
A Hybrid Access Model for Storage Area Networks
�

Aameek Singh
Georgia Institute of Technology

aameek@cc.gatech.edu

Kaladhar Voruganti
IBM Almaden Research Center

kaladhar@us.ibm.com

Sandeep Gopisetty
IBM Almaden Research Center

sandeep@almaden.ibm.com

David Pease
IBM Almaden Research Center

pease@almaden.ibm.com

Ling Liu
Georgia Institute of Technology

lingliu@cc.gatech.edu

Abstract

We present HSAN - a hybrid storage area network,
which uses both in-band (like NFS [13]) and out-of-band
virtualization (like SAN FS [10]) access models. HSAN
uses hybrid servers that can serve as both metadata and
NAS servers to intelligently decide the access model per
each request, based on the characteristics of requested
data. This is in contrast to existing efforts that merely
provide concurrent support for both models and do not ex-
ploit model appropriateness for requested data. The HSAN
hybrid model is implemented using low overhead cache-
admission and cache-replacement schemes and aims to im-
prove overall response times for a wide variety of work-
loads. Preliminary analysis of the hybrid model indicates
performance improvements over both models.

1. Introduction

Currently, there are two prevalent access models for
Storage Area Networks (SANs). In an out-of-band virtu-
alization model (henceforth called direct access model),
clients access file metadata from dedicated metadata
servers (MDS) and access data directly from the storage
controllers. This is in contrast to an in-band NAS access
model, in which clients access data through an intermedi-
ate NAS server. Both access models have their advantages

�
This research (Aameek Singh and Ling Liu) is partially supported

by NSF CNS CCR, NSF ITR, DoE SciDAC, DARPA, CERCS Research
Grant, IBM Faculty Award, IBM SUR grant, HP Equipment Grant, and
LLNL LDRD.

and disadvantages. We now briefly compare these two ap-
proaches on a few characteristics below:

� Scalability: Direct access model is more scalable than
the NAS model. Even with centralized MDS, the
direct access model can serve a greater number of
clients, since the hosts access data directly, without
an intermediate server in the data path. The metadata
transactions are much shorter and metadata caching at
the client further improves scalability.

� Caching: The NAS model of access provides a great
opportunity to exploit access locality across multiple
clients. The NAS servers typically maintain caches of
objects being actively accessed (hot objects). This ad-
ditional caching layer between the storage controller
cache and client cache can significantly reduce re-
sponse times. In a direct access model, only caches
available are client cache and the storage controller
cache. While it can be argued that storage controller
cache can suffice for hot objects, for workloads where
a single controller is being hit for many hot objects,
the controller cache might end up swapping out the
desired objects. In addition, it causes additional load
on the controllers. The client cache fails to exploit
similar accesses by different clients.

� Workload Specific: It can be easily seen that both
of these models are better suited for certain kinds
of workloads. For example, for accessing files
with heavy read sharing across multiple clients, NAS
model will perform better. Also, for small sized files
the costs of establishing two connections (to metadata
server and storage) makes the direct access model rel-
atively expensive. On the other hand, for large files

with little sharing across multiple clients, the direct
access model is faster because of zero hops during
data access.

� Infrastructure: Currently, most direct access models
utilize Fibre Channel SANs, which are much more ex-
pensive than IP based NAS solutions. However, with
the advent of iSCSI, this cost difference is no longer
an issue.

As can be seen, both of these models have their strengths
and weaknesses. In this paper, we provide a hybrid frame-
work called HSAN, that can provide the benefits of both
approaches and thus, offer a single better solution for a va-
riety of workloads. The aim of HSAN is to reduce client
response times by selecting an access model most appro-
priate for the desired objects. The unique characteristic
of the design is to allow a choice between the two ap-
proaches at the granularity of a single data request. We
implement this intelligence through cache-admission and
cache-replacement policies at the hybrid servers. These
policies have low-overhead and mostly utilize information
already existing at the MDS or NAS servers. In this paper,
we will discuss centralized direct access models (with ded-
icated MDS), though it will be easy to extend the proposed
solutions to decentralized approaches [1].

It is important to recognize the difference between
HSAN and other existing systems that support both mod-
els [6] with a similar hybrid server setup. [6] only provides
legacy support for NFS/CIFS for in-band NAS clients and
does not use any data characteristics to choose the most ap-
propriate model for a request. As we show in Section-3,
an intelligent choice for the appropriate model can outper-
form both models individually by reducing client response
times.

It is also important to note that our solution requires
hybrid servers that can act as both metadata and NAS
servers[6]. This will either require MDS to understand the
NAS protocols (initiatives like Parallel NFS [4]) or NAS
servers to be able to serve only metadata as well. We be-
lieve this to be a small change for the prospective bene-
fits. The rest of the paper is organized as follows. We de-
scribe our proposed design in Section-2 and provide a brief
analysis in Section-3. In Section-4, we discuss the related
work, including caching work in other related areas like
databases. We finally conclude in Section-5 with a note on
future work.

2. Design

While it is possible to approach the design from both
NAS as well as direct access models, we choose to describe
it through modifications to the direct access design. This
choice gives us underlying infrastructure support of host

connectivity to storage. To put it differently, we describe
HSAN by adding caching and data access support at MDS
of the direct access design1.

The primary motivation of HSAN is to reduce the re-
sponse times seen by the clients. Using our design, the
MDS will also maintain a data cache and in case of a cache
hit, the MDS immediately sends the data in response to the
metadata request, thus, saving the costs and delays of (a)
parsing the metadata at the client, (b) connecting to appro-
priate storage controllers and (c) retrieving the data. This
modified MDS is called the hybrid server (HS). In case of
a cache miss, the only penalty is to check for the existence
of the data object in the cache, which is an O(1) operation
under our proposed scheme. In addition, the maintenance
of statistics required for making a decision on the mode of
access is cheap and does not add considerable overheads.
Note that once the client has acquired metadata for a de-
sired object, all subsequent accesses (for example, using
cached metadata) are made directly to the storage controller
and thus, the direct access model is used. As we discuss
later, this condition can potentially be relaxed to save I/O
operations.

As mentioned earlier, we implement our hybrid scheme
to decide the model of access through cache-admission and
cache-replacement policies. Cache admission policy deter-
mines the conditions necessary for an object to fulfill, be-
fore it can be admitted into a cache. Cache replacement
policies determine the selection of the object (typically
called the victim object) which is replaced when more space
is required for an incoming object. Our scheme works as
follows. We modify the metadata information for each ob-
ject to also contain a pointer to the data object in the cache .
In case the data is not in the cache, the pointer is set to null.
When a client requests for metadata of a certain object, the
HS first checks if the requested data object is in the cache.
In case of the cache hit, the data is directly served to the
client. In case of a miss, the HS checks if the requested
object can pass the cache-admission test and can replace
an existing data object in the cache (or there already exists
enough space in the cache). If yes, it is accessed via the
NAS model - HS making the access to storage and forward-
ing data to the client. If it fails on the cache admission test
or cannot replace any existing cached object based on the
cache replacement policy, it is accessed using the direct ac-
cess model, with the HS only providing the metadata to the
client and the client making an access to the storage. Thus
using such a scheme, the problem of dynamically deciding
the access model reduces to the design of cache admission
and cache replacement policies. The workflow is presented
in Figure-1.

1For the other direction, we require host to storage connectivity and
NAS servers to be able to serve only metadata as well

��� � �	��
� ������	��
�� ���� ��
 ������
 �

� ������� �	��
�� �� �	��!"�

� ������� �	��
# ����� �	�$���"��!��	%�	��&'� � �"� ���

� ��� # �	� ��"("�	� � �	�	� �

) *�+",.-�/�0 132 0 , 45�6 7 -�832�8�+", 6 -9 -�:"; +"83-�<

= �
> �	�

> ���
> ���

= �

> ���

=@?�AB� ���	��� A ��� �	��
 ���CDA � �"
 � � ��(��	�E�"��
 �F� � �	&��
 ��� �	G	�	H � ��� IE�	� ���J�
	
 �F
 !���"� � �	�"
	��� ����G$IJ�
 !J&J��
 ������
 ��K� �	��!��"�E�	��
 ��L

= �

= �

M � � �	��
 � �"�	��� A ��� �	��
 �	�CDA � ����
�� �	���	�E&J�"
 �	�	��
 ��K�"� � ����
���� � �	� � �	�E�	��
 �F� � �	&��
 �	� �	G���L = �'� �	��!�� ��G	L

�N����!�� C�� OCNA � �����	�E�	�"
 �E� � ��&P
 !��� �	��!��Q��� ����G.IJ�
 !&J��
 �	�"��
 ��L ? � � �	� �$
 ���
 ��� ��G	�Q���"
�� �		�	� � �	�

RS=DMUTFVOS�@?�=NAW? � ON� TE=

Figure 1. Workflow

2.1. Decision Factors

The main challenge in the design of such policies is
identifying the factors that should influence the decision
of whether an object should be cached or not. In addition,
the evaluation of these factors should not be expensive to
prevent the caching overheads from becoming prohibitive.
For our storage scenario, we believe the following factors
to be critical in such decision-making:

1. Rate of Access (λ): If an object is accessed more
frequently, there is greater incentive of keeping the
object in the cache. Frequent accesses will result in
more cache hits and improved response times. How-
ever, as we describe later, this metric needs to be mea-
sured in conjunction with the data sharing and locking
mechanisms in order to obtain a good estimate for our
caching policy.

2. Cost of Obtaining Object (c): An object that is ex-
pensive to obtain from storage (for example, because
of being on a slower or a heavily loaded storage con-
troller) has a greater incentive to be cached. In case of
cache hits for such objects the response time improve-
ment will be significant.

3. Size of the Object (s): The size of objects also plays a
critical component. An object that is smaller in size is
more valuable to be cached, since it takes lesser cache
space and also, in case of a cache hit, provides max-
imum response time improvement ratios compared to
direct access models.

4. Load on HS: Since a HS is also used for metadata
transactions, it is important to prevent queuing delays
at the HS due to various I/O operations. Thus, a heav-
ily loaded HS should perform less I/O operations (pro-
mote direct access).

The first three parameters are used to define a value for
each data object. A greater value indicates a greater incen-
tive to cache the object (which in turn means, to access it
via the NAS model).

Value
X
Oi Y = λi Z ci [sα

i , where α \ 1

The fourth parameter (load on HS) can be used to set up
the admission threshold described later.

The Value metric will favor objects that are (a) accessed
more frequently, (b) expensive to obtain in case of cache-
miss and (c) smaller in size. The parameter α can be set
depending upon the amount of favor desired for smaller
objects (especially in order to favor metadata at the HS).
We discuss this issue of interaction between data and meta-
data objects later. It is important to note that the rate of
access is the rate of requests for the metadata at the HS and
not the rate of access at the storage. This is because ob-
jects, which are being accessed directly from storage (us-
ing cached metadata), have lesser incentives to be cached
at the HS, as they are already being accessed using the fast
direct access model.

2.2. Parameter Evaluation

As mentioned earlier, the evaluation of these parameters
needs to be a low overhead operation. To achieve this goal,
we use the following way of computing each:

� si: Size of the object is already available at the MDS
and thus, is no added overhead.

� λi: We evaluate the rate of access as a moving average
of the last K inter-arrival times of request to Oi, where
K is a parameter determining the amount of history to
be considered, (typically set to 10). Precisely, λi is de-
fined as λi = K

t] tK
, where t is the current time and tK is

the time of the last Kth reference to Oi. Since all meta-
data requests come at the HS, this parameter can also
be efficiently computed and stored as an additional at-
tribute to the object metadata.

� ci: We measure the cost of obtaining the data from the
storage controller by means of average access times.
Since in the direct access model, the clients directly
access storage, this parameter has to be obtained from
the clients. We achieve this in the following manner.
For every object accessed from the storage controller,
the client maintains its average access time and when-
ever it requests a lock or metadata for that object from

the HS, it shares this statistic with the MDS. The MDS
averages this access time across all clients2.

2.2.1. Data Sharing The calculation scheme described
till now does not take into account the kind of locks held on
the data objects. The locking mechanisms can have poten-
tial impact on object values. For example, consider a case,
when an object is accessed very frequently, but always in
an exclusive mode. All the attempts to access the object
while it is being held in an exclusive lock will not be sat-
isfied. Caching such an object has no incentive due to the
inability to serve other clients with that object. Therefore,
we modify the λ evaluation in the following manner. All
access attempts that would not have been satisfied even if
the object was in the cache (e.g. one client holds an exclu-
sive lock) are not counted towards its rate of access. This
scheme automatically prefers object which are more read-
shared and thus, provide the maximum benefits of caching.

2.3. Cache Admission-Control

As mentioned before, an object is considered for
caching (and thus, accessing via NAS model) only if it
passes the cache admission test (CAT). The motivation for
having such a test is to ensure that the object is valued
enough to dedicate HS resources for I/O operations. One
simple policy is to admit an object whose value is greater
than the minimum value of the cached objects.

CAT: Value
X
Oincoming Y_^ min

X
Value

X
Oi Y@Y

However, this policy is insufficient. For example, con-
sider the workload scenario in which only a few objects
in the cache are being accessed frequently and the rest of
the objects are rarely being accessed, though not being re-
placed because of low or no contention of cache space.
Thus, the minimum value of the objects in the cache will
decrease with time and can potentially be a very small num-
ber. In such a scenario, we prefer to avoid bringing in new
objects with low values (less workload for HS). We modify
the policy as follows:

CAT: Value
X
Oincoming Y_^ max

X
π ` min

X
Value

X
Oi Y@Y

where π is a threshold parameter, which dynamically ad-
justs based the workload seen so far. This is achieved by
setting: π = avg

X
N Yba min

X
Value

X
Oi Y@Ydc i.e. π is computed

periodically as the average minimum value of cached ob-
jects over the last N intervals. N determines the amount of
history to be taken into account and can be statically set.
The computation period can be set in terms of number of

2It is possible to use client-specific parameters instead of averaging
across all clients. For example, the value of Oi can be defined as: Σ j
λi j e ci j f sα

i where λi j and ci j are parameters for Client-j. In this case, λ
can also be computed by the clients

transactions at the HS. For example, it is computed after
every 1000 metadata transactions.

In addition, π can be extended to incorporate load on
HS. For example, for a heavily loaded HS, a factor β can
be added to the threshold value, which raises the bar for
accessing data using NAS model, reducing further load
and queuing delays at HS. The trigger point of increasing
the threshold value is recognizable by looking at client re-
sponse times received as the ci parameter.

2.4. Cache Replacement Policy

Once an incoming object, Oincoming, passes the cache-
admission test, we try to evaluate if there is enough space
in the cache to accommodate the object. In case, there is
not enough space, we try to evict existing objects through
cache replacement policy. We use the following algorithm:

1. Arrange all cache objects in a list in the increasing
value order. Let the sorted list be a O1 ` O2 `Sg@g@gh` On c .

2. Let m be the minimal prefix, such that
size

X
O1 Y +size

X
O2 Y + g@gSg +size

X
Om Y \ size

X
Oincoming Y

3. If Value
X
Om Yji Value

X
Oincoming Y , then evict

O1 ` O2 `@gSg@gh` Om else No replacement done and
Oincoming is not cached.

Step-3 ensures that we do not replace any higher value
object at the expense of a lower value object. The else
clause would in turn mean that the object is accessed via
the direct access model. The cache-admission and cache
replacement policies can be efficiently implemented by a
low overhead priority queue (heap) [3, 7].

2.5. Data Writes and Cache Consistency

For any caching solution, it is important to have efficient
mechanisms of maintaining cache consistency. Clearly, in
case of objects being accessed in the direct model, there
is no need for any caching consistency mechanism, since
the data never enters the meta data server cache. For NAS
access models, i.e. accessing cached data for writes, there
are a number of options based on the type of consistency
desired and its tradeoffs with performance penalties.

Below we describe a number of options for achieving
strong and weak consistency:

1. NDIR: No-Dirty-Immediate-Replace k Whenever an
object is required to be accessed for writes (exclusive
mode access), the HS serves the initial metadata re-
quest, and then invalidates the object in the HS cache,
thus setting it up for immediate replacement. For later
accesses, the object is treated similar to any new object
being accessed. In this design, there is never any dirty

data in the cache and strong consistency is achieved.
This is an efficient mechanism, since an object be-
ing held in an exclusive manner cannot be shared at
the cache anyway, though it evicts an object from the
cache for every write access to it.

2. NDNR: No-Dirty-Never-Replace k When a cached
object is accessed for writes, the HS marks the ob-
ject as being irreplaceable (temporarily increasing its
value to ∞). Each client write at the HS is immedi-
ately written through to the disk, thus never keeping
any dirty data in the cache. This achieves strong con-
sistency, though with the overhead of loading HS for
I/O operations with each write. In addition, it can po-
tentially lead to the cache being occupied by less valu-
able objects, just due to write locks on them (though
the object was originally considered valuable enough
to be cached and accessed via the NAS model).

3. NDCR: No-Dirty-Can-Replace k In this scheme, a
cached object being accessed for a write is not biased
against replacement and can be replaced as usual. For
as long as the object is present in the cache, the client
sends writes to the HS which are immediately written
through to the disk (strong consistency). If the value
of the object makes it a candidate for replacement, the
client is notified (by piggybacking on protocol mes-
sages) to perform the remaining writes directly to the
disk (with disk block information for the writes). This
scheme prevents any value bias of the cache as in
NDNR and results in only highly valued object in the
cache. However, it significantly increases the com-
plexity of the protocol and also requires clients to es-
tablish new data connections (with the storage) mid-
way during the writes.

4. DNR: Dirty-Never-Replace k This scheme uses lazy
writes at the HS for a weak cache consistency mech-
anism. The object being accessed for writes is never
replaced (biasing the value to ∞) and the client writes
are lazily written onto storage by the HS. During the
time period of data being written in the HS cache,
but not reflected to the storage (dirty data), the writes
can be stored onto NVRAM for increased reliabil-
ity. This scheme improves the performance of NDNR
by reducing the I/O overheads associated with writes,
though increases the complexity of recovery in case of
failures and/or runs the risk of lost writes.

5. DCR: Dirty-Can-Replace k Another form of weak
consistency scheme is to allow the dirty cached object
to be replaced if another more valuable object needs
to be cached. In case of such a replacement, the dirty
data is first written to disk. Also, similar to the NDCR
scheme, this scheme involves a notification message

to the client to continue rest of the writes directly to
the storage.

To summarize, Figure-2 lists all the schemes and their
basic characteristics, along with benefits and drawbacks in-
volved.

2.6. Memory Model

It has been argued that the MDS are meant to pro-
vide only metadata information and are fine tuned for such
workload characteristics (large number of small requests).
Data caching at MDS competes for main memory with
the metadata objects, thus, influencing the core task of
the MDS. We propose following three approaches that can
counter this and any one of them can be used depending
upon the workload characteristics:

1. Partitioned Memory Model: In this model, there
are statically assigned distinct spaces for metadata
caching and data caching with no overlap between the
two. This ensures that the data-caching component
does not effect the regular metadata caching. This is
dependent on the availability of enough memory at the
HS. Such a model is best for workloads in which the
size of the cached metadata does not fluctuate much.

2. Shared Memory Model with strict priority to
Metadata: This model uses a shared space between
metadata and data. However, metadata objects are
given strict priority over data objects. Thus, a data
object can never replace a metadata object (similar to
setting metadata object values to ∞) and a metadata
object always replaces the least valued data objects.
Amongst metadata objects, the regular cache replace-
ment policies can be used. This model is best used for
workloads in which metadata cache size can vary sig-
nificantly and metadata performance is critical to the
application.

3. Shared Memory Model with appropriate α: There
can be scenarios, when it is reasonable to swap out
metadata objects, which are rarely accessed, in or-
der to cache valued data objects. In such a scenario,
we can use the shared memory model and appropri-
ately set a value of α in the value function depend-
ing upon the priority given to smaller objects. Notice
that α adds value to all small objects and not neces-
sarily the metadata objects. If it is not desired, we
can modify the value parameter for metadata objects
to (π l λici [sα

i), thus, giving a head start of π, where π
is the admission threshold parameter discussed earlier.

Name Consistency Benefits Potential Drawbacks
NDIR Strong Implementation Simplicity Evicting a valuable object
NDNR Strong Implementation Simplicity Enforced keeping of a less valuable object
NDCR Strong Unbiased Caching New Connection required during a write
DNR Weak Better performance (less I/O) Implementation Complexity
DCR Weak Less I/O and unbiased caching Various dimensions of added complexity

Figure 2. Cache Consistency Schemes

3. Analysis

In this section, we present a preliminary analysis of the
hybrid model as compared to the NAS and direct access
models. As part of our initial analysis, we have used sim-
ple models to describe certain empirical behavior. For ex-
ample, we use a linear model to determine queue delays
at servers based on the number of clients they are serv-
ing; though we use different parameters for metadata and
I/O operations. Thus, it is important to emphasize that the
model is not designed to predict accurately the response
times, rather to comparatively analyze the three models.

� Let γ be the time for sending a data/metadata request.
Since the characteristics of metadata response (from
MDS/HS) are similar (short messages), we assume the
response to the request to be γ as well.

� Let τ be the time to send a request to storage and re-
trieve the data for a particular file. Thus, this will be
the time for a host to get data from storage for a direct
access model and also for a NAS (and HS) server to
access data from storage in NAS (and hybrid) model.

� Let τ m be the time to send a request and obtain the
data from server’s memory, e.g. from NAS/HS server
cache.

� Let ψ be the delay at the NAS/MDS/HS server due to
contention with other simultaneous accesses. We set
ψ to be a linear function of number of connections at
the server, though the slope of the linear function is
much lower for metadata connections as compared to
data connections.

Below we give a short example of how the analysis
would work for accessing a single file with space available
in the caches. Assume the file is accessed by C clients and
each client accesses it N times and only reads are issued.
We do not consider client-data-caching since it is the same
for all models. However, metadata can be cached in the
direct and hybrid model.

For NAS model, only the first of the N Z C accesses
results in I/O with the storage. All subsequent accesses are
served from the cache of the NAS server. Therefore, total
response time for NAS model is:

X
γ l τ l ψNAS l τ m Y +

X
N Z C k 1 Y X γ l ψNAS l τ m Y

The first term includes - data request + fetching data
from storage + delay at NAS server + forwarding content
to client (once fetched, it is served from the memory) -
for the first request to that data object. The second term
includes for the subsequent N Z C k 1 requests - data
request + delay + serving from cache. So total response
time is given by:

RTNAS=τ l NC
X
γ l τ mhl ψNAS Y

For direct access model, the first access of each client
results in metadata request (γ), metadata response (γ) and
I/O fetch (τ). Every subsequent access from each client
only requires the I/O fetch (τ) because metadata is cached
- again considering no data caching at client or controllers
(which is the same scenario for NAS model). Thus, the
total response time is given by:

C Z X
γ+γ+ψDir+τ Y + X

N k 1 Y C X
τ Y

RTDir=C
X
2γ l ψDir l Nτ Y

The hybrid model would determine the value of the
object, and if it considered valued enough, it will be
cached at the HS. The HS would also return the metadata
to the client which is cached at the clients and used for
subsequent accesses. Also ψHyb is the sum of delays due to
concurrent metadata and data transactions. The response
time would be given by3:

X
γ+τ+ψHyb+τ m Y + X

C k 1 Y X γ+ψHyb+τ m Y + X
N k 1 Y C X

τ Y
RTHyb=C

X
γ l ψHyb l τ m Y +τ

X
1 l X

N k 1 Y C Y
Even though at first glance the analysis looks in favor

of NAS model, it is important to note that ψNAS is much
higher due to I/O costs in that model. In addition the above
workload is an all-read workload. However, it also indi-
cates that for a hybrid model, it might not be always a good

3assuming negligible additional cost for including metadata in re-
sponse

strategy to obtain data from the storage when it is present in
the HS cache. We plan to explore this extension in future.

3.1. Results

Using the above model, we evaluated the performance
of the NAS, direct access and hybrid models, for a number
of workload and client load scenarios. We used a 1000
file data with file sizes distributed by a Poisson distribution
with mean of 100 KB. Accesses to the files were based on a
Zipf’s law with its α n 0 g 5. The τ values were also assumed
to be Poisson distributed with mean of 100ms. The NAS
cache was implemented as an LRU cache. Also the HS
cache was implemented using a partitioned memory model.
Also the hybrid model used the NDIR scheme for cache
consistency.

Figure-3 plots the average response times for the three
models with varying number of clients (R-W ratio of 0.8
and NAS cache size = Hybrid data cache size = 10MB). As
can be seen with increasing number of clients, the queuing
delays at NAS servers increase significantly and thus, the
overall response times increase. For direct access model
also, the queuing delays increase though at a much smaller
rate (metadata transactions). The hybrid model presents an
interesting analysis. For the first jump in the number of
clients, the response time decreases slightly. This is due
to an initial increase in data locality at hybrid cache across
multiple clients. Since there are lesser I/O data transac-
tions at the hybrid server the queuing delays with increas-
ing number of clients are not able to offset this. However,
with later transactions, the delays become dominant.

Figure-4 plots the models with increasing read percent-
age in the workload (1000 clients). As expected, both NAS
and hybrid models perform better due to the caching ef-
fects. The hybrid model used the NDIR scheme. The direct
model is not influenced by varying read-write ratio, since
every access is made direcly at the controller.

Figure-5 plots the models with varying cache size at the
hybrid cache with the NAS cache fixed at 10MB. We per-
formed this analysis since it is possible that the size of hy-
brid cache available for data caching is smaller than that in
a NAS model, due to memory requirements for metadata
caching. As expected, the hybrid model performs better
with bigger caches and outperforms NAS model even with
a smaller cache size.

It is encouraging to note that the hybrid model is able
to outperform both the other models due to its ability to
make intelligent choices per-request. We continue to eval-
uate the models for other criteria and with real benchmarks.
Overall, we believe that the system will scale well with the
increase in data and traffic. The overheads involve only
storing additional information in file metadata (access fre-
quencies and response times) which can be amortized over

numerous requests and need to perform I/O only periodi-
cally.

4. Related Work

There has been significant work on data management
for file systems in storage area networks [2, 11]. To the
best of our knowledge, there is no prior work describing
an intelligent SAN with both co-existing in-band and out-
of-band access models and ability to switch models per
each request. The work that comes closest to ours is the
solution presented by Panasas [6]. They also use Hybrid
Servers called, DirectorBlades (TM) that support both in-
band NAS and out-of-band direct access models. However,
the NAS access model support is only to provide interfaces
to legacy clients and the decision to use either model is
made irrespective of requested data.

Object-based Storage Systems (seminal work [5]) have
been proposed to allow for more intelligent processing at
the storage devices. Our solution, in contrast is at a higher
level than at the storage system level and complements this
work by adding on another layer of intelligent above the
proposed solutions.

In general, caching has been an important performance
enhancing mechanism with application to a wide range
of problems. While a number of caching algorithms like
LRU, [8, 9] are targeted towards simplicity of implementa-
tion, more complex algorithms have also been extensively
used in a variety of scenarios - like databases [14], web
caching [3, 7, 15] etc. All of these approaches follow a
similar principle of cost-aware caching. Our caching pol-
icy is similar to [14] another existing algorithm, though we
differ in cache admission and the parameter evaluation. Es-
pecially, our policy is closely aligned to the data sharing
mechanisms, whereas other works do not focus on such
mechanisms.

5. Conclusions and Future Work

In this paper, we have presented a hybrid access model
for Storage Area Networks. To the best of our knowledge,
this is a first attempt at designing intelligent SANs that ex-
ploits strengths of both in-band NAS and out-of-band direct
access models through a unified solution. An important
characteristic of our design is the ability to choose between
the access models at a per-request granularity using low-
overhead cache admission and cache replacement policies.
Our initial analysis indicates that the hybrid model outper-
forms both NAS and direct access models for a variety of
workloads. In future, we would like to evaluate the hy-
brid model on real benchmarks and also design extensions
to the model. In addition, we are also investigating vari-

 80
 90

 100
 110
 120
 130
 140
 150
 160

 0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

Number of Clients

NAS
Direct

Hybrid

Figure 3. Varying Number of
Clients

 80
 90

 100
 110
 120
 130
 140
 150
 160

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

Percentage of Reads

NAS
Direct

Hybrid

Figure 4. Varying Read-Write
Ratio

 80
 90

 100
 110
 120
 130
 140
 150
 160

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

 (m
s)

Hybrid Cache Size

NAS
Direct

Hybrid

Figure 5. Varying Hybrid
Cache Size

ous co-operative caching architectures [12] that can further
improve the overall performance of the system.

References

[1] Thomas E. Anderson, Michael Dahlin, Jeanna M.
Neefe, David A. Patterson, Drew S. Roselli, and Ran-
dolph Y. Wang. Serverless network file systems.
ACM Transacations on Computer Systems, 14(1):41–
79, 1996.

[2] Randall Burns. Data management in distributed file
system for storage area networks. PhD Thesis, Uni-
versity of California at Santa Cruz, 2000.

[3] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In USENIX Symposium on In-
ternet Technologies and Systems, 1997.

[4] Garth Gibson and Peter Corbett. pNFS Problem
Statement. IETF Internet Draft, 2004.

[5] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff
Butler, Fay W. Chang, Howard Gobioff, Charles
Hardin, Erik Riedel, David Rochberg, and Jim Ze-
lenka. A cost-effective, high-bandwidth storage ar-
chitecture. In ASPLOS-VIII: Proceedings of the
eighth international conference on Architectural sup-
port for programming languages and operating sys-
tems, pages 92–103. ACM Press, 1998.

[6] Panasas Inc. Product Brochure. In
http://www.panasas.com, 2004.

[7] Shudong Jin, Azer Bestavros, and Arun Iyengar. Ac-
celerating internet streaming media delivery using
network-aware partial caching. In Proceedings of the
22nd International Conference on Distributed Com-
puting Systems (ICDCS’02), pages 153–160, 2002.

[8] Theodore Johnson and Dennis Shasha. 2q: A low
overhead high performance buffer management re-
placement algorithm. In Proceedings of 20th Interna-
tional Conference on Very Large Data Bases (VLDB),
pages 439–450, 1994.

[9] Nimrod Megiddo and Dharmendra S. Modha. Arc:
A self-tuning, low overhead replacement cache. In
Proceedings of the FAST ’03 Conference on File and
Storage Technologies (FAST), 2003.

[10] Jai Menon, David Pease, Robert Rees, Linda
Duyanovich, and Bruce Hillsberg. IBM Storage Tank
- A Heterogeneous Scalable SAN file system. IBM
Systems Journal, 42(2), 2003.

[11] Erik Riedel and Garth Gibson. Understanding cus-
tomer dissatisfaction with underutilized distributed
file servers. In Proceedings of the 5th NASA Goddard
Mass Storage Systems and Technologies Conference,
1996.

[12] Ohad Rodeh and Avi Teperman. zfs - a scalable dis-
tributed file system using object disks. In Proceedings
of IEEE Symposium on Mass Storage Systems, pages
207–218, 2003.

[13] Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and implementa-
tion of the Sun Network Filesystem. In Proceedings
of Summer 1985 USENIX Conference, pages 119–
130, Portland OR (USA), 1985.

[14] Peter Scheuermann, Junho Shim, and Radek Vin-
gralek. Watchman : A data warehouse intelligent
cache manager. In Proceedings of 22th International
Conference on Very Large Data Bases (VLDB), pages
51–62, 1996.

[15] Aameek Singh, Abhishek Trivedi, Krithi Ramam-
ritham, and Prashant Shenoy. PTC: Proxies that
Transcode and Cache in Heterogeneous Web Client
Environments. World Wide Web Journal, 7(1), 2004.

