Cache Clouds: Cooperative Caching of Dynamic Documents in Edge Networks

Lakshmish Ramaswamyo,

¢ College of Computing, Georgia Tech
Atlanta GA 30332
{laks, lingliu}@cc.gatech.edu

Abstract

Caching on the edge of the Internet is becoming a pop-
ular technique to improve the scalability and efficiency of
delivering dynamic web content. In this paper we study
the challenges in designing a large scale cooperative edge
cache network, focusing on mechanisms and methodolo-
gies for efficient cooperation among caches to improve the
overall performance of the edge cache network. This pa-
per makes three original contributions. First, we introduce
the concept of cache clouds, which forms the fundamental
[framework for cooperation among caches in the edge net-
work. Second, we present dynamic hashing-based protocols
for document lookups and updates within each cache cloud,
which are not only efficient, but also effective in dynami-
cally balancing lookup and update loads among the caches
in the cloud. Third, we outline a utility-based mechanism
for placing dynamic documents within a cache cloud. Our
experiments indicate that these techniques can significantly
improve the performance of the edge cache networks.

1. Introduction

The enormous increase of the dynamic web content in
the past decade has posed a serious challenge to the per-
formance and scalability of the World Wide Web. Caching
on the edge of the network has received considerable atten-
tion from the research community as a promising solution
to ameliorate this problem. The underlying philosophy of
edge caching is to move data, and possibly some parts of
the application, closer to the user.

Designing an efficient cooperative edge caching scheme
is very attractive considering the potential benefits it can
provide. First, when an edge cache receives a request for a
document that is not locally available, it can try to retrieve
the document from nearby caches rather than contacting the
remote server immediately. Retrieving a document from a
nearby cache can significantly reduce the latency of a lo-
cal miss. It also reduces the number of requests reaching

Ling Liu®

Arun Iyengar®

AIBM T. J. Watson Research Center
Yorktown Heights NY 10598
aruni@us.ibm.com

the remote servers, thereby reducing their load. The second
benefit of cooperation among edge caches is the reduction
in the load induced by the document consistency mainte-
nance on the origin servers. When the caches are organized
as cooperative groups, the server can communicate the up-
date message to a single cache in a cache group, which dis-
tributes it to the other edge caches within its group.

Building a large scale cooperative edge cache network
poses several research challenges. First, an effective mech-
anism is needed to decide the appropriate number of edge
caches needed for the edge network, and the geographi-
cal locations where they have to be placed. Second, these
caches need to be organized into cooperative groups such
that the cooperation among the caches within a group is ef-
fective and beneficial. Third, a dynamic and adaptive ar-
chitecture is required for efficient cooperation within each
cache group to deal with the constantly evolving nature of
dynamic content delivery like continually changing docu-
ment update and user request patterns. Concretely, there is
a need for methodologies and techniques for flexible and
low-overhead cooperation among the edge caches in terms
of document lookups, document updates, as well as docu-
ment placements and replacements.

The ultimate goal of our research is to design and de-
velop techniques and system-level facilities for efficient de-
livery of dynamic web content in a large scale edge cache
network, utilizing the power of flexible and low cost cooper-
ation. Towards this end, we introduce the concept of cache
clouds as a fundamental framework of cooperation among
the edge caches. A cache cloud contains caches of an edge
network that are located in close network proximity. The
caches belonging to a cache cloud cooperate both for serv-
ing misses and for maintaining freshness of the cached doc-
ument copies.

The main research contributions in this paper are three
fold: (1) We present the architecture of the cache clouds,
which are designed to support efficient and effective co-
operation among their caches. (2) We propose a dynamic
hashing-based cooperation scheme for efficient document
lookups and document updates within each cache cloud.

This scheme not only improves the efficiency of document
lookups and updates, but also balances the document lookup
and update loads dynamically among all caches in each
edge cache cloud in anticipation of sudden changes in the
request and update patterns. (3) We develop a utility-based
document placement scheme for strategically placing doc-
uments among caches of a cache cloud, so that available
resources are optimally utilized. This document placement
scheme estimates the costs and benefits of storing a docu-
ment in a particular edge cache, and stores the document at
that cache only if the benefit to cost ratio is favorable. We
evaluate these techniques through trace-based experiments
with a real trace from a highly accessed web site, and with
a synthetic dataset. The results indicate that these schemes
can considerably improve performance of edge cache net-
works.

2. Cache Clouds

A cache cloud is a group of edge caches from an edge
network that cooperate among themselves to efficiently de-
liver dynamic web content. The caches in a cache cloud co-
operate in several ways to improve the performance of edge
cache networks. First, when a cache experiences a miss, it
tries to retrieve the document from another cache within the
cache cloud, instead of immediately contacting the server.
Second, the caches in a cache cloud collaboratively share
the cost of document updates in the sense that the server
needs to send a document update message to only one cache
in a cache cloud, which is then distributed to other caches
that are currently holding the document. Third, the edge
caches in a cache cloud collaborate with each other to op-
timally utilize their collective resources by adopting smart
strategies for document lookups, updates, placements and
replacements.

An important factor that determines the effectiveness of
cooperation in cache clouds is the manner in which the
cache clouds are constructed. In order for the cooperation to
be efficient the caches belonging to a cache cloud should be
located in close vicinity within the Internet. We have devel-
oped an Internet landmarks-based technique to create cache
clouds by accurately clustering the caches of an edge net-
work [12]. Due to the space limitation we omit any further
discussion on this technique in this paper, and assume that
the cache clouds are formed using this scheme. In the rest
of this paper, we concentrate on the design issues within a
cache cloud.

2.1. Architecture and Design Ideas
We have discussed three forms of cooperation within a

cache cloud, namely collaboratively serving misses, coop-
eratively handling document updates, and optimally utiliz-

ing the collective resources within the cache cloud. A cache
that needs to retrieve a document needs to locate the copies
of the document existing within the cache cloud. We refer to
the mechanism of locating the copies of a document within
a cache cloud for the purpose of retrieving it as the docu-
ment lookup protocol. The mechanism used by the cache
cloud to communicate the document update to all its caches
that are currently holding the document is the document up-
date protocol.

Among the several issues that influence the design of the
cache cloud architecture, some of the important ones are:
(1) providing an efficient document lookup protocol (2) de-
signing a low-overhead document update protocol, and (3)
developing a utility-based scheme for document placement
decisions.

We adopt a distributed approach to designing the cache
cloud architecture, wherein all the caches in the cloud share
the functionalities of lookups and updates. Each cache is
responsible for handling the lookup and update operations
for a set of documents assigned to it. In a cache cloud, if the
cache Pcj is responsible for the lookup and update opera-
tions of a document Dc, then we call the cache Pc{ as the
beacon point of Dc. The beacon point of a document main-
tains the up-to-date lookup information, which includes a
list of caches in the cloud that currently hold the document.
A cache that requires document Dc, contacts Dc’s beacon
point, and obtains its lookup information. Then it retrieves
the document from one of the caches currently holding the
document. Similarly, if the server wants to update docu-
ment Dc, it sends an update message to its beacon point,
which then distributes this message to all the holders of the
document.

An immediate question that needs to be addressed is how
to decide which of the caches in the cloud should act as
the beacon point of a given document. In designing the
cache cloud architecture, our goal is to assign beacon points
to documents such that the following properties are satis-
fied:

e The caches within the cache cloud and the origin server
can discover the beacon point of a document efficiently.

e The load due to document lookups and updates is well
distributed among all beacon points in the cache cloud.

e Load balancing is preserved when the lookup and up-
date patterns change over time.

e The beacon point assignment should be resilient to fail-
ures of individual caches in the cloud

A straightforward solution for the beacon point assignment
problem would be to use a random hash function. These
hash functions uniquely hash the document’s URL to one
of the edge caches (beacon points) in the cache cloud,
which acts as the document’s beacon point. We refer to
this scheme as the static hashing scheme. The static hash-

ing scheme has a significant drawback: Lookup and update
loads often follow the highly skewed Zipf distribution, and
under such circumstances random hashing cannot provide
good load balancing among the caches belonging to the
cloud. Consistent hashing [5] has been popular as a tech-
nique for providing good load balancing among a network
of nodes. In this technique, the document URLs and the
edge cache identifiers are both mapped on to a unit circle.
Each document is assigned to the cache node (its beacon
point) that is nearest to its identifier on this circle. While
consistent hashing can distribute the URLs uniformly across
the caches, it significantly increases the lookup and the up-
date costs, especially for those documents that are hot or
that are updated frequently. If a cloud contains N edge
caches (beacon points), with consistent hashing, the beacon
point discovery process might take up to O(logN) time-
steps. Besides, uniform distribution of URLSs across beacon
points does not yield good load balancing when the lookup
and update loads follow a skewed distribution. These short-
comings make the consistent hashing scheme less attractive
to the scenarios where the performance of the lookups and
updates is very crucial. Further, both static and consistent
hashing schemes cannot preserve load balancing when the
update and lookup load patterns change over time.

Considering the drawbacks of the above schemes, we
propose a dynamic hashing-based mechanism for assigning
the beacon point of a document. This mechanism supports
efficient lookup and update protocols, provides good load
balancing properties, and adapts to changing load patterns
effectively.

2.2. Design of Dynamic Hashing Scheme

Consider a cache cloud with N edge caches. Each of
these caches maintains lookup information about a set of
documents. In the dynamic hashing scheme, the assignment
of documents to beacon points can vary over time so that
the load balance is maintained even when the load patterns
change.

In our scheme the edge caches of a cache cloud are orga-
nized into substructures called beacon rings. A cache cloud
contains one or more beacon rings, and each beacon ring has
two or more beacon points. Figure 1 shows a cache cloud
with 4 beacon rings, where each beacon ring has 2 beacon
points. All the beacon points in a particular beacon ring are
collectively responsible for maintaining the lookup infor-
mation of a unique set of documents. Suppose a cache cloud
has K beacon rings numbered from 0 to K — 1, and a docu-
ment Dc is mapped to the beacon ring j. Any of the beacon
points in the beacon ring 7 may be assigned to serve as the
beacon point of Dc. The assignment of the beacon point
within a beacon ring is done dynamically and may change
over time for maintaining good balance of loads among the

beacon points within a beacon ring.

(0499 [Per’ |, ORIGIN
/BEACON: SERVER
RING 0
..... ~Pc:’

(500, 999) (0, 554)

(0, 449) B "

- s,t" !

» CACHE jgeacon:

{BEACON:

\AiNG1/ CLOUD _RiNG2/
"o . (450, 999) (555, 999) A
P

/BEACONL

RING ::‘j
(525, 999) *-n./‘

l CACHE CLOUD ARCHITECTURE ‘

Figure 1. Architecture of Edge Cache Cloud

We now explain the technique for assigning beacon
points to documents within a beacon ring. For simplicity,
let us suppose that the cache cloud contains a single beacon
ring, which is numbered 0. Let the IV caches be represented
as {Pc§, P, ...,Pc_,}. A dynamic hashing technique
called the intra-ring hash is used for distributing the docu-
ments to the N beacon points, which is designed as follows.
An integer that is relatively large compared to the number of
beacon points in the beacon ring is chosen and designated as
the intra-ring hash generator (denoted as IntraGen). The
range of intra-ring hash values (0, IntraGen—1) is divided
into IV consecutive non-overlapping sub-ranges represented
as {(0, MazIrHY), (MinIrhl, MazIrh?),...,
(MinIrhQ _,,IntraGen — 1)}. Each edge cache within
the beacon ring is allocated one such sub-range. For ex-
ample, the beacon point Pc{ is assigned the sub-range
(MinIrHD, MazIrH}). The scheme also hashes each
document’s URL to an integer value between 0 and
(IntraGen — 1). This value is called the document’s
intra-ring hash value or IrH value for short. For example,
for a document Dc, the IrH value would be IrH(Dc) =
MD5(URL(Dc)) Mod IntraGen, where M D5 repre-
sents the MD5 hash function, URL(Dc) represents the
URL of the document Dc and Mod represents the mod-
ulo function. Each edge cache would serve as the beacon
point for all the documents whose IrH value lies within
the sub-range allocated to it, i.e. Pc? will serve as the bea-
con point of a document De, if MinIrHY < IrH(Dc) <
MaxzIrH).

2.3. Determining the Beacon Point Sub-Ranges

In this section we explain the mechanism of dividing
the intra-ring hash range into sub-ranges such that the load
due to document lookups and updates is balanced among
the beacon points of a beacon ring. This process is exe-
cuted periodically (in cycles) within each beacon ring, and

it takes into account factors such as the beacon point capa-
bilities, and the current loads upon them. Any beacon point
within the beacon ring may execute this process. This bea-
con point collects the following information from all other
beacon points in the beacon ring.

e Capability: Denoted by C'p}, it represents the power of
machine hosting the beacon point Pc?. Various param-
eters such as CPU capacity or network bandwidth may
be used as measures of capability. We assume a more
generic approach wherein each beacon point is assigned
a positive real value to indicate its capability.

o Current Sub-Range Assignment: Denoted by
(MinIrHpP, MazIrHp), it represents the sub-range
assigned to the beacon point Pc? in the current cycle.

e Current Load Information: Represented by
CAvgLoad?, it indicates the cumulative load due to
document lookup and update propagation averaged over
the duration of the current period. The scheme can be
made more accurate if the beacon points also collect
load information at the granularity of individual IrH val-
ues, which we denote by CIrHLA) (h). CIrHLJ} (h)
is the sum of the loads induced by all documents whose
IrH value is h. However, the CIrH Ld information is
not mandatory for the scheme to work effectively.

After obtaining this information the process of determin-
ing the sub-ranges for the next cycle begins. The aim is to
update the sub-ranges such that the load a beacon point is
likely to encounter in the next cycle is proportional to its
capability. For each beacon point we verify whether the
fraction of the total load on the beacon ring that it is cur-
rently supporting is commensurate with its capability. If the
fraction of load currently being handled by a beacon point
exceeds its share then its sub-range shrinks for the next cy-
cle, thus shedding some of its load. In case a beacon point
is handling a smaller fraction of load, its sub-range expands
increasing its load for the next cycle.

Specifically, the scheme proceeds as follows. First,
we calculate the total load being experienced by the en-
tire beacon ring (represented as BRingLd®), and the sum
of the capabilities of all the beacon points belonging to
the ring (represented as T'otCp®). Then for each beacon
point we calculate its appropriate share of the total load
on the beacon ring as AptLd) = % x BRingLd°.
Now, we examine all the beacon points in the beacon ring
starting from Pc3, and compare their C AvgLd with their
AptLd. 1f CAvgLd) > AptLd), then Pc{ is currently
supporting more load than its appropriate share. The value
(CAvgLd) — AptLdY) is called the load-surplus at bea-
con point Pc, and is represented as LdSpls(Pcy). In this
case, the scheme shrinks the sub-range of the beacon point
for the next cycle by decreasing its MazIrH value. The
amount (say t) by which the MazIrH) is decreased is cal-

culated using the CIrH Ld information. MazIrH) is de-
creased by ¢ IrH values, such that the sum of the loads gen-
erated by these IrH values is equal to the load-surplus at
Pc?. In other words, the scheme shifts ¢ IrH values from
the end of Pc;’s sub-range to the beacon point Pc? 1> Such

that M= HY O HLAY(h) = LdSpls(Pc?). The new

h=MazIrH)—t
MazIrH value of Pc) represented as NewMazIrH)
would be equal to (M azIrH) —t). When the sub range of a
beacon point Pc) shrinks, some of its load would be pushed
to the beacon point Pc? "+1- The scheme takes into account
this additional load on the beacon point Pc} "1 When decid-
ing about its new sub-range.

On the other hand if CAvgLd? < AptLd) then the
scheme expands the sub-range of the beacon point Pc
by increasing its MazIrH value. The amount by which
MazIrH is increased is determined in a very similar man-
ner as the shrinking case discussed above. In this case, Pc?
acquires additional load from the beacon point Pc} L1~ In
this manner the sub-range assignments of all the beacon
points in the beacon ring are updated. Some beacon points
might find it costly to maintain the C'IrH Ld information
for each of the hash values within its sub-range, in which
case the CIrHLd} (p) for all hash values in the sub-range
of the beacon point Pc) are approximated by averaging
C AvgLd over its sub-range of IrH values.

Sub -Range Assignment
for Cycle 0

0
~
0

=
o

Sub-Range = (0, 4)
CAvgload =500 A

Sub-Range = (5, 9)
CAvglLoad = 300

Sub-Range Assignment
for Cycle 1 with Partial
Load Information

Sub-Range Assignment
for Cycle 1 with Complete
Load Information

-— —
[- [-
= r= |
g [ts3 I Ic> _‘ 0 o I | _‘
o
= i’m%ﬁ!?%ﬂ’%l = QS%J__Z’\.’IQSK’SJ
o1 2/3 787 8% 0 12 N R A -
Pc,® Pc,0 Pc,° Pc,°
Cpy®=1 Cp,°=1 Cpy®=1 Cp,0=1

Sub Range = (0, 2)
CAvglLoad = 410

Sub Range = (3, 9)
CAvglLoad = 390
B

Sub Range = (0, 3)
CAvgload = 440

Sub Range = (4, 9)
CAvglLoad= 360

Figure 2. lllustration of Sub-Range Determi-
nation

After determining the sub-range assignments for the next
cycle, all the caches in the cache ring and the origin server
are informed about the new sub-range assignments. Beacon
points that have been assigned new IrH values obtain lookup
records of the documents belonging to the new IrH values

from their current beacon points.

We now illustrate the sub-range determination scheme
with an example. Consider the beacon ring with two beacon
points Pc and Pc{. Let both the beacon points have equal
capabilities, and let IntraGen be 10. Initially the range
(0,9) is divided equally between the two beacon points.
Figure 2-A illustrates this scenario. The vertical bars rep-
resent the update and object lookup loads corresponding to
each hash value. As we see, equal division of the intra-
ring hash range does not ensure load balancing between the
two beacon points due to the skewness in the load. The
total load experienced by the two beacon points in cycle 0
are 500 and 300 respectively. At the end of cycle 0, the
sub-ranges are updated taking into account the current load
patterns. Now we consider 2 scenarios. Figure 2-B rep-
resents the first scenario, wherein the beacon points main-
tain C'IrH Ld for each hash value. In this case, two hash
values are moved from Pc to Pc. The loads on the two
beacon points would now be 410 and 390 respectively. In
the second scenario, which is represented in Figure 2-C, the
beacon points do not maintain the CIrH Ld information,
and hence they have to use C AvgLd} to approximate the
CIrHLd value, which would be 100 for all hash values
belonging to Pcy. We shift only one hash value between
beacon points. The loads on the two beacon points would
be 440 and 360 thus showing that the scheme is more accu-
rate when the load information is available at the granularity
of IrH values.

In the discussion, up to now we have assumed that the
cache cloud contains a single beacon ring. However, if the
cache cloud contains several caches, having a single bea-
con ring is not practical, since the cost and complexity of
the sub-range determination process increases as the bea-
con rings become larger. In this case it is advantageous to
have multiple beacon rings. Suppose a cache cloud has K
beacon rings, and each beacon ring has M beacon points.
Then the beacon point of a document Dc is determined in
a two-step process. In the first step, the beacon ring of the
document is determined by a random hash function. For
example, if j = M D5(URL(Dc)) Mod K, then the ring-j
is the beacon ring of Dc. In the second step, out of the M
beacon points within the j** beacon ring, the beacon point
of Dc is determined through the intra-ring hash function as
we discussed before. The beacon point whose current sub-
range contains IrH (Dc) would be the beacon point of De.
In our scheme, the document lookup and update protocols
work as follows. When a cache needs to locate a document
De, it determines the document’s beacon point using the
two-step process described above. Then it contacts the doc-
ument’s beacon point and obtains the list of caches that hold
the cached copies of the document within the given cache
cloud. When the server needs to communicate an update
to the document Dec, it uses the two-step process and deter-

mines the document’s beacon point for each cache cloud.
It sends a document update message to these beacon points
(one for each cloud), which in turn communicate it to the
caches in their cache clouds, which are currently holding
the document.

An important question that needs to be addressed is:
What should be size of the beacon rings in a cache cloud for
optimal performance of the scheme? While larger beacon
rings provide better load balancing, they also increase the
cost and complexity of the sub-range determination process.
However, the other extreme would be to have beacon rings
with single beacon points in them. In this case the dynamic
hashing scheme reduces to the static hashing scheme, and
hence cannot provide good load balancing. It can be the-
oretically shown that by having two beacon points in each
beacon ring we can obtain significantly better load balanc-
ing when compared with static hashing, and further increas-
ing the size of beacon rings improves the load balancing in-
crementally, but at a higher load balancing cost [11]. Con-
sidering these issues we conclude that beacon rings should
have at least 2 beacon points, but their sizes should be small
enough for the sub-range determination process to be sim-
ple and efficient. Our experimental results validate this ob-
servation.

The dynamic hashing mechanism can be extended to
provide resilience to failures of individual beacon points by
lazily replicating the lookup information. Due to space con-
straints we do not discuss the failure resilience property in
this paper.

3. Document Placement in Cache Clouds

A good document placement scheme is very important
for a cache cloud to optimally utilize the resources avail-
able. In this section we briefly discuss a utility-based
scheme for placing dynamic documents in cache clouds.

A simple document placement scheme would be to place
a document at each cache that has received a request for
that document. We refer to this scheme as the ad hoc doc-
ument placement scheme. Although the ad hoc placement
scheme seems natural, it leads to uncontrolled replication of
documents, which not only increases the document fresh-
ness maintenance costs, but also causes higher disk-space
contention at the caches, thereby reducing the aggregate
hit rate of the cloud [10]. These performance limitations
are the manifestations of the shortcomings of the ad hoc
placement scheme, which regards the caches in the cloud
as completely independent entities, and makes document
placement decisions without the knowledge about the other
caches in the cache cloud.

An alternative approach for document placement, called
the beacon point caching, would be to store each document
only at its beacon point. This policy results in the beacon

points of hot documents encountering heavy loads. Further,
this policy causes the edge caches to contact each other very
frequently for retrieving documents. This not only causes
heavy network traffic within the cache cloud, but also leads
to clients experiencing high latencies for their requests.

3.1. Utility-based Document Placement

In this section we discuss the design of a utility-based
document placement scheme, in which the caching deci-
sions rely upon the utility of a document-copy to the cache
storing it and to the entire cache cloud. This utility value of
the document copy is represented as Utility(Dc) for docu-
ment copy Dc. The utility of document copy Dc estimates
the benefit-to-cost ratio of storing and maintaining the new
copy. A higher value of utility indicates that benefits out-
weigh the costs, and vice-versa. When a cache retrieves a
document it calculates its utility value and decides whether
or not to store the document based on this utility value.

Our formulation of the utility function has four com-
ponents. Each of these components quantifies one aspect
of the interplay between benefits and the costs. We now
give a brief overview of each of these components. A
detailed description of the utility function components
including their mathematical formulations is available in
the technical report version of this paper [11]. Throughout
this discussion we assume that a cache cloud CC has N
edge caches represented as {Pcg, Pcy,...,Pey_1}, and
the edge cache Pc; has retrieved the document copy Dc,
and is calculating its utility value to decide whether to store
it locally.

Document Availability Improvement Component

Represented by DAIC(De, Pc;), this component quan-
tifies the improvement in the availability of the document
in the cache cloud achieved by storing the document copy
at Pc;. Improving the availability of a document increases
the probability that a future request for the document would
be served within the cache cloud, thereby yielding higher
cumulative hit rates.

Disk-Space Contention Component

This component (represented as DsCC(De, Pcp))
captures the storage costs of caching the document copy
at P¢; in terms of the disk-space contention at Pc;. The
disk-space contention at the cache Pc; determines the time
duration for which the document can be expected to reside
in the cache Pc; before it is replaced. A higher value of
DsCC(Dc, Pc;) implies that the new document copy of
Dc at the cache Pc; is likely to remain longer in the cache
cloud than the existing copies (if any) of Dc within the
cloud, and hence, it is beneficial to store this copy.

Consistency Maintenance Component

Denoted by CMC(De, Pc;), this component accounts
for the costs incurred for maintaining the consistency of
the new document copy at Pc;, and the advantages that
are obtained by storing Dc at Pc; by avoiding the cost of
retrieving the document from other caches on each local
access. A high value of CMC(Dec, Pc;) indicates that
the document Dc is accessed more frequently than it is
updated, and vice-versa.

Access Frequency Component

This component of our utility function (represented as
AIC(De, P¢p)) quantifies how frequently the document
Dc is accessed in comparison to other documents stored in
the cache. If the access frequency of Dc at the cache Pcy is
high when compared to other documents in the cache, it is
advantageous to store the document Dc at Pc;.

The Utility Function

The above-mentioned four components form the build-
ing blocks of the utility function. We observe that for each
component, a higher value implies that the benefits of stor-
ing Dc are higher than the overheads, and vice-versa. We
define the utility of storing the document Dc at cache Pcy,
denoted as Utility(Dc, Pc;), to be a weighted linear sum
of the above four components.

Utility(Dc, Pc;) = Wparc X DAIC(Dc, Pci1) + Wpsce X DsCC(Dc, Per)
+ Weome X CMC(DC, PC[) + Warc X AFC(DC,PC[)

In the above equation Wpare, Wpsco, Weome, and
Warc are positive real constants such that Wpare +
Wpsce + Weme + Ware = 1. These constants are as-
signed values reflecting the relative importance of the cor-
responding component of the utility function to the perfor-
mance of the system.

Concretely, the utility-based document placement
scheme works as follows: Suppose the cache Pc; encoun-
ters a local miss for document De, and retrieves it from an-
other cache in the cache cloud, or from the origin server (in
the event of a group miss). The cache Pc; now evaluates the
utility function Utility(Dec, Pc;) locally using the request
and update patterns of the document collected through con-
tinued monitoring in the recent time duration. Dc is stored
at Pc; only if the value of the utility function exceeds a
threshold, represented as UtlT hreshold(Pc;).

4. Experiments and Results

We have evaluated the proposed schemes through trace-
based simulations of an edge cache network. The simula-
tor can be configured to simulate different caching archi-
tectures such as edge network without cooperation, coop-
erative caching with static hashing, and cooperative cache
clouds with dynamic hashing. It can also simulate ad

Load (Num. Updates & Lookups per Unit Time)

Loads at Various Beacon Points

Effect of Beacon Ring Size on Load Balancing

Loads at Various Beacon Points

N

1800

1600

1400

1200

1000

@
=
=

@
=
=

2
=
S

N
=
=

- - - Mean Load
[Dynamic Hashing
Ml Static Hashing

N
N
=
S

2000

@
S
S
¥
'
'
1

Updates & Lookups per Unit Time)
2
8

- 1400

1200

Load (Num

=
=
S

1 2 3 4 5 6 7 8 9
Beacon Points in Decreasing Load Order

10 1

2 3 4 6 7 8 9
Beacon Points in Decreasing Load Order

Figure 3. Load Distribution for
Zipf-0.9 Dataset

hoc, beacon point and utility-based document placement
schemes. Each cache in the cache cloud receives requests
continuously according to a request-trace file, and the server
continuously reads from an update trace file. Upon reading
an update entry for a document Dc, the server sends the up-
dated version of Dc to its beacon points within each cache
cloud, which is then distributed by the beacon points to all
the caches in their cache clouds which are currently holding
the document. The document request rates, the document
update rate, the number of caches and the number of bea-
con rings in the cache cloud are system parameters and can
be varied.

We use two types of traces for our experiments. The first
trace is a synthetic dataset, called as the Zipf-0.9 dataset.
In this dataset there are 25,000 unique documents. Both
accesses and invalidations follow the Zipf distribution with
the Zipf parameter value set to 0.9. The second dataset is a
real trace from a major IBM sporting and event web site!.
This trace was obtained by capturing the accesses and up-
dates in a 24-hour time period. The number of unique doc-
uments in this data set is 52, 574. We refer to this dataset as
the Sydney dataset.

4.1. Evaluating the Effectiveness of Beacon Rings

In the first set of experiments we study the load balanc-
ing properties of the dynamic hashing mechanism. All the
beacon points within the cache cloud are assumed to be of
equal capabilities, which implies that perfect load balanc-
ing is achieved when all the beacon points encounter the
same amount of load. In all three experiments in this set
the intra-ring hash generators (IntraGens) are set to 1000
for all beacon rings in the cache cloud and the cycle length
of sub-range determination is set to 1 hour. We use the co-
efficient of variation of the loads on the beacon points to
quantify load balancing. Coefficient of variation is defined

'The 2000 Sydney Olympic Games web site

Figure 4. Load Distribution for
Sydney Dataset

- -- Mean Load [Static Hashing

[Dynamic Hashing] Dynamic Hashing: 2 Beacon Points in Ring

M Static Hashing 05 [Dynamic Hashing: 5 Beacon Points in Ring
->[| Il Dynamic Hashing: 10 Beacon Points in Ring

0.3

Coefficient of Variation

10 10 20 50
Number of Caches in Cache Cloud

Figure 5. Impact of Beacon
Ring Size on Load Balancing

as the ratio of the standard deviation of the load distribution
to the mean load. The lower the coefficient of variation is,
the better is the load balancing.

First, we compare the load balancing accomplished by
the static and the dynamic hashing schemes in a cache cloud
with 10 caches. For the dynamic hashing scheme the cache
cloud is configured to contain 5 beacon rings, each with 2
beacon points. The bar-graphs in Figure 3 and Figure 4
show the load distribution among the beacon points for the
static and the dynamic hashing schemes on the Zipf-0.9 data
set and the Sydney dataset respectively. On the X-axes are
the beacon points in decreasing order of their loads, and on
the Y-axes are the loads in terms of the number of docu-
ment updates and document lookups being handled by the
beacon points per unit time. The dashed-lines in the two
graphs indicate the mean value of the loads on the beacon
points. The Zipf-0.9 dataset induces a high degree of load
imbalance in the cache cloud with static hashing. In this
case, the load on the most heavily loaded beacon point is
1.9 times the mean load of the cache cloud. In the dynamic
hashing scheme this ratio decreases to 1.2, thus providing
37% improvement over static hashing. The dynamic hash-
ing scheme also provides a 63% improvement on the co-
efficient of variation when compared with static hashing.
On the Sydney data set, the dynamic hashing scheme im-
proves the ratio of the heaviest load to the mean load by
around 20%, and the coefficient of variation by 63%. For
this dataset, the ratio of heaviest load to mean load for the
dynamic hashing scheme is just 1.06, thus showing that this
scheme achieves very good load balancing. The better load
balancing achieved by the dynamic hashing scheme is a re-
sult of the dynamic sub-range determination process, which
takes into account the current load on the beacon points,
while allocating the sub-ranges for the next cycle.

The second experiment (Figure 5) studies the effect of
the size of the beacon rings on the load balancing using the
Sydney dataset. We evaluate the dynamic hashing scheme

Coefficient of Variation

Effect of Dataset on Load Balancing

Percentage of Cached Documents (DsCC Turned Off)

Network Load in Cache Cloud (DsCC Turned Off)

== Dynamic Hashing
0.9f{ —— Static Hashing

500F

200
™ Ad hoc Placement

—eo— Utility Placement

~=' Ad hoc Placement
—6— Utility Placement
-a-- Beacon Placement

- - - Observed Update Rate

100}| —&— Beacon Placement
___ Observed Update Rate

Percentage of Documents Stored per Cache

104= = = = A-imimimimimimmm o e + ---------- Ao—mm A

Network Load (Mbs Transferred per Unit Time)

010 020 030 040 050 060 090 0.99 10

Zipf Paramter

070 0.80

Figure 6. Impact of Zipf pa-

rameter on Load Balancing Off)

on cache clouds consisting of 10, 20 and 50 caches. For
each cache cloud we consider three configurations in which
each beacon ring contains 2, 5 and 10 beacon points. The
dynamic hashing scheme with 2 beacon points per ring pro-
vides significantly better load balancing in comparison to
static hashing. When the size of the beacon rings is further
increased we observe an incremental improvement in the
load balancing achieved by the dynamic hashing scheme.
This observation, namely bigger beacon rings yielding bet-
ter load balancing, can be explained as follows: The bea-
con point sub-range determination process tries to balance
the load only among the beacon points within each beacon
ring. Larger beacon rings result in the load being balanced
among larger numbers of beacon points, and hence provide
better load balancing.

In the third experiment (Figure 6), we study the impact
of the dataset characteristics on the static and the dynamic
hashing schemes. For this experiment we consider several
datasets all of which follow the Zipf distribution with pa-
rameters ranging from 0.0 to 0.99. The skewness of the
load increases with increasing value of the Zipf parameter.
At low Zipf values both schemes yield low coefficient of
variation values. As the load-skewness increases the coef-
ficient of variation values also increase for both schemes.
However, the increase is more rapid for the static hashing
scheme. At a Zipf parameter value of 0.9, the coefficient of
variation for the static hashing scheme is around 48% more
than that of the dynamic hashing scheme.

4.2. Evaluating the Utility-based Scheme

We report a set of experiments to show the evaluation of
our utility-based document placement scheme. The first ex-
periment considers a cache cloud comprised of 10 caches.
On this cache cloud we simulate ad hoc, beacon point and
utility-based placement policies. The caches in this exper-

50 100 195 500
Document Update Rate (# of Updates per Unit Time)

Figure 7. Percentage of Doc-
uments Stored (DsCC Turned

100¢ 10 50 100 195 500
Document Update Rate (# of Updates per Unit Time)

Figure 8. Network Load Under
Different Placement Schemes
(DsCC Turned Off)

iment are assumed to have an unlimited amount of disk-
space. Therefore the disk-space component of the utility
function is turned off by setting Wp,c¢ to 0. The weights
of availability, consistency maintenance, and access fre-
quency components are all set to 0.33. The UtlT hreshold
values for all the caches are set to 0.5. In this experiment
the access rates at caches are fixed, whereas we vary the
document update rate to study the effect of the three docu-
ment placement policies. We have experimented both with
the Sydney dataset and the Zipf-0.9 synthetic dataset. Due
to space constraints we restrict our discussion only to the
results obtained on the Sydney dataset.

Network Load in Cache Group (DsCC Turned On)

T
AR

a
S
S

Ad hoc Placement

—e— Utility Placement
—a— Beacon Placement
- - - Observed Update Rate

100 i 1
904 E

200

'
A
|
'
'
'
'
'
'
'
'
'
'
'
1
'
'

Network Load (Mbs Transferred per Unit Time)

5‘0 100 195 5(‘)0 1000
Update Rate (# of Updates per Unit Time)
Figure 9. Network Load Under Different Place-
ment Schemes (DsCC Turned On)

The graph in Figure 7 shows the percentage of the total
documents in the trace that are stored at each cache in the
cache cloud at various document update rates. The X-axis
represents the document update rate in number of updates
per minute on the log scale, and the Y-axis represents the
percentage of documents cached. The vertical broken line
indicates the observed document update rate. As the ad hoc
policy places each document at every cache which receives

a request, almost all documents are stored at all caches. In
contrast the beacon point placement stores each document
only at its beacon point. Hence, each cache stores around
10% of the total documents. The percentage of documents
stored per cache in the utility-based scheme varies with the
update rate. When the update rates are low, a large per-
centage of documents are stored at each cache, owing to the
small consistency maintenance cost. As the update rate in-
creases, the CMC' (consistency maintenance component)
values of all the documents decrease, leading to a decrease
in the percentage of documents stored at each cache. This
shows the sensitivity of the utility-based document place-
ment to the costs of handling document updates within the
cache cloud.

One may ask why is it important for the placement
scheme to be sensitive to the costs of handling document
updates. To answer this question we plot the total network
traffic in the clouds generated by the three document place-
ment policies in the Figure 8. The results indicate that the
utility-based document placement creates the least network
traffic at all update-rates. The improvement provided by
the utility-based placement scheme over the ad hoc place-
ment scheme increases with increasing update rate. This
is because while the number of replicas present in the cache
cloud essentially remains a constant in the ad hoc placement
scheme, the utility-based scheme creates fewer replicas at
higher update rates, thereby reducing the consistency main-
tenance costs significantly. With the beacon point policy,
the network traffic is very high at all update rates, as in this
scheme only one copy of each document is stored per cache
cloud irrespective of its request rate.

In the next experiment (Figure 9), we study the perfor-
mance of the three document placement policies when the
disk-spaces available at the edge caches are limited. In these
experiments the disk-space at each cache is set to 50% of the
sum of sizes of all documents in the trace. We use the least
recently used (LRU) policy for document replacement. As
the disk-space is a limiting factor in this series of experi-
ments, we turn on the disk-space component of the utility
function. The weights of all the utility function components
are set to 0.25. Figure 9 indicates the total network traf-
fic generated by the three document placement policies at
various update rates. As in the previous experiment, the
utility-based document placement places the least load on
the network. However, the results in this experiment differ
from the previous experiment considerably. The percent-
age improvement in the network load provided by the util-
ity scheme over the ad hoc scheme is higher in the limited
disk-space case at low document update rates. For exam-
ple, the improvement is 28% when the document update
rate is 10 updates per unit time for the limited disk-space
experiment, whereas it is around 8% for the unlimited disk-
space case. However, the percentage improvement in the

unlimited disk-space case grows much faster in the limited
disk-space scenario. These observations are the manifesta-
tions of the different roles the utility placement scheme is
playing at different update rates in the limited disk-space
scenario. At low document update rates the utility scheme
assumes the predominant role of reducing disk-space con-
tention at individual caches. Whereas at higher update rates
its predominant effect is to reduce consistency maintenance
cost.

In the above experiments we have set the weights of the
components by analyzing the scenario at hand. Each com-
ponent of the utility function captures a different aspect of
the benefit-to-cost ratio of placing a document at a particu-
lar cache. In our experiments we turn on a component if the
benefit-to-cost aspect represented by it is likely to affect the
performance of the cache cloud. Otherwise the component
is turned off. In each of the scenarios, if w components are
turned on, then we set the weight of each turned on com-
ponent to % We strongly believe that more sophisticated
approaches to setting the weight values can further improve
the performance of the utility scheme. One such approach
would be to continuously monitor various system param-
eters and use a feedback mechanism to adjust the weight
parameters as needed. Studying this and other approaches
to setting weight values is a part of our ongoing work.

5. Related Work

Caching dynamic web content on the edge of the Inter-
net has received considerable attention from the research
community in recent years. Motivated by the idea of
moving data and application closer to users, researchers
have proposed several variants of edge caching depending
upon how much of the application is offloaded to the edge
caches [1, 2, 4]. Yuan et al. [17] present an in-depth eval-
uation of these variants studying the pros and cons of each
approach. However, very few of the current edge caching
techniques promote cooperation among the individual edge
caches.

Cooperation among caches was first studied in the con-
text of client-side proxy caches [5, 14, 15]. Most of these
schemes were designed to cache static web pages, and as-
sumed the Time-to-Live-based mechanism for maintaining
their consistency. Our work provides enhanced support for
caching dynamic data over these previous works such as
stronger consistency mechanisms and consideration of ob-
ject update costs.

Ninan et al. [8] describe cooperative leases - a lease-
based mechanism for maintaining document consistency
among a set of caches. They statically hash each document
to a cache, which is assigned the responsibility of maintain-
ing its consistency. Shah et al. [13] present a dynamic data
disseminating system among cooperative repositories, in

which a dissemination tree is constructed for each data item
based on the coherency requirements of the repositories.
The server circulates the updates to the data item through
this tree. The focus of both these works is on the problem
of consistency maintenance of documents among a set of
caches. In contrast, our cache cloud architecture systemat-
ically addresses various aspects of cooperation such as col-
laborative miss handling, cooperative consistency manage-
ment, efficient document lookups, and cost-sensitive doc-
ument placements, aiming at understanding and enhancing
the power of cache cooperation on the performance of the
cache clouds in a large-scale edge cache grid.

In addition to the above, researchers have studied various
problems in the general area of caching dynamic web con-
tent including caching at different granularities for improv-
ing performance, minimizing the overheads of consistency
maintenance, and performance analysis and comparison of
various caching approaches [1, 6, 7, 16]. Researchers have
also proposed various document replacement schemes for
web caches [3, 9]. While a replacement algorithm decides
which documents have to be evicted from a cache when its
disk-space becomes full, the document placement scheme
discussed in this paper aims at strategically placing docu-
ments in a cache cloud in order to improve its performance.

6. Conclusion

We have studied the challenges of designing a cooper-
ative edge network for caching dynamic web content, and
proposed the cache clouds as a framework for cooperation
in large-scale edge cache networks. This paper presents
the architectural design of a cache cloud, which includes
dynamic hashing-based mechanisms for document lookups
and updates. These mechanisms are efficient and involve
minimal communication overhead. Further, the load due to
document lookups and updates is dynamically distributed
among all the caches in a cache cloud. Our dynamic hash-
ing scheme is adaptive to varying document update and doc-
ument request patterns. We have also presented a utility-
based scheme for placing documents within each cache
cloud so that the system resources are optimally utilized,
and the client latency is minimized. Our experiments in-
dicate that the techniques proposed in this paper are very
effective in improving the performance of cooperative edge
cache networks.

Acknowledgements

This work is partially supported by NSF CNS, NSFITR,
a DoE SciDAC grant, an IBM SUR grant, an IBM faculty
award, and an HP equipment grant.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

Edge Side Includes - Standard Specification.
http://www.esi.org.
IBM WebSphere Edge Server. http://www-

3.ibm.com/software/webservers/edgeserver/.

P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Algo-
rithms. In USENIX Internet Technologies Symposium, 1997.

L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar.
Application Specific Data Replication for Edge Services. In
WWW-2003.

D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web Caching with Consistent Hashing. In
WWW-8, 1997.

W.-S. Li, W.-P. Hsiung, D. V. Kalshnikov, R. Sion, O. Po,
D. Agrawal, and K. S. Candan. Issues and Evaluations of
Caching Solutions for Web Application Acceleration. In
VLDB-2002.

D. A. Menasce. Scaling Web Sites Through Caching. /EEE-
Internet Computing, July/August 2003.

A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and
R. Tewari. Scalable Consistency Maintenance in Content
Distribution Networks Using Cooperative Leases. [EEE-
TKDE, July 2003.

S. Podlipnig and L. Boszormenyi. A Survey of Web Cache
Replacement Strategies. ACM Computing Surveys, Decem-
ber 2003.

L. Ramaswamy and L. Liu. An Expiration Age-Based Doc-
ument Placement Scheme for Cooperative Web Caching.
IEEE-TKDE, May 2004.

L. Ramaswamy, L. Liu, and A. Iyengar. Cooperative EC
Grid: Caching Dynamic Documents Using Cache Clouds.
Technical report, CERCS - Georgia Tech, 2005.

L. Ramaswamy, L. Liu, and J. Zhang. Constructing Coop-
erative Edge Cache Groups Using Selective Landmarks and
Node Clustering. In preperation.

S. Shah, K. Ramamritham, and P. Shenoy. Resilient and Co-
herence Preserving Dissemination of Dynamic Data Using
Cooperating Peers. IEEE-TKDE, July 2004.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierar-
chies: Design Considerations for Distributed Caching on the
Internet. In ICDCS-1999.

A. Wolman, G. M. Voelkar, N. Sharma, N. Cardwell, A. Kar-
lin, and H. M. Levy. On the scale and performance of coop-
erative web proxy caching. In SOSP 1999.

J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering
Web Cache Consistency. ACM-TOIT, August 2002.

C. Yuan, Y. Chen, and Z. Zhang. Evaluation of Edge
Caching/Offloading for Dynamic Content Delivery. In
WWW-2003.

