
Security vs Performance: Tradeoffs using a Trust Framework
�

Aameek Singh
Georgia Institute of Technology

aameek@cc.gatech.edu

Kaladhar Voruganti
IBM Almaden Research Center

kaladhar@us.ibm.com

Sandeep Gopisetty
IBM Almaden Research Center

sandeep@almaden.ibm.com

David Pease
IBM Almaden Research Center

pease@almaden.ibm.com

Linda Duyanovich
IBM Almaden Research Center

lduyanov@us.ibm.com

Ling Liu
Georgia Institute of Technology

lingliu@cc.gatech.edu

Abstract

We present an architecture of a trust framework that can
be used to intelligently tradeoff between security and per-
formance in a SAN file system. The primary idea is to dif-
ferentiate between various clients in the system based on
their trustworthiness and provide them with differing lev-
els of security and performance. Client trustworthiness
reflects its expected behavior and is evaluated in an on-
line fashion using a customizable trust model. We also de-
scribe the interface of the trust framework with an example
block level security solution for an out-of-band virtualiza-
tion based SAN file system (SAN FS [10]). The proposed
framework can be easily extended to provide differential
treatment based on data sensitivity, using a configurable
parameter of the trust model. This allows associating strin-
gent security requirements for more sensitive data, while
trading off security for better performance for less critical
data, a situation regularly desired in an enterprise.

1. Introduction

The designers of security solutions have consistently de-
bated the tradeoffs between levels of security and the re-
sulting performance. Many choose to find a balance be-
tween the two, compromising strict security for better per-
formance. Another practice has been partitioning users into
groups, with each group having different levels of privi-
�
This research (Aameek Singh and Ling Liu) is partially supported

by NSF CNS CCR, NSF ITR, DoE SciDAC, DARPA, CERCS Research
Grant, IBM Faculty Award, IBM SUR grant, HP Equipment Grant, and
LLNL LDRD.

leges (security clearance). In such an approach, a group
of users (say, within a corporate firewall) might get di-
rect access to data and receive unencrypted transmissions,
providing high performance, while another group (outside
the firewall) has to authenticate rigorously and can only
receive encrypted data, with lower levels of performance.
The choice of a solution requires careful planning, analysis
of security threats and the sensitivity of stored data.

Consider the case of network attached storage systems,
like an out-of-band virtualized SAN file system, IBM SAN
FS [10]. In SAN FS, hosts access metadata from dedicated
metadata servers (MDS) and access data directly from the
storage controllers. For providing block level security in
such file systems, capability-based solutions [3, 7, 11, 12]
require each access at the storage controller to be validated
(encryption/decryption of capability). It is conceivable to
design solutions where a certain set of clients1 are not vali-
dated for correctness2, and thus, providing them better per-
formance. However, it is essential to design a dynamic
framework where clients are provided/revoked this trusted
access based on their online behavior. For example, a mali-
cious application can attempt to exploit a trusted client. A
dynamic evaluation system can adjust the trust metric based
on the new incorrect behavior, and thus, dynamically re-
voke the trusted mode access. Similarly using this mecha-
nism, deploying new clients will not require an assignment
to a certain group, rather clients will automatically develop
trustworthiness, and thus, gain trusted mode access.

In this paper, we present such a trust framework for SAN
FS-like storage systems. It is comprised of (1) a trust

1Ideally, privileges are best granted to applications rather than hosts
2after network layer security mechanisms for proper identification of

such clients



model, which dictates the metrics used for evaluation of
client trustworthiness and, (2) trust distribution compo-
nent, which includes the monitoring mechanisms and pro-
vides infrastructure required to evaluate the metrics. We
also describe the design of an block-level security solution
for SAN FS and its interface with the proposed trust frame-
work through a capability-based protocol. Using this com-
bined design, we provide dynamic and configurable trust
evaluation, which allows online differential treatment of
clients and a model that can be can be easily extended to
account for data sensitivity, and thus, providing differential
treatment based on the nature of the data being requested.

Please note that the focus of the paper is not on a se-
cure protocol for out-of-band virtualized storage file sys-
tems. The protocol presented in Section-3 is only used as
an example block-level security mechanism to better illus-
trate the interface with the proposed trusted architecture.
Secondly, SAN FS [10] is also used as a representative
out-of-band virtualized SAN file system. Our design of
the trust framework does not require any additional support
from SAN FS.

The rest of the paper is organized as follows. We be-
gin by discussing trust and client trustworthiness in con-
text of a storage area network file system in Section-2. In
Section-3, we explain the design of the sample capability
based block-level security mechanism for SAN FS. Then in
Section-4, we describe the proposed trust framework inter-
faced with the security mechanism. In Section-5 we discuss
the related work in security solutions for SANFS-like stor-
age systems and also the use of trust frameworks in other
areas like P2P. We finally conclude in Section-6 with a note
on future course of work.

2. Trust and Trustworthiness

The core idea proposed in this paper is dynamic, fine-
grained differential treatment of clients based on their ex-
pected and observed behavior. In this section, we describe
our motivation and brief description of our proposed infras-
tructure.

We find it best to explain our ideas using the security
mechanisms for an out-of-band virtualized SAN file sys-
tem. Various capability based mechanisms [7, 11, 12, 3]
have been proposed to provide secure access for such file
systems. In addition this issue serves as a strong push for
the new paradigm of object based storage [6, 4]. In such an
environment, hosts access storage directly and it is essen-
tial to restrict them to disk blocks authorized by the meta-
data servers. All proposed solutions require per-request
encryption/decryption at the storage controllers, in order
to verify whether the client is authorized to access the re-
quested block. This is where we propose a substantive de-
sign change.

In an enterprise scenario, there are a variety of clients
and applications, which need to be subjected to different
levels of security. Based on that, ideally we can provide
them with differing levels of performance. For example,
an in-house developed application which has been exten-
sively tested and found to always request the blocks that it
has been authorized to access, can potentially be allowed to
access storage without any cryptographic verification (be-
yond establishing the identity). As another example, con-
sider a policy-compliance daemon, which anyway is al-
lowed to access all storage, need not pay the costs of per-
request encryption and decryption. On the other hand, a
user application can not be blindly trusted to access only
storage blocks that it has been authorized to access.

This leads to the idea of providing weaker levels of se-
curity for certain trusted applications in order to provide
them with higher levels of performance. One possible so-
lution is to apriori associate trust values with each applica-
tion that dictates the level of performance. However, this
makes the system extremely vulnerable to malicious activ-
ity. Consider a highly trustworthy application which is not
cryptographically verified for access. Any compromise of
its license/digital signature can allow a malicious user to
access any storage. To alleviate this problem, we propose:

1. A dynamic trust framework which allows for dynamic
accumulation and degradation of trust value based on
sampled observations of application behavior.

2. A trust-but-verify principle, which insures that even
trusted applications are probabilistically and lazily
verified for correct behavior, and trust values adjusted
based on that.

3. Example Block-level Security Design

In this section, we will describe the design of a
capability-based block-level security protocol for SAN FS.
This acts as the underlying security solution which will be
extended to support the trust framework. Our design is
a small variation of various existing protocols [3, 7, 11]
and as mentioned earlier, is only used to illustrate our trust
framework ideas. First, we describe the security model as-
sumed for this design.

3.1. Security Model

For our design, we distinguish between network layer
security and application level security. The network layer
security mechanisms prevent against address spoofing,
packet sniffing or other network layer attacks like man-in-
the-middle. It is a well-researched area and off-the-shelf
standards like IPSec are available to ensure network layer
security. In addition, we also assume standard hashing



techniques like MD5 for ensuring message integrity. In
this paper, we only focus on application level security tar-
geted at our application SAN FS. Other than the network
layer guarantees, the clients are considered untrusted. The
storage controllers and metadata servers are assumed to be
trusted and in physically protected environments and share
a secret key. We also assume data access rights to be as-
sociated with each client application, rather than the client.
This prevents buggy (malicious or otherwise) applications
from accessing storage they are not authorized to access.
As a result, the authentication/authorization is done at a
level of application credential, which can be a secure digi-
tal certificate or any other tamper-proof certification. This
token is securely passed from the application to the client
for authentication and access. We assume this mechanism
to be secure, by appropriate security of the underlying OS
and the interfaces between various application layers.

In the rest of the discussion, unless specifically men-
tioned, a “client” refers to an application credential and
not a host.

3.2. Protocol

In this section, we describe our example security proto-
col.

Compared to the insecure SAN FS, one of the main
modifications in our design is to perform access control
checks at the metadata servers (MDS). The MDS should
be able to do authentication and access-right checks before
giving metadata information to any client. The access can
be denied based on either security/access policies or con-
sistency requirements e.g. another client already holds an
exclusive lock on that file. Such authentication and autho-
rization mechanisms can be implemented based on various
known solutions and we call this layer at the MDS - the
authorization server (AS) layer. Note that it can be im-
plemented outside the scope of the MDS as well, in which
case it is contacted before any metadata information is pro-
vided to the client. At the storage controller side, we use
a security layer called validator which is responsible for
validating client accesses.

Now, when a client requests metadata from the MDS,
the AS checks whether access can be granted to the client.
If yes, the MDS returns metadata along with a token (capa-
bility) of the form:

token � K
�
ID �EL �AR � TS �

where ID is the unique request ID, EL is the block extent
list sent to the client for the request, AR is the access rights
for that metadata (read/write), TS is the timestamp at which
the token was generated and ’ � ’ indicates concatenation.
We use K

� � to indicate encryption using the secret shared

between MDS and storage controllers; it can be a symmet-
ric key or an efficient keyed-hash MAC [5].

When the client sends a block request to the storage con-
troller, it includes this token in the request. The security
layer at the storage controller decrypts the token and checks
whether the block requested is included in the blocks con-
tained in the extent list in the token. Also, if the client is
attempting to write a block, the validator checks whether
the client has appropriate access rights. If it does, access
is granted, else denied. This ensures that the storage con-
troller does not provide access to any client that has not
been specifically authorized by the MDS.

For every successful request, the storage controller
sends back a new token containing an updated timestamp,
thus refreshing the token.

re f reshed token � K
�
ID �EL �AR � TSnew �

where T Snew is the timestamp when the request was served
by the storage controller.

For revocation of this capability, we use a two-step ap-
proach (using ID and TS). We will also analyze revocation
mechanisms in prior research [7, 12].

1. Each request gets a unique integer ID from the MDS.
Whenever a client gives up a lock, the MDS notifies
the storage controller, by sending an explicit revoke
message, indicating the ID whose lock has been re-
voked. Thus, when the client tries to access the stor-
age, the controller first checks whether its ID has been
revoked by the MDS and deny access if that is the
case.

2. To prevent prolonged state maintenance at the stor-
age controller to keep the revocation list, we use a
token-expiration mechanism, which automatically ex-
pires the token after a certain time (τ). This allows
the controller to maintain the revocation list for only τ
units of time. It works as follows: When the client
gives up a lock, the MDS notifies the storage con-
troller of the ID whose lock has been revoked. The
storage controller keeps the ID in its revocation list
for τ units of time. During that duration, if the client
tries to access the storage controller, the controller re-
jects the request, based on the ID being revoked. As
a result, the client will not be able to refresh its token.
After τ units of time, the storage controller dumps the
revocation state for the ID and will still deny client
request since the TS in its token will be older than τ
units and thus, expired.

τ can be set as a system parameter based on workloads
- a larger τ requires the storage controller to maintain
state for a longer period of time, which is feasible for low
load scenarios. The restriction such a mechanism poses



���
	��

������������������
�������
� �
�"!
�#��$ %&�'�"$ �#(�)���*�����

�+�,���"�'-��/.0��(
�"�*�#1212�
�
34�
15$ �������+�

67
8

9

:

;

6'<>=@?0ACB�D�BFE�G*H IKJML'N�B�O�P�B�QRG�SUT
AKVWB�GXI�D�I'GUIYSXT
A#Z\[K]7
<>= V�B'GUI�D�I'G5I^L�_a`4b2cdL'e�f�LhgiNdLhj#kml ]9
<>= N�B�O
P�B'QRGXBFD^noJ T�p&qYL'_a`rb csL�e�fWLhgtNsLRj#kul ]:K<>= c�I'GUIvn�J TFp�qYL'_a`)b2csL�eof/LhgiNdLhj�kow,x*y l ]8
<>=/z H {&BvP�|/J T�p&q ];
<>= N@e
}r~Y_�e�b2c ]

Figure 1. Example Protocol

is that a client has to generate a request within τ units of
time to keep its token refreshed. Notice that pre-fetching
of metadata is also handled since the token contains
information about all the metadata that a client received
from the MDS (and thus has access to) and a successful
request for any single block in the metadata will refresh
the token for the rest of the metadata as well. In addition,
the client can regain access to the data by getting a new
token from the MDS. This can potentially be piggybacked
with the data locking and lease renewal mechanisms [10].

Among other research, the revocation has been handled
in different ways. [7, 12] use object version numbers, while
[3] uses a capability ID like ours and optimizes by group-
ing capabilities and ability to revoke an entire group. In-
corporating grouping in our design, combined with its self-
expiration capabilities approach, can lead to reductions of
revocation traffic and memory utilization at the validator.
The complete secure protocol is shown in Figure-1.

4. Trust Framework

In this section, we first discuss our proposed trusted
mode access mechanism (Section-4.1). Then, we discuss
the kind of trust ratings/models that we use. We will
also describe variations to our proposed infrastructure and
tradeoffs involved between them.

4.1. Trusted Mode Access

In our trust infrastructure, we associate a trust rating
with each application (client credential) and store that in-
formation at the MDS. Now when a client requests meta-
data from the MDS, the MDS checks the trust rating based
on its credential and then according to a policy (as de-
scribed in Section-4.2) can decide to trust the client. The
objective now is to prevent the encryption and decryption

costs at the storage controller for each data block request,
as in the original design, and let the storage controller ser-
vice all requests for the client without checking the validity.

This is accomplished using another new message be-
tween the MDS and the storage controller. Specifically, the
MDS will send a

� T RUST Credential �
message to the storage controller, which indicates to the
controller that the client is fully trusted to access the au-
thorized storage, and thus, whenever the client requests
blocks, the controller should just fulfill the request, with-
out decrypting the token. It also does not need to refresh
the token (preventing encryption). Also, the credential is
assumed to be trusted until the MDS sends an explicit

� REVOKE Credential �
message to the controller.

To prevent clients with good trust ratings from exploit-
ing this mode of access, we use a strict trust model and an
auditing mechanism described in Section-4.2.

We believe that this trusted access mechanism can have
a significant performance impact, since in any enterprise
setting, there will potentially be a number of applications
that are completely trusted or have access to all storage
(monitoring applications, compliance applications). Those
applications can always operate in such a trusted mode,
thus eliminating the need for validating tokens, which re-
quires expensive cryptographic operations. From the stor-
age controller point of view, it only has to keep additional
state for all trusted credentials, which is not a prohibitive
overhead.

Given the general description of how we enable trusted
mode access, we discuss the details of our trust infrastruc-
ture next.



4.2. Trust Infrastructure

The use of trust ratings has been extensively researched
in reputation based IR systems, recommendation systems,
P2P systems and other e-commerce settings [2, 1, 13, 9,
15]. There are two key components of any trust-based in-
frastructure:

� Trust Model: This determines the model of trust as-
sociated with each client, for example, whether any
client has only a binary trust rating - 1 indicating
trusted and 0 indicating not trusted or a continuous
rating in � 0 � 1 � , 1 being most trusted and 0 being least
trusted. It also determines how a measurable metric
is mapped to a trust rating, for example, if client ac-
cesses authorized storage more than 80% of time, it is
trusted (trust rating 1 for the former model), or trust
rating is equal to the percentage of authorized access
(trust rating 0.8 for the latter model).

� Trust Distribution: This component is responsible
for providing the infrastructure that is required to eval-
uate the metrics used by the trust model to compute
the rating. For example, how to calculate number
of successful transactions (for the example models
above) and how to disseminate this information to ap-
propriate agents, which act on these ratings.

First we discuss the trust model component of our de-
sign.

4.3. Trust Model

For the purpose of this discussion, assume that the trust
ratings are somehow available to the MDS. We explain in
the trust distribution component how that is achieved. Also,
for the rest of the discussion, a transaction refers to an ac-
cess of storage at the storage controller.

In our design, we use a [0,1] trust model with each client
having a trust rating from 0 to 1. The trust rating is dynamic
and changes with the behavior of the client. We also set the
probability of a client getting a trusted mode access equal
to its trust rating, e.g. a client with trust rating of 0.6 has a
60% chance of getting a trusted mode access and it retains
the access until its credential is revoked. The revocation
can occur when it no longer has access to the metadata it
requested (e.g. if it gave up the lock) or its trust rating drops
(the exact policy in this case is described below).

In addition, the client applications have different trust
values for each storage controller. This is to prevent a
buggy, but not malicious, application that accesses its stor-
age controller in a correct manner but incorrectly accesses
another storage controller, from being penalized on its cor-
rect accesses. Also this potentially helps us in doing ap-

plication error detection. However, this approach may in-
crease the trust ratings store size and may make it pro-
hibitive when there are a large number of client applica-
tions. In those scenarios, we recommend a single rating
across all controllers.

As discussed earlier, we want to have a strict trust
model, so that clients are strongly discouraged from ac-
cessing storage they are not authorized to access. Also,
it must be relatively tough to build a good trust rating when
starting from scratch. This is required to prevent a mali-
cious application from starting fresh and gaining a good
trust rating easily, and then exploiting it. We achieve both
of these requirements in the following manner. First, we
set a threshold ψ, on the total number of transactions done
before a client can ever be allowed to operate in the trusted
mode. After that threshold is achieved, the client’s prob-
ability of getting a trusted mode access is proportional to
the ratio of the correct transactions to the total number of
transactions. Specifically,

Pr(Trusted Access) = Trust Rating =
0 � #tr � ψ� #ctr

#tr � α #tr � ψ

where #tr is the total number of transactions and #ctr is the
number of correct transactions and 0 � α � 1 is a config-
urable parameter determining the strictness of the model
desired.

The threshold ψ prevents applications from gaining a
good trust rating immediately. After that, the probabil-
ity of getting a trusted mode access is determined by the
probability of the access being correct (equal to the ra-
tio of correct transactions to the total number of transac-
tions). It can be argued that the threshold is achieved by
just doing a large number of transactions, irrespective of
the correctness. However, it is highly likely that a mali-
cious/buggy application can be detected before the thresh-
old is achieved, and in addition, if those transactions were
largely incorrect, the probability of getting a trusted mode
access will be very low (which can be further penalized by
setting low values of α).

As discussed above, once a client gets trusted mode
access, it retains access until it is specifically revoked
by the MDS. We set this revocation policy as follows.
Whenever a client accesses storage it is not authorized to
access, its trust value drops (because the ratio drops) and
that indicates to the MDS to revoke its trust credential (if it
is in trusted access mode). The mechanism of identifying
an unauthorized access is detailed in the trust distribution
component of the architecture.

4.3.1 Extensions

Note that until now the trust rating is only a function of
client behavior. However, in our trust model, it is easy to



adjust the client trust rating for a storage controller based
on the kind of data stored in that controller. For example, if
an organization stores extremely critical data at a particular
storage, it can ensure that the trusted mode access is not
allowed or extremely difficult to get for that storage con-
troller. This can be achieved by simply setting a very small
value of α (α=0 means no trusted mode access except for
absolutely perfect, #ctr = #tr, applications). This provides
an easy extension by incorporating differential treatment
based on data sensitivity, in our design.

Another possible extension is to provide different levels
of trusted mode access. For example, for a moderately
trusted application, we can use smaller keys in encryption
of the capability to provide a better level of performance,
but still with more security than a complete trusted access.

4.3.2 Preventing Deliberate Gaming of the Model

A possible threat to the framework is the deliberate gaming
of the model by malicious applications. For example, with
the knowledge of trust model parameters (the threshold ψ,
α), it is possible that a malicious application can access
storage blocks it is not supposed to access until it gains
trusted mode access and then it attempts to access unau-
thorized blocks. There are number of mechanisms that can
handle this efficiently. Firstly, note that the trusted mode
access is provided only probabilistically and gaining trust
above the threshold does not immediately guarantee trusted
mode access. Secondly, as described later in the trust distri-
bution aspect of the infrastructure, application accesses are
lazily verified and any unauthorized access penalizes the
application by revoking trusted mode access and dropping
the trust value. In addition, there are a number of proposed
mechanisms in trust model research [14, 16] that handle
these scenarios. As an example, a single unauthorized ac-
cess, which is of only one block, can be used to put the ap-
plication in a blacklist preventing any further trusted mode
access or the trust value can be dropped more drastically,
which in conjunction with a low value of α can severely
limit trusted mode access frequency.

4.4. Trust Distribution

Now, we discuss the trust distribution component of our
infrastructure. This details the mechanisms required to ob-
tain the information necessary to compute trust ratings.

Given the above trust model, MDS requires statistics
about the number of transactions and the number of correct
transactions for each client at every storage controller. Dur-
ing a non-trusted mode access, the security layer at the stor-
age controller can easily compute these numbers. Both #tr
and #ctr are maintained as counters, with #tr incremented

for every access and #ctr incremented if the access was
granted after validating the token.

On the other hand, when a client accesses storage in the
trusted mode, the token is not decrypted, and thus, it can not
be immediately ascertained whether the access was correct
or not. In this case, we use an auditing mechanism. Note
that even in trusted mode access, the MDS does give a valid
token for the first time when the client requests the meta-
data. In order to catch any violations during the trusted
mode access, the security layer logs the encrypted token
along with the requested blocks information. An auditing
process will decrypt the token at a later time and deduce
whether the client accessed the right storage. Thus, while
in non-trusted mode the overheads are due to a decryption
and an encryption, the trusted-mode access has the over-
head of logging (extra writes for logs) and auditing which
are amortized by the total number of requests. We believe
that this mechanism will still reduce individual response
times.

In addition, we can extend this auditing mechanism to
be a probabilistic mechanism as well. For example, during
a trusted mode access, a sample of all accesses is actually
logged, thus reducing the overheads. The size of the sam-
ple can be further determined based on client behavior, for
example, the number of times the client accessed storage
it is not authorized to access during a trusted mode access
(indicating malicious behavior). We continue to investigate
this.

The trusted mode access logs have the following struc-
ture:

� Credential � Token � T S1 � Block-1, Block-2, �������
where the credential is the application credential in the

trusted-mode access. The token is the first token, the stor-
age controller received from the client when the trusted
mode access was initiated, T S1 is the timestamp of a first
data request using this token and the blocks are the ad-
dresses of data blocks accessed by the client during the
trusted-mode access. The TS1 entry of the log is to prevent
the scenario where a malicious client sends an expired to-
ken and tries to access the blocks allowed under that token,
even after the access rights were revoked3. The auditing
process later decrypts the token and verifies that the blocks
accessed were allowed under the access rights of that to-
ken. Note that it is possible for a client to use multiple
tokens within a single trusted-mode session. In that case
all those tokens are logged.

The auditing process can either be located at the stor-
age controller using its free CPU cycles or on a different
server (possibly at one of the MDS) which can access the

3If the malicious application accesses blocks outside the extent list in
the token, it will be captured by the auditing process



trusted-mode access logs to update the counts. The meta-
data servers then update the trust ratings in batches peri-
odically. Thus, the trust rating is not modified after every
client transaction, but rather is modified in batches. This
is done to prevent excessive communications between the
controller and the MDS. If the auditing process is located
at the MDS, the total overheads are reduced, since the trust
ratings can be evaluated during the auditing process itself.

It is possible for the storage controller to store the trust
ratings at the controllers itself and probabilistically decide
whether to verify the token or not. The reason we chose the
MDS to store trust ratings was to have flexibility in con-
trolling the trust process. For example, it would be easy
to update the trust model, change the values of ψ and α
parameters or change the policy for granting trusted-mode
access. Also it is easier to perform static trust settings, for
example an administrator can explicitly specify an applica-
tion to be trusted (say, a monitoring application which has
access to all storage) without waiting for it to gather a good
trust rating. Using MDS hosted trust value, we have elim-
inated the need for a controller to have any knowledge of
trust ratings.

5. Related Work

There has been significant amount of work in security
of out-of-band virtualized SAN file systems [3, 7, 11, 12].
These solutions are broadly all capability-based solutions
and differ in details of capability design and revocation
mechanisms. Another approach towards security has been
through the Object Store initiative [6, 8, 4], in which data
is assumed to be accessed in the form of objects with each
object having associated access rights with it. All of these
solutions attempt to provide secure protocols for complete
security under their assumed models. Our work is distin-
guished from the prior research due to the tradeoff mecha-
nisms in which we choose to differentiate between clients
and the data being requested, and give different levels of
performance. The tradeoff mechanism is designed in the
form of a trust framework, utilizing the trust related work
in P2P, and ecommerce [2, 1, 15, 13, 9]

6. Conclusions and Future Work

In this paper, we presented a trust framework which
is used to provide different levels of security and perfor-
mance to distinct clients based on their system behavior.
The trust model is customizable and dynamic to automati-
cally promote and revoke the levels of access to the clients.
In addition, the model can be easily extended to provide
different levels of security based on the nature of data be-
ing requested. We also presented the interface of the trust

framework with a block-level security solution for a SAN
file system. In the future, we plan to empirically evaluate
the framework design for various benchmarks and also in-
crease the efficiency of the trust distribution component.

References

[1] Alfarez Abdul-Rahman and Stephen Hailes. Support-
ing trust in virtual communities. In Proceedings of
the 33rd Annual Hawaii International Conference on
System Sciences (HICSS-33), 2000.

[2] Karl Aberer and Zoran Despotovic. Managing trust
in a peer-2-peer information system. In Proceedings
of the Tenth International Conference on Information
and Knowledge Management (CIKM’01), pages 310–
317. ACM Press, 2001.

[3] Marcos Kawazoe Aguilera, Minwen Ji, Mark Lillib-
ridge, John MacCormick, Erwin Oertli, David G. An-
dersen, Michael Burrows, Timothy Mann, and Chan-
dramohan A. Thekkath. Block-level security for
network-attached disks. In Proceedings of the FAST
’03 Conference on File and Storage Technologies,
2003.

[4] Alain Azagury, Vladimir Dreizin, Michael Fac-
tor, Ealan Henis, Dalit Naor, Noam Rinetzky,
Ohad Rodeh, Julian Satran, Ami Tavory, and Lena
Yerushalmi. Towards an object store. In Proceedings
of the 20 th IEEE/11 th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSS’03),
pages 165–176, 2003.

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk.
Keying hash functions for message authentication. In
Proccedings of Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Confer-
ence, pages 1–15, 1996.

[6] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff
Butler, Fay W. Chang, Howard Gobioff, Charles
Hardin, Erik Riedel, David Rochberg, and Jim Ze-
lenka. A cost-effective, high-bandwidth storage ar-
chitecture. In ASPLOS-VIII: Proceedings of the
eighth international conference on Architectural sup-
port for programming languages and operating sys-
tems, pages 92–103. ACM Press, 1998.

[7] Howard Gobioff, Garth Gibson, and Doug Tygar. Se-
curity for network attached storage devices. Technical
Report CMU-CS-97-185, 1997.

[8] T10 http://www.t10.org. InterNational Committee on
Information Technology Standards (INCITS), 2004.



[9] Sepandar D. Kamvar, Mario T. Schlosser, and Hector
Garcia-Molina. The eigentrust algorithm for reputa-
tion management in p2p networks. In Proceedings of
the Twelfth International World Wide Web Conference
(WWW), 2003, pages 640–651, 2003.

[10] Jai Menon, David Pease, Robert Rees, Linda
Duyanovich, and Bruce Hillsberg. IBM Storage Tank
- A Heterogeneous Scalable SAN file system. IBM
Systems Journal, 42(2), 2003.

[11] Ethan L. Miller, Darrell D. E. Long, William E.
Freeman, and Benjamin Reed. Strong security for
network-attached storage. In Proceedings of the FAST
’02 Conference on File and Storage Technologies,
pages 1–13, 2002.

[12] Benjamin C. Reed, Edward G. Chron, Randal C.
Burns, and Darrell D. E. Long. Authenticating
network-attached storage. IEEE Micro, 20(1):49–57,
2000.

[13] Aameek Singh and Ling Liu. Trustme: Anonymous
management of trust relationships in decentralized
p2p systems. In Proceedings of the 3rd International
Conference on Peer-to-Peer Computing (P2P 2003),
pages 142–149, 2003.

[14] Mudhakar Srivatsa, Li Xiong, and Ling Liu. Sguard:
A dependable reputation mechanism for decentral-
ized networks. In Technical Report, College of Com-
puting, Georgia Tech, 2003.

[15] Li Xiong and Ling Liu. A reputation based trust
model for peer-to-peer ecommerce communities. In
Proceedings of the IEEE International Conference on
Electronic Commerce (CEC 2003), pages 275–284,
2003.

[16] Shanyu Zhao and Virginia Lo. Result verification
and trust-based scheduling in open peer-to-peer cycle
sharing systems. In Technical Report, CIS, University
of Oregon, 2004.


