
Quality-Aware Distributed Data Delivery
for Continuous Query Services

Buğra Gedik
CERCS, College of Computing
Georgia Institute of Technology

Atlanta, GA, USA

bgedik@cc.gatech.edu

Ling Liu
CERCS, College of Computing
Georgia Institute of Technology

Atlanta, GA, USA

lingliu@cc.gatech.edu

ABSTRACT
We consider the problem of distributed continuous data delivery ser-
vices in an overlay network of heterogeneous nodes. Each node in
the system can be a source for any number of data streams and at the
same time be a consumer node that is receiving streams sourced at
other nodes. A consumer node may define a filter on a source stream
such that only the desired portion of the stream is delivered, minimiz-
ing the amount of unnecessary bandwidth consumption. By heteroge-
neous, we mean that nodes not only may have varying network band-
widths and computing resources but also different interests in terms
of the filters and the rates of the data streams they are interested in.
Our objective is to construct an efficient stream delivery network in
which nodes cooperate in forwarding data streams in the presence of
constrained resources. We formalize this distributed stream delivery
problem as an optimization one by starting with a simple setup where
the network topology is fixed and the node bandwidth characteris-
tics are known. The goal of the optimization is to find valid delivery
graphs with minimum bandwidth consumption. We extend this prob-
lem formulation to QoS-aware stream delivery, in order to handle the
bandwidth constrained cases in which unwanted drops and delays are
inevitable. We provide a classification of delivery graph construc-
tion schemes, and in light of this classification we develop pragmatic
quality-aware stream delivery (QASD) algorithms. These algorithms
aim at constructing efficient stream delivery graphs in a distributed
setting, where global knowledge is not available and network charac-
teristics are not known in advance. We introduce a set of evaluation
metrics and provide experimental results to illustrate the effectiveness
of our proposed algorithms under these metrics.

1. INTRODUCTION
Data streams, that are time ordered series of events or readings,

are becoming increasingly common in today’s data processing tasks.
This is fostered by the proliferation of continuously changing on-line
information sources, which in turn is boosted by the advances in web
services, global communications, and sensing technologies. Continu-
ous query (CQ) systems [22, 10, 16] that can evaluate standing queries
over data streams have created a new paradigm in data management.
The resulting Data Stream Management Systems (DSMSs) [1, 3, 9,
20] are expected to parallel, in the data stream domain, the success of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006 June 27-29, 2006, Chicago, Illinois, USA
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

traditional DBMSs in managing stored data. Examples of data streams
include stock tickers in financial services, link statistics in networking
and telecommunications, sensor network readings in environmental
monitoring and emergency response, and satellite and live experimen-
tal data in scientific computing.

Recent advances in peer-to-peer (P2P) and Grid computing have
stimulated more research on distributed CQ systems in which both
data sourcing and processing are distributed among the nodes, such
as GridDB [15], PIER [12], and StreamGlobe [14]. In these kinds of
systems, a data stream sourced at one node is usually of interest to a
number of other nodes that are the consumers of the stream. Supply
of data streams to all interested nodes in a distributed CQ system con-
stitutes the distributed stream delivery problem. Nodes in the system
can source any number of data streams, and each stream has an asso-
ciated schema. For example, a node can be the source for a scientific
data stream from a satellite or a sensor data stream from a local sen-
sor network deployment. A consumer node can subscribe to multiple
streams and the source nodes that are producing these streams are as-
sumed to be known to the consumer node (i.e., the discovery of data
sources is a separate problem and is beyond the focus of this paper).
A consumer node interested in receiving a stream may define a filter
on the source stream so that only the desired portion of the stream is
received and the bandwidth consumption is minimized.

To understand the critical factors that affect the performance of such
a distributed data delivery network, we consider two extreme scenar-
ios: (1) In a centralized stream delivery solution, each node can sim-
ply receive the stream directly from the source node. This solution,
however, results in putting too much responsibility on the source node
and may consume all of the bandwidth available to it. (2) On the other
hand, having a sequential chain based solution in which a node for-
wards the stream it receives to a single other node, does not work
either. The latter approach will cause high overall bandwidth con-
sumption when the nodes are interested in non-overlapping parts of
the streams. This analysis tells us that the communication bandwidth
is a critical factor. As a result, we are interested in designing a stream
delivery system in which all nodes receive their interested streams
(possibly through multiple hops) and at the same time the solution is
efficient in terms of the overall bandwidth consumption.

Building an optimal stream delivery configuration may not always
be possible, mainly due to the insufficient network bandwidth re-
sources, which is usually a consequence of high stream rates, large
number of consumers, or low level of overlap in filter specifications.
In such cases unwanted drops and delays are inevitable. Delays in
stream delivery are introduced due to communication and processing
delays. In general, larger number of forwarding steps tends to increase
the delay. Drops are introduced due to insufficient bandwidth. For in-
stance, a node may be forced to forward data at a rate higher than
it can forward based on the available bandwidth, in which case the
excessive load is shed by dropping tuples randomly from the stream.

We assume that the nodes do not buffer the streams for the benefit
of downstream nodes. This is a reasonable assumption since such
buffering will only defer the time at which the drops will occur and
does not change the fact that drops are inevitable when the resources
are not sufficient to provide complete delivery of streams to all nodes.
Nevertheless, in most CQ applications both drops and delays are tol-
erable [21, 2]. This analysis tells us that the application level quality
of service (QoS) is another critical factor in designing effective stream
delivery networks.

Figure 1 depicts a partitioning of the application space based on
tolerance with respect to delays and drops. At one extreme, there
are applications that require both timely and complete data delivery,
such as real-time intrusion detection. On the other extreme, there
are applications that can tolerate both delays and drops in data de-
livery, such as archiving stream statistics, e.g. storing average hourly
precipitation data from a stream of per-minute precipitation readings.
As a result, an effective stream delivery system should take into ac-
count the requirements of applications in terms of delay and drop. In
this work, we capture these requirements by using quality-of-service
(QoS) functions that are attached to filters. These functions are spec-
ified by the nodes when their filters are created, according to the re-
quirements of the applications running on the nodes.

delay sensitiveness

delay is less tolerable
drop is more tolerable

delay is less tolerable
drop is less tolerable

delay is more tolerable
drop is more tolerable

delay is more tolerable
drop is less tolerable

ex: archival for offline
data analysis such as
logging scientific satellite
data

ex: real-time data
analysis such as
intrusion detection

ex: archival of stream
statistics such as storing
average hourly
precipitation

ex: real-time statistics
such as computing
aggregates over traffic
streams

d
ro

p
 s

e
n

s
it

iv
e

n
e

s
s

Figure 1: Stream delivery applications

There are several challenges in building an effective stream delivery
graph. First, we should be able to exploit the similarities in different
filters in order to create delivery paths that are optimized in terms of
grouping similar filters, thus having minimum bandwidth consump-
tion. Second, we should reduce the amount of drops in stream delivery
by taking into account the stream rates, the tuple sizes of filter applied
streams, and the relation of these factors to the bandwidth resources
of the nodes. Third, we should integrate different quality of service
requirements into the process of constructing the distributed data de-
livery network, so that filters with less stringent QoS requirements can
be located on resource constrained regions of the delivery graph. Last
but not the least, we need efficient and practical algorithms that are
on-line, distributed, and work in the absence of pre-knowledge about
the resource availability of the nodes. This paper makes three major
contributions toward addressing these challenges:
− We introduce important concepts related with filters, streams, and
links, and use these concepts to formally define valid stream delivery
graphs. This definition leads to the formulation of distributed stream
delivery as an optimization problem, where the aim is to find valid
delivery graphs with minimum bandwidth consumption. This formu-
lation can be used to construct optimal stream delivery graphs for sys-
tems with fixed topology and known bandwidth characteristics.
− We extend our problem formulation to QoS-aware stream delivery

in order to handle the bandwidth constrained cases where unwanted
drops and delays are inevitable. This includes introducing per-filter
QoS functions, formulating delay and drop rates for given delivery
graph configurations, and modifying the definition of efficient deliv-
ery graphs to integrate QoS characteristics of the filters.
− We provide a classification of delivery graph construction schemes;
and in light of this classification, we develop pragmatic quality-aware
stream delivery (QASD) algorithms to construct efficient stream de-
livery graphs. These algorithms make no assumptions about the pre-
knowledge of node bandwidth characteristics. We introduce a set of
evaluation metrics and study the effectiveness of our algorithms under
these metrics through simulation-based experiments.

2. DISTRIBUTED STREAM DELIVERY
In this section, we give an overview of our solution, describe the

fundamentals of distributed stream delivery, and introduce the nota-
tion used.

2.1 Overview
At the core of the stream delivery problem, lies the assumption that

the nodes cooperate in forwarding streams. However, a node will only
receive and forward streams for which it has a filter registered. As a
result, a node can receive a stream from either the source node, or
from some other node that is already receiving the stream. More-
over, the stream can already be filtered when it is received by a node,
with the condition that the filter registered by the node is applicable
over the filters applied to the stream previously, i.e. the portion of the
stream that the node is interested in receiving is a subset of what the
node is receiving. This concept of filter applicability, together with
the concept of amortized size which captures the bandwidth require-
ment of streams after a set of filters are applied on them, form a basis
to build an effective stream delivery graph. They facilitate assessing
the feasibility of a given delivery graph, as well as its effectiveness in
terms of bandwidth consumption. Using these concepts, we formalize
the problem as an optimization one in Section 3.

When the resources are insufficient to provide complete and timely
stream delivery to every node, solutions which can gracefully degrade
are needed. In order to support this, we attach a QoS function to
each filter. This function specifies the quality of the stream delivery
for its associated filter for given drop and delay values. With these
functions in place, the aim is to maximize the overall quality of stream
delivery which is defined as an aggregate of the QoS specifications of
the filters. We formalize the QoS-aware stream delivery problem in
Section 4.

In practice, stream delivery graph construction algorithms are on-
line and do not usually have access to knowledge about bandwidth
resources of the nodes. In Section 5, we provide simple yet ef-
fective algorithms for constructing stream delivery graphs. We de-
scribe feedback-based algorithms that can learn resource availability
of nodes on-the-fly as the delivery graph is constructed, as well as
less complex algorithms that do not use feedback but still generate
delivery graphs that are better than the naı̈ve approaches.

2.2 Fundamentals and Notation
Nodes and Streams: We denote the set of nodes by P , defined as
{pi : 1 ≤ i ≤ |P |}, where pi is the ith node. We denote the set of
streams by S, defined as

⋃|P |
i=1 Si. Here Si denotes the set formed by

the streams that have node pi as their source, defined as Si = {sj
i :

1 ≤ j ≤ |Si|}, where sj
i is the jth stream sourced at node pi. Each

stream is a time ordered (possibly unbounded) set of tuples of equal
size, where size of a tuple in stream sj

i is denoted by ς(sj
i). Streams

can have different rates and we denote the rate of stream sj
i by λ(sj

i).

Filters: A node can register at most one filter on a stream. This filter
is used to specify the interested portion of the stream. Filters can
specify selection and projection operations over the tuples of a stream.
We denote the set of filters by Q, defined as Q =

⋃
s

j
i∈S

Qj
i . Here

Qj
i denotes the set of filters registered on stream sj

i and is defined as
{qj

i,k : pk ∈ P has a filter registered on sj
i}. In other words, qj

i,k is

the filter registered by pk on sj
i . For notational convenience, in the

rest of the paper, we will threat a set of filters registered on the same
stream also as a filter. Concretely, a set Q′ ⊂ Qj

i is a filter with
the following properties: Its selection operator is a disjunction of the
selection operators of the individual filters and its projection operator
is a union of the projection operators of the individual filters. An
empty set of filters {} is assumed to suppress all tuples from a stream.

Filter Applicability: We say that a filter Q′ ⊂ Qj
i is applicable over

another filter Q′′ ⊂ Qj
i , denoted as Q′ � Q′′, if and only if the

selection and projection operators of Q′ are as restrictive as or more
restrictive than Q′′’s selection and projection operators, respectively.
Concretely, Q′ � Q′′ means that if a tuple passes the filter Q′, then it
must also pass Q′′ such that the resulting filtered tuple of Q′′ contains
at least the same set of attributes present in the filtered tuple of Q′.

Amortized Size: Size of a tuple after applying a filter Q′ ⊂ Qj
i is

denoted by ς(Q′), whereas the selectivity (the fraction of tuples that
pass the filter) of the filter is denoted by σ(Q′). Then we define the
amortized size of a tuple after applying filter Q′ as σ(Q′) · ς(Q′),
denoted by Φ(Q′). It can be thought of as the size of a tuple after
applying a filter, divided by (amortized over) the average number of
tuples we need to push through the filter to pass one tuple.

Links: We denote the set of communication links between the nodes
by L, defined as {li,j : pi, pj ∈ P, pi and pj are connected}. We
denote the capacity (bandwidth) of a link li,j by κ(li,j). Although
this way of modeling the connections between the nodes is appropriate
for small scale systems with explicit knowledge of the physical links
between the nodes, for large scale P2P overlays where any two node
can connect to each other, it is more meaningful to model upload and
download bandwidths of nodes. In this latter case there exists a logical
link li,j between any two nodes pi and pj . When the logical link
model is considered, we use κ↑(pi) and κ↓(pi) to denote the upload
and download bandwidths of node pi and do not use link bandwidths
for expressing bandwidth requirements. The formalizations in the rest
of the paper apply to both physical and logical link models, except
when stated otherwise.

Notation Meaning

pi ith node
sj

i jth stream sourced at pi

λ(sj
i) rate of stream sj

i

qj
i,k filter of pk on sj

i

Q′ � Q′′ Q′ is applicable over Q′′

Φ(Q′ ∈ Qj
i) amortized size of a Q′ applied sj

i tuple
li,j physical or logical link between pi and pj

κ↑(pi), κ
↓(pi) upload and download bandwidths of node pi

u,vQj
i set of filters applied on sj

i while being
forwarded from pu to pv

u,vxj
i,k binary variable denoting whether qj

i,k is
applicable over u,vQj

i or not
Ck

i,j QoS function for qj
i,k

rj
i,k, dj

i,k drop and delay experienced by qj
i,k

Table 1: Some important notations used throughout the paper

3. BASIC PROBLEM FORMALIZATION
To formulate the distributed data delivery problem we have outlined

so far, we first consider the class of network of nodes over which a
valid stream delivery graph can be found. In the next section we will
relax this assumption and extend the problem formulation to allow
limited communication bandwidth. We list some of the important no-
tations used throughout the paper in Table 1.

Constructing a stream delivery graph requires defining which nodes
should forward which streams to which other nodes by applying
which filters. To formalize this assignment problem, we define a set of
binary variables and four rules on them. These rules should hold for a
particular assignment of these variables so that the resulting delivery
graph is valid.
Filter assignment variables: We define a binary variable u,vxj

i,k if and

only if lu,v ∈ L and qj
i,u, qj

i,v, qj
i,k ∈ Qj

i . Simply stated, we define

u,vxj
i,k if and only if nodes pu and pv are connected by a link and

nodes pu, pv , pk all have filters registered on sj
i . When the variable

u,vxj
i,k takes the value of 1, it means that qj

i,k is applicable over the
filter that is applied to the stream sent from pu to pv over the link lu,v .
Once the filter assignment variables are set, the filter applied to sj

i

when it is being sent from pu to pv over the link lu,v can be computed
as {qj

i,k : u,vxj
i,k = 1}, denoted by u,vQj

i .

3.1 Valid Delivery Graphs
Certain conditions about filter assignment variables have to be sat-

isfied, so that we have a valid stream delivery graph. Below, we list
these four conditions.
(1) Filter Satisfaction Condition states that for a filter qj

i,k registered

by node pk on stream sj
i , there should exist a link lu,k connecting pu

to node pk such that qj
i,k is applicable over the set of filters applied to

sj
i while it is being forwarded to pk from pu. It also states that there

should not be any other link on which pk receives sj
i . In other words,

receiving a stream from multiple nodes and performing synchroniza-
tion is not considered. Formally:

∀qj
i,k ∈ Q, ∃lu,k ∈ L s.t.(

qj
i,k � u,kQj

i ∧ ¬∃ lv,k ∈ L
v �=u

s.t. v,kQj
i �= ∅

)

(2) Stream Forwarding Condition states that, if a stream sj
i is being

forwarded on a link lu,v from node pu to pv , then either pu is the
source of the stream (u = i) or there exists a node pw that is for-
warding the stream to pu over the link lw,u such that the set of filters
applied on the stream while it is being forwarded to pv from pu is
applicable over the set of filters applied on the stream while it is be-
ing forwarded to pu from pw. Moreover, pv should have a filter qj

i,v

registered on sj
i . Formally:

∀sj
i ∈ S, ∀lu,v ∈ L, u,vQj

i �= ∅ →((
u = i ∨ ∃lw,u s.t. u,vQj

i � w,uQj
i

) ∧ qj
i,v ∈ Qj

i

)
(3) Bandwidth Requirement Condition for the physical model simply
states that the bandwidth consumed on a link due to stream delivery
should not exceed the link’s capacity. Formally:

∀ lu,v ∈ L
u<v

, κ(lu,v) ≥
∑
s

j
i∈S

(
λ(sj

i) ·
(
Φ(u,vQj

i) + Φ(v,uQj
i)
))

Bandwidth requirement for the logical model simply states that the
total bandwidth consumed by a node due to forwarding streams should
not exceed the node’s upload capacity, whereas the total bandwidth
consumed due to receiving streams should not exceed the node’s
download capacity. Formally:

∀pu ∈ P, κ(p↓
u) ≥

∑
lv,u∈L

∑
s

j
i∈S

(
λ(sj

i) · Φ(v,uQj
i)
)

∀pu ∈ P, κ(p↑
u) ≥

∑
lu,v∈L

∑
s

j
i∈S

(
λ(sj

i) · Φ(u,vQj
i)
)

(4) No Loop Condition states that the setting of the filter assignment
variables should not result in a loop in the delivery of streams, ensur-
ing that filters are served from the source of a stream after possibly
multiple forwarding steps:

∀sj
i ∈ S, ∀P ′ ⊂ {pk ∈ P : qj

i,k ∈ Q},
|{pu ∈ P ′ : ∃pv ∈ P s.t. v,uQj

i �= ∅}| < |P ′|

3.2 Effective Delivery Graphs
To define what we mean by an effective delivery graph, we intro-

duce a cost function. Our cost function is the total bandwidth con-
sumed in the network for delivering streams to all nodes. This can be
calculated by summing up for each node and for each link the band-
width consumed on that link for forwarding the stream, i.e., the rate
of the stream times the amortized size of the stream after the filters
associated with the link are applied. Thus, the aim is to find a valid
delivery graph with the minimal cost. Formally, the objective is:

min
∑
s

j
i∈S

∑
lu,v∈L

(
λ(sj

i) · Φ(u,vQj
i)
)

In effect, we have converted the problem into an assignment prob-
lem, where the aim is to assign values to binary variables u,vxj

i,k,
such that the resulting assignment satisfies the above listed conditions
and the cost function defined above is maximized. This problem can
be shown to be an integer programming (IP) problem, although the
conversion of the listed conditions to linear constraints is not straight-
forward. IP is known to be an NP-hard problem [17].

Example Delivery Graphs
Figure 2 shows two example stream delivery graphs. In the examples
there are two streams, s1

1 and s1
5, and 5 filters that are q1

5,3, q1
5,4, q1

1,2,
q1
1,3, and q1

1,5. We have q1
5,3 � q1

5,4 and q1
1,5 � q1

1,3. In the first
example, q1

5,4 applied s1
5 is served directly from p5 to p4, where q1

5,3

applied s1
5 is forwarded to p3 from p4, since q1

5,3 is applicable over
q1
5,4. Note that this is better than serving q1

5,3 applied s1
5 to p3 directly

from p5, because the link l3,5 is already used to forward q1
1,5 to p5

from p3 and in case we have κ(l3,5) < λ(s1
1) · Φ(q1

1,5) + λ(s1
5) ·

Φ(q1
5,3), this alternative is not valid. This shows that forwarding can

help us to find valid delivery graphs. More importantly, it can also
help decrease the overall bandwidth consumption. We illustrate this
by comparing the way s1

1 is delivered in the two examples. In the first
example, q1

1,3 applied s1
1 is sent to p3 from p1 and q1

1,3 is satisfied.
Moreover q1

1,5 applied s1
1 is forwarded to p5 from p3 to satisfy q1

1,5.
This is possible since q1

1,5 is applicable over q1
1,3. Moreover, q1

1,2

applied s1
1 is forwarded to p2 from p1. In the second second example,

an alternative is shown, where instead of forwarding q1
1,5 applied s1

1

from p3, we forward it from p2. In this alternative {q1
1,2, q

1
1,5} applied

s1
1 is sent to s2 from s1, so that q1

1,5 can be satisfied from p2. Note
that the first example is more bandwidth efficient, since Φ(q1

1,2) <
Φ({q1

1,2, q
1
1,5}). The advantage of the first example comes from the

fact that q1
1,5 is applicable over q1

1,3 and thus routing it through p3 is
more bandwidth efficient. If we did not have q1

1,5 � q1
1,3, then we

would have had to forward {q1
1,3, q

1
1,5} applied s1

1 to p3 from p1 and
the bandwidth efficiency of the two alternatives would have depended
on the comparison between Φ(q1

1,2) + Φ({q1
1,3, q

1
1,5}) and Φ(q1

1,3) +
Φ({q1

1,2, q
1
1,5}).

4. QUALITY-AWARE STREAM DELIVERY

p1 p2

p3

p4 p5

l1,3 l2,3

l3,4 l3,5

s1
1

s5
1 q1,5

1

q1,2
1

l1,2

l4,5

q1,3
1

q5,3
1

q5,4
1

{q
1,5 }

1

{q5,4}
1

{q 5,3
} 1

{q
1,3 }

1

{q5,3} 1 {q5,4}, 1 {q1,5} 1 {q1,3} 1

p1 p2

p3

p4 p5

l1,3 l2,3

l3,4 l3,5

s1
1

s5
1 q1,5

1

q1,2
1

l1,2

l4,5

q1,3
1

q5,3
1

q5,4
1

{q1,2}
1

{q
1,5 }

1

{q5,4}
1

{q 5,3
} 1

{q
1,3 }

1

An alternative

{q1,2, q1,5}
1 1

l2,5

Figure 2: Example stream delivery graphs

The problem formulation we have described so far only works for
scenarios where a feasible solution, that is a valid stream delivery
graph, can be found. If no such graph can be found, we are left
without a solution that can deliver streams to all consumer nodes. To
solve this, we extend our problem formulation to cover the scenarios
where drops in the stream delivery graph, as well as delays, are tolera-
ble and are captured by application-supplied QoS specifications. This
extended formalization leads us to the quality-aware stream delivery
problem. The main idea is to remove the bandwidth constraint so that
the set of valid delivery graphs also includes the ones with drops in
the received streams. Furthermore, the objective is also modified, so
that the aim is to maximize the overall QoS in stream delivery. Since
the QoS functions are defined based on drops and delays, this requires
us to formulate the perceived drop and delay for each filter, for a given
configuration of the stream delivery graph.

4.1 Extended Problem Formalization
Delays and Drops: We denote the delay introduced by a link (either
physical or logical) li,j ∈ L with δ(li,j) and the average process-
ing delay introduced by a node pu ∈ P with δ(pu). The processing
delay δ(pu) may depend on the processing capacity of the node pu

and the amount of processing that it has to perform before forward-
ing streams. Recall that, node pu may be applying filters on certain
streams before forwarding them to other nodes. We do not attempt

to model different components of the processing delay and their de-
pendence on the stream delivery graph. For our simulation studies,
we assume δ(pu) = δ∗, ∀pu ∈ P . The average delay on a stream
tuple as perceived by a filter qj

i,k ∈ Q is denoted by dj
i,k, whereas the

average tuple drop rate perceived by qj
i,k is denoted by rj

i,k. Tuple
drop rate is a value in the range [0, 1], where 0 denotes no drop and 1
denotes complete drop.

Quality of Service Specifications: We assume that each filter qj
i,k has

an associated QoS specification function Cj
i,k that assigns a quality

measure to stream delivery graph’s performance with respect to satis-
fying the filter qj

i,k given the delay dj
i,k and the drop rate rj

i,k associ-

ated with qj
i,k in the stream delivery graph. We have Cj

i,k(rj
i,k, dj

i,k) ∈
[0, 1], where 0 denotes the worst quality and 1 denotes the best quality.
The shape of the function Cj

i,k is filter dependent.
An example QoS function can be as follows:

Cj
i,k(r, d) =

⎧⎪⎨
⎪⎩

1 r ≤ 0.2, d ≤ 1

0.5 r ≤ 0.2, d > 1

0.1/r otherwise

This function specifies that the QoS is maximal (i.e., = 1) when the
drop rate is less than or equal to 0.2 and the delay is less that or equal
to 1 seconds. If the drop rate is less than or equal to 0.2 but the delay
is higher than 1 seconds, then the QoS is set to 0.5. In the rest of the
cases, the QoS is set to a value less than 0.5 depending only on the
drop rate and being inversely proportional to it.

Updated Problem Definition: Since we no more impose the band-
width requirement in forming the stream delivery graph, we penalize
the high drop and delay in stream delivery by integrating the quality
measure into our cost function, as follows:

max
∑

q
j
i,k

∈Q

log Cj
i,k(rj

i,k, dj
i,k)

Filter satisfaction condition is met

Stream forwarding condition is met

No loop condition is met

In our new problem formulation, the goal is to maximize the mean
(geometric) of the quality measures of different filters. The use of
geometric mean in the cost function (i.e., maximizing the sum of logs)
is aimed at penalizing solutions which result in very small or zero
quality for certain filters.

With proper selection of QoS functions, this problem can be shown
to be a binary quadratic programming problem. Quadratic program-
ming is known to be an NP-hard problem [23]. The problem can be
solved using popular optimization techniques such as simulated an-
nealing. However, we are more interested in practical on-line solu-
tions that are more in-line with the assumptions of a real-world sys-
tem, where the details about the network characteristics are not glob-
ally known. We discuss these heuristic solutions, later in Section 5.

4.2 Delay and Drop Calculation
We now describe how to compute drop rate rj

i,k and delay dj
i,k val-

ues for a filter qj
i,k in a given stream delivery graph. For ease of ex-

position we use f j
i,k to denote the node that is forwarding a (filter

applied) stream sj
i to pk. Note that in a valid stream delivery graph,

based on the stream forwarding condition, there can not be more than
one nodes that are forwarding parts of the same stream to a node.
Thus, for qj

i,k ∈ Q we define f j
i,k = u, such that u,kQj

i �= ∅.
Delay computation is straight forward:

dj
i,k =

{
0 if k = i

δ(lu,k) + δ(pu) + dj
i,u otherwise

, where u = f j
i,k

Simply, we sum up the link and processing delays among the delivery
path from the source pi to sink pk for filter qj

i,k.
The computation of drop rate of filters in a given delivery graph is

more involved, but is crucial to evaluate the quality of a given solution.
The complexity comes from the fact that drop rate for a filter depends
on other filters, since the bandwidth is shared with source streams
of other filters. Here we provide two different formulations for drop
rate, one for physical and one for logical model, that can be used to
iteratively solve and calculate the drop values, rj

i,k for each qj
i,k ∈

Q. The formulation is used to calculate rj
i,k, which is the fraction of

tuples in the qj
i,k filtered stream sj

i that reaches node pk. We simply

have rj
i,k = 1 − rj

i,k.

For Physical model: rj
i,k = rj

i,w·

min

⎛
⎜⎜⎝1,

κ(lw,k)∑
sv

u∈S

(
λ(sv

u) ·
(

Φ(w,kQv
u) · rv

u,w+
Φ(k,wQv

u) · rv
u,k

))
⎞
⎟⎟⎠

, where w = f j
i,k (1)

If we have w = f j
i,k then rj

i,k can be expressed as rj
i,w times the

permeability of the link lw,k. The permeability of a link is the ratio of
the number of stream tuples it successfully carries trough compared
to the total number of stream tuples that are pushed through the link,
with the assumption that any excessive load is randomly shed and
shedding is uniform among different streams. For instance if a link
has a capacity 2 units and we have three streams being pushed through
it with data rates 1, 1, and 2 units, then the permeability of the link is
2/(1 + 1 + 2) = 0.5. The assumption is that each stream observes
the same drop rate, i.e. the link carries through 0.5 fraction of all
three streams. To calculate the permeability of the link, in addition
to the link capacity, we need to know the total rate of stream data
being pushed through the link. The latter can be formalized as the
denominator in Equation 1 for the link lw,k, where λ(sv

u) ·Φ(w,kQv
u)

is the data rate for the w,kQv
u applied sv

u forwarded from pw to pk.
However, since the tuples of sv

u may have been dropped earlier in
the path, the actual data rate is adjusted by rv

u,w, i.e. by the fraction
of stream tuples available to node pw for forwarding them to node
pk. Given this derivation, rj

i,k is calculated as given in Equation 1,
by comparing the link capacity to the total rate of stream data being
pushed through the link.

For Logical model: rj
i,k = rj

i,w·

min

(
1,

κ(p↑
w)∑

sv
u∈S

∑
lw,z∈L

(
λ(sv

u) · Φ(w,zQv
u) · rv

u,w

) ,
κ(p↓

k)∑
sv

u∈S

∑
lz,k∈L

(
λ(sv

u) · Φ(z,kQv
u) · rv

u,z

)
)

, where w = f j
i,k (2)

The derivation for the logical model is similar. Instead of link capac-
ities, we employ upload and download bandwidths to compute rj

i,k.

Concretely, if we have w = f j
i,k, then rj

i,k can be expressed as rj
i,w

times the permeability of logical link lw,k. The permeability of link
lw,k is the ratio of the number of stream tuples that reach pk from
pw compared to the total number of stream tuples that are destined
to pk from pw, with the assumption that any excessive load is ran-
domly shed and shedding is fair among different streams. However
the amount of shedding (drop) is not only dependent on the upload
bandwidth of pw, but also on download bandwidth of pk. The total
rate of stream data that pw pushes to other nodes can be calculated as∑

sv
u∈S

∑
lw,z∈L

(
λ(sv

u) · Φ(w,zQv
u) · rv

u,w

)
and can be compared

with the upload bandwidth of pw, i.e. κ(p↑
w), to compute one upper

bound for permeability of logical link lk,w. Additionally, the total rate
of stream data that is pushed to pk from other nodes can be calculated
as
∑

sv
u∈S

∑
lz,k∈L

(
λ(sv

u) · Φ(z,kQv
u) · rv

u,z

)
and can be compared

with the download bandwidth of pk, i.e. κ(p↓
k), to compute another

upper bound for permeability of link lw,k. As shown in Equation 2,
the minimum of these two bounds is used to calculate rj

i,k. In the rest
of the paper, we base our discussions on the logical link model.

5. STREAM DELIVERY ALGORITHMS
In this section, we describe pragmatic algorithms for building

stream delivery graphs in a distributed setting, where nodes do not
have global knowledge about the network characteristics. We con-
sider stream delivery graph construction as an assignment problem.
Concretely, when a node has a filter defined on a stream, it contacts
a control point that is responsible for that stream and requests to join
the delivery graph, or more precisely to the subgraph formed by the
nodes that have filters defined on the same stream and are already re-
ceiving the stream. The latter forms a tree, called the delivery tree of
the stream. Upon receiving a request to join the tree, the control-point
assigns a parent node to the requester node. The algorithm used by the
control node to make this assignment, which we call the construction
algorithm, plays a key role in the effectiveness of the overall stream
delivery graph and is the main focus of this section.

Once a parent node is assigned to a requester node, the control-
point checks its locally stored copy of the delivery tree to see whether
an expansion is required or not. An expansion is required if the filter
of the requester node is not applicable over all of the filters along the
path to the root. We illustrate this with an example. Figure 3 shows
an example delivery tree, where node p5 requests to join the tree and
is assigned p3 as its parent. However, the stream that p3 receives from
its parent p1 (which is also the root) has q1

1,3 applied to it. In this case
we have q1

1,5 �� q1
1,3, and thus 1,3Q

1
1 has to be expanded from {q1

1,3}
to {q1

1,3, q
1
1,5} (see step (3) in the figure). Note that, expansion also

involves the notification of the forwarder nodes that are incident upon
the links on which expansion is performed, so that they can adjust
the streams they are forwarding to their children. After the expansion
is performed (possibly on more than one link), the assigned parent
of the requester node is notified to serve the requested stream to the
requester node (see step (4) in the figure).

5.1 Classification of Construction Algorithms
We classify the delivery graph construction algorithms along three

dimensions:
Point of Control: In source-controlled construction, there is a

one-to-one mapping between the source nodes and the control-points.

2

p1 p2

p3

p4

s1
1

q1,4
1

q1,2
1

q1,3
1

{q1,2}
1

{q
1,4 }

1

{q
1,3 }

1

{q1,4} 1 {q1,3} 1p5

q1,5
 1

control
point for s1

1

request parent
assign p

31

ex
pa

nd 3

{q
1,3 , q

1,5 }

1

1

serve
4

{q 1,5
} 1

{q1,5} 1 {q1,3} 1

Figure 3: Example parent assignment and expansion

A control point only maintains information about the delivery trees
rooted at a single source node and does not share this knowledge with
other control points. In this case, the control point is assumed to be
co-located with the source node. The source node can delegate the
control-point responsibilities to one or more number of other nodes,
although this aspect is not considered in this paper.

In globally-controlled construction, there is a centralized control-
point that maintains knowledge about the complete delivery graph.
Since a node can belong to multiple delivery trees with different root
(source) nodes, having a control-point with global knowledge helps
making better decisions during parent assignment. However, as op-
posed to source-controlled assignment in which control-points are co-
located with the source nodes, in globally-controlled assignment an
additional centralized control node is needed.

Source-controlled construction is the preferred point of control
method due to its distributed nature. We use globally-controlled con-
struction for comparison purposes, i.e., to assess the effectiveness of
source-controlled construction algorithms in which the control-points
(source nodes) lack the additional knowledge that is accessible to the
global control-point.

Node Feedback: In uninformed construction, control points make
their assignment decisions based solely on the current topology of
the delivery graph and the characteristics of the filters defined by
the nodes (including selectivity, amortized size, and QoS functions).
Feedback from the nodes that are already part of the stream delivery
graph is not used.

In informed construction, the control point receives feedback from
the nodes, such as their current drop rates and perceived delays. This
kind of feedback helps in making informed decisions about the suit-
ability of assigning a certain node as a parent to the requester node.
As a result, informed construction algorithms are expected to be more
effective, compared to their uninformed counterparts.

Assignment Dynamics: In non-adjusting construction, the assign-
ment of a parent node to the requester node is a one-time process and
is not revised unless there is a node failure or departure in the delivery
graph. This nature of the assignment process does not provide any
opportunities to adjust the position of the node in the delivery graph
to improve the overall efficiency of stream delivery.

In adjusting construction, the parent assignments of the nodes can
be changed after the initial assignment is made. This is aimed at im-
proving the graph by revising the initial assignments, in case they
turn out to be ineffective. This requires feedback from the nodes and
only applies to informed construction algorithms. However, these re-
assignments have to be performed with care, since frequent adjust-
ments may create overhead and may lead to unnecessary oscillations
resulting in an unstable delivery graph.

5.2 Naı̈ve Approaches
The first two algorithms we discuss are naı̈ve and serve as base-

lines. They also represent extreme cases with respect to some im-
portant metrics, such as the overall bandwidth consumption, variance
in the perceived delays of the nodes, and variance in the bandwidth
consumed by the nodes for forwarding streams.

The CHAIN and BRUSH Algorithms
In the CHAIN algorithm, each delivery tree takes the form of a chain,
where each node (except the leaf) has a single child node. In the
BRUSH algorithm, each delivery tree takes the form of a brush, where
every node (except the root) has the source node as its parent.

The total bandwidth consumed by CHAIN can be high, especially
when the filters of the nodes that are down in the chain are not appli-
cable over the filters of the nodes above. On the other hand, BRUSH

has the minimum possible total bandwidth consumption. However,
BRUSH has high variance, thus unfairness, in the forwarding respon-

Algorithm 1: Evaluation metric calculation for UNFA

EVALUNFA(pk, qj
i,v)

{collect downstream bw. consumptions (A) and node depths (D)}
(1) foreach pu ∈ T j

i
(2) if UNFAG {global assignment}
(3) A[pu]←∑

T
y
x ∈T

∑
pz∈Ψ(T

y
x ,pu)(λ(sy

x) · Φ(u,zQy
x))

(4) else if UNFAS {source-controlled assignment}
(5) A[pu]←∑

T
y
i ∈T

∑
pz∈Ψ(T

y
i ,pu)(λ(sy

i) · Φ(u,zQy
i))

(6) D[pu]← ι(pu)
{perform updates on A and D for the addition of pv}
(7) for i← 1 to i ≤ ι(pk) {for each link on the way to the root}
(8) Let pa = πi(T j

i , pk) {upstream node}
(9) Let pb = πi−1(T j

i , pk) {downstream node}
(10) if qj

i,v �� a,bQ
j
i {perform expansion if needed}

(11) A[pa]← A[pa] + λ(sj
i) · (Φ(a,bQ

j
i ∪ {qj

i,v})− Φ(a,bQ
j
i))

(12) A[pk]← A[pk] + λ(sj
i) · Φ(qj

i,v) {for the node to be added}
(13) D[pv]← ι(pk) + 1; A[pv]← 0 {for the requester node}
(14) return 1/(V ar(A) · V ar(D))

sibilities of the nodes. This is because all of the forwarding is done
by the source node. Obviously this approach can result in high drop
rates. Conversely, CHAIN is more fair in terms of the amount of band-
width consumed by nodes for fulfilling their forwarding responsibil-
ities. However, for the CHAIN algorithm the variance of the delays
perceived by the nodes is high, since the delivery tree has the maxi-
mum possible height. On the other hand, BRUSH results in lower and
more uniform delays, since the nodes are one-hop away from the root.

5.3 The UNFA Algorithm
We now describe a more sophisticated construction algorithm that

is called UNFA (uninformed, non-adjusting, fair assignment), and its
two variations UNFAS and UNFAG that are source-controlled and
globally-controlled, respectively. We first introduce some additional
notation that will be used in the rest of this section.

We denote the delivery tree associated with stream sj
i by T j

i . The
set of all delivery trees (that form the delivery graph) is represented
by T =

⋃
s

j
i∈S

T j
i . We use π(T j

i , pu) to denote the parent node of pu

in T j
i and πk(T j

i , pu) to denote the kth ancestor of pu in T j
i , where

π0(T j
i , pu) = pu. The depth of a node pu in a delivery tree T j

i is
denoted by ι(T j

i , pu), where ι(T j
i , pi) = 0. And finally, the set of

children of nodes of pu in T j
i is denoted by Ψ(T j

i , pu).
The UNFA algorithm considers all possible parent nodes for a re-

quester node and assigns the one that results in the highest evaluation
metric. For a requester node that is interested in receiving sj

i , the set
of candidate parent nodes is {pk : pk ∈ T j

i }. The evaluation met-
ric used by the UNFA algorithm is (V ar(A) · V AR(D))−1, where
V AR(D) is the variance in the depths of the nodes, and V AR(A)
is the variance in the bandwidth required for a node to forward the
assigned streams to its children nodes. In the source-controlled ver-
sion of the algorithm, that is UNFAS, only the bandwidth required
for forwarding the streams that are sourced at pi (i.e., Si) are con-
sidered. This is because the control-point will only know about the
delivery trees that are rooted at pi. For a node pu ∈ T j

i , this is given
by
∑

T
y
i ∈T

∑
pz∈Ψ(T

y
i ,pu)(λ(sy

i) · Φ(u,zQy
i)). On the other hand,

the globally controlled version, that is UNFAG, extends this to all for-
warded streams. It is important to note that before V AR(A) can be
computed, the expansions that are needed in order to serve the re-
quester node from a candidate parent pk should be performed. Denot-
ing the requester node by pv and its filter on sj

i by qj
i,v , this requires

to check the links on the path from pk to the root on T j
i and perform

expansions when needed, i.e. when qj
i,v is not applicable over the fil-

ter that is applied to the stream forwarded on the link. The details of
this process is given in Algorithm 1, which provides the pseudo code
for calculating the evaluation metric for a candidate parent pk, given
the filter of the requester node qj

i,v .
UNFA is referred to as fair, since it aims at minimizing the differ-

ences in both the forwarding responsibilities of the nodes and the dif-
ferences in the delay perceived by the nodes. This nature of UNFA

results in creating delivery trees that strike a balance between the
CHAIN and BRUSH algorithms. Thus, it does not suffer from the defi-
ciencies of the two elementary algorithms. However, UNFA is unable
to make use of the QoS specifications of the filters, mainly because
it is an uninformed algorithm. In the next section, we discuss more
advanced informed construction algorithms.

5.4 The QASD Algorithm
We now introduce an informed and adjusting construction algo-

rithm called QASD and its source-controlled and globally-controlled
variations, called QASDS and QASDG, respectively.

Being an informed construction algorithm, QASD receives feed-
back from the nodes in the delivery graph. For a node pu, this feed-
back includes three types of information: (1) For each delivery tree
T j

i that pu participates in, the control point receives the drop rate ex-
perienced by pu for the stream sj

i , denoted by rj
i,u. (2) Similarly, for

each delivery tree T j
i that pu participates in, the control point also re-

ceives the delay experienced by pu for the stream sj
i , denoted by dj

i,u.
(3) Moreover, the control point receives the shedding fraction for each
node pu, denoted by zu. Shedding fraction of a node is the fraction of
tuples dropped when forwarding streams. Recall (see Section 4.2) that
the shedding is performed uniformly among the forwarded streams
and thus the same fraction applies to all streams forwarded at a node.

Besides the variables that are bound to feedback information from
the nodes, the control point also maintains a derived variable for each
node pu, which is called the slack bandwidth and is denoted by Bu.
Slack bandwidth is an estimate of a node’s available bandwidth that
can be used for forwarding purposes (upload bandwidth). Initially,
we have Bu = ∞, ∀pu ∈ T , since there is no information about
the resources of the nodes, available to the control point. The slack
bandwidth values are updated by the algorithm as the delivery trees
are formed. The QASD algorithm works based on three heuristic prin-
ciples. Before describing the algorithm in detail, we first list these
principles:

1. Refrain from making an assignment that results in expansion in
the delivery tree.

2. Refrain from making an assignment that depletes the slack
bandwidth of a node.

3. Among the available parents that satisfy items 1 and 2, prefer
the ones that result in better QoS for the node.

The first principle avoids assignments that cause expansions, for two
reasons. First, expansions result in poor sharing of resources. In an
ideal situation, a node will only receive the part of the stream it is
interested in and will forward this stream or a subset of it to other
nodes. Nodes carrying parts of streams they are not interested in con-
stitutes overhead in bandwidth consumption. Second, expansion po-
tentially affects multiple nodes along a path and carries a risk of de-
pleting slack bandwidth of nodes that are closer to the root. Drops
appearing at lower depths of the delivery tree are expected to have a
more pronounced effect in the overall quality of stream delivery, due
to larger number of downstream nodes affected from the drops. The
second principle is an intuitive one, that avoids additional drops. An
assignment that fills up the available slack bandwidth of the parent
node will initiate shedding at the parent node and introduce drops.
The third principle gives priority to parents that result in better QoS

Algorithm 2: QASD Algorithm

QASD(qj
i,v)

(1) V ← −1 {best score}; a← −1 {parent node index}
(2) W ← λ(sj

i) · Φ(qj
i,v) {required bandwidth}

(3) foreach pk ∈ T j
i {each possible parent}

(4) if qj
i,v � qj

i,k and Bk ≥ rj
i,k ·W {if applicable}

(5) V ′ ← Cj
i,v(rj

i,k, δ++ dj
i,k) {quality}

(6) if V ′ > V or (V ′ = V and
EVALUNFAA(pk , qj

i,v) > EVALUNFAA(pa, qj
i,v))

(7) V ← V ′; a← k {better choice}
(8) if a �= −1 {if a parent is found}
(9) Assign pa as temporary parent to pv in T j

i
(10) if za = 0 {if no shedding on pa}
(11) Ba ← Ba − rj

i,k ·W {update the slack}
(12) Assign pa as parent and return
(13) else {if there is shedding}
(14) Unassign pa as parent
(15) if QASDG {globally-controlled}
(16) X ←∑

T
y
x ∈T

(
λ(sy

x) · ry
x,a·∑

pk∈Ψ(T
y
x ,pa) Φ(a,kQy

x)
)

(17) else {QASDS, source-controlled}
(18) X ←∑

T
y
i ∈T

(
λ(sy

i) · ry
i,a·∑

pk∈Ψ(T
y
i ,pa) Φ(a,kQy

i)
)

(19) Bk ← (1− za) · (X + W)−X {update the slack}
(20) return QASD(qj

i,v) {find new parent}
(21) else {a = −1, no parent found}
(22) Assign parent based on UNFAA

(23) foreach pk ∈ P {for each node}
(24) if zk �= 0 then Bk ← 0

for the newly added node. Since the first two principles strive to make
sure that the newly added node minimally effects the QoS of already
existing nodes, the heuristic used in the third principle, which opti-
mizes for the newly added node, is sound.

Algorithmic Details

When a new node pv with a filter qj
i,v is to join the delivery tree T j

i , the
following steps take place with the QASD algorithm. First, all nodes
in T j

i that have compatible filters with qj
i,v and have enough slack

bandwidth to accommodate pv are considered as potential parents. A
node pk ∈ T j

i can accommodate pv if its slack bandwidth is larger
than or equal to the drop experienced by pk on sj

i times the band-
width requirement of qj

i,v , and thus formally stated Bk ≥ rj
i,k · W ,

where W = λ(sj
i) · Φ(qj

i,v) is the bandwidth requirement of qj
i,v . If

the set of potential parents is non-empty, then the one with the best
evaluation score is selected. The evaluation score used is the expected
quality of service for the node pv . When pk is considered as a parent,
then the evaluation score is Cj

i,v(rj
i,k, δ++ dj

i,k). Here, δ+ is the av-
erage delay between pk and its children nodes in any of the delivery
trees. If no such children node exists, δ+ is taken as the average delay
between two nodes in the system. If there are several parent nodes that
result in equally good QoS for the node pv , then the one which results
in better balance in the forwarding responsibilities of the nodes is se-
lected as the parent node. This latter selection is very close to using
the EVALUNFA procedure described before, except that the variance
in the node depths are not considered. We name this variation of the
UNFA algorithm as UNFAA. In summary, when there are several par-
ent nodes that provide equally good QoS, the assignment is made by
using the UNFAA algorithm by considering only these parents.

Once the parent node is selected, say pa, it is assigned to pv as a
temporary parent. Then the shedding fraction za is observed. If we

have za = 0, then the assignment is made final and Ba is updated by
decreasing it by rj

i,k ·W . Otherwise, the slack bandwidth is inaccurate
and thus should be updated. Moreover pv should be assigned to a
different parent. In this case, we update the slack bandwidth Ba using
the new shedding fraction za. The concrete details of updating the
slack bandwidth is given in Algorithm 2, between lines 14 and 19.
Note that the slack bandwidth can be properly computed only for the
globally-controlled version of the algorithm (QASDG), whereas it can
only be approximated for the source-controlled version (QASDS). In
the latter case, the slack bandwidth computation results in a lower
bound and thus the algorithm becomes conservative. Once the slack
bandwidth for pa is updated, the algorithm is run from the beginning
(with a recursive call) to locate a new parent node for pv .

In the first place, if the set of parents that have compatible filters
and sufficient slack bandwidth turns out to be the empty set, then
we switch to best-effort mode and make the assignment based on the
UNFAA algorithm by considering all nodes in the delivery tree. Once
the assignment is made, no further parent adjustments are performed
for the node pk. For nodes whose shedding fractions have changed to
a non-zero value as a result of this assignment, the slack bandwidths
are set to 0.

Discussions
Due to its adjusting nature the QASD algorithm may go over several
rounds involving temporary parents, before assigning a final parent to
a node. As a result of this, the average number of rounds executed
before making a final assignment is an important metric in assess-
ing the overhead of the QASD algorithm, compared to the alternative
approaches discussed in Section 5.2. Despite this runtime overhead
(which turns out to be very small as it will be discussed later in Sec-
tion 6), the QASD algorithm is expected to construct more effective
delivery graphs, since it makes use of the feedback information re-
ceived from the nodes to make informed decisions.

There are further issues to be discussed in the context of stream
delivery in distributed CQ systems. These include handling of joins,
departures, failures, as well as adapting to significant changes in node
resources. In this paper, we do not discuss these issues and leave them
as future work.

6. EXPERIMENTAL EVALUATION
We report a number of simulation-based experimental results and

study the impact of various parameters on the cost and effectiveness
of stream delivery, using different construction algorithms. Before
presenting our findings, we first introduce the set of evaluation metrics
used and describe the details of our experimental setup.

6.1 Evaluation Metrics
We use three main evaluation metrics to study the performance of

the construction algorithms described in this paper. These metrics are:
Overall Service Quality: This metric is used to assess the quality

of the stream delivery graph formed by a construction algorithm. It
is defined as the geometric mean of the QoS values for the filters, as
formulated in Section 4.1. Note that QoS value for a filter is dependent
on the filter specific QoS function and the actual drop and delay values
perceived by the node defining the filter. The latter two are computed
based on the derivations given in Section 4.2.

Total Bandwidth: This metric is used to assess the cost of stream de-
livery. It is the total amount of bandwidth required to achieve stream
delivery without introducing any drops, for a given delivery graph.
The formulation given in Section 3.2 is used to calculate it.

Fairness in Forwarding: This metric is used to assess the fairness of
a construction algorithm in terms of the forwarding responsibilities it
assigns to different nodes. It is defined as the variance in the amortized
forwarding bandwidths of nodes. For a node, the latter is defined as

0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

bandwidth scaling factor

ov
er

al
l q

ua
lit

y

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

0.35

Figure 4: Impact of node bandwidth re-
sources on overall quality of stream deliv-
ery

0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

x 10
4

bandwidth scaling factor

to
ta

l b
an

dw
id

th
 (K

B/
s)

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 5: Impact of bandwidth resources
on total bandwidth consumed in stream de-
livery

0.2 0.4 0.6 0.8 1

10
−1

10
0

10
1

bandwidth scaling factor

fa
irn

es
s

in
 fo

rw
ar

di
ng

(s

m
al

le
r v

al
ue

s
be

tt
er

)

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 6: Impact of node bandwidth re-
sources on fairness in stream forwarding
responsibilities

parameter default value or range
number of nodes 100

number of streams 20
number of filters per stream 30

link delay range [10, 500] msec
QoS drop threshold range [0.0, 0.2]
QoS delay threshold range [1.0, 5.0] sec

number of filter blocks 10
number of filter types 4

stream bandwidth range [50, 100] KByte/sec
node download bandwidth range [1.0, 5.0] Mbit/sec

node upload bandwidth range [0.5, 2.5] Mbit/sec

Table 2: Simulation Parameters

the total bandwidth it needs for forwarding purposes divided by the
node’s available upload bandwidth. Smaller values for this metric
imply increased fairness in forwarding responsibilities.

In addition to these three main metrics, we also measure other in-
teresting statistics, such as the variance in perceived delays and the
average number of assignment rounds for the QASDS and QASDG
algorithms.

6.2 Experimental Setup and Parameters
For each simulation run a random resource setup is generated, fol-

lowed by a random workload generation. Each experiment is run 100
times and the average results are reported. The resource configura-
tion involves setting the number of nodes (100 by default), a link
delay range which is used to select a random delay for each node
pair ([10, 500] msec by default), and node upload/download band-
width ranges that are used to randomly assign bandwidth resources
to nodes ([1.0, 5.0] Mbit/sec for download and [0.5, 2.5] Mbit/sec for
upload by default). The workload configuration involves setting the
number of streams (20 by default), number of filters per stream (30 by
default), stream bandwidth range that is used to randomly set the flow
size of streams ([50, 100] KByte/sec by default), and finally the con-
figuration of filter characteristics. An important filter characteristic
is the QoS function. In the experiments, a common template is used
for the QoS functions of the filters, with randomly assigned delay and
drop thresholds (selected from the range [1.0, 5.0] sec and [0.0, 0.2]
by default, respectively). Denoting these thresholds by ηd and ηr , for

delay and drop respectively, the common QoS template is as follows:

C(r, d) =

⎧⎪⎨
⎪⎩

1 r ≤ ηr, d ≤ ηd

0.5 r ≤ ηr, d > ηd

0.5 · ηr/r otherwise

Two remaining workload configuration issues related to filters is their
applicability relationship and defining the size of a filtered stream. To
handle this, we define a number of filter types (4 by default). Each
filter type represents a random subset of 10 blocks and filter applica-
bility is tested based on set containment. The size of a filtered stream
is simply the size of the stream multiplied by the fraction of blocks
existent in the block set of the filter. The disjunction of filters is emu-
lated by set union operation over filter blocks.

The simulation parameters and their default values or ranges are
given in Table 2 for ease of reference.

6.3 Results
We now present our results on the comparative study of the six

construction algorithms, namely BRUSH, CHAIN, UNFAS, UNFAG,
QASDS, and QASDG. We investigate the impact of changing vari-
ous simulation parameters that alter the workload characteristics or
resource availability, on the evaluation metrics introduced.

Impact of Bandwidth Availability
We first study the impact of bandwidth availability on the three evalu-
ation metrics, for different algorithms. Note that increasing the rate or
tuple size of streams have a similar effect with decreasing the band-
width availability of nodes. Thus, the results from this part can also be
used to reason about the impact of stream bandwidth. To change the
node bandwidth availability, we multiply our upload and download
bandwidth ranges by a bandwidth scaling factor.

Figure 4 plots overall quality as a function of bandwidth, for scal-
ing factors less than or equal to 1. We make many interesting ob-
servations from this figure. First, QASD-based algorithms show re-
markably better performance, compared to all other alternatives. The
improvement in performance is more prominent when the bandwidth
availability is higher and reaches up to 180% improvement compared
to the best alternative when the scaling factor is 1. This is due to
the fact that QASD respects delay and drop requirements of filters. It
also makes better use of the bandwidth resources, when they are avail-
able, through the feedback-based construction algorithm it employs.
Second, we observe that QASDG is superior to QASDS (around %5
better), even though the difference between the two approaches is in-

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bandwidth scaling factor

ov
er

al
l q

ua
lit

y

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

1.0

Figure 10: Impact of node bandwidth re-
sources on overall quality of stream deliv-
ery (including perfect delivery scenarios)

significant compared to their advantage over other alternatives. The
slightly less performance of QASDS stems from the inaccuracy it has
in estimating the slack bandwidths (recall Section 5.4).

Third, we see from the graphs in Figure 4 that UNFAS has a slightly
better performance than CHAIN, although the latter has a steeper curve
and catches the former when the scaling factor reaches 1. The poor
performance of CHAIN for very low levels of bandwidth availability
can be attributed to its inability to make good use of filter similarity.
Since it has chain-like delivery trees, most of the nodes closer to the
source are forced to forward the complete stream, resulting in drops
when bandwidth is not available and hurting the performance for all
of the downstream nodes. However, as the bandwidth availability in-
creases the drops decrease and thus the performance increases. If all
nodes have enough bandwidth to forward and receive the full stream
without drops, CHAIN is effective. On the other hand, UNFAS can
still introduce drops when all nodes have enough bandwidth to for-
ward and receive the full stream without drops. This is because UN-
FAS creates bushy trees in which nodes may be forced to serve more
than one children nodes. Since UNFAS does not use any feedback,
such multiple forwardings per node can introduce excessive drops.

Even though it may seem that CHAIN is a better choice compared to
UNFAS in terms of overall quality when bandwidth is not extremely
limited, Figure 4 only tells half of the story. If we look at Figure 10,
which plots the overall quality for larger scaling factors, we see that
the best overall quality achievable by CHAIN is 0.9, whereas UNFAS
achieves the optimal value of 1. This is because of the excessive de-
lay CHAIN introduces in stream delivery. Figure 10 also shows that
QASD-based algorithms sustain their superior performance for larger
bandwidth scaling factors, and reach to the optimal overall quality
value of 1, before other alternatives.

Fourth, we observe that UNFAG performs slightly worse than UN-
FAS. This points out that the heuristics used in UNFA-based algo-
rithms are more effective when they are applied separately on deliv-
ery trees instead of applying them globally on the complete delivery
graph. Finally, we observe that BRUSH is only competitive when the
bandwidth availability is extremely low or when bandwidth is abun-
dant. This is the complete opposite behavior of CHAIN.

Figure 5 plots the total bandwidth requirement for stream delivery
without drops as a function of bandwidth scaling factor, for different
algorithms. We make three observations from the figure. First, as ex-
pected, BRUSH and CHAIN form the lower and upper bounds for the
total bandwidth requirement. Second, we see that all approaches ex-
cept QASD-based ones, make no adjustments in their delivery graphs
to adapt to the changing bandwidth resource availability. This is be-
cause they do not use feedback information. Third, and most inter-

estingly, we see that QASD starts with a total bandwidth requirement
that is in the middle between BRUSH and CHAIN, and improves to the
lower limit achieved by BRUSH as the scaling factor reaches to 1. The
increased total bandwidth requirement of QASD for low bandwidth
availability scenarios enables it to provide increased overall quality.
On the other hand, QASD shows perfect total bandwidth requirement
characteristics when bandwidth resources are abundant.

Figure 6 plots the fairness in forwarding as a function of bandwidth
scaling factor, for different algorithms. The y-axis is in logarithmic
scale. We observe that increasing bandwidth availability improves the
fairness for all algorithms. It is also seen from the figure that BRUSH

performs the worst and UNFA-based algorithms better but close to it.
It is no surprise that CHAIN performs good, since every node except
the leaf has only a single children node in a delivery tree. It may
seem unexpected that the QASD-based algorithms perform better than
CHAIN. However, if we recall that the fairness is defined based on
amortized forwarding responsibility that takes into consideration the
bandwidth resources of the nodes, the performance of QASD is justi-
fied. Assigning more responsibility to a node with higher resources is
considered fair. Thus, QASD outperforms all alternatives.

Impact of # of Nodes
We study the impact of altering the number of nodes while keeping
the number of streams and filters fixed, on the evaluation metrics for
different algorithms. The number of nodes is decreased from its de-
fault value of 100 to the extreme case where there are 31 nodes and
thus every node has a filter on every stream. Figure 7 plots the overall
quality as a function of number of nodes, whereas Figure 8 studies the
total bandwidth. The CHAIN algorithm is removed from Figure 8 due
to its high total bandwidth requirement. The results for overall quality
closely parallel the results form the bandwidth availability study. The
QASD algorithms show up to 180% improvement over their best com-
petitors. In terms of total bandwidth requirement, QASD algorithms
perform close to the optimal scenario represented by BRUSH. It is also
interesting to observe from Figure 8 that the improved overall quality
provided by UNFAS over UNFAG comes at the cost of slight increase
in total bandwidth requirement.

Fairness in Perceived Delays
We study the fairness in terms of delays perceived by the filters. We
alter the link delay range used in the simulation by multiplying it with
a delay scaling factor, and measure the resulting variance in perceived
delays, for different algorithms. The results are plotted in Figure 9.
Since BRUSH forms delivery trees in which every node is one hop
away from the source, it has the smallest variance score. QASDS per-
forms the second best, followed by UNFAS and CHAIN. As expected,
CHAIN has very poor scalability due to its worst case structure with
regard to delay distribution. Since BRUSH is not a real contender
when overall quality is considered, we can say that QASDS shows bet-
ter fairness in perceived delays than any viable alternative algorithm
we have tested. Globally controlled QASD and UNFA variations have
same results with their source-controlled counterparts and are not in-
cluded in Figure 9.

Impact of # of Filter Types
We study the impact of altering the number of filter types on the evalu-
ation metrics, for different algorithms. A larger number of filter types
makes it less likely that a given filter is same with or applicable over
any other filter. Thus, it puts a heavier burden on the resources and
seeks for effective delivery graphs with good filter grouping.

Figure 11 plots the overall quality in stream delivery as a function
of number of filter types. We see that the quality degrades as the num-
ber of filter types increases. A good property of QASD-based algo-
rithms is that, they keep their advantage throughout the whole range

40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

0.35

number fo nodes

ov
er

al
l q

ua
lit

y

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 7: Impact of number of nodes on
overall quality of stream delivery

40 50 60 70 80 90 100

8800

9000

9200

9400

9600

9800

10000

number fo nodes

to
ta

l b
an

dw
id

th
 (K

B/
s)

Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 8: Impact of number of nodes on to-
tal bandwidth consumed in stream delivery

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

delay scaling factor

va
ria

nc
e

in
 d

el
ay

Chain
Brush
UnfaS
QasdS

Figure 9: Impact of link delays on fairness
in perceived delays in stream delivery

2 4 6 8 10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of filter types per stream

ov
er

al
l q

ua
lit

y

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 11: Impact of number of filter types
on overall quality of stream delivery

2 4 6 8 10
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

x 10
4

number of filter types per stream

to
ta

l b
an

dw
id

th
 (K

B/
s)

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 12: Impact of number of filter types
on total bandwidth consumption in stream
delivery

0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

drop threshold bound

ov
er

al
l q

ua
lit

y

Chain
Brush
UnfaS
UnfaG
QasdS
QasdG

Figure 13: Impact of drop threshold on
overall quality of stream delivery

of number of filter types. QASDG reaches up to around 200% im-
provement over the best competitor, where this improvement reduces
to around 30% as the number of filter types reaches 10, and stabilizes
thereafter. Although we see that QASDS performs close to QASDG
most of the time, its performace degrades especially when the number
of filter types is 1 or 2. However, it keeps its strong advantage over
non-feedback based alternatives even for the case of 2 types of filters
(around 100% better than the best competitor). This advantage drops
to 10% for the single filter type per stream case.

Figure 12 plots the total bandwidth requirement for stream delivery
without drops, as a function of number of filter types. We observe that
QASD based algorithms start with a minimal bandwidth requirement
(as dictated by BRUSH) when the number of filter types per stream
is small (up to 3), and slightly increases as the number of filter types
increases. However, the bandwidth requirement of QASD-based al-
gorithms do not exceed the bandwidth requirement of UNFA-based
algorithms. The total bandwidth requirement of QASD-based algo-
rithms approach to that of UNFA-based ones as the number of filter
types increases to 10, but are still within the 5% of the best achiev-
able. The complete line for the CHAIN algorithm is not plotted due to
its high total bandwidth requirement.

Impact of QoS Function Drop Thresholds
We study the impact of changing the drop threshold upper bound used
in the simulation to configure the QoS functions, on the overall qual-
ity of the stream delivery. Recall that a drop threshold is randomly

selected from a range ([0, 0.2] by default) and is used in configuring
the QoS functions. We alter the default value of 0.2 that was used as
the upper bound for the drop threshold. In the experiments presented
in this part, we also set the bandwidth scaling factor to 0.5, in order to
observe the behavior under limited bandwidth scenarios.

The results are plotted in Figure 13 for different algorithms. The in-
crease in overall quality with increasing thresholds is expected. Even
though the absolute improvement of QASD-based algorithms over
their best competitors seem to increase with increasing thresholds,
percentage-wise their advantage drops from 150% improvement to
75% improvement as the drop threshold upper bound reaches from
0.1 to 0.5. The latter is intuitive, because when the filters are more tol-
erable towards delays, the competitive advantage of QASD over other
alternatives lessens. Trying to avoid drops becomes less of an advan-
tage in these cases.

scaler 0.1 0.2 0.3 0.4 0.5

source 1.41 1.42 1.37 1.28 1.20
global 1.31 1.33 1.30 1.23 1.16

0.6 0.7 0.8 0.9 1.0
1.14 1.10 1.07 1.05 1.04
1.10 1.08 1.05 1.04 1.03

Table 3: Impact of node bandwidth resources on
number of assignment rounds

Assignment Round Analysis for QASD

Recall from Section 5.4 that QASD may need to execute a number of
rounds before making a final parent assignment, where each round
involves making a temporary assignment and observing the result.
However our results listed in Table 3 show that, with the exception of
very limited bandwidth scenarios (bandwidth scaling factor ≤ 0.4),
the average number of rounds does not exceed 1.2. Average number
of rounds is very close to 1 (< 1.05) when the bandwidth scaling fac-
tor is 1, which still represents a bandwidth limited scenario by simula-
tion design (an overall quality of 0.35 at best with QASDG). We also
see from Table 3 that QASDG performs slightly better than QASDS,
the biggest difference taking place when the bandwidth scaling factor
is 0.1, at which point QASDG requires around 1.3 number of rounds
whereas QASDS requires around 1.4 rounds.

7. RELATED WORK
Recent literature includes several studies on different aspects of dis-

tributed data stream management in networked environments. These
include query optimization [11], load balancing [24], high availabil-
ity [13], and fault tolerance [4]. Interestingly, with the exception
of [19], there is no study of stream delivery problem in the literature.

StreamGlobe [19] is a P2P stream delivery network in a Grid envi-
ronment, that performs cooperative forwarding of streams with sup-
port for in-network filtering. This is along the similar lines of the
system model assumed in this work. However, the work presented
in [19] optimizes the stream delivery graph without taking into ac-
count resource availability in terms of network bandwidth and link
delays. As shown in this paper, in the face of limited resources this
may result in unwanted drops and delays in stream delivery, than can
be avoided with a feedback based stream delivery graph construction
algorithm. To our knowledge, our work is the first in-depth study of
the stream delivery problem in this context, which considers resource
limited scenarios and supports QoS-aware stream delivery.

Our work is to some extent related to research in publish/subscribe
systems, as well as application-level multicast. However, most of
the publish/subscribe systems, such as SemCast [18], Grypon [5], or
Siena [6], are designed for networks that contain a set of infrastruc-
ture nodes (brokers) responsible for event forwarding and/or filtering.
Our work builds upon a different system model, one based on P2P
principles, in which nodes that are consumers of a stream cooperate
among themselves to accomplish stream delivery. This system model
is more suitable for large-scale distributed stream processing systems
where end nodes of the system are query processors that need access
to distributed streams for executing their local CQs. This P2P nature
of the system model is shared with many of the works on application-
level multicast, such as Scribe [8] and SplitStream [7]. However, none
of these works dealt with QoS semantics of CQ applications that can
tolerate some level of delays and drops in stream delivery.

It is also interesting to mention that, although not discussed in this
paper, the problem of source discovery can be handled in our system
using distributed hash table based techniques employed by some of
the application-level multicast systems [8].

8. CONCLUSION
With rapid advances in sensing and wireless communication tech-

nologies, continuous data stream delivery in distributed overlay net-
works has gained increasing interest over the past few years. We pre-
sented and formulated the problem of distributed data stream delivery
for continuous query services as an optimization problem. We first
identified the critical system parameters that need to be taken into
account in the optimization algorithms through the study of the ba-
sic formulation of our problem under the simplistic assumption that
a valid stream delivery graph can always be found. Then we relaxed

our basic definition and formulation of the stream delivery problem
to handle the resource limited scenarios where unwanted drops and
delays in stream delivery are unavoidable. We promoted the use of
quality-aware stream delivery techniques to better optimize the over-
all system performance. By attaching QoS functions to filters, we
made quality-aware stream delivery possible. These QoS functions
specify the level of quality resulting from introducing certain amount
of delays and drops in serving a filter, enabling us to construct deliv-
ery graphs in which resources are better utilized to handle the delay
and drop sensitive filters. In addition to introducing several baseline
algorithms, we presented feedback-based QASDS and QASDG algo-
rithms that make use of simple yet effective heuristics and are easy
to implement in practice. We demonstrated through extensive simula-
tions that QASD-based algorithms can provide high overall quality in
stream delivery with small bandwidth consumption and good balance
in forwarding responsibilities.

9. REFERENCES
[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,

U. Srivastava, D. Thomas, R. Varma, and J. Widom. STREAM: The stanford
stream data manager. IEEE Data Engineering Bulletin, 26, 2003.

[2] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries
over data streams. In IEEE ICDE, 2004.

[3] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and
S. Zdonik. Retrospective on Aurora. VLDB Journal, 2004.

[4] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault tolerance in
the borealis distributed stream processing system. In ACM SIGMOD, 2005.

[5] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. An efficient multicast protocol for content-based publish-subscribe
systems. In IEEE ICDCS, 1999.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,,
19(3), 2001.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: High-bandwidth content distribution in cooperative environments. In
ACM SOSP, 2003.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A
large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications (JSAC), 20(8), 2002.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, and M. A. Shah.
TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR,
2003.

[10] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous
query system for internet databases. In ACM SIGMOD, 2000.

[11] N.-A. Q. P. for Stream-based Applications. Yanif ahmad and ugur cetintemel. In
VLDB, 2004.

[12] R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of PIER: an
internet-scale query processor. In CIDR, 2005.

[13] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. B.
Zdonik. High-availability algorithms for distributed stream processing. In IEEE
ICDE, 2005.

[14] R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser. StreamGlobe: Processing
and sharing data streams in grid-based p2p infrastructures. In VLDB, 2005.

[15] D. T. Liu and M. J. Franklin. The design of GridDB: A data-centric overlay for the
scientific grid. In VLDB, 2004.

[16] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE Transactions on Data and Knowledge Engineering,
July/August 1999.

[17] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, July 1998.

[18] O. Papaemmanouil and U. Cetintemel. Semcast: Semantic multicast for
content-based data dissemination. In IEEE ICDE, 2005.

[19] B. Stegmaier, R. Kuntschke, and A. Kemper. StreamGlobe: Adaptive query
processing and optimization in streaming p2p environments. In Internatinal
Workshop on Data Management for Sensor Networks, 2004.

[20] Streambase systems. http://www.streambase.com/, May 2005.
[21] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load

shedding in a data stream manager. In VLDB, 2003.
[22] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over

append-only databases. In ACM SIGMOD, 1992.
[23] S. A. Vavasis. Quadratic programming is in NP. Information Processing Letters,

36(2), 1990.
[24] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution in the borealis

stream processor. In IEEE ICDE, 2005.

