visualization is not commonly used in practice because of the difficulty in visualizing multi-

dimensional (>3D) datasets.



 

Figure 2: Correct cluster-
ing. RMSSTD= 4.6516,RS=
0.5923,S Dbw = 1.5870

 

Figure 3: k-means result for
k = 2. RMSSTD=4.5536,
RS= 0.6093,S Dbw = 1.4605

 

Figure 4: k-means result for
k = 3. RMSSTD= 3.4837,
RS= 0.7715,S Dbw= 1.2022

Therefore, in general, clustering algorithms and validity indices have to answer the two questions to deal

with the arbitrarily shaped clusters: “How to recognize the special structure of each particular dataset?”

and “Is it possible to refine a given imprecise cluster definition provided by algorithms through certain

approaches efficiently?” To answer these questions, we propose a visual framework that allows the user to

be involved into the clustering process via interactive visualization. The core of the visual framework is the

visual cluster rendering system VISTA. VISTA can work with any algorithmic results - at the beginning,

VISTA imports the algorithmic clustering result into the visual cluster rendering system, and then lets the

user participate in the following “clustering-evaluation” iterations interactively. With the reliable mapping

mechanism employed by VISTA system, the user can visually validate the defined clusters via interactive

operations. The interactive operations also allow the user to refine the clusters or incorporate domain

knowledge to define better cluster structure.

Combining with the algorithmic clustering results, VISTA works well in improving the understanding of

the cluster structure and the performance of validating and refining the arbitrarily shaped clusters. We will

demonstrate the power of VISTA with two concrete examples - one is about how to validate and refine the

algorithmic results with visual cluster rendering and the other is how to incorporate domain knowledge into

the clustering process via visualization.

We organize the paper as following. The visual framework and VISTA system are introduced in section 2;

in section 3, two empirical examples are demonstrated in details to show the power of VISTA in validating

and refining clusters for real datasets. More experimental results are given in terms of the performance of

cluster visual rendering. The related work is discussed in section 4. Finally, we discuss and conclude the

VISTA approach.

2 VISTA Visual Framework

Most frequently, the clustering is not finished when the computer/algorithm finishes unless the user has

evaluated, understood and accepted the patterns or results, therefore, the user has to be involved in the

“clustering – analysis/evaluation” iteration (Figure 1). In many cases, a simplified process that employs

automatic algorithms is like the following:

1. Run the algorithms with initial parameters, after pre-processing, such as feature extraction, and sam-

pling or summarization for large datasets.



 
Figure 5: Visual framework for validating and refining clusters

2. Evaluate the cluster quality and analyze the clustering results with statistical indices and domain

knowledge.

3. If the result is not satisfactory, adjust the parameters and re-run the clustering algorithms, then do

step 2 again until the satisfactory result is found.

4. If the result is satisfactory, do post-processing, which may label all of the items in the entire dataset

or just output the cluster description.

Concrete discussion about this process can be found in [19]. Our discussion will focus on steps 2 and 3.

In step 2, it is often ineffective to validate the arbitrarily shaped clusters with the traditional cluster validity

indices. And it is also difficult for human to verify the result with the domain knowledge. Most clustering

algorithms also need to set appropriate parameters. For example, CURE [14] requires the parameters of

the number of representative points and shrink factor, and DBSCAN [10] needs a properEpsandMinPts

to get satisfactory clusters. In step 3, it is usually very time-consuming to find appropriate parameters for

a new run. The user needs to understand the meaning of the parameters, and often has to try several sets

of parameters before finding the appropriate ones, which may increase the number of the analysis cycles.

We observed that with automatic clustering algorithms the steps 2 and 3 can only be done in sequence –

The user can only tune the parameters before the algorithm runs and then wait for the results coming and

evaluate the results. We propose that if we can interweave these two steps, e.g. the user can participate

in the clustering process, monitoring and steering the process, the entire process would be more efficient.

Instead of achieving this interweaving by improving the existing automatic algorithms – which could be

very hard – we develop an interactive visual cluster rendering system to get human involved in. The entire

visual framework is like Figure 5.

Former studies [24, 23, 31] in the area of visual data exploration support the notion that visual exploration

can help in cognition. Visual representations, especially interactive visualization, can be very powerful in

revealing trends, highlighting outliers, showing clusters, and exposing gaps. Previous research shows that,

with the right coding, human pre-attentive perceptual skills can enable users to recognize patterns, spot

outliers, identify gaps and find clusters in a few hundred milliseconds [31]. For example, in a scatter-plot

based visualization, the human visual ability is adept at finding the clusters – the point-dense area very



quickly, and the shape of the cluster is identified at the same time too. All of the advantages make the

interactive cluster visualization systems very attractive. However, there are some challenges for cluster vi-

sualization techniques, among which the most challenging one is cluster preserving– the clusters appearing

in the 2D/3D visualization should be the real clusters ink-D (k > 3) space. Since ak-D to 2D/3D map-

ping inevitably introduces visual bias, such as broken clusters, overlapping clusters, or fake clusters formed

by outliers, static visualization is not sufficient to find all cluster information, and therefore, additional

interactive rendering techniques may be needed to improve the visual quality.

In VISTA cluster rendering system, we use a linear (or affine) mapping [12] –α-mapping to avoid the

breaking of clusters after mapping, where “gaps” between point clouds in visualization are thereal gapsin

high dimensional space, but the overlapping and fake clusters may still exist. The compensation technique is

interactive dynamic visualization. The interactive operations are used to change the projection plane, which

allows the user to observe the datasets from different perspectives continuously. Continuously changed

visualization usually provides important clues for the user to discriminate the overlapping and the fake

clusters effectively.

While the visual cluster rendering system is combined with the algorithmic result, the two can improve

each other. The colored algorithmic result in visualization provides visual clustering clues – the points in

same color, i.e. in the same cluster, should be grouped into the same area by large, which can guide the

user to find a satisfactory visualization very quickly. On the other side, the satisfactory cluster visualization

after rendering can validate the algorithmic results by visually checking the match of the visual cluster

distribution and the algorithmic distribution. In summary, the best way for visual cluster rendering is to

combine the algorithmic results with the interactive visualization system.

The basic methodology employed in visual cluster validating and refining follows the steps:

Step1.Load the dataset, (and algorithmic clustering result if available), into the VISTA visual cluster ren-

dering system, after pre-processing.

Step2.Use the interactive operations to find a satisfactory visualization,

Step3. Import domain knowledge if available, mark the visual boundaries between clusters and refine the

algorithmic result if applicable.

Step4.Output the refined result.

To illustrate how the VISTA system works, we will briefly introduce theα-mapping and the associated in-

teractive operations. The initial version of VISTA is used to render Euclidean datasets, where the similarity

is defined by Euclidean distance, since the Euclidean datasets are the most common datasets in applications

and human vision is only able to discern Euclidean distances. By default, we will not mention this again in

the following discussion.

2.1 α-mapping

We develop a linear mappingα-mapping that partially preservesk-dimensional (k-D) information in 2D

space and is used to build ak-parameter-adjustable interactive visualization system.α-mapping mapsk-D

data to 2D star coordinates [21] and normalizes the visualization into the designated display area. It utilizes

star coordinates to establish the visualization. Ak-axis 2D star coordinates is defined by an origin~o(x0, y0)
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Figure 6: Illustration ofα-mapping withk = 6

on screen and thek coordinatesS1, S2, . . . , Sk , which represent thek dimensions in 2D spaces. Thek

coordinates are equidistantly distributed on the circumference of the circleC, as in Figure 6, where the unit

vectors are~si = (cos(2πi/k), sin(2πi/k)), i = 1..k. The radiusc of the circleC is the scaling factor to the

entire visualization. Changingc will change the effective size and the detail level of visualization.

We formally describeα-mapping as follows. Let a 2D pointQ(x, y) represent the image of ak-dimensional

max-min normalized [25] (with normalization bounds [-1, 1]) data pointP (x1, . . . , xk) on the 2D star

coordinates. Q(x, y) is determined by the average of the vector sum of thek vectorsαi · xi · ~si, (i = 1..k),
whereαi are thek adjustable parameters. This sum can be scaled by the radiusc.

α-mapping :

A(x1, . . . , xk, α1, . . . , αk) = (c/k)
k∑

i=1

αixi~si − ~o (1)

i.e.

{Qx, Qy} = {(c/k)
k∑

i=1

αixi cos(2πi/k)− x0, (c/k)
k∑

i=1

αixi sin(2πi/k)− y0} (2)

α-mapping has two important properties:

1. The mapping is linear. Without loss of generality, we set~o to (0, 0), since it only translates the

visualization. It is easy to seeα-mapping is a linear mapping, given a set of constantsαi. It is

known that the linear mapping does not break clusters [12]. Therefore, each gap seen in visualization

confirms areal gap in the originalk-D space, andα-adjustment does not create any false “gaps”.

However, overlapping of clusters1 may still happen, and sometimes, overlapping outliers may form

fake clusters in visualization. What we need to do is to percept the overlapping and separate them

interactively.

2. The mapping is adjustable.αi can be regarded as the weight of thei-th dimension, which means

how significant thei-th dimension is in the visualization. By changingαi continuously, we can see

the effect of thei-th dimension on the cluster distribution. In addition, when one value or several

1Overlapping here means that two well-separated clusters ink-D space are mapped to the same 2D visual area, not that introduced
in some literature [26].



 

Figure 7: VISTA visual rendering system

values are changed continuously at the same time, thek-D dataset is mapped to a series of smoothly

changed projections, which provide important cluster clues.

2.2 The visual rendering operations

The VISTA system looks like Figure 7. The task of the VISTA cluster rendering system is to provide

the interactive visualization techniques to help the users find and separate the overlapping clusters through

continuously changed visualization. We have designed and implemented a set of interactive rendering

operations in VISTA.

2.2.1 α-parameter adjustment

The most important operation in VISTA system isα-parameter adjustment (or simply,α-adjustment). This

operation changes the parameters defined in Eq. (1). Each change refreshes the visualization in real time

(about several hundred milliseconds, depending on different hardware conditions and the size of dataset).

α-parameter adjustment enables the user to find the dominating dimensions, to observe the dataset from

different perspectives and to distinguish the real clusters from overlapping with a series of continuously

changed visualizations.

Continuousα-parameter adjustment of one dimension looks at the effect of this dimension on the entire

visualization. LetX(x1, . . . , xk) andY (y1, . . . , yk), xi, yi ∈ [−1, 1] represent any two normalized points

in k-D space. Let‖~v‖ represent the length of vector~v. We define thevisual distancebetweenX andY is:

vdist(X,Y ) = ‖A(x1, . . . , xk, α1, . . . , αi, . . . , αk)−A(y1, . . . , yk, α1, . . . , αi, . . . , αk)‖

= ‖(c/k)
k∑

i=1

αi(xi − yi)~si‖ (3)



which means ifxi andyi are close, changingαi does not change the visual distance betweenX andY a

lot – the dynamic visual result is thatX andY are moving together whenαi changes. Meanwhile, close

points ink-D space also have similar values in each dimension as Euclidean distance is employed. Thus,

we can conclude that the close points ink-D space, which should belong to one cluster, not only are close

to each other in 2D space, but also tend to move together in anyα-adjustment, while those points that are

far away from each other ink-D space may move together in someα-adjustment but definitely not in all

α-adjustment. This property makesα-adjustment very effective in revealing the main visual bias introduced

by α-mapping, namely, two distinguished clusters may be mapped to the same visual area by some specific

α settings. A set of heuristic dimension-by-dimension rendering rules [4] are based on this dynamic feature.

Experiments showed that these rules are very effective in interactively rendering the clusters.

In addition, the point movement also reveals the value distribution of individual dimension approximately.

If we adjust theα value of the dimensioni only, the point movement can be represented by:

∆(i) = A(x1, . . . , xk, α1, . . . , αi, . . . , αk)−A(x1, . . . , xk, α1, . . . , α
′
i, . . . , αk)

= (c/k)(αi − α′i)xi~si (4)

which means that the points having largerxi will be moving faster along thei-th coordinate, similarxi

moving in a similar way. The initial setting ofα values may not reveal the distribution of an individual

dimension as 8 shows. However, by looking at the density areas (the moving point cloud) along thei-th

axis when we are changing theαi value, we can easily estimate the value distribution ini-th dimension. In

Figure 8, we sketch that point moving and point distribution can be interpreted intuitively with each other.

si

-1    o     1 normalized
dimi

density

Moving

estimate

si

Before  alpha-adjustment

Alpha-
adjustment

Increasing  alpha  i  value

Figure 8:α-adjustment, dimensional data distribution and point movement

Compared to the basic rendering techniques “axis scaling” and “axis rotation” in the original star coordi-

nates system [21], VISTAα-adjustment, powered by the VISTA visualization model, can solely support

the user to find satisfactory visualization. We argue that, in fact,α-adjustment together with the zooming

operation are more powerful than the combination of “axis scaling” and “axis rotation”. The zooming factor

c does not change the structure of the content in visualization, hence, only is theα-adjustment enough to

provide the informative projection planes.

Concretely, the mapping described in the original star coordinates [21] can be actually rephrased and in-

cluded in VISTA visualization model, where the originalk-dimensional pointP (x1, . . . , xk) is normalized

to [0, 1] andαi, (i = 1, 2, . . . , k) is limited to [0, 1], instead. The positive-onlyα-adjustment shows the

dynamic visual effect just as the “axis scaling” described by the author. Nevertheless,α-adjustment in [-1,

1] defines more than “axis scaling” – the actual effect can be viewed as “rotation around the visual center”.

In general,α-adjustment in different range can be intuitively understood as the projection of “visual rotation



 
Figure 9:α ∈ [0, 1], normalized to [0,1]

 
Figure 10:α ∈ [−1, 1], normalized to [0,
1]

 
Figure 11:α ∈ [0, 1], normalized to [-1, 1]

 
Figure 12:α ∈ [−1, 1], normalized to [-1,
1]

2” of point cloud around the perpendicular axis of coordinatei. Different α-value ranges define different

rotation angles (Figure 9−12). For example, “axis scaling” can be regarded as the projection of rotation

from 0o to 90o around the perpendicular axis as shown in Figure 9.

While the range ofα-values determines the ability of interactive operations, the scope of the normalized

original values influences the coverage of effective visualization. To make the demonstration clearer, with-

out loss of generality, we consider the situation where dimensioni dominates the visualization with a set

of α-values, e.g.(c/k)
∑k

j=1 αjxj~sj ≈ (c/k)αixi~si. When the dimensions are normalized to [0, 1] as

in the original star coordinates, the point cloud tends to distribute over the positive direction of~si, which

squeezes the effective visualization onto one side of the display area and shows less details inside the point

cloud (Figure 9). In contrast, normalizing to [-1, 1] elongates the point cloud to cover the entire effective

visualization space and therefore, allows the user to observe more details (Figure 11).

To sum up, with the different scopes of normalized values andα values, we can observe different effects

of α-parameter adjustment. We list four typical intuitive rendering effects as in Figure 9−12. α-mapping

in VISTA model is the case in Figure 12, which efficiently utilizes the entire display area and enables the

“180o rotation” of data points along the perpendicular axis. The mapping in star coordinates is the case in

Figure 9, which tends to squeeze the point clouds and thus limit the observation angles. Different parameter

2observed as rotation in continuousα-adjustment



scope setting of VISTA visualization model determines the ability of corresponding visualization system.

We choose the set of ranges that maximize the power of the underlying visualization model in VISTA

system.

2.2.2 Other operations

A bunch of interactive operations are designed and implemented in VISTA cluster rendering system for re-

vealing cluster overlapping, validating algorithmic clustering results, and refining the definition of clusters

visually. Sinceα-parameter adjustment is the most frequently used one, random rendering and automatic

rendering are used to increase the efficiency ofα-parameter adjustment [4]. Another set of operations sup-

port point-set-oriented operations and are used to validate and refine visual cluster definition after we get

the initial cluster visualization withα-parameter adjustment or load the algorithmic result. These opera-

tions include subset selection, cluster marking, cluster splitting, cluster merging, and hierarchical structure

defining. Domain knowledge in form of labeled items can also be incorporated into VISTA visualization.

To facilitate the following description, we define a dataset asD = {Xi | Xi =< xi1, . . . , xik >, 1 6 i 6
N}, wherek is the number of dimensions andN is the number of instances in the dataset. A cluster is a

subsetS of D. Therefore, operations on clusters are the operations on subsets.

Subset selectionThis operation defines a subset of points by freehand drawing an enclosed region on

screen or selecting a range of one dimension. The selected subset can be used for further processing,

such as cluster marking, merging and splitting. Initially, we have one subset, which is the entire

dataset. The clusters are defined as subsets from then on. We name thei-th subset asSi. Suppose

before selection, we have hadm subsets ordered as(S1,S2, . . . , Sm). The (m + 1)-th subset is

selected from one or more subsets. We define subset selection as following, where ’-’ is set difference

operation.

SS(m) : (S1, S2, . . . , Sm) → (S1 − Sm+1, S2 − Sm+1, . . . , Sm − Sm+1, Sm+1)

Merging and splitting clusters These two operations enable the user to refine the visualized algorithmic

clustering result. If the user finds a part of a cluster should be semantically separated from the cluster,

she/he can use selection operation to select this part and then excludes it from the cluster. If two

nearby clusters should be regarded as one cluster from the domain knowledge, the user just selects

them and merges them into one cluster. A cluster boundary can be refined by merging and splitting

operations, too. Splitting subseti to subseti1 and i2, and merging subseti to j are defined as

following, where ’∪’ is set union operation.

Split(i, i1, i2,m) :
(S1, . . . , Si, . . . , Sm) → (S1, . . . , Si − Si2 , . . . , Sm, Si2), whereSi1 = Si − Si2

Merge(i, j, m) :
(S1, . . . , Si, . . . , Sj , . . . , Sm) → (S1, . . . , Si−1,Si+1, . . . , Sj−1, Sj+1, . . . , Sm,Si ∪ Sj)

Defining hierarchical cluster structure With the operations of defining the cluster hierarchy, the user can

observe or manipulate the clusters in a hierarchical way. Concretely, a hierarchical structure is a

tree structure. Each node contains the clusters defined in this node, as well as all clusters defined

in its child nodes (Figure 13). The user can group some small clusters, or split one large cluster to

several small clusters and then group them, to form a sub-layer. This capability is especially useful



in exploring the large datasets since it allows the user to explore the data from sketch (the high level

data summary) to details (selected low level clusters). Efficient visual exploration for large datasets

can be implemented on the hierarchical structure by incorporating some summarization trees3. We

define the operations as follows. Suppose we are visualizing a nodej in the hierarchical tree, which

hasm clusters, and we want to define a sub-layer, which containsl clusters among them clusters,

l < m. We have the following definition.

Hj(m,Si1, Si2, . . . , Sil) : (S1, . . . , Sm) → (Sj1, . . . , Sj,m−l, (Si1,Si2, . . . , Sil))

i1 . . . il are the index of the selectedl subsets among them subsets, andj1 . . . j, m− l are the index

of the rest subsets. We use the notation “(. . . (. . . ))” to represent the layer and its sub-layer(s).

define new layers

clusters

Figure 13: Demonstration of defining
a hierarchical structure

Importing domain knowledge A set of domain knowledge is transferred to a set ofk-D instances labeled

with semantic group identities. These instances are imported into the visual rendering system and

rendered in different colors with different labels. These colored items act as the guidance to re-define

the cluster partition with domain knowledge if necessary. If domain knowledge is represented byl

groups of instances{g1, . . . , gl}, these instances forml new subsets after they are loaded, which then

used to direct further cluster splitting or merging. For example, if the instances ing1 are distributed

over S1 andS2, then we may consider thatS1 andS2 are in one group according to the domain

knowledge, and want to merge them as one cluster. A more specific example will be given in section

3.2.

D(m, g1, g2, . . . , gl) : (S1, . . . , Sm) + (g1, g2, . . . , gl) → (S1, . . . , Sm, g1, g2, . . . , gl)

3 Empirical Study

In this section, we will introduce two examples of visual rendering. The first one demonstrates the ability

of VISTA visual validating and interactive refining. The second one shows how to incorporate domain

knowledge into VISTA visual cluster rendering. The datasets used in the examples can be found at UCI

machine learning database (http://www.ics.uci.edu/∼mlearn/ Machine-Learning.html).

3There are some tree structures for data summarization, such as CF-tree in BIRCH [34]. We will implement efficient visualization
for very large datasets in the future version.



3.1 Analyzing the “iris” dataset

In this example, we will use the most popular clustering algorithm – k-means [18] to produce the clustering

result on the dataset “iris”, and then import the result into VISTA system. With VISTA system, we will

validate the k-means result visually and then try to refine the clusters and improve the quality of the k-

means clusters. The quality of clusters will also be evaluated by statistical indices RMSSTD, RS, and

S Dbw [29, 15] at the same time to see if the statistical indices are consistent with the visual improvement.

“Iris” dataset is a famous dataset widely used in pattern recognition and clustering. It is a 4-D dataset con-

taining 150 instances, and there are three clusters, each has 50 instances. One cluster is linearly separable

from the other two; the latter two are not exactly linearly separable from each other.

 

Figure 14: The initial visualization with k-
means labels
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We demonstrate the operations of validating and refining k-means clustering result of “iris” data as follow-

ing steps. Firstly, we load the dataset and import the k-means labels for “iris” dataset into the visualization.

Different clusters are visualized in different colors and shapes (Figure 14). In the initial visualization, we

have already found that one cluster has been separated from the other two. After interactive cluster render-

ing, mainly theα-parameter adjustment, the visual boundaries become clearer (Figure 15). The boundary

B-C clearly separates cluster C from the other two clusters. The gap between cluster A and B can be vi-

sually perceived.α-mapping model confirms that this gap does exist in the 4-D space sinceα-mapping

does not break clusters. We make this gap as the visual boundary A-B. This visually perceived boundary

A-B is not consistent with the k-means boundary, but we have more confidence with it since it has been

intuitively confirmed. There is a principle in visual cluster rendering –we prefer visual perception rather

than statistical information because we believe the visual ability is better than statistical methods in dealing

with arbitrarily shapes.

Considering this visual boundary, we want to edit the k-means result with visual cluster editing operations.

First, we split the points that belong to cluster A but visualized in cluster B, from cluster A. These points

are then merged into cluster B. Do the same operation on the B points in cluster A as shown in Figure 16.

After the editing operations, the points in the clusters are shown more homogeneously (Figure 17). The

visual partition exactly reflects the real cluster distribution (compare Figure 17 and 18).

We check the validating results of the widely used cluster validity indices RMSSTD, RS and SDbw, to

see if the statistical validation is consistent with the visual improvement. RMSSTD is used to estimate the



homogeneity of the clusters. Smaller RMSSTD indicates that the clusters are more compact. RS is used

to estimate the dissimilarity between clusters. Larger RS indicates higher dissimilarity between groups.

S Dbw is a compound evaluation of compactness and dissimilarity, e.g. the overall quality of clusters.

The smaller SDbw implies the better quality. The statistical evaluation shows RMSSTD is increased

from 0.4421 to 0.4614, RS is decreased from 0.8254 to 0.8098, and SDbw rises from 1.4158 to 1.5115

after visual rendering. This means the compactness of clusters and the dissimilarity between clusters are

decreased at the same time – the quality of clustering after visual improvement is worse than the k-means

result statistically, which is not appropriate in practice! The irregular shapes of A and B, together with the

closeness to each other, makes the statistical methods ineffective in this scenario.

A

B
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and merge
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Split from A
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into B

We make the visible
gap as the A-B

boundary

Figure 16: Editing the clusters

Ambig uous
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Figure 17: After editing

As the literature of the “iris” dataset mentioned, the clusters A and B are not linearly separable. To further

refine the cluster definition, we can also informally define a small “ambiguous area” around the gap between

A and B, the points in which have equal probability of belonging to A or B. In extended experiments with

trained users, all users can find the visualization like Figure 17, which means visual validity could be very

practical in exploring certain datasets. We will support this assertion with more experimental result in

section 3.3.

In conclusion, we believe that the VISTA system is better than the statistical indices, in terms of validating

arbitrarily shaped clusters. In this example, we have seen that sometimes the vague boundary between the

two clusters is easily checked by human visual ability but it is not so easy for the automatic algorithms. In

addition, this example also shows the power of online refining ability of the VISTA system – after validation,

the user can improve the quality of clusters immediately by editing the clusters, which effectively combines

the two steps “re-clustering” and “evaluation” together.

3.2 Incorporating domain knowledge

In this example, we will demonstrate that the VISTA system can conveniently incorporate the domain

knowledge into the clustering process and provide intuitive clues for the user to define the application-

specific clusters. We first define the “domain knowledge” utilized in VISTA system, and then show how

to use the domain knowledge to distinguish the application-specific cluster distribution in rendering the

“shuttle” dataset.



 

Figure 18: The documented cluster defini-
tion

Domain knowledge plays a critical role in the clustering process [19]. It is the semantic explanation to the

data groups, which may be different from the structural clustering criteria. As a result, domain knowledge

often indicates a high-level cluster distribution, which may be different from the structural clustering results.

For example, the original clusters may be grouped to form larger clusters or split to form finer cluster

structure. It is always desired toseeif the domain knowledge is consistent with the cluster structure and if

the domain knowledge can be incorporated into clustering process to refine the cluster structure. However,

splitting or grouping basic clusters heavily depends on the understanding of the particular cluster structure.

This is very unintuitive for automatic-algorithm-based clustering process. VISTA system provides the

possibility of visually checking the matching between the cluster structure and domain knowledge, and

conveniently refining the cluster structure.

Domain knowledge can be represented in various forms in Artificial Intelligence [19, 28]. In clustering

process, the domain knowledge can be simply represented as a few labeled instances. We define the domain

knowledge used in VISTA system as follows. Suppose the datasetD = {Xi | Xi =< xi1, . . . , xik >

, 1 6 i 6 N} and the user have some domain knowledge about the application. The domain knowledge

could come from the specific properties of the application, the experimental results, or any hypotheses that

the application holds. However, because of various reasons, for example, it is time/money costly to get

the experimental results, we can only get a small number of labeled interesting instancesY1, Y2, . . . , Yn

(n ¿ N ), which reflect the properties, or the experimental results well. According to the labels, this set of

instances should be partitioned intom groups. Using (instance, group ID) to represent a labeled instance,

we have then instances labeled as

(Y1,1, 1)(Y1,2, 1) . . . (Y1,n1 , 1)
. . .

(Ym,1,m)(Ym,2,m) . . . (Ym,nm ,m)

wheren1 . . . nm are the number of instances in the groups. They are regarded as the domain-related “land-

marks” in VISTA system. The number of the instances is often so small that they cannot work effectively

as a training dataset for classification algorithms [27] classifying the entire datasets.

There are two rendering methods for incorporating the domain knowledge. The first method is as follows.



When visualizing a dataset, the landmark points are loaded and visualized in different colors according to

their group ID. This guiding information can direct the user to define the high-level cluster structure, or to

refine the algorithmic clustering results a little bit.

The alternative method is to visualize the dataset first and then sample some points from the “critical areas”

on the visualization, such as the connective area of two point clouds. The small number of sample points

are easy to be classified with the domain knowledge and then re-imported into the visualization as the

“landmarks” to direct rendering.

We use the “shuttle” dataset and the second method to demonstrate how the VISTA system incorporates

the domain knowledge into the clustering process. “Shuttle” dataset is a 9-D dataset. There are three large

clusters and some tiny clusters in the dataset. Approximately 80% of the data belongs to one cluster. The

other two large clusters have about 15% and 5% points, respectively. We use the testing dataset, which has

14500 items, for visualization.

After loading the dataset and adjusting the parameters, we get the initial visualization, which shows the

cluster distribution is highly irregular. Roughly, there are six homogenous segments (Figure 19). We have

no idea whether they are six individual clusters, or they should be grouped or split to form higher-level

clusters.

We then pick several points from the visualization, which should ideally cover the connective areas. Sup-

pose the “expert”, according to experiments or any domain knowledge (use the labels from the original

dataset to mimic), tells us the sample points should be grouped into three clusters. Using them as the “land-

marks”, we find a possible cluster structure as Figure 20. To observe the landmarks clearly, we visualized

other data points in white color. The points in triangle, round, and star shapes are the landmarks of differ-

ent groups. The result clearly shows that this dataset probably should be partitioned in the suggested way

according to the domain knowledge. The real cluster distribution of the “shuttle dataset” is visualized in

Figure 21 for comparison.

In conclusion, since the automatic algorithms exclude the human from the clustering process, the domain

knowledge cannot be easily incorporated into the clustering process. With the help of VISTA system, the

user is able to incorporate the domain knowledge into the clustering process and define the application-

specific cluster distribution online. This combination of human-based analysis/evaluation and clustering

process breaks the gap between human and the machines, and thus improves the efficiency of the entire

cluster analysis process.

Some research on classification were also seeking help from the unlabeled data to reinforce the learning

ability with the small number of training instances [2]. However, we believe if the domain knowledge

(the labeled data) can be consistently incorporated into the basic cluster structure by splitting or grouping

clusters, the result is much easier to interpret. Therefore, VISTA system can be an effective alternative in

dealing with the combination of labeled and unlabeled data.

3.3 More Experimental Results

The VISTA visual clustering system was implemented in Java. In this section we will introduce more

experimental results to show the power of visual cluster rendering system in finding clusters individually

or in combining any external information to provide better clustering results. These experiments were

conducted on a number of well-known datasets that can also be found in UCI machine learning database.

These datasets, although small or median in size, have irregular cluster distribution, which is an important
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Figure 19: After initial rendering Figure 20: Loading the domain knowledge

 

Figure 21: The documented cluster distri-
bution

factor for testing the effectiveness of the VISTA system.

Five well-trained users use the VISTA cluster rendering system to find satisfactory visualization for each of

the ten datasets. After we use the interactive visual operations to find the satisfactory visualization, either

solely by visual rendering or incorporated by algorithmic result, we mark the areas which are regarded as

clusters and the items in each area are respectively labeled with the cluster ID. With the original labels in

the datasets, we define the items that are wrongly clustered as the errors, the number of which divided by

the size of the dataset is the error rate of visual cluster rendering on this dataset.

We firstly use unguided visual rendering (UGV) to find the visual partition. Unguided visual rendering does

not rely on any external information and only depends on the visually observed dense-point areas and the

gaps between the areas. Since there is visual bias on the visualization, the visual rendering sometimes may

trap in local minima, where the user thinks the visualization is good enough for defining cluster boundaries.

We could avoid trapping in local minima by incorporating some external information, either from other

clustering algorithms or domain knowledge. In our experiments, 10% of labeled items randomly selected

from the original datasets are used as the “landmarks”. We also compare the results of k-means and CURE

algorithms on the experimental datasets. CURE clustering is recognized as one that can deal with irregular



Dataset N k c UGV(%) Combo(%) Time (min) CURE (%) KM(%)
Bre-canc-wisc 699 10 2 16.7 3.3± 0.4 1.6± 0.3 8.6 5.1

Crx 690 15 2 20.2 14.5± 0.3 2.3± 0.8 46.8 48.0
Iris 151 4 3 5.5 0.7± 1.2 1.9± 0.3 32.7 11.3

Page-blocks 5473 10 5 13.0 7.8± 0.2 2.6± 0.4 32.7 45.6
Hepatitis 155 19 2 21.9 21.7± 2.4 2.7± 0.2 35.7 42.6

Heart 270 12 2 24.0 18.6±1.5 2.3± 0.5 47.4 21.1
Mushroom 8124 21 2 24.7 8.4± 0.3 5.5± 0.4 31.9 40.2
Australian 690 14 2 15.4 14.6± 0.7 2.6± 0.9 36.8 14.5

Wine 178 12 3 7.9 2.1± 0.5 3.1± 0.4 32.0 5.6
Shuttle.test 14500 9 7 10.2 4.0± 0.4 1.7± 0.2 20.5 23.2

Table 1: More experimental results on typical datasets having irregular cluster distribution

cluster shapes in some level, and k-means is the most popular algorithm commonly used in research or

applications. The experiment shows that individually CURE or K-means cannot deal the arbitrarily shaped

clusters very well and UGV may trap into some local minima, but by combining with the external informa-

tion we can improve the UGV result more or less. The result also shows the visualization result, either UGV

or combined rendering, is often better than algorithmic result for arbitrarily shaped clusters. In addition, the

interaction time for most datasets is less than 5 minutes, which means it is not difficult for a trained user to

find a satisfactory visualization.

We list the experimental results in Table 1, whereN is the number of rows in the given dataset,k is

dimensionality of the dataset, andc is the number of clusters in the dataset. “UGV(%)” is the error rates

(%) of unguided visual rendering result. “Combo(%)” is the error rates(%) of the combining of UGV with

“landmark points”. “Time(min)” is the time in minutes spent in user interaction with the “combo” method.

It begins with loading a dataset and ends with saving the interaction result. “CURE(%)” is the error rates

(%) of CURE clustering algorithm. “KM(%)” is the error rates (%) of K-means clustering algorithm. The

results show that the combined rendering can improve the algorithmic cluster definition greatly, and even

the unguided visual rendering can give better result in many cases.

4 Related Work

The common cluster analysis framework is described in the clustering review paper [19]. Recently, some

algorithms have been developed to deal with arbitrarily shaped clusters. CURE [14] uses a set of rep-

resentative points to describe the boundary of a cluster in its hierarchical algorithm. But the number of

representative points increases dramatically with the increase of the complexity of cluster shapes in order

to maintain the precision. CHAMELEON [22] employs a multilevel graph partitioning algorithm on the

k-Nearest Neighbour graph, which may produce better results than CURE on complex cluster shapes for

spatial datasets. But the high complexity of the algorithm prevents its application on higher dimensional

datasets. DBSCAN [10] is a density-based algorithm but it is very sensitive to the parameterEps and

MinPts. The distribution-based algorithm DBCLASD [32] and the wavelet transformation based algorithm

WaveCluster [30] were also reported as being efficient only in spatial datasets. In conclusion, the automatic

algorithms can deal with the arbitrarily shaped clusters in some special situations, but the results are not

generally applied to any applications.

The most difficult problem is, while it is easy to validate the arbitrarily shaped clusters in 2D or 3D space



(visually or algorithmically), it is hard to validate the irregular clusters for high-dimensional (>3D) datasets,

since the commonly used statistical indices are only effective for regular shapes [15], such as spherical or

elongated shapes. Information visualization is commonly recognized as a useful method for understanding

sophistication in datasets. Many efforts have been made to analyze the datasets in a visual way. We discuss

the scatter-plot-based techniques only because it is the most intuitive techniques for cluster visualization.

The early research on general plot-based data visualization is Grand Tour and Projection Pursuit [7]. Since

there are numerous projections from a multidimensional data space to a 2D space, the purpose of the Grand

Tour and the Project Pursuit is to guide the user to find the “interesting projections” automatically by

interpolating the intermediate projections to connect several pre-selected projections. L.Yang [33] utilizes

the Grand Tour technique to show projections in an animation. VISTA system has proved that the property

of dataset can be utilized in user interaction to help find the satisfactory visualization quickly [4], rather

than mathematically interpolating most uninteresting projections, which cost a lot computational power.

Dhillon [9] aimed at precise visualization of clusters, but the technique is effective for 3 clusters. When

more than 3 clusters exist, his method needs the help of Grand Tour techniques. Other techniques, such

as Scatterplot matrices, coplots, prosection [6] and FastMap based visualization [11, 17] only create static

visualization, which inevitably distorts the cluster structure but have no complementary methods to rectify

it, thus do not provide enough information for either clustering or cluster validation. In KDD2002 tutorial

[13], more visualization methods were discussed.

Star Coordinates [21] is a visualization system designed to visualize and analyze the clusters interactively.

We utilize the form of Star Coordinates and build a normalizedα-mapping model in our system. We have

discussed thatα-mapping model extends the ability of the original mapping in star coordinates paper and

demonstrated the particular ability of VISTA system in visually validating and refining clusters. HD-Eye

[16] is another interesting interactive visual clustering system. HD-Eye visualizes the density-plot of the

interesting projection of any two of the k dimensions. It uses icons to represent the possible clusters in each

projection and the relationship between the clusters. However, it is hard for users to synthesize all of the

interesting 2 ofk-D projections to find the general pattern of the clusters. In fact, visually determining the

basic cluster distribution solely through user interaction is not necessary. The semi-automatic 1D visualiza-

tion based algorithm OPTICS [1] actually works well in finding the 1D sketch of arbitrarily shaped clusters,

the result of which can be utilized by some high-level visualization systems, such as VISTA. However, OP-

TICS itself cannot be easily applied to analyze or validate the shape of clusters and the distance relationship

between clusters, and to incorporate any domain knowledge in cluster analysis, as VISTA does.

5 Discussion and Conclusion

Most of researchers have focused on automatic clustering algorithms, but very few have addressed the

human factor in the clustering process. Although the existing clustering algorithms and cluster validity

methods are working well on spherical clusters with the normal statistical assumptions, they have encoun-

tered the difficulty in dealing with arbitrarily shaped clusters. In order to solve this problem, we should

check the human factor in the clustering process more carefully. The VISTA system demonstrates some

possible ways to introduce the users into the clustering process. In this paper, we proposed the VISTA

visual framework to combine the algorithmic results with visual cluster rendering system. The power of

VISTA visual cluster rendering system enables the users to visually validate and interactively refine the

clusters. It also allows the users to incorporate domain knowledge into the clustering process in a con-

venient way. The empirical study shows that the VISTA framework/system works very well in visually



validating and refining the algorithmic clustering results. A short version of this paper [5] was presented in

international conference of data mining (2003). We have published the downloadable VISTA system at the

web site http://disl.cc.gatech.edu/VISTA/.

The current VISTA system can handle datasets with dimensionality less then 50 interactively. Dimensional-

ity higher than or close to 50 will cause the difficulty in human visual understanding and operations. In such

situations, linear dimensionality reduction techniques, such as Principal Component Analysis (PCA) [20],

or non-linear techniques [8] are needed to reduce the dimensionality. It is commonly agreed that the higher

dimensionality remained, the less the dataset is distorted, and the more precise the clustering result is. For

instance, higher dimensionality tends to have morevariance explainedin PCA. The theoretical result [3]

shows that the first few principal components (PCs) given by PCA may not be the ’best’ PCs for clustering.

Therefore, 2/3D visualizations directly based on the first 2/3 PCs may not visualize the clusters correctly.

However, to find the best few PCs for clustering is very difficult and complicated. Visualizations based on

transformed dataset having higher dimensionality (> 3D) will have higher chance to preserve the original

dataset without involving complicated computing. Investigating the effect of dimensionality reduction to

VISTA system for very high dimensional datasets is one of the main subject for VISTA approach.

Computer system capability also restricts the number of data items that can be handled. In current experi-

mental system (Pentium4 1.6G, 256M), the VISTA system can handle about 100K points while refreshing

the visualization in real-time (<several hundreds of milliseconds). Huge datasets may bring up several new

issues in terms of the effect of preprocessing to visual cluster rendering, understanding and manipulating

the visualization, and effective post-processing with visualization. In conclusion, VISTA system for very

high dimensional datasets and very large datasets will be the focus of the future work.
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