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Abstract

With the growing demand on cluster analysis for cate-
gorical data, a handful of categorical clustering algorithms
have been developed. Surprisingly, to our knowledge, none
has satisfactorily addressed the important problem for cate-
gorical clustering – how can we determine the bestK num-
ber of clusters for a categorical dataset? Since categori-
cal data does not have the inherent distance function as the
similarity measure, traditional cluster validation techniques
based on the geometry shape and density distribution can-
not be applied to answer this question. In this paper, we
investigate the entropy property of the categorical data and
propose aBkPlot method for determining a set of candi-
date “bestKs”. This method is implemented with a hierar-
chical clustering algorithmACE. The experimental results
show that our approach can effectively identify the signifi-
cant clustering structures.

1 Introduction

Data clustering is an important method in data analysis.
Clustering algorithms use the similarity measure to group
the most similar items into clusters [23]. Clustering tech-
niques for categorical data are very different from those
for numerical data in terms of the definition of similarity
measure. Most numerical clustering techniques use dis-
tance functions, for example, Euclidean distance, to define
the similarity measure, while there is no inherent distance
meaning between categorical values.

Traditionally, categorical data clustering is merged into
numerical clustering through the data preprocessing stage
[23], where numerical features are extracted/constructed
from the categorical data, or the conceptual similarity be-
tween data records is defined based on the domain knowl-
edge. However, meaningful numerical features or concep-
tual similarity are usually difficult to extract at the early
stage of data analysis because we have little knowledge
about the data. It has been widely recognized that clus-
tering directly on the raw categorical data is important for
many applications. Examples include environmental data
analysis [29], market basket data analysis [1], DNA or pro-
tein sequence analysis [8], and network intrusion analysis

[5]. Therefore, there are increasing interests in clustering
categorical data recently [21, 19, 17, 18, 6, 15, 3, 25].

Cluster Validation Different clustering algorithms
hardly generate the same clustering result for the same
dataset, and we need the cluster validation methods to eval-
uate the quality of the clustering results [27, 22, 20]. For-
mally, there are two main issues in cluster validation: 1)
how to evaluate the quality of different partition schemes
generated by different clustering algorithms for certain
dataset, given the fixedK number of clusters; 2) how to de-
termine the best number of clusters (the “bestK”), which
indicates the inherent significant clustering structures of the
dataset.

For numerical data, the clustering structure is usually
validated by the geometry and density distribution of the
clusters. When a distance function is given for the numeri-
cal data, it is natural to introduce the density-based methods
[16, 4] into clustering. As a result, the distance functions
and density concepts play the unique roles in validating the
numerical clustering result. Various statistical cluster vali-
dation methods and visualization-based validation methods
have been proposed for numerical data [22, 20, 12], all of
which are based on the geometry and density property. The
intuition behind the geometry and density distribution jus-
tifies the effectiveness of these cluster validation methods.
A good example commonly seen in clustering literature is
evaluating the clustering result of 2D experimental datasets
by visualizing it – the clustering result is validated by check-
ing how well the clustering result matches the geometry and
density distribution of points through the cluster visualiza-
tion.

While lack of the distance meaning for the categori-
cal data, the techniques used in cluster validation for nu-
merical data are not applicable for categorical data. With-
out reasonable numerical feature extraction/construction for
a given categorical dataset, the general distance functions
are usually inapplicable and unintuitive. As a result, no
geometry/density-based validation method is appropriate in
validating the clustering result for categorical data.

Entropy Based Similarity Instead of using distance
function to measure the similarity between any pair of data
records, similarity measures based on the “purity” of a set of
records seem more intuitive for categorical data. As a well-
defined and accepted concept, entropy [14] can be used to



formally measure the purity of partition. Originally from
information theory, entropy has been applied in both pat-
tern discovery [10] and numerical clustering [13]. Due to
the lack of intuitive distance definition for categorical val-
ues, recently, there have been efforts in applying the entropy
criterion in clustering categorical data [6, 25]. The initial
results show that entropy criterion can be very effective in
clustering categorical data. Li et al [25] also proved that the
entropy criterion can be formally derived from the frame-
work of probabilistic clustering models, which further sup-
ports that the entropy criterion is a meaningful and reliable
similarity measure for categorical data.

In entropy-based categorical clustering, the quality of
clustering result is naturally evaluated by the entropy cri-
terion [6, 25], namely, theexpected entropyfor a partition.
However, the other cluster validation problem – determin-
ing the “best K”, has not been sufficiently addressed yet. In
this paper, we present a novel method based on entropy to
address this problem.

Our Approach We first develop an entropy-based cat-
egorical clustering algorithm “ACE”(Agglomerative Cate-
gorical clustering with Entropy criterion). The algorithm
works in a bottom-up manner. Beginning with each indi-
vidual record as a cluster, it merges the most similar pair
of clusters in each step, where the similarity is evaluated
with the incremental entropy. An agglomerative hierarchi-
cal clustering algorithm typically generates a clustering tree
that contains the different clustering structures that have dif-
ferentK. We use these clustering structures to analyze the
bestK problem.

Based on the intuition behind the merging operation in
ACE algorithm, we investigate the relation between the
pairs of neighboring partition schemes (havingK clusters
andK + 1 clusters, respectively). We use “Entropy Char-
acteristic Graph(ECG) ” to sketch the entropy property of
the clustering structures, and use “Best-K Plot(BkPlot)”,
which is built on ECG, to identify the candidates of the best
K. The initial experimental result shows that the proposed
validation method, concretely, using the BkPlots generated
by ACE to identify the bestKs, works effectively in finding
the significantK(s) for categorical data clustering.

The rest of the paper is organized as follows. Section 2
sets down the notations and gives the definition of the tradi-
tional entropy-based clustering criterion. Section 3 presents
the agglomerative hierarchical clustering algorithm ACE.
Section 4 investigates the relation between the neighboring
partitioning schemes with the entropy criterion, and pro-
poses the validation method for identifying the bestKs. We
present the experimental result in section 5 and review the
related categorical clustering work in section 6. Finally, we
conclude our work in section 7.

2 Notations and Definitions

We first give the notations used in this paper and then
introduce the traditional entropy-based clustering criterion.

Several basic properties about the entropy criterion will be
presented later.

Consider that a datasetS with N records andd columns,
is a sample set of the discrete random vectorX =
(x1, x2, . . . , xd). For each componentxj , 1 6 j 6 d, xj

takes a value from the domainAj . Aj is conceptually dif-
ferent fromAk(k 6= j). There are a finite number of distinct
categorical values in domainAj and we denote the number
of distinct values as|Aj |. Let p(xj = v), v ∈ Aj , repre-
sent the probability ofxj = v, we have the classical entropy
definition [14] as follows.

H(X) = −
d∑

j=1

∑

v∈Aj

p(xj = v) log2 p(xj = v)

WhenH(X) is estimated with the sample setS, we de-
fine the estimated entropy aŝH(X) = H(X|S), i.e.

Ĥ(X) = −
d∑

j=1

∑

v∈Aj

p(xj = v|S) log2 p(xj = v|S)

Suppose the datasetS is partitioned intoK clusters. Let
CK = {C1, . . . , CK} represent a partition, whereCk is a
cluster andnk represent the number of records inCk. The
classical entropy-based clustering criterion tries to find the
optimal partition,CK , which maximizes the following en-
tropy criterion [9, 11, 25].

O(CK) =
1
d

(
Ĥ(X)− 1

n

K∑

k=1

nkĤ(Ck)

)

Since Ĥ(X) is fixed for a given datasetS, max-
imizing O(CK) is equivalent to minimize the item
1
n

∑K
k=1 nkĤ(Ck), which is named as the “expected en-

tropy” of partition CK . Let us notate it as̄H(CK). For
convenience, we also namenkĤ(Ck) as the “weighted en-
tropy” of clusterCk.

Li et al [25] showed that the minimization of expected-
entropy is equivalent to many important concepts in in-
formation theory, clustering, and classification, such as
Kullback-Leibler Measure, Maximum Likelihood [24],
Minimum Description Length [26], and dissimilarity coef-
ficients [7]. Entropy criterion is especially good for cate-
gorical clustering due to the lack of intuitive definition of
distance for categorical values. While entropy criterion can
also be applied to numerical data [13], it is not the best
choice since it cannot describe the cluster shapes and other
numerical clustering features of the dataset.

3 ACE:Agglomerative Categorical clustering
with Entropy criterion

In this section, we define the proposed similarity mea-
sure,incremental entropy, for any two clusters. With incre-
mental entropy, we design the algorithm ACE. ACE and its
working mechanism is the tool used to explore the signifi-
cant clustering structures in the next section.



3.1 Incremental Entropy

In this section, we investigate the mergence of any two
clusters to explore the similarity between the two clus-
ters. Intuitively, merging the two clusters that are similar
in the inherent structure will not increase the disorderliness
(expected-entropy) of the partition, while merging dissimi-
lar ones will inevitably bring larger disorderliness. We ob-
served that this increase of expected entropy has some cor-
relation with the similarity between clusters. Therefore, it is
necessary to formally explore the entropy property of merg-
ing clusters. LetCp ∪ Cq represent the mergence of two
clustersCp andCq in some partition scheme, andCp and
Cq havenp andnq members, respectively. By the defini-
tion of expected entropy, the difference betweenĤ(K) and
Ĥ(K + 1) is only the difference between the weighted en-
tropies,(np + nq)Ĥ(Cp ∪ Cq) andnpĤ(Cp) + nqĤ(Cq).
We have the following relation for the weighted entropies.

Proposition 1. (np + nq)Ĥ(Cp ∪ Cq) > npĤ(Cp) +
nqĤ(Cq)

PROOF. The about relation can be expanded as follows.

−
d∑

j=1

∑

v∈Aj

(np + nq)p(xj = v|Cp ∪ Cq) ·

log2 p(xj = v|Cp ∪ Cq) >

−
d∑

j=1

∑

v∈Aj

npp(xj = v|Cp) log2 p(xj = v|Cp)−

−
d∑

j=1

∑

v∈Aj

nqp(xj = v|Cq) log2 p(xj = v|Cq) (1)

It is equivalent to check if the following relation is satis-
fied for each valuev in eachdomain(Aj).

npp(xj = v|Cp) log2 p(xj = v|Cp) +
nqp(xj = v|Cq) log2 p(xj = v|Cq)
> (np + nq)p(xj = v|Cp ∪ Cq) ·

log2 p(xj = v|Cp ∪ Cq) (2)

Without loss of generality, supposeCp havingx items
and Cq having y items in valuev at j-th attribute. The
formula 2 can be transformed tox log2

x
np

+ y log2
y
nq

>
(x+ y) log2

x+y
np+nq

. Sincex, y, np, nq are positive integers,
let x = s · y andnp = r · nq, (s, r > 0), and then we can
eliminatelog2 to get a simpler form: rs

(1+r)s+1 6 ss

(1+s)1+s .

It is easy to prove that ss

(1+s)1+s is the maximum value of the

functionf(r) = rs

(1+r)s+1 (r, s > 0). Therefore, formula (2)
is true, thus (1) is true and Proposition 1 is proved.

Let Im(Cp, Cq) = (np +nq)Ĥ(Cp∪Cq)− (npĤ(Cp)+
nqĤ(Cq)) be the “incremental entropy” by merging the
clustersCp and Cq. Note thatIm(Cp, Cq) = 0 most

ds1 ds2
1 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1
0 0 1 1
0 0 1 1

Table 1. Identical structure

likely suggests that the two clusters have theidentical struc-
ture− for every categorical valuevi in every attributexj ,
1 6 i 6 |Aj |, 1 6 j 6 d, we havep(xj = vi|Cp) =
p(xj = vi|Cq). A simple example in table 1 demonstrates
the identical structure.

Incremental entropy brings the important heuristic about
the dissimilarity between any two clusters, i.e., when
the two clusters are similar in structure, merging them
will not bring large disorderliness into the partition, thus,
Im(Cp, Cq) will be small; when the two clusters are very
different, merging them will bring great disorderliness,
thus,Im(Cp, Cq) will be large. Therefore, incremental en-
tropy intuitively serves as the similarity measure between
any two clusters.

3.2 ACE Algorithm

While the traditional hierarchical algorithms for numeri-
cal clustering needs to explicitly define the inter-cluster sim-
ilarity with “single-link”, “multi-link” or “complete-link”
methods [22]. Incremental entropy is a natural inter-cluster
similarity measure, ready for constructing a hierarchical
clustering algorithm. Having incremental entropy as the
measure of inter-cluster similarity, we developed the fol-
lowing entropy-based agglomerative hierarchical clustering
algorithm− (ACE).

ACE algorithm is a bottom-up process to construct a
clustering tree. It begins with the scenario where each
record is a cluster. Then, an iterative process is followed
− in each step, the algorithm finds a pair of clustersCp and
Cq that are the most similar, i.e.Im(Cp, Cq) is minimum

among all possible pair of clusters. We useI
(K)
m to denote

the Im value in forming theK-cluster partition from the
K+1-cluster partition.

Maintaining the minimum incremental entropy in each
step is the most costly part. In order to efficiently implement
the ACE algorithm, we maintain three main data structures:
summary tablefor conveniently counting the occurrences of
values,Im-table for bookkeepingIm(Cp, Cq) of any pair
of clustersCp andCq, and aIm heapfor maintaining the
minimumIm value in each step.

Summary table is used to maintain the fast calculation of
cluster entropyĤ(Ck) and each cluster has one summary
table (Figure 1). Since computing cluster entropy is based
on counting the occurrences of categorical values in each
column, we need the summary table to keep the counters
for each cluster. If the average column cardinality ism, a
summary table keepsdm counters. Such a summary table



Cluster i-1 Cluster i Clusteri+1

Attribute 1

Attribute 2
......

Cat 1Cat 2Cat 3 ...

Summary Table

...

323# of
categories

Figure 1. Summary table and physical struc-
ture

enables fast merging operation – when merging two clus-
ters, the two summary tables are added up to form a new
summary table for the new cluster.

We useIm-table to keep track of the incremental entropy
between any pair of clusters, which is then used to maintain
the minimum-Im in each round of merging. TheIm-table
is a symmetric table (thus, only a half of entries are used in
practice), where the cell(i, j) keeps the value ofIm(Ci, Cj)
Figure 2.

Im heap is used to keep track of the globally mini-
mum incremental entropy. We define the most similar clus-
ter of clusteru asu.similar = arg minv{Im(u, v), v 6=
u}. Let u.Im represent the corresponding incremen-
tal entropy of mergingu and u.similar, we define<
u, u.Im, u.similar > as thefeature vectorof clusteru. The
feature vectors are inserted into the heap, sorted byu.Im,
for fast locating the most similar pair of clusters.

Algorithm 1 shows the sketch of the main procedure.
When mergingu and u.similar happens, their summary
tables are added up to form the new summary table. Con-
sider u as the main cluster, i.e.,u.similar is merged to
clusteru, we need to find the newu.similar and insert the
new feature vector< u, u.Im, u.similar > into the heap.
Then, there comes the important procedure for updating the
bookkeeping information after merging operation. Letv de-
note the oldu.similar. The bookkeeping information for
v is discarded and any entries inIm-table related tou or
v should be updated. For any clusterw, if the w.similar
is changed due to the update ofIm-table, its location at the
heap needs to be updated too. The detailed update algorithm
is described in Algorithm 2 and demonstrated by Figure 2.

3.3 Complexity of ACE

Updating theIm-table is the most costly part, con-
sisting several incremental-entropy calculations. Each
incremental-entropy calculation involves the summation of
the two summary tables and computing the weighted en-
tropy with the new summary table. The cost of comput-
ing weighted entropy isO(dm), when an auxiliary array in
length ofN is used to buffer thelog2 values as the following

1         i                    j                  N

1
i

        j                      N

X

X X X

X:  the removed
items in merging(i, j)

X

X

X

U U U U

U : The updated
items in merging(i, j)

   : the merged
item (i, j)

   : Im valuesU

U

U

Figure 2. Operation schedule after a merging
operation

Algorithm 1 ACE.main()
Ts[] ← initialize summary tables
TIm ← initialize Im table
h ← heap
for Each recordu do

h.push(< u, u.Im, u.similar >)
end for
while not empty(h) do

< u, u.Im, u.similar >← h.top()
Ts[u] ← Ts[u] + Ts[u.similar]
update< u, u.Im, u.similar >
h.push(< u, u.Im, u.similar >)
updatingafter merging() //Algorithm 2

end while

equation shows.

npĤ(Cp)

= −
d∑

j=1

∑
vjk∈Aj

cjk=freq(vjk)|Cp

cjk(log2 cjk − log2 np)

The cost is dominated by updatingIm-table after each
merging, which will totally needO(N2) incremental-
entropy calculations in the worst case. Therefore, the over-
all time complexity isO(dmN2). The summary tables re-
quire O(dmN) space, both thelog2 buffer and the heap
costsO(N) space, andIm-table costsO(N2) space.

Algorithm 2 ACE.updatingafter merging()
Ci ← master cluster,Cj ← merged cluster
releaseTs[Cj ]
invalidateIm table entries(Cj , ∗)
updateIm table entries(∗, Ci) and(∗, Cj)
for Each valid clusteru, if u.similar == Ci or Cj do

update< u, u.Im, u.similar >;
relocate< u, u.Im, u.similar > in h

end for



4 Exploring the Significant Clustering Struc-
tures

Traditionally, statistical validity indices based on geome-
try and density distribution are applied in clustering numer-
ical data [20]. A typical index curve consists of the statisti-
cal index values for differentK number of clusters. TheKs
at the peaks, valleys, or distinguished “knees” on the index
curve, are regarded as the candidates of the optimal number
of clusters (the bestK). Are there such index curves in-
dicating the significant clustering structures for categorical
data as well? The first thought might be investigating the
curve of the expected entropy of the optimal partition ofK
clusters, notated as̄Hopt(CK).

Our result shows that the curve of optimal expected-
entropies is usually a smoothly decreasing curve without
any distinguished peaks, valley, or knees (Figure 3). How-
ever, we find some special meaning behind the neighbor-
ing partition schemes (withK andK + 1 clusters respec-
tively). The differential of expected-entropy curve, which
we name as “Entropy Characteristic Graph (ECG)” (Figure
4), has some substantial meaning indicating the significant
clustering structures. An ECG shows that the similar par-
tition schemes with differentK are at the same “plateau”.
From plateau to plateau there are the critical points implying
the significant change of clustering structure, which could
be the candidates for the bestKs. These critical points are
highlighted in the second-order differential of ECG, named
“Best-K Plot (BkPlot)”.

4.1 Property of Optimal Partition Schemes

In this section, we first give the Proposition 2 describ-
ing the relationship between the optimal expected-entropies
with varying K, which is then used to introduce the “En-
tropy Characteristic Graph” and “BkPlot”.

Since the significant clustering structures are the globally
optimal selections, we begin with the investigation of opti-
mal partitions with varyingK. We describe the property of
the optimal expected entropies as follows.

First of all,H̄opt(CK) is bounded. It was proved in [25]
thatH̄(CK) is bounded by the maximum valuêH(X). We
also haveH̄(CK) > 0 as the entropy definition implies.
The zero entropy ofH̄(Ck) is reached atk = N , when
each vector is a cluster.

Second, for any different number of clusters,K andL,
K < L, we introduce the following property.

Proposition 2. H̄opt(CK) > H̄opt(CL), whenK < L

PROOF. Let someL-cluster partitionCL
0 be formed

by splitting the clusters in the optimalK-cluster parti-
tion. With Proposition 1, we havēHopt(CK) > H̄(CL

0 )
> H̄opt(CL)

Proposition 2 shows that the optimal expected-entropy
decreases with the increasing ofK, which meets the in-
tuition very well. It is hard to describe the curve with a

formal function with varyingK. However, as our exper-
imental result shows, it is often a negative logarithm-like
curve (Figure 3). The expected-entropy curve seems not
help us to clearly identify the significant clustering struc-
tures. However, there is some important implication behind
the expected-entropy curve when we consider thesimilarity
between the neighboring partitions, where the neighboring
partitions refer to theK-cluster partition andK + 1-cluster
partition.

4.2 Understanding the Similarity of Neighboring
Partition Schemes

There are two aspects to capture the similarity of neigh-
boring partition schemes. One is the increasing rate of en-
tropy, defined asI(K) = H̄opt(CK+1)−H̄opt(CK), which
indicates how much the clustering structure is changed. The
other aspect is the difference betweenI(K) andI(K + 1),
which indicates whether the consecutive changes to the
clustering structure are similar. Since it is hard to de-
scribe the relation between the optimal partitions, we use
the merging of clusters described in ACE algorithm to intu-
itively illustrate the two aspects of similarity. In the consec-
utive partition schemes generated by ACE, the increasing
rate is equivalent to incremental entropy:I(K) = 1

NdI
(K)
m .

First, we consider the meaning of small increasing rate
of entropy. As we discussed, merging identical clusters in-
troduces zero increasing rate, which implies that the merg-
ing does not introduce any impurity to the clusters and the
clustering structure is not changed. Similarly, small in-
creasing rate implies small impurity, for which we consider
the clustering structure is not significantly changed; and
large increasing rates should introduce considerable impu-
rity into the partitions and thus the clustering structure can
be changed significantly. For large increasing rates, we need
to further investigate therelative changesto determine if a
globally significant clustering structure emerges, which is
described as follows.

ConsiderI(K) as the amount of impurity introduced
fromK+1-cluster scheme toK-cluster scheme. IfI(K) ≈
I(K + 1), i.e. K-cluster scheme introduces similar amount
of impurity asK+1-cluster scheme does, we define that
the clustering structure is notrelativelychanged fromK+1-
cluster scheme toK-cluster scheme. An conceptual demon-
stration of “similar mergence” in Figure 6 can help to un-
derstand the similarity of clustering structure atI(K) ≈
I(K + 1). Here, we use icons to conceptually represent the
categorical clusters. The shape and the size of an icon repre-
sent the structure and size of the cluster, respectively. Clus-
ters in the identical or similar structure are preferred to be
merged as the ”identical structure” in section 3.1 shows, re-
gardless of the cluster size. The four clusters (C1 ∼ C4) in
Figure 6 are very similar. They are selected in two consecu-
tive merging operations. Thus, the changes to the resulting
clustering structures are similar and not quite distinguish-
able from each other.
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However, the third merging operation, which merges
C3 ∪ C4 and C5, might change the clustering structure
greatly, and thusI(K − 1) can increase dramatically. This
indicates that the second merging operation has resulted in
a representative clustering structure for cluster analysis.

In practice, if a dataset has significant clustering struc-
tures, we can find a series of neighboring “stable” schemes,
which have similar increasing rate of entropy, and we may
also find thecritical points where a series of “stable”
schemes become “less stable”− the increasing rate changes
dramatically (Figure 4). Each of such critical points indi-
cates some significant change in clustering structure and
distinguishes a set of “stable” schemes from another set.
All of the critical points should be the candidates for the
bestKs and could be interesting to cluster analysis.

We name theI(K) plot asEntropy Characteristic Graph
(ECG). If a dataset has significant clustering structures, its
ECG should be a curve with some distinguished “knees”.
An ECG curve showing no distinguished knees implies
that the clustering structure is smoothly changed whenK
changes fromN to 1, and thus clustering structures at all
Ks have the same importance− in other words, there is no
significant clustering structure.

The common way to mathematically identify such crit-
ical knees on a curve is to find the peaks/valleys at the
second-order differential of the curve. Since an ECG con-
sists of a set of discrete points, we define the second-order
differential of ECG asδ2I(K) : δI(K) = I(K)−I(K+1)

andδ2I(K) = δI(K−1)−δI(K) to makeK aligned with
the critical points. We can clearly identify the bestKs at the
δ2I(K) plot, and thus name it as the “Best-k Plot (BkPlot)”
(Figure 5).

4.3 Entropy Characteristic Graph Generated by
ACE

ECGs generated by ACE have a special property. We use
I
(K)
m to denote theIm value in formingK-cluster partition

from K + 1-cluster partition. SinceI(K) = 1
NdI

(K)
m , it

is equivalent to investigate the property ofI
(K)
m . We will

prove thatI(K)
m > I

(K+1)
m , so that the critical points always

happen at the peaks of BkPlot.

Proposition 3. I
(K)
m > I

(K+1)
m

PROOF. Let Im(Co, Cp, Cq) denote the incremental en-
tropy in merging any three clusters. It is trivial to prove that
the sequence of the three clusters does not matter in calcu-
lating theIm and

Im(Co, Cp, Cq) > Im(C(1), C(2)) (3)

whereC(1) andC(2) are any two of the three clusters.
We maintain the ascending list ofIm for each merging

operation in ACE algorithm. Suppose that the two clusters
Cp andCq are selected to merge and thus form theK + 1-

cluster scheme. We haveI(K+1)
m = Im(Cp, Cq). After the

merge operation, the incremental entropy between the pairs
of any clusterCo, o 6= p, q, and the new clusterCp ∪ Cq,
should be updated toIm(Co, Cp, Cq). SinceIm(Cp, Cq) is
the minimum value at the stageK + 1 and the relation (3)
shows the updates toIm table only increase the values, the
selectedIm value for stageK will definitely be greater or
equal to that of stageK + 1, i.e. I(K)

m > I
(K+1)
m .

The BkPlots of such ECGs (I(K) > I(K + 1)) always
exhibit the criticalKs at peaks. This could reduce the num-
ber of possible noisyKs and help the users to clearly iden-
tify the bestK. We will demonstrate that the BkPlots gen-
erated by ACE are the most robust and efficient ones, com-
pared to those generated by other algorithms.
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5 Experimental Results

The goal of the experiments is twofold. 1)We want to
show that BkPlot can be used to find the criticalKs. 2) We
want to show that the BkPlots generated by ACE are the
most robust and efficient, compared to those generated by
the other two popular entropy-based clustering algorithms:
Monte-Carlo method (MC) [25] and Coolcat [6].

5.1 Datasets

We construct two types of synthetic datasets with the
following way, so that the clustering structure can be in-
tuitively identified and manually labeled before running the
experiments. The first type of datasets has a one-layer clus-
tering structure (Figure 7) with 30 attributes and 1000 rows.
It has three clusters in the same size (about 333 rows for
each). Each cluster has random categorical values selected
from {‘0’,‘1’,‘2’,‘3’,‘4’, ‘5’ } in a distinct set of attributes,
while the rest attributes are set to ‘0’. The second type of
datasets has a two-layer clustering structure also with 30
attributes and 1000 rows. The top layer has four clusters,
two of which have sub-clusters as Figure 8 shows. Both
types have the clearly defined clustering structure, and each
record in a generated dataset distinctly belongs to one clus-
ter. We generate ten datasets for each type of structure,
named DS1-i and DS2-i, 1 6 i 6 10, respectively.

We also use three “real” datasets, “Soybean-small”,
“Congressional votes” and “Zoo” in the experiments. All
of the three are from UCI KDD Archive1. Soybean-small
data is a dataset used to classify the soybean diseases. The
dataset has 47 records and each record has 35 attributes de-
scribing the features of the plant. There are four classes in
the dataset.Congressional votesis also a Boolean dataset
containing US Congressional Voting Records for the year
1984. The dataset has 435 records. Each record has a Con-
gressman’s votes on 16 issues (i.e. 16 attributes). We use
the 16 attributes to classify the Congressman to “Democrat”
or “Republican”.Zoo datacontains the feature description
of the animals in a zoo. There are 101 animal instances,

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

classified to 7 categories. Each record has 17 attributes de-
scribing different features of animal, such as hair and the
number of legs, most of which are boolean.

5.2 Compared Algorithms

Literally, any categorical clustering algorithm that em-
ploys the same entropy minimization criterion can possibly
generate a valid BkPlot. However, the quality of the BkPlots
can be easily influenced by the algorithms. We briefly in-
troduce another two algorithms, Monte-Carlo algorithm and
Coolcat algorithm in this section. Both use expected en-
tropy to evaluate the quality of partition and try to minimize
the expected entropy in order to achieve an approximately
optimal partition.

Monte-Carlo Method [25] is a top-down partitioning
algorithm. With a fixedK, it begins with all records in
one cluster and follows an iterative process. In each itera-
tion, the algorithm randomly picks one record from one of
the K clusters and puts it into another randomly selected
cluster. If the change of assignment does not reduce the ex-
pected entropy, the record is put back to the original cluster.
Theoretically, given a sufficiently larges, the algorithm will
eventually terminate at an optimal or near-optimal solution.
In the experiments, we sets = 5000 for running MC on the
synthetic datasets.

Coolcat [6] algorithm begins with selectingK records,
which maximize theK-record entropy, from a sample of the
dataset as the initialK clusters. It sequentially processes the
rest records and assigns each to one of theK cluster. In each
step, the algorithm finds the best fitted one of theK clusters
for the new record – adding the new record to the cluster
will result in minimum increase of expected entropy. The
data records are processed in batches. Because the order
of processing points has a significant impact on the quality
of final clusters, there is a “re-clustering” procedure at the
end of each batch. This procedure picksm percentage of
the worst fitted records in the batch and re-assigns them to
theK clusters in order to maintain relatively low expected
entropy.

We run the algorithm on each dataset with a large sample



size (50% of the datasets) andm = 20%, which is suffi-
cient for improvement through re-clustering [6]. In order to
reduce the effect of ordering, we run Coolcat 20 times for
each datasets. Each run processes the data in a randomly
generated sequence and we select the result having the low-
est expected entropy.

5.3 Performance Measures

We use four measures to evaluate the quality of BkPlots
generated by different algorithms.

• Coverage Rate.We evaluate the robustness of BkPlot
with “Coverage Rate (CR)”, i.e., the percentage of
inherent significantKs are indicated by the BkPlot.
There could be more than one significant clustering
structures for a particular dataset. For example, four-
cluster and six-cluster structures can be all significant
for DS2. A robust BkPlot should always include all of
the significantKs.

• False Discovery Rate.There could be someKs, which
are actually not critical but suggested by some BkPlots.
In order to efficiently find the most significant ones, we
prefer a BkPlot to have less false indicators as possible.
We use “False Discovery Rate(FDR)” to represent the
percentage of the noisy indicators in the BkPlot.

• Expected Entropy.Since the BkPlot is indirectly re-
lated to expected entropy through ECG, it is also rea-
sonable to check the quality of expected entropy for
the partitions generated by different algorithms at the
particularKs. The quality of expected entropy can
be evaluated by two parts [24]: the deviation to the
optimal expected entropy, and the variance of the es-
timated expected entropy. If an algorithm generates
BkPlots with the lowest expected entropy as well as the
minimum variance among the three algorithms, we can
firmly conclude that this is the best one on the three.

• Purity. For the real datasets, there is no documented
clustering structure, but the class definition is given.
The purity of a cluster [30],P (Ck), measures the ex-
tent to which the cluster contains data points primarily
from a single class. The purity of clustering result is
the weighted sum of the purity of individual cluster,
given byPurity =

∑K
k=1

nk

n P (Ck)

5.4 Discussion

The BkPlots generated by ACE algorithm for DS1 (Fig-
ure 10 clearly indicate ‘3’ is the only significantK. The
datasets having the same clustering structure should have
almost the identical BkPlots. The identical BkPlots on ten
different DS1-i, 0 6 i 6 10, shows that ACE is a robust
algorithm for generating BkPlot.

The peaks of BkPlots for DS2-i (Figure 13) include the
two inherent significantKs – ‘4’ and ‘6’, but ‘2’ is also

given as the third significantK. However, we notice that
the peak values at ‘K=4’ or ‘K=6’ for different DS2 datasets
are almost same, while those at ‘K=2’ have more variation.
This solicits us to consider a more reliable method to esti-
mate the most significantK for a considerably large dataset.
We can uniformly generate a bunch of sample sets, which
should have the identical clustering structure with the orig-
inal dataset. The most stable peaks in the BkPlots of the
sample sets correspond to the most significantKs.

The BkPlots generated by Monte-Carlo algorithm for
DS1 (Figure 11) also clearly identify that ‘3’ is the bestK
with very small variation. However, the BkPlots for DS2
show large variation onKs. In order to clearly observe the
difference, we only show five BkPlots for DS2-i, 1 6 i 6 5,
respectively. Overall, theKs distribute from ‘2’ to ‘10’ for
different DS2-i. Some BkPlots include the significantKs
- ’4’ and ’6’, while others miss one or both, which implies
that MC algorithm might not be robust enough for datasets
having complicated clustering structure. The reason is MC
algorithm becomes more likely to trap in local minima with
the increasing complexity of clustering structure and the in-
creasing number of clusters, since the corresponding search
space increases exponentially.

Coolcat algorithm is the least robust one for generating
BkPlots. It brings large variation for both datasets (Figure
12 and 15). Coolcat algorithm is originally designed for fast
processing of categorical data while the quality of result is
not well guaranteed. Therefore, it is not suitable for gener-
ating robust BkPlots for precisely analyzing the clustering
structure.

We summarize the result with the discussed measures,
Coverage Rate (CR), False Discovery Rate (FDR), and ex-
pected entropy (EE) in Table 2 and 3. The higher the cover-
age rate, the more robust the BkPlot is. The lower the false
discovery rate the more efficient the BkPlot is. The num-
bers are the average over the 10 datasets. For both types
of dataset, ACE shows the minimum expected entropy and
minimum standard deviation, as well as the highest CR and
lowest FDR. Therefore, the BkPlots generated by ACE are
the most robust and efficient ones.

CR FDR EE
ACE 100% 0% 0.732± 0.001
MC 100% 0% 0.733± 0.001

Coolcat 60% 85% 1.101± 0.026

Table 2. Summary for DS1- i
CR FDR EEK = 4 EEK = 6

ACE 100% 33% 0.562± 0.002 0.501± 0.001
MC 80% 53% 0.565± 0.009 0.521± 0.008

Coolcat 60% 70% 0.852± 0.023 0.761± 0.021

Table 3. Summary for DS2- i

We run experiments on real datasets with ACE only and
the results match the domain knowledge very well. We are
not clear about the bestK for the inherent clustering struc-



DS1-i BkPlot, i=1..10, generated by ACE
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Figure 10. ACE for DS1

DS1-i BkPlot, i=1..10, generated by MC
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Figure 11. MC for DS1

DS1-i BkPlot, i=1..5, generated by Coolcat
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Figure 12. Coolcat for DS1

DS2-i BkPlot, i=1..10, generated by ACE
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Figure 13. ACE for DS2

DS2-i BkPlot, i=1..5, generated by MC
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Figure 14. MC for DS2

DS2-i BkPlot, i=1..5, generated by Coolcat
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Figure 15. Coolcat for DS2

dataset N d # class BestKs Purity
soybean-small 47 35 4 {2,4,7} 100%

votes 435 16 2 {2} 83%
zoo 101 17 7 {2,4,7} 93.1%

Table 4. ACE result for real datasets

ture, but we can use the documented number of classes as
the reference number. Interestingly, the BkPlots of ACE
shows that these numbers are all included in the bestKs,
which implies that the inherent structure is consistent with
the domain knowledge. In fact, the additional bestKs can
be investigated further to explore more hidden knowledge.
For example, ‘K=2’ and ‘K=4’ for zoo dataset might be
other meaningful categorizations for the animals. The high
purity also shows that the entropy-based categorical cluster-
ing can generate results highly consistent with the domain
knowledge, which have been supported by other literatures
[6, 25]. The result encourages us to believe that BkPlots
with ACE can actually work effectively for the real datasets.

6 Related Work

While many numerical clustering algorithms [22, 23]
have been published, only a handful of categorical cluster-
ing algorithms appear in literature. Although it is unnatural
to define a distance function between categorical data or to
use the statistical center (the mean) of a group of categori-
cal items, there are some algorithms, for example, K-Modes
[21] algorithm and ROCK [19] algorithm, trying to fit the
traditional clustering methods into categorical data. How-

ever, since the numerical similarity/distance function may
not describe the categorical properties properly and intu-
itively, it leaves little confidence to the clustering result.

Gibson et al. introduced STIRR [18], an iterative algo-
rithm based on non-linear dynamical systems. STIRR rep-
resents each attribute value as a weighted vertex in a graph.
Starting with the initial conditions, the system is iterated
until a “fixed point” is reached. When the fixed point is
reached, the weights in one or more of the “basins” isolate
two groups of attribute values on each attribute. Due to the
complexity and unintuitive mechanism, the users may hesi-
tate to use it.

CACTUS [17] adopts the linkage idea from ROCK and
names it “strong connection”. However, the similarity is
calculated by the “support”. A cluster is defined as a region
of attributes that are pair-wise strongly connected.Similarly,
the concept of “support” or linkage is still indirect in defin-
ing the similarity of categorical data, and unnecessarily
makes the clustering process complicated.

Cheng et al. [13] applied the entropy concept in nu-
merical subspace clustering, and Coolcat [6] introduced
the entropy concept into categorical clustering. We have
briefly introduced Coolcat in section 5. Some closely re-
lated work also borrows concepts from information theory,
including Co-clustering [15], Information Bottleneck [28]
and LIMBO [3].

C. Aggarwal [1] demonstrated that localized associations
are very meaningful to market basket analysis. To find the
localized associations, they introduced a categorical cluster-
ing algorithm CLASD to partition the basket data. A new
similarity measure is defined for any pair of transactions.
CLASD is still a kind of traditional clustering algorithm –



the special part is only the definition of similarity function
for categorical data. Thus, it has the similar problem as we
described.

Most of the recent research in categorical clustering is
focused on clustering algorithms. Surprisingly, there is little
research concerning about the cluster validation problems
for categorical datasets.

7 Conclusion

Most of the recent research about categorical clustering
has only contributed to categorical clustering algorithms. In
this paper, we proposed an entropy-based cluster validation
method for identifying the bestKs for categorical data clus-
tering. Our method suggests to find the bestKs by observ-
ing the “Entropy Characteristic Graph (ECG)”, which de-
scribes the entropy property of partitions with varyingK
and is significant in characterizing the clustering structure
of categorical data. The “Best-K plot (BkPlot)” is used to
find the significant points conveniently from the Entropy
Characteristic Graph. In order to find the robust BkPlot,
we also develop an entropy-based agglomerative algorithm
ACE. Our experiments show that, ACE can generate the
most robust BkPlots for various experimental datasets, com-
pared to the other two typical entropy-based algorithms.
Meanwhile, ACE can also find high quality clustering re-
sults in terms of the entropy criterion. Therefore, BkPlot
validation method with ACE algorithm can serve as an ef-
fective tool for analyzing the significant clustering struc-
tures in categorical datasets.
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