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Abstract—The sharing of caches among proxies is an important technique to reduce Web traffic, alleviate network bottlenecks, and

improve response time of document requests. Most existing work on cooperative caching has been focused on serving misses

collaboratively. Very few have studied the effect of cooperation on document placement schemes and its potential enhancements on

cache hit ratio and latency reduction. In this paper, we propose a new document placement scheme which takes into account the

contentions at individual caches in order to limit the replication of documents within a cache group and increase document hit ratio. The

main idea of this new scheme is to view the aggregate disk space of the cache group as a global resource of the group and uses the

concept of cache expiration age to measure the contention of individual caches. The decision of whether to cache a document at a

proxy is made collectively among the caches that already have a copy of this document. We refer to this new document placement

scheme as the Expiration Age-based scheme (EA scheme for short). The EA scheme effectively reduces the replication of documents

across the cache group, while ensuring that a copy of the document always resides in a cache where it is likely to stay for the longest

time. We report our study on the potentials and limits of the EA scheme using both analytic modeling and trace-based simulation. The

analytical model compares and contrasts the existing (ad hoc) placement scheme of cooperative proxy caches with our new

EA scheme and indicates that the EA scheme improves the effectiveness of aggregate disk usage, thereby increasing the average

time duration for which documents stay in the cache. The trace-based simulations show that the EA scheme yields higher hit rates and

better response times compared to the existing document placement schemes used in most of the caching proxies.

Index Terms—Cooperative Web caching, document placement, distributed caching.
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1 INTRODUCTION

THE popularity of the Internet and World Wide Web

(Web) continues to grow. So does the number of users

accessing information on the Web. This leads to continued

increase of both network load and server load. One way to

meet this challenge is to try to scale network and server

bandwidth to keep up with the client demand, which is an

expensive strategy. An alternative is caching, which reduces
network bandwidth and server load by migrating server

files closer to those clients that use the files. Caching can be

done either at a client (by Web browser) or in the network

between clients and content servers (by proxy servers).
Cooperative caching—the sharing and coordination of

cache state among multiple caching proxies—has been

recognized as one of the most important techniques to

reduce Web traffic and alleviate network bottlenecks. Web

cache sharing was first introduced in Harvest [4] to gain the

full benefits of caching. The main idea is to allow a proxy

cache to locate documents that are not available locally from

other “nearby” caches before contacting the origin (content)

server. Cooperative caching can be seen as a process of Web

cache sharing where proxy caches on the same side of a

common bottleneck link cooperate and serve each others

misses. In this paper, we refer to those cooperating proxy

caches collectively as a cache group.

The advantages of cooperative caching are apparent.
First, it reduces the bandwidth contention on the backbone
network. Second, it reduces the actual traffic on the origin
servers. The third and most important implication of
cooperation among caches is a reduction in the average
latency experienced by the clients of these caches.

It is known that the benefits of cooperative caching are
bounded by the ratio of intercache communication time to
server fetch time. Researchers have studied cache-sharing
protocols, which provide mechanisms to reduce the com-
munication cost among cooperating caches. Internet Cache
Protocol (ICP) [6] was designed specifically for commu-
nication among Web caches. ICP is a lightweight protocol
and is implemented on top of UDP. The protocol consists of
two types of messages that are exchanged between
neighboring caches, namely, ICP queries and ICP replies.
ICP query is a message sent by a cache that experienced a
local miss to all its neighboring caches asking whether they
have the particular document. ICP reply is a message from
the caches receiving the ICP query to the query originator
which communicates whether they have the particular
document cached in them.

Although several cooperative caching protocols have
been proposed [4], [5], [10], [16], [7], [12], [20], few studies
have examined the cooperation of caches from document-
placement point of view. To our knowledge, none has so far
tried to answer the following questions: Can we devise a
document placement scheme that utilizes the sharing and
coordination of cache state among multiple communicating
caches? Can such a document placement scheme improve
hit ratios and reduce document-access latency? What are
the potential advantages and drawbacks of such a scheme,
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especially how does the document placement scheme relate
to the ratio of the interproxy communication time to server
fetch time?

Let us first review how documents are placed in the
present cooperative caching protocols and what the
potential problems of the existing schemes are. The
document placement policies in either hierarchical or
distributed caching architecture share a common scheme:
When an ad hoc document request is a miss in the local
cache, this document is either served by another “nearby”
cache in the cache group or by the origin server. In either
case, this document is added into the proxy cache where it
was requested. Therefore, a document may be cached in
several or all of the caches in the cache group if the
document is requested at several or all of the proxy caches.
We refer to this conventional scheme as the ad hoc scheme.
An obvious drawback of the ad hoc document placement
scheme is the fact that the caches within a group are treated
as completely independent entities when making document
placement decisions. This may result in “uncontrolled”
replication of documents. Such “uncontrolled” replication
of data reduces the efficiency of the aggregate disk space
utilization of the group of caches. By efficiency, we mean
the number of unique (nonreplicated) documents present in
the cache. This reduction in the number of unique
documents available in the cache group often leads to a
reduction in the cumulative hit rate of the cache group.

In this paper, we propose a simple and yet effective
scheme to limit the replication of documents within a
group. We view the aggregate disk space of the cache group
as a global resource of the cache group and introduce the
concept of cache expiration age to measure the disk space
contention of caches. The new scheme is based on the
expiration ages of individual caches in the group, referred
to as the Expiration Age-based scheme (EA scheme for
short). The EA scheme effectively reduces the replication of
documents across the cache group, while ensuring that a
copy of the document always resides in a cache where it is
likely to stay for the longest time. Further, the implementa-
tion does not involve any extra communication overheads
when compared with the ad hoc scheme used in many
existing cooperative-caching protocols. We use both analy-
tic modeling and trace-based simulations to show the
potential advantages and drawbacks of the proposed
scheme. Both analytic modeling and trace-based analysis
show that the EA scheme yields higher hit rates and better
response times.

2 PROBLEM STATEMENT

As briefly mentioned in the Introduction, all existing
cooperative caching protocols treat individual caches in a
cooperation group as completely independent entities when
making decisions on where to cache a document. More
concretely, the decision of whether to place a particular
document in a given cache is made without knowledge
about the other caches. This blind caching can lead to
“uncontrolled” replication of documents in the cache group.
It may potentially reduce the hit rate of the group as a whole
entity. To understand various factors that may influence the
quality and efficiency of document placement in a group of

caches, in this section, we walk through a simple scenario to
illustrate the potential problems with the existing document
placement scheme, which we call the ad hoc scheme.

Consider a cache group with three caches, say, C1, C2,
and C3, in it. Let us consider the distributed caching
architecture as the cache cooperation structure in this
example, although our arguments and our new document
placement scheme are independent of specific cooperative
cache architectures and work well with various document
replacement algorithms.

Consider a scenario when the cache C1 experiences a
local miss when serving a client request for a document D.
C1 sends an ICP query to both C2 and C3. If the document is
not available in both C2 and C3, C1 fetches it from the origin
server, stores a local copy, and serves the client. If after
some time, C2 gets a client request for the same document D,
it sends an ICP query to C1 and C3, C1 replies positively. C2

now fetches the document from C1, stores it locally, and
serves the client request. Now, it is evident that the
document D is present in both C1 and C2. Furthermore, as
the document is fetched from C1, it is considered to be a hit
in the cache C1. Therefore, the document in the cache C1 is
given a fresh lease of life. If C3 gets a client request for the
same document D, it can fetch it from either C1 or C2. So,
the document D is now replicated at all the three caches.
This example illustrates how the ad hoc schemes can lead to
“uncontrolled” replication of data.

This uncontrolled replication of data affects the efficiency
of the usage of aggregate disk space available in the group.
The reduction in the effective disk space availability in the
cache group increases the contention for disk space at the
individual caches. Increased contention for disk space
manifests itself in twoways: 1) The time forwhich individual
documents live in the cache is reduced. 2) The number of
unique documents available in the cache group decreases. It
is well-known that the hit rate is proportional to the number
of unique documents available.

The cumulative effect of the above two leads to a fall in
the aggregate hit rate of the cache group when compared
with a cache group having the same amount of disk space
and with no replication or controlled replication of
documents. Therefore, the usage of cumulative disk space
in the cache group is not optimal in the existing (ad hoc)
document placement scheme.

3 THE EXPIRATION-AGE-BASED DOCUMENT

PLACEMENT SCHEME

In this section, we present our new document placement
scheme for cooperative caching. In this scheme, each proxy
makes intelligent decisions on whether to cache a particular
document. The decision is based on a number of factors:
whether the document is already available in the cache
group; if so, how long is it likely to remain in the caches
where it is currently stored; and the disk space contention
of the proxies that contain the document. We use the
Expiration Age of the caches to measure their cache
contention levels. In the next section, we explain the
concept of Expiration Age and how it can be used to make
informed decisions.
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3.1 Expiration Age—A Measure of Cache
Contention

An important question related to document placement is to

understand what type of measures can be used to compare

disk space contention in a group of caches. One possible

approach to measure the contention at a cache in a given

time duration is to use the average document lifetime of a

cache in that duration. This can be estimated in terms of the

lifetime of documents that are evicted in the given duration.

We argue that this approach is inaccurate.
Consider that a document D entered a cache at time T0

and was removed at time TR. The Life Time of document D

is defined as ðTR � T0Þ. The Average Document Life Time of

the cache is defined as the mean of Life Times of documents

that were removed in some finite time period. It can be seen

that the Average Document Life Time of a cache depends on

the disk space contention in the cache. If the disk space

contention were higher, Average Document Life Time would

be lower and vice versa.
While Average Document Life Time of a cache depends on

the disk space contention, it does not accurately reflect the

cache contention. A simple example illustrates this fact.

Consider two caches C1 and C2 of equal size with identical

initial configurations (containing the same set of documents

cached at the same time). Let both these caches use the LRU

replacement policy. Now, consider a set of client requests,

say, fQ0; Q1; . . . ; Qng. Let these requests be for documents

that are not present in the caches C1 and C2. Let us assume

that no two requests are for the same document. Consider a

situation where both C1 and C2 receive this set of client

requests. In addition, let C1 receive an additional request for

a document D already present in the cache every second for

the first N seconds. Therefore, there is a hit for the

document D every second for the first N seconds. Now,

consider that after NR seconds, the document D was

removed. Document D would have accumulated a large

Life Time (because every hit in the first N seconds gave it a

new lease on life). This contributes significantly to the

Average Document Life Time of cache C1 making it substan-

tially higher than the Average Document Life Time of C2.

Hence, it is clearly seen that, although the contention for

disk space is the same in both caches C1 and C2, C1 has a

significantly higher Average Document Life Time.
The above example shows that the Average Document Life

Time does not truly reflect the disk space contention of

individual caches. It also indicates that any measure for disk

space contention should account for document hits and

misses.
Ourdefinition of the expiration age of a cache is influenced

by the following two observations: When the cache conten-

tion is high, we observe two facts. First, the number of

documents removed from the cache in a given period is

higher. Second, andmore importantly, even thosedocuments

that were hit recently or that were hit frequently are removed

in a shorter period of time. We introduce the concept of

ExpirationAgeof adocument to indicatehowlongadocument

is expected to live in a cache since its last hit and how long on

an average a document gets a hit at the cache.

3.2 Expiration Age of a Cached Document

Many proxy caches maintain either the last hit timestamp or
the total number of hits for each document cached. For
example, most of today’s caching proxies employ the Least
Recently Used (LRU) algorithm or the Least Frequently
Used (LFU) algorithm or some variant of LRU or LFU as
their cache replacement policy [18]. Proxy caches that
employ LRU or one of its variants need to maintain the last
hit timestamp for each document they cache. Similarly,
proxy caches that choose to use LFU or one of its variants
need to maintain the total number of hits experienced by
every cached document.

In order to make the expiration age-based document
placement scheme applicable to any existing proxy cache
with almost no extra cost, we present two representative
ways to define the Expiration Age of a cached document. The
choice can be made based on whether a cache maintains the
last hit timestamp or the total number of hits for each
document it caches.

With these design ideas in mind, we define the Expiration
Age of a document in a cache, denoted as DocExpAgeðD;CÞ,
by a formula that combines the document expiration age
computed based on the last hit timestamp of every cached
document and the document expiration age computedwhen
only the total number of hits experienced by every cached
document is available in a cache. For presentation conve-
nience, in the rest of the paper we use LRU expiration age,
denoted asDocExpAgeLRUðD;CÞ, to represent the document
expiration age computed based on the last hit timestamp of
the cached document D in the cache C, since LRU requires
proxy caches to maintain the last hit timestamp of every
document they cache. Similarly, we use LFU expiration age,
denoted asDocExpAgeLFUðD;CÞ, to represent the document
expiration age computed when only the total number of hits
experienced by the document D in the cache C is available
since LFU requires proxy caches tomaintain the total number
of hits of every cached document:

DocExpAgeðD;CÞ ¼
DocExpAgeLRUðD;CÞ if cache C maintains the lasthit

timestamp of D

DocExPAgeLFUðD;CÞ if cache C maintains the total

number of hits of D:

8>>><
>>>:

ð1Þ

DocExpAgeLRU and DocExpAgeLFU are defined as follows.

3.2.1 LRU Expiration Age

The LRU Expiration Age of a document is defined as the
time duration from the time it was last hit in a cache to the
time when it was evicted from the cache. Suppose a
document D was removed at time TR and the last hit on the
document occurred at time Tl, then the LRU Expiration Age
of document D, denoted by DocExpAgeLRUðD;CÞ, is
defined as

DocExpAgeLRUðD;CÞ ¼ ðTR � TlÞ: ð2Þ

The LRU expiration age of a document indicates how long a
document can be expected to live in a cache after its last hit.
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LRU is one of the most well-studied and well-documen-
ted document replacement policy for Web caching. In this
policy, whenever a document has to be removed (in order
to make room for incoming documents), the document that
hasn’t experienced a hit for the longest time is selected as
the victim. Thus, caching proxies that use LRU or its
variants will maintain the time of last hit for each document
in the cache. Hence, it is straightforward for any caching
proxy that uses LRU cache replacement to compute the
expiration ages of the documents in the cache.

3.2.2 LFU Expiration Age

The Least Frequently Used (LFU) scheme is another well-
studied cache replacement policy, although it is not
supported in most of the proxy caches operational today.
In the LFU scheme, whenever a document has to be
evicted, the document with the least frequency of hits is
selected as the victim. To implement this scheme, a HIT-
COUNTER is maintained along with every document.
This HIT-COUNTER is initialized to one when the
document enters the cache. Every time a document is
hit in the cache, its HIT-COUNTER is incremented by one.
This HIT-COUNTER is used for calculating hit frequency.

Let us consider how to compute the Expiration Age for
caches employing LFU replacement policy. Clearly, any
caching proxy that employs LFU cache replacement policy
will maintain at least two pieces of information for each
cached document: the time when the document entered the
cache and its hit counter (how many times the document
was hit before it is evicted from the cache). We can then use
the ratio of the total time a document lived in a cache to its
HIT-COUNTER value to estimate the expiration age of a
document. This ratio indicates how long on average the
document D can get a hit in the duration of its life in the
cache C. It can be used as a good indicator of the time that
the document D is expected to live in C since its last hit.

Consider a document D that entered the cache C at
time T0. Suppose that this document was removed at time
instant TR. The Expiration Age of the document D under
LFU replacement policy, denoted as DocExpAgeLFUðD;CÞ,
can be estimated by the ratio of the total time it lived in the
cache to its HIT-COUNTER value.

DocExpAgeLFUðD;CÞ ¼ ðTR � T0Þ
HIT � COUNTER

: ð3Þ

The LFU expiration age of a document indicates the
average time it takes for a document to get a hit. It is a good
approximation of how long a document is expected to live
after its last hit.

3.2.3 Discussion

We have discussed two representative definitions of
document Expiration Ages. We end this section by
describing how the Expiration Age can be used for a cache
employing a two-level cache replacement algorithm,
namely, an LRU variant or an LFU variant.

Consider the LRU-MIN cache replacement algorithm
[11], [19]. It works as follows: Suppose the incoming
document is of size S bytes, then the scheme prepares a
list of all documents whose sizes are of at least size S and

applies LRU to this list and removes the least recently used
document from this list. If the list is empty, then it reverts
back to the original LRU policy. To understand the effects of
size of documents in this removal policy, let us assume that
the document sizes are uniformly distributed between 0 to
DOCSIZEMAX without loss of generality. Now, suppose
that documents A and B have sizes SA and SB and SA > SB.
If these two documents experienced their most recent hit at
almost the same time (i.e., TlðAÞ is almost the same as TlðBÞ,
where TlðAÞ and TlðBÞ denote the last hit time stamp of
document A and document B, respectively), then the
chances of removal of A or B is directly dependent on its
size. This is because the size of the incoming document is
also a uniform random variable and, hence, chances of A or
B being kept in the LRU-MIN list is proportional to its size.
Hence, if a document D, of size SD, experienced a hit at
time Tl and was removed at time TR, then Document
Expiration Age of D under the LRU-MIN policy is given by

DocExpAgeLRU�MINðD;CÞ ¼ ðTlðDÞ � THðDÞÞ � SD: ð4Þ

Thanks to the fact that almost all operational proxy
caches use LRU or one of its variants as their cache
replacement policy, in this paper, all our experiments
employ the LRU document replacement scheme. Hence, we
use LRU Expiration Age as the disk space contention
measure. In the rest of the paper, we use the terms LRU
Expiration Age and Expiration Age interchangeably.

3.3 Expiration Age of a Cache

The expiration age of a cache is intended to be a measure of
the disk space contention at the cache. Recalling the
discussion in Section 3.1, we can easily conclude that the
average of the expiration ages of those documents that were
removed from a cache indicates the level of the disk-space
contention at that cache. Thus, we define the expiration age
of a cache in a finite time period by the average of the
expiration ages of the documents that were removed from
this cache in this period.

Formally, let V ictimðC; Ti; TjÞdenote the set of documents
that were chosen as victims for removal in a finite time
duration (Ti; Tj). The cardinality of the set V ictimðC; Ti; TjÞ
indicates the total number of documents evicted from a cache
C during theduration (Ti; Tj). TheExpirationAgeof the cache
C in the duration (Ti; Tj), denoted byCacheExpAgeðC; Ti; TjÞ,
is calculated as:

CacheExpAgeðC; Ti; TjÞ ¼P
D2V ictimðC;Ti;TjÞ DocExpAgeðD;CÞ

jV ictimðC; Ti; TjÞj
:

ð5Þ

The Expiration Age of a cache indicates the average time a
document can be expected to live in the cache after its last
hit and can be considered as an accurate indicator of the
disk space contention at the cache.

3.4 Algorithms for Expiration Age-Based Document
Placement

As we discussed in the previous section, the EA scheme
uses the Cache Expiration Age as an indicator of the disk
space contention at individual caches. In this section, we
walk through the EA algorithms and answer the questions
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such as how a cache shares its cache expiration age
information with others in a group and how they reach
decisions on whether to cache a document obtained from
another cache in the group.

The EA document placement scheme involves sending
the Cache Expiration Ages of the caches along with the
HTTP request and reply messages among the caches in the
group. A cache that experiences a local miss sends out an
ICP query to all its siblings and parents (or peers). This
cache is henceforth referred to as the Requester. The
Requester, on receiving a positive reply from either a
parent or a sibling, sends out an HTTP request to that
particular cache. Along with the HTTP request message, it
appends its Cache Expiration Age. The cache that receives
the HTTP request, henceforth referred to as Responder,
responds back by sending the document to the Requester.
Along with the document, the Cache Expiration Age of the
Responder is also communicated to the Requester. The
Requester now compares its own Cache Expiration Age to
that of the Responder. If the Cache Expiration Age of the
Responder is greater than that of the Cache Expiration Age
of the Requester, the Requester does not store the document
locally, it just serves the user with the document. However,
if the Cache Expiration Age of the Requester is greater than
that of the Responder, it stores a copy of the document
locally.

The Responder also compares its own Cache Expiration
Age with the Cache Expiration Age of the Requester (that
was obtained along with the HTTP request message). If its
own Cache Expiration Age is greater than that of the
Requester, the entry corresponding to the requested
document is promoted to the HEAD of the LRU list.
Otherwise, the document entry is left unaltered at its
current position.

When the Requester receives negative ICP replies from
all caches, we distinguish two situations. In cooperative
caches using the distributed caching architecture, the
requestor fetches the document from the origin server,
caches the document, and serves it to its client. If the caches
in the group communicate using hierarchical caching
architecture, the requestor sends an HTTP request to one
of its parents (assuming the cache has a parent). Along with
that request, it attaches its own Cache Expiration Age. It is
now the responsibility of the parent to resolve the miss. It
retrieves the document from the origin server (possibly
through its own parents). Then, it compares the Cache
Expiration of the Requester with its own Cache Expiration
Age. If the Cache Expiration Age of the parent cache is
greater than that of the Requester, it stores a copy of the
document before transferring it to the Requester. Otherwise,
the document is just served to the Requester and the parent
cache does not keep a copy of the document. In either case,
the parent’s Cache Expiration Age accompanies the docu-
ment. The Requester acts in the same fashion as in the case
where the document was obtained from a Responder
(making a local copy if its own Expiration Age is greater
than that of the parent).

Concretely, the EA scheme consists of two algorithms: the
algorithm for the Requester cache and the algorithm for the

Responder cache. We provide a sketch of these two algo-
rithms in Algorithm 1 and 2 in Figs. 1 and 2, respectively.

3.5 Rationale and Features of the EA Scheme

The rationale behind the Expiration-Age-based placement
scheme is based on two motivations. The first is to eliminate
unnecessary replicas of a document in the cache group. The
second is to ensure that the document be replicated only if
the new copy has a reasonable chance to survive longer
than the “original” copy. By this, we also ensure that the
EA scheme never reports a miss for a document when it
would have been a hit under the old scheme.

It is straightforward to see that a document is not
replicated at a cache if its own Cache Expiration Age is less
than that of the Responder’s cache from which the
document was obtained. This is because the copy of the
document at the Responder is likely to survive longer than
the new copy. Even if a copy was made locally at the
Requestor’s cache, it would be removed earlier than the
copy at the Responder’s cache. Therefore, under the
EA placement scheme, the Requester will not store a copy
of the requested document locally. This obviously reduces
the number of replicas in the cache group.

Now, let us consider the situation when the Cache
Expiration Age of the Requester is greater than or equal to
the Cache Expiration Age of the Responder. In this case,
under the EA scheme, the Requester stores a copy of the
document locally. However, at the Responder’s cache, the
entry corresponding to this document is not promoted to
the HEAD of the LRU list. Eventually, it gets removed if
there are no local hits. Hence, in this situation, the copy of
the document at the Responder’s cache is not given an
additional lease of life. Again, the EA scheme reduces the
number of replicas of documents in the cache.

Furthermore, by making a local copy whenever the
Cache Expiration Age of the Requester is greater than that
of the Responder, we are ensuring that a copy is made if the
new copy is likely to survive for a longer time. By doing so,
the new scheme guarantees that it would not report a miss
when the ad hoc scheme would have had a hit. Therefore,
this scheme achieves both of our objectives.

In addition to the fact that the EA scheme reduces the
number of replicas while ensuring a copy be made if the
new copy is likely to survive longer than the already
existing copy, there are other useful features of the
EA scheme. First, the implementation of our scheme does
not carry any extra overhead. Only extra information that is
communicated among proxies is the Cache Expiration Age.
Even this information is piggybacked on either an HTTP
request message or an HTTP response message. Therefore,
there is no extra connection setup between the commu-
nicating proxies. Hence, there are no hidden communica-
tion costs incurred to implement the EA scheme. Second, as
is evident from the algorithm, the decision regarding
caching a document is done locally. The caches don’t rely
upon any other process to decide whether to cache a
particular document or not. This is in contrast to some of
the distributed file system implementations where the
decision to store a copy of a file (or a part of it) is taken
by centralized or distributed manager processes [2].
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4 ANALYSIS OF THE EA SCHEME

In this section, we mathematically analyze the EA scheme

and the ad hoc scheme used in today’s Web caches and

compare them. Specifically, we analyze the disk usage

efficiency of the ad hoc document placement scheme and the

Expiration-Age-based scheme. We also analyze the percen-

tage of improvement in the Expiration Age of the caches in

the new scheme over that of the conventional ad hoc scheme.

4.1 Disk Usage Efficiency

First, we analyze the disk usage efficiency of the EA scheme

and the ad hoc scheme. By disk usage efficiency, we mean

the percentage of the total disk space used to store unique

documents. If there are absolutely no replicas in the cache

group, the scheme ensures 100 percent disk efficiency.
Let G be a cache group of N caches, say C1; C2; . . . ; CN .

Let uniqueDocsðCiÞ be the set of unique documents in the

cache Ci (i 2 f1; 2; . . . ; Ng) and totalDocsðCiÞ be the com-

plete set of documents in the cache Ci. The aggregate disk

efficiency of the cache group G of N caches, denoted as

DiskEfficiencyðG;NÞ, can be calculated by the following

equation

DiskEfficiencyðG;NÞ ¼
PN

i¼1

P
D2uniqueDocsðCiÞ ðdocSizeðDÞÞPN

i¼1

P
E2totalDocsðCiÞ ðdocSizeðEÞÞ

:

ð6Þ

If we assume that all documents are of the same size (e.g.,
the average size of the documents in the cache), then the
disk usage efficiency can be simplified as the ratio of the
number of unique documents in the cache group G to the
total number of documents in G. Thus, the above equation
is reduced to

DiskEfficiencyðG;NÞ ¼
PN

i¼1 juniqueDocsðCiÞjPN
i¼1 jtotalDocsðCiÞj

: ð7Þ

For simplicity in what follows, we will use the ratio of
number of unique documents to total number of documents
in the cache group as a measurement of the effectiveness of
disk usage and compare the new EA placement scheme
with the ad hoc document placement scheme.

4.1.1 Disk Usage Efficiency in the Ad Hoc Scheme

Let us first look at the disk usage efficiency of the ad hoc
scheme and then compare it with the expiration-age-based
scheme.

Consider a group G of N caches cooperating in a pure
distributed fashion. For simplicity, let us assume that each
cache has a disk space of X bytes and consider any one of
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the caches in the group. Let the cache get p client requests

per second. Let the cumulative hit rate of the cache group be

k (this includes both local and remote hits for a document).
Assume that every second there are p client requests. As

the hit rate is k, we can assume that, out of the p client requests

per second, pð1� kÞ are misses and the rest pk are hits. As

there areN caches in thegroup, by the lawof averages,we can

assume that out of the pk hits, pkN are hits in the same cache

(local hits). The rest pkðN�1Þ
N are hits in other caches (remote

hits). In the ad hoc scheme, given a cache C, each document

that is either a miss or a remote hit will be added into the

cacheC.Hence, the total numberofdocuments that are added

every second into the cache group G as a whole, denoted as

NumDocsAdded-AdHocðG;NÞ, can be estimated by the

following formula:

NumDocsAdded-AdHocðG;NÞ ¼ pð1� kÞ þ pkðN � 1Þ
N

: ð8Þ

Out of these documents that are added into the cache

every second, pkðN�1Þ
N are obtained from other caches.

Hence, these are replicas of documents present in other

caches. Therefore, the number of unique document added

on to the cache is pð1� kÞ. We know that the cache removal

policy is unbiased and treats both replicas and unique

documents equally. Therefore, the ratio of unique docu-

ments to total documents in the cache can be calculated as

follows. This ratio is a measurement of the effectiveness of

the disk usage under the ad hoc placement scheme, denoted

by DiskEfficiency-AdHocðG;NÞ.

DiskEfficiency-AdHocðG;NÞ ¼ pð1� kÞ
pð1� kÞ þ pkðN�1Þ

N

� �
ð9Þ

¼ Nð1� kÞ
ðN � kÞ : ð10Þ

4.1.2 Disk Usage Efficiency in the EA Scheme

In the EA scheme, whenever there is a remote hit, the
documents are added into the cache only if the Expiration
Age of the Responder’s cache is less than that of the
Requester. Because we are considering a random cache in
the group, it is reasonable to assume that half of these
documents are from Responders that have lower Cache
Expiration Ages than the Requester and the other half have
Cache Expiration Ages that are greater than that of the
Requester. Therefore, under the EA scheme, the number of
documents entering the cache every second is:

NumDocsAdded-EAðG;NÞ ¼ pð1� kÞ þ pkðN � 1Þ
2N

: ð11Þ

Out of these documents that are added into the cache every
second, the number of unique documents (nonreplicas) is
pð1� kÞ. Hence, the ratio of unique documents to the total
number of documents under the new EA scheme can be
calculated as follows. This ratio is seen as a measurement
of the effectiveness of the disk usage under the new
EA placement scheme, denoted as DiskEfficiency-EAðG;NÞ.

DiskEfficiency-EAðG;NÞ ¼ pð1� kÞ
pð1� kÞ þ pkðN�1Þ

2N

� � ð12Þ

¼ 2Nð1� kÞ
2N � kðN þ 1Þ : ð13Þ

In order to give insight into the actual numbers these
equations yield, we have tabulated the values of both
DiskEfficiency-AdHoc and DiskEfficiency-EA for cache
groups having two, four, and eight caches and at cumulative
hit rates of 0.25 and 0.5. Table 1 gives these values.
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4.2 Improvement in Cache Expiration Age

In Section 3.1, we defined the Expiration Age of caches and

how it reflects the disk space contention in the cache. From

the discussion in Section 3.5, it is clear that the EA scheme

reduces the contention for disk space in the individual

caches. In this section, we try to quantify this reduction in

disk space contention by estimating the percentage im-

provement in the expiration age of the individual caches in

the EA scheme as against the ad hoc scheme.
As before, let us consider a group ofN caches, each cache

being of size X bytes and receive p requests per second, the

average size of documents being q and the cumulative byte

hit ratio being v. Let us first analyze the ad hoc scheme.

Consider a random cache in the group. This cache receives

requests for p documents every second. The average size of

each document is q. Therefore, the cache receives requests

for u ¼ pq bytes of data every second. As the byte hit rate is

v, the number of bytes missed in this cache per second is

uð1� vÞ. As there are N caches in the group, by the law of

averages, it is reasonable to assume that, out of uv byte hits,
uv
N are available in the same cache (local hits bytes). The

number of bytes hits in other caches (remote byte hits) can

be approximated as uvðN�1Þ
N . In the ad hoc scheme, a

document is added to the cache if it is a miss or a remote

hit. Therefore, the number of bytes entering the cache per

second can be calculated as the sum of size of missed

documents and size of remote hit documents. Hence, the

number of bytes added to the cache every second is

given by:

Num-Bytes-AdHoc ¼ uð1� vÞ þ uvðN � 1Þ
N

: ð14Þ

When the caches are under a steady state of operation, if

M bytes enter the cache every second, at least M bytes

have to be removed from the cache. Therefore, in the ad

hoc scheme, uð1� vÞ þ uvðN�1Þ
N bytes have to be removed

from the cache every second. If the average size of each

document is q bytes, the average number of documents

being evicted per second is
uð1�vÞþuvðN�1Þ

N

q . The approximate

number of documents that are present in the cache at any

time is X
q .

Assuming that each cache is of capacity X bytes and

employs LRU scheme for document replacement, the

average time for which a document stays in the cache since

its last hit is:

AvgExpAge-AdHoc ¼
X
q

uð1�vÞþuvðN�1Þ
N

q

� � ð15Þ

¼ NX

uðNð1� vÞ þ vðN � 1ÞÞ : ð16Þ

Now, let us consider our new scheme. In our scheme,
documents obtained from other caches are added on only
when the Cache Expiration Age of the Responder is less
than the Cache Expiration Age of the Requestor (in this
case, the cache under consideration). As before, we can
assume that, on average, half of the documents are obtained
from caches that have higher Cache Expiration Ages and
the other half are obtained from caches that have lower
Cache Expiration Age value than that of the cache under
consideration. Hence, in the new scheme, the number of
bytes entering cache per second would be:

NumBytes-EA ¼ uð1� vÞ þ uvðN � 1Þ
2N

: ð17Þ

As before, these many bytes have to be removed from the
cache every second. Hence, the average age since the last hit
of the documents would now be

AvgExpAge-EA ¼
X
q

uð1�vÞþuvðN�1Þ
2N

q

� � ð18Þ

¼ 2N

uð2Nð1� vÞ þ vðN � 1ÞÞ :

ð19Þ

The percentage improvement of the LRU Expiration Age
can be calculated as

Improvement ¼ ðAvgExpAge-EA�AvgExpAge-AdHocÞ
AvgExpAge-AdHoc� 100

:

ð20Þ

Substituting for the values of AvgAge-AdHoc and AvgAge-
EA from the equations above, we obtain

Improvement ¼ vðN � 1Þ
ð2N � vðN þ 1ÞÞ � 100: ð21Þ

Similar to Table 1 in the previous section, Table 2
tabulates the values of percentage improvements in expira-
tion ages for cache groups of two, four, and eight caches at
byte hit rate of 0.25 and 0.5. It is widely acknowledged [11]
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that, in any cache, byte hit rates are usually an order of

magnitude less than the corresponding document hit rates.

Therefore, to be more realistic in reporting the percentage

improvement of expiration ages, we tabulate percentage

improvements in expiration ages for cache groups of two,

four, and eight caches at different document hit ratios and

their corresponding byte hit ratios in Table 3. It should,

however, be noted that the relation between document hit

rate and byte hit rate is seldom the same for two different

traces. Furthermore, the ratio Document Hit Rate
Byte Hit Rate also varies

across the document hit rate spectrum. At lower document

hit rates, the ratio is higher and progressively falls as the

document hit rate improves. The values we have used for

byte hit ratios in Table 3 are based on the characteristics of

the particular trace we have used in our experiments

(Boston University traces). In Section 5.3, we report our

experimental results on the expiration ages of the ad hoc

scheme and the EA scheme, which closely follow the trends

indicated in Table 3.

5 EXPERIMENTS AND PERFORMANCE RESULTS

We have listed some questions to be investigated in this

research in the Introduction. One of the questions was

whether a document placement strategy utilizing cache

state information could improve document hit rates and

latencies? To answer this and other related questions, we

performed various simulation-based experiments and mea-

sured performance of both the ad hoc scheme and the

EA-scheme on key metrics like cumulative hit rate,

cumulative byte hit rate, and latency. Other than these

three traditional metrics, we evaluated the two schemes

with respect to average cache expiration age. In this section,

we discuss the experiments we conducted and the results

obtained.

5.1 Performance Metrics

We consider the following metrics to compare the ad hoc
scheme with our new scheme: Cumulative Hit Rate,
Cumulative Bit Hit Rate, Average latency, and Average
Cache Expiration Age of the caches in the group. Cumula-
tive Hit Rate and Cumulative Byte Hit Rate indicate the
reduction of the load on the backbone network connecting
the cache group to the outside world. Average Cache
Expiration Age is a measure of disk space contention in the
caches of the group.

5.2 Experimental Setup

We have implemented a trace-driven simulator to evaluate
the new EA scheme against the conventional ad hoc
scheme. We simulated the cache group by executing the
simulator on different machines in our department. The
simulators running on different machines communicate via
UDP and TCP for ICP and HTTP connections, respectively.
The machines were Solaris machines with a sparcv9
processor operating at 440mhz. These machines have
256 MB RAM and 512 MB swap space.

We used the Boston University proxy cache traces for our
simulation. The traces were recorded from proxies and logs
from proxies and HTTP servers from Boston University.
The traces were collected from the middle of November
1994 to end of February 1995. The logs contain records of
requests from 591 users over 4,700 sessions. The number of
records in the log is 575,775, out of which the total number
of unique records were 46,830. Additional information
about the traces can be obtained from [3]. In the traces, there
were log records with a size field equal to zero bytes. We
made the size of each such record equal to average
document size of 4K bytes.

In our experiments, we simulated a cache group contain-
ing two, four, and eight caches. Cooperative caching
architecture of these cache groups is distributed cooperative
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caching. In our simulations, we also assume that all the
caches in the cache group have equal amounts of disk space.
For each of the cache groups, we measured the above
metrics when the aggregate cache size in the group varied
from 100KB, 1MB, 10MB, 100MB to 1GB. All the reported
results have been measured when all the caches have
reached steady state.

5.3 Performance Results

In this section, we discuss the results obtained from five sets
of trace-based simulations. The comparisons of perfor-
mance between the EA scheme and the ad hoc scheme used
in existing Web caches are conducted in terms of the
document hit rate, byte hit rate, expiration age, and the
latency experienced by clients.

5.3.1 Hit Rate Comparison

Fig. 3 indicates the hit rate of both ad hoc and EA document
placement schemes for cache groups of two, four, and eight
caches. We measured the hit rates at aggregate cache sizes
of 100KB, 1MB, 10MB, 100MB, and 1GB. It can be seen that
the difference between the two schemes is higher when the
cache sizes are smaller. There is about a 6.5 percent increase
in the document hit rate for a group of eight caches when
the aggregate cache size is 100KB. The difference between
the hit rates drops to 2.5 percent for the same cache group
when the aggregate cache size is 100MB.

This observation can be explained as follows: When the
cache sizes are small, even small amounts of increase in
disk space yields substantial improvements in cache hit
rates. This phenomenon has been discussed by many

researchers. Therefore, when cache sizes are small, a better
utilization of the disk space yields substantial gains in terms
of document hit rate. However, at larger cache sizes, a better
utilization of disk does not translate correspondingly into
hit rates. However, the EA scheme performs slightly better
than the ad hoc scheme even for large caches. In summary,
the EA scheme yields significantly better performance when
the cache sizes are limited.

5.3.2 Cumulative Byte Hit Rate Comparison

Fig. 4 represents the byte hit rates for cache group of two,
four, and eight caches. The byte hit rate patterns are similar
to those of document hit rates. For a group of eight caches,
improvement in byte-hit ratio is approximately 4 percent
when the aggregate cache size is as small as 100KB and is
about 1.5 percent when the aggregate cache size is at
100MB.

Improvement on the byte hit rates is substantially lesser
than the improvement on the corresponding document hit
rates. It is widely known that it is the smaller documents
that are accessed repeatedly rather than documents of huge
sizes. When smaller documents are accessed repeatedly, it
contributes to an increase in the document hit rate, but it
does not translate directly into an increase in byte hit ratio.
When we compare the EA scheme and the ad hoc schemes
with respect to their document and byte hit rates, the
advantages of the EA scheme might seem limited. Indeed,
the increase in document hit rates range from 2.5 to
6.5 percent for an eight cache group.

However, this fact should be considered in the light of
the general hit rates of the trace at various cache sizes. For
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example, the aggregate disk space of the cache group has to
be increased by 10 times (from 100 KB to 1 MB) to achieve a
hit rate improvement of around 20 percent for a group of
eight caches. Similarly, increasing the aggregate cache size
from 10 MB to 100 MB (again a 10 fold increase) for the
same cache group results in the document hit rate
improvement of just around 8 percent. These facts illustrate
that the cache sizes have to be increased by very large
amounts to achieve reasonable improvements in document
and byte hit rates. Therefore, it is apparent that the
document and byte hit improvements provided by the
EA scheme, although not very momentous, is the result of
significantly better utilization of the aggregate disk space
available in the cache group. The effectiveness of the disk
space usage is also reflected by the improvements in the
average document expiration age, which we discuss next.

5.3.3 Expiration Age Comparison

To illustrate the reduced disk space in the cache group, we
tabulate the Average Cache expiration age for both the
ad hoc and the EA scheme. Though we have performed
experiments on cache groups of two, four, and eight caches,
we limit our discussion to the 8-cache group due to space
limitations. Table 4 show these values for cache groups of
eight caches at various aggregate cache sizes. We have not
come across any cache related paper that uses cache
expiration age as a metric. However, we regard it as an
important metric that indicates disk space contention in the
cache group. We can observe that, with the EA scheme, the
documents stay for much longer as compared with the
ad hoc scheme. This demonstrates that the EA scheme
reduces disk space contention in the cache group. It can also
be seen from these tables that the improvement on average
cache expiration age closely follows the analytic model
described in Section 4.2. For example, for a cache group of

eight caches at an aggregate disk space of 10MB, the byte hit
rate is 35 percent and the percentage improvement on the
average expiration age is 20 percent, which is close to the
value computed through the analytic model. Therefore, the
experimental results validate our analytic models.

In order to compare hit rates and byte hit rates and cache
expiration ages of cache groups having same aggregate
cache size but having different number of caches, we
plotted hit rates, byte hit rates, and average cache expiration
ages of cache groups of two, four, and eight caches but
having the same amount of aggregate disk space. Graphs in
Fig. 5 show the hit rates, byte hit rates, and average cache
expiration ages of both the schemes when the aggregate
cache size is set to 1MB.

It can be observed that, when the aggregate cache size is
constant, the hit rates decrease as the number of caches
increase. This is because the available disk space in
individual caches decrease as the number of caches
increase. The graphs in Fig. 5 show that there is more than
a 5 percent drop in document hit rate when the number of
caches in the group increases from two to eight. However,
our scheme reduces this effect. The drop is below 4 percent
in our scheme.

5.3.4 Performance Comparison on Latency Experienced

by Client

To study the impact of the EA scheme on the latency
experienced by clients, we estimated average document
latency for both the ad hoc scheme and the EA Scheme. In
order to estimate the average document latency, we
measured the latency for local hits, remote hits, and also
misses for retrieving a 4KB document. We ran the
experiments 5,000 times and averaged out the values. The
latency of a local hit (LHL) was 146 milliseconds. The
latency of a remote hit (RHL) was 342 milliseconds and the
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latency of a miss (ML) was 2,784 milliseconds. To obtain
latency values for misses, we measured latency values for
various Web sites and took their mean value.

In order to measure the average latency, we simulated a
group of caches in which the local hit latency, remote hit
latency, and miss latency were made random variables. The
experimental setup was similar to the previous scenario.
Average user latency would be the individual request
latencies averaged over all requests at all caches. In our
experiments, we modeled all random variables as having
Gaussian distribution with variance of each Gaussian
variable being set to half of its mean.

The first set of experiment results are plotted in Fig. 6.
The graphs in Fig. 6 indicate the average latency for group
of two, four, and eight caches, respectively. It is clear that
the EA scheme performs significantly better when the
cumulative cache size is 100KB, 1MB, and 10MB. When the
cache size is 100MB, the latencies of both schemes are
approximately the same, whereas, at 1GB, the average
latency of the EA scheme is slightly higher than that of the
ad hoc scheme for a number of reasons.

First, the local and remote hit rates under the EA scheme
are different from the local and remote hit rates of the ad hoc
placement scheme. As we reduce the number of replicas in
individual caches, the remote hit rates under the EA scheme
will increase. Table 5 shows the local and remote hit rates
for a group of four caches along with the estimated latency
values. As we can see, the remote hit rates in the EA scheme
are higher than that of the ad hoc scheme.

Second, when the cache sizes are small, the miss rates
under the ad hoc scheme are higher than those of the
EA scheme. As the average latency for serving misses is
relatively large compared to the latency for serving local

and remote hits, the average document latency under the
EA scheme is much lower than that of the ad hoc scheme.
However, as the cache size reaches 1GB, the difference
between the miss rates of the two schemes becomes very
little. Now, the remote hit latency becomes the dominating
factor in determining the average document latency. Thus,
the ad hoc scheme performs slightly better than the
EA scheme at 1GB. We observe that, in general, when the
miss rates of the ad hoc scheme are higher than the miss
rates of the EA scheme, the EA scheme performs substan-
tially better than the ad hoc scheme.

In the second set of experiments, we wanted to study the

impact of the relative values of miss latency and remote hit

latency. As already indicated, the measured values for these

parameterswere 2,784millliseconds and 342milliseconds. In

other words, the ratio Miss Latency
Remote Hit Latency is 8.14. This set of

experiments studied the impact of varying this ratio on the

average latency of the two schemes. In these experiments, we

kept theMissLatencyvalues and theLocalHitLatencyvalues

to be constant at 2,784 milliseconds and 146 milliseconds,

respectively, andvaried the ratio Miss Latency
Remote Hit Latency from2.5 to 15

and obtained the corresponding values for Remote Hit

Latency. The graphs in the Fig. 7 (from left to right) indicate

the latency values for groups of two and eight caches,

respectively. Each graph indicates the average latency when

the aggregate cache size of the cache group (aggregate

memory for short) was set to 100KB, 10MB, and 1GB for both

ad hoc and EA schemes, respectively. The vertical line at 8.14

indicates themeasured value of the ratio Miss Latency
Remote Hit Latency . For a
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TABLE 5
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group of two caches, when the ratio Miss Latency
Remote Hit Latency is 2.5, it is

seen that the average latency of the EA-Scheme is slightly

better than that of the ad hoc scheme (by about 50 milli-

seconds). This difference increases progressively as the value

of Miss Latency
Remote Hit Latency increases. When the ratio betweeen Miss

Latency and Remote Hit Latency reaches 15, the average

latency of EA scheme is better than that of the ad hoc scheme

by almost 110milliseconds.When the aggregate cache size of

the cache group is 1GB, the average latency for the ad hoc

scheme performs better than EA scheme by almost 100 milli-

seconds when Miss Latency
Remote Hit Latency ¼ 2:5. However, when the ratio

Miss Latency
Remote Hit Latency reaches 15, the EA scheme performs better

than the ad hoc scheme by a small amount (couple of

milliseconds). Similar patterns of behavior are observed in

the groups of four and eight caches.
From the graphs in Fig. 7, it can be concluded that the

EA scheme is advantageous if the communication cost
among the proxies is low when compared with the cost of
fetching the document from the origin server. In fact, this is
to be anticipated. As Table 5 indicates, in the EA scheme,
the remote hit rate is significantly higher when compared
with the ad hoc scheme. Hence, the remote hit latency plays
a significant role in determining the average latency.

In our experiments, we have concentrated upon the
distributed cooperative caching architecture. However, as
explained in Section 3.4, the EA scheme is applicable both to
hierarchical and to distributed caching architectures. We
now discuss the likely impact of the EA scheme on
cooperative caches that are organized in a hierarchical
fashion.

First, it should be noted that the amount of document
replication in hierarchical caches is, in general, higher than
that of the distributed caches. This is because, in distributed
caching, the request for a file would increase the number of
replicas of that file in the cache group by at most by one. In
contrast, a single request in hierarchical caches can create
D replicas at the worst, where D is the depth of the cache
hierarchy. While the EA scheme reduces the amount of
replication both in the distributed and the hierarchical

architectures, we expect that the average number of file
replicas existing in the hierarchical caches with the EA
scheme to be higher than the average number of file replicas
existing in their distributed caching counterparts.

The effectiveness of the EA scheme for hierarchically
organized caches depends upon the relative amounts of
disk space available at caches at different levels of
hierarchy. For example, if the same amount of disk space
is available at all caches irrespective of its position in the
hierarchy, then the disk space contentions at caches located
in higher levels of hierarchy are much higher than that of
the caches in lower levels of hierarchy. In the ad hoc
scheme, as the files are replicated in every cache they flow
through, the files would be removed at a much faster rate in
the caches at higher levels of hierarchy than the files in
caches at lower levels of hierarchy. However, consider the
file replication mechanism in the EA scheme. As the disk
space contention is higher in the caches at higher levels of
hierarchy, these caches rarely make a local copy of the files
(as their Expiration Ages would be low). Hence, the
EA scheme reduces the disk space contentions in caches
that are at higher level of hierarchy, and hence, increases
their Expiration Ages. For caches that are situated at lower
levels, the performance of the EA Scheme and the ad hoc
scheme are similar. Therefore, on the whole, the EA scheme
improves the Average Cache Expiration Age of the entire
cache group.

The effect of the EA scheme on the average latency
experienced by the client in hierarchical caches is depen-
dent upon the depth of the hierarchy. In fact, the depth of
the hierarchy affects the average client latency in both the
ad hoc and the EA schemes. The remote hit latency and the
miss latency values for hierarchical caches are, in general,
higher than the corresponding values for distributed
caches. Further, in hierarchical caches, these values in-
crease with the increasing depth of the hierarchy. This is
due to the flow of the requests and the responses in the
hierarchy. Hence, the effect of cooperative caches itself is
fairly limited in hierarchical caches if we exclusively
consider the average latency experienced by the client.
We believe that the EA scheme would still improve the
average client latency for hierarchically organized caches,
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particularly when caches have limited disk space, although
the improvement may be on a diminished scale when
compared with distributed cooperative caches.

In summary, the EA document placement scheme yields
higher hit rates, byte hit rates, and reduces the average
document latencies in those caches where document hit
rates are sensitive to the disk space availability in the group.

6 RELATED WORK

6.1 Comparison with Hash Routing Schemes

Of the vast literature available on Web caching, the research
results that aremost relevant to ourwork come from a family
of cooperative caching schemes that extend the work of
Name-based mapping and Hash routing [13], [17], [22], [21],
[24], [8]. The central idea in these schemes is to use name-
based mapping or hash routing algorithms to map URLs to
caches that possibly contain the corresponding documents.
The clients, on performing the local computations, contact
the caches directly. If the cache contains the documents, then
it is supplied to the client. Otherwise, the cache retrieves the
document from the origin server, caches it, and supplies it to
the client. These schemes aim at reducing the total latency
experienced by the client through eliminating interproxy
communication cost. In this section, we compare and
contrast the EA scheme with some representative schemes
from this family of cooperative caching schemes and also
with a very recent work on coordinated placement on
replacement for distributed caches.

The first and foremost difference between the EA scheme
and the hash routing schemes is that all the hash routing
schemes utilize hash-based routing protocols to locate a
document in the cache group, whereas the EA scheme is
primarily based on the ICP protocol for document discovery.

The second key difference lies in the amount and the
nature of document replication occurring in these schemes.
The original hash routing scheme [13] partitions the entire
URL space among the participating proxies. Hence, there is
absolutely no duplication of documents in this scheme.
However, it was soon realized that this can lead to load
imbalance among the participating proxies and can thus
create hot spots. To alleviate this problem, Wu and Yu [21]
proposed an adaptable controlled replication scheme (ACR
scheme) which permits a document to be present in a cache
to which it is not assigned to by the hashing algorithm,
provided that the document is frequently accessed in that
cache. In consistent hashing [8], the authors prove that no
URL is stored in more than OðlogMÞ caches. However, in
consistent hashing, the document-to-cache mapping is done
by random hashing, and hence, the documents selected for
replication is also at random. The EA scheme differs from
both consistent hashing and hash routing schemes. The
nature of document replication in the EA scheme is in a way
comparable to that of the replication occurring in the ACR
scheme. In both schemes, the number of replicas that exist in
the cache group is directly dependent upon the popularity of
the document within the community represented by the
cooperative caching group. It is clearly advantageous to
have multiple copies of popular documents in a cache
group as it mitigates the hot spots problem. However, the
approaches of the EA and ACR schemes are quite different.

First, the ACR scheme assumes that the caches cooperate
through the hash routing mechanism, whereas the EA
scheme is designed for caches cooperating via the ICP
protocol. Second, the mechanisms employed in the ACR
and the EA schemes for controlled replication are different.
ACR is a hash-routing-based scheme and, therefore, it
provides mechanisms to add replication to the cooperative
caches that have no replication in a pure hash-routing-based
design. The EA scheme is an ICP-based scheme and,
therefore, it provides mechanisms to control and reduce
the amount of replication that exist in a group of
cooperative caches due to ad hoc placement of the existing
ICP-based schemes.

6.2 Comparison with Other Document Placement
Schemes

Recently, Korupolu and Dahlin [9] reported their work on
coordinated placement and replacement schemes for dis-
tributed caches. Though their scheme is related to the
EA scheme, it considerably differs from our work in various
aspects. First and foremost, the problem formulations
considered in the two papers, though related, are quite
different from each other. They define a cost function for
document placement. This function measures the cost
incurred by a cache to obtain the document from its nearest
available copy. The document placement schemes studied
by them aim at minimizing the sum of the cost functions of
all documents over all caches in the group. In contrast, our
scheme is concerned with controlling document replication
in the cache group.

Second, their work assumes that the caches in the cache
group are organized into clusters and these clusters
themselves are arranged in a tree structure. Our scheme
assumes no such cache organization and functions with
both hierarchical and distributed cache architectures. Third,
a key assumption in their scheme is that reasonably
accurate access patterns are available for the caches in the
cache group. The EA scheme needs no such predictions
about access patterns. Fourth, the decision whether to cache
a document at a particular node is made on the fly in the
EA scheme, whereas the scheme proposed by Korupolu and
Dahlin involves a bottom-up pass of the cluster tree
structure to determine the cache where the document has
to be stored. Hence, the EA scheme can be considered to be
more general and practical than the scheme proposed in [9].

6.3 Discussion on Other Caching Related Issues

The basic research in cooperative proxy caching has been
focused on cache sharing protocols and cooperative cache
hierarchies aimed at improving hit rates and document
access latencies. Summary cache [5] and adaptive Web
caching [10] are mechanisms that are proposed by different
researchers to optimize the number of ICP messages among
caches in resolving misses. Other techniques such as hints,
directories, hashing [8], [15], [23] have been proposed to
reduce the overall cost of document location process. A
cooperative caching architecture provides a paradigm that
assists proxies in cooperating efficiently with each other.
Current cooperative cache architectures are roughly classi-
fied as Hierarchical and Distributed cache architectures.
Hierarchical architecture [4], [14] sets up a cache hierarchy
by specifying a parent-child relationship among the caches.
In contrast, distributed caching architecture does not have a

598 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 5, MAY 2004



hierarchical structure. The only relationship that exists
among the caches is the sibling or the peer relationship.
Each of these caching architectures has its advantages and
disadvantages. A detailed discussion on the cache archi-
tectures and their relative merits and demerits along with
experimental evaluations is available in [16]. In addition to
the above, research in cooperative proxy caching protocols
ranges from cache coherence, document fetching modes to
cache replacement schemes [1], [18], [19], [11].

7 CONCLUSION AND FUTURE WORK

Although the field of cooperative caching has been exten-
sively researched, very few have studied the effect of
cooperation on document placement schemes and its
potential enhancements on cache hit ratio and latency
reduction.

In this paper, we have presented an Expiration-Age-
based document placement scheme (the EA scheme). The
main idea is to view the aggregate disk space of the cache
group as a global resource of the group and uses the
concept of cache expiration age to measure the contention of
individual caches. The EA scheme effectively reduces the
replication of documents across the cache group, while
ensuring that a copy of the document always resides in a
cache where it is likely to stay for the longest time. We have
reported our initial study on the potentials and limits of the
EA scheme using both analytic modeling and trace-based
simulation.

Our research on data placement and caching continues
along several dimensions. We want to investigate the
interactions of our data placement scheme with other
collaborative caching schemes such as Latency sensitive
hashing [23], Adaptive Web caching [10], and Self-organiz-
ing caching [7]. Further, we intend to develop application
specific variants of our data placement scheme to target
new environments such as peer-to-peer computing systems,
mobile, and wireless computing systems. We believe that
better data placement schemes not only have the potential
to improve the performance of these systems, but are also
attractive solutions for optimizing power consumption,
which is crucial in mobile and wireless environments.
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