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Abstract 
 

Business processes continue to play an important 
role in today’s service-oriented enterprise computing 
systems. Mining, discovering, and integrating process-
oriented services has attracted growing attention in the 
recent year. In this paper we present a quantitative 
approach to modeling and capturing the similarity and 
dissimilarity between different process designs. We 
derive the similarity measures by analyzing the process 
dependency graphs of the participating workflow 
processes. We first convert each process dependency 
graph into a normalized process matrix. Then we 
calculate the metric space distance between the 
normalized matrices. This distance measure can be 
used as a quantitative and qualitative tool in process 
mining, process merging, and process clustering, and 
ultimately it can reduce or minimize the costs involved 
in design, analysis, and evolution of workflow systems. 
 
1. Introduction 
 

With the increasing interest and wide deployment of 
web services, we see a growing demand for service-
oriented architectures and technologies that support 
enterprise transformation. Effective enterprise 
transformation refers to strategic business agility in 
terms of how efficiently an enterprise can respond to 
its competitors and how timely an enterprise can 
anticipate new opportunities that may arise in the 
future. In the increasingly globalized economy, 
enterprises face complex challenges that can require 
rapid and possibly continual transformations. As a 
result, more and more enterprises are focused on the 
strategic management of fundamental changes with 
respect to markets, products, and services [14]. Such 
transformation typically has a direct impact on the 
business processes of an enterprise. Enterprise 
transformation may range from traditional business 
process improvement to wholesale changes to the 
processes supported by the enterprise – from 
performing current work in a new fashion to 
performing different work altogether. Each of these 

challenges may lead to a differing degree of enterprise 
transformation. 

Fundamental to enabling the transformation of an 
enterprise is the development of novel tools and 
techniques for transforming the business processes of 
an enterprise. In this paper, we present a critical 
component to the problem of process transformation 
from a web services point-of-view. In particular, we 
present a novel process difference analysis method 
using distance measures between process definitions of 
two transactional web services. The process difference 
analysis focuses on process structure and process 
activity dependencies to identify distance measures 
between processes. 

The proposed difference analysis method achieves 
three distinct goals. First, by analyzing the attributes of 
process models, we present a quantitative process 
similarity metric to determine the relative distance 
between process models. This facilitates not only the 
comparison of existing process models with each other, 
but also provides the flexibility to adapt to changes in 
existing business processes. Second, the proposed 
method is quick and flexible, which reduces the cost of 
both the analysis and design phases of web service 
processes. Third, the proposed method enables the 
flexible deployment of process mining, discovery, and 
integration – all key features that are necessary for 
effective transformation of an enterprise. 
 
2. Web Service Process Reference Model 
 

The web service process reference model consists of 
business process definitions and the specification of 
workflows among the processes with respect to data 
flow, control flow, and operational views [15, 16]. We 
define a business process in terms of business activity 
patterns. An activity pattern consists of objects, 
messages, message exchange constraints, preconditions 
and postconditions [17], and is designed to specify the 
service actions and execution dependencies of the 
business process. An activity pattern can be viewed as 
a web service process when it is executable as a web 
service. We consider two types of activity patterns – 



elementary activity patterns and composite activity 
patterns [1, 6]. An elementary activity pattern is an 
atomic unit.  A composite activity pattern consists of a 
one or more elementary activity patterns or other 
composite activity patterns. The dependencies could 
capture complex interactions between activities. 

We define a business process as a collection of 
business activities connected by data flow and control 
flow, where each represents a business process. A 
process definition can be seen as a web service (or a 
collection of web services). We use data flow among 
processes to define the data dependencies among 
processes within a given business process. We use 
control flow to capture the operational structure of the 
business process service, including the process 
execution ordering, the transactional semantics and 
dependencies of the process. A number of workflow 
specifications have gathered attention, including 
BPEL4WS (BEA, IBM, Microsoft), WSFL (IBM), 
XLANG (Microsoft), and XPDL (WfMC) [17]. In our 
prototype development, we choose to use a variant of 
BPEL4WS.  

Formally, each workflow service is specified in 
terms of process definitions. We can model each 
process definition using a directed graph, in which the 
nodes of the graph are activities. Depending on 
whether the edges indicate execution dependencies or 
data flow dependencies, we have a process aggregation 
hierarchy or a process dependency graph. The process 
aggregation hierarchy captures the hierarchical 
execution ordering of activities. The process 
dependency graph captures information about how 
activities share information and how data flows from 
one activity to another. Due to the space constraint, in 
this paper we focus our discussion only on the 
dependency graph. Concretely we present the process 
similarity measures based on the dependency graphs of 
the processes of interest. 

 
Definition 1 (Dependency Graph, DG) 
A dependency graph DG is defined by a binary tuple 
<DN, DE>, where 
• 1 2{ , , ..., }nDN nd nd nd=  is a finite set of activity 

nodes where 1n ≥ . 
• 1 2{ , , ..., }mDE e e e=  is a set of edges, 0m ≥ . Each 

edge is of the form i jnd nd→ .  

Note that in the dependency graph formulation, self-
edges are disallowed since edges are intended to denote 
data flow dependencies between different activities 
(nodes). Additionally, a dependency graph must be a 
connected graph. Unconnected nodes and isolated 
groups of nodes are disallowed in the graph, as isolated 

nodes or groups of nodes are considered a separate 
service process in our reference model.  

As a real-life example of business process, there are 
many PIPs (Partner Interface Processes) as defined by 
RosettaNet[13]. PIPs define business processes 
between trading partners. PIPs fit into seven Clusters, 
or groups of core business processes, that represent the 
backbone of the trading network. Each Cluster is 
broken down into Segments and within each Segment 
are individual PIPs. RosettaNet standards provide the 
infrastructure for integrating business processes with 
trading partners across the globe, delivering essential 
value to industries and proven real-world business 
results. Fig. 1 shows a standard process of procurement 
order by buyer, which is in Segment 3A(Quote and 
Order Entry) of Cluster 3(Order Management). This 
example process has 13 activities and their 
dependencies. 

Analyze 
ordering 
needs

Set quote specifications 
and create a quote 

request

Process the order 
status response

Analyze 
purchase order 

confirmation

Create 
purchase 

order request

Define requested 
products and send price 
and availability request

Analyze price and 
availability responses

Create order 
status query

Analyze the 
changes from seller

Analyze the purchase 
order acknowledgement

Make the needed 
changes to the 
purchase order

Cancel the 
purchase order

Order completed

 
Fig. 1 A real-life example of business process 

Given two processes and their respective 
dependency graphs, there are numerous ways these two 
graphs may differ. Typically, it makes more sense to 
compare only those graphs that have sufficient 
similarity in terms of their dependency graphs. 
Consider two extreme cases: one is when the two 
dependency graphs have the same set of nodes and the 
other is when there is no common node between two 
graphs. By assigning 1 for the first case and 0 for the 
latter case, we define a comparability measure that 
indicates the ratio of common nodes in two graphs. 
One way to measure the extent of comparability 
between two graphs is to use a user-controlled 
threshold, called δ-Comparability, which is set to be 
between 0 and 1. Because this value represents the 
ratio of common nodes over the union of all nodes in 
two graphs, the larger the value is, the greater degree 
of comparability between the two graphs. Note that δ 
value can not be 0 since δ = 0 means that there is no 
common node between two graphs, i.e., 1 2DN DN∩ ≠ ∅ .  
 
Definition 2 (δ-Comparability of DG) 
Let 1 1 1( , )DG DN DE=  and 2 2 2( , )DG DN DE=  be 
two dependency graphs, and δ be a user-defined 
control threshold. We say that DG1 and DG2 are δ-



comparable if the condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds, 

where 0 1δ< ≤    
 
If we apply the δ-Comparability to the example 

graphs shown in Fig. 2 with δ=0.5, g0 and f2 are not 
comparable because the number of common nodes is 
only one but the number of total nodes is 7, that is 

1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0 and g2 

are δ-comparable because there are 3 common nodes 
and the total number of nodes is 5, thus the two graphs 
satisfy the δ-comparability condition 

1 2
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3
0.5

5

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5. 
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Fig. 2 Examples of δ-Comparability 

3. Motivating Scenarios 
 
Given the process reference model, we consider two 

motivating scenarios that benefit from the difference 
analysis methodology introduced in this paper. 
Consider a scenario where a company has maintained a 
warehouse of existing processes used in various 
business locations. Process mining[2, 3] of the process 
warehouse can help the enterprise to discover 
interesting associations or classifications among 
business processes running at different locations or 
branches of the company. 
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Fig. 3  Process mining example 

In Fig. 3, we show a process warehouse that 
contains many types of processes (for example, g1, g2, 
g3, g4, g5). A typical process mining scenario is the 
identification of the processes most similar to a query 
process template in the process warehouse. Given a 
query process and a comparability threshold δ-value, 
the process mining will identify (g3) as the process that 
is most similar based on the comparability criterion. It 

is obvious that the concept of process similarity (or 
distance) is critical to the effectiveness of process 
mining. 
 
4. Process Difference Analysis 
 

In this section, we present the process difference 
analysis method for evaluating the distance between 
two processes. We first define the concept of a process 
matrix and introduce the concept of a normalized 
matrix. And then, we define the dependency distance 
measure by measuring the difference between the 
normalized matrices. 

Process Dependency Graph

Process Matrix

Normalized Matrices

Distance Measure Proof of Distance Properties

δ-Comparability Filter

Ranked List of Processes

Process Warehouse,
Query Process, δ-value

Process Dependency Graph

Process Matrix

Normalized Matrices

Distance Measure Proof of Distance Properties

δ-Comparability Filter

Ranked List of Processes

Process Warehouse,
Query Process, δ-value

 
Fig. 4 Flow chart of Difference Analysis 

In order to show the proposed procedure, we use two 
derived processes that are variations of procurement 
order process in Fig. 1. These two processes have 10 
activities respectively but have different activities with 
each other. The first process (g11) has A6 but does not 
have A8, and the second process (g22) has A8 but does 
not have A6. These two graphs satisfy δ-Comparability 

as 1 2

1 2

9
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11

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5. 
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               (a) g11                                    (b) g22 

Fig. 5 Two extended examples of Fig. 1 

4.1. Comparison Matrices 
Two dependency graphs are said identical if the two 

graphs have the same set of nodes and the same set of 
edges. Formally we define identical dependency graphs 
as follows: 

 
Definition 3 (Identical dependency graphs) 



Let 
1 1 1( , )DG DN DE=  and 

2 2 2( , )DG DN DE=  be two 
dependency graphs. We say that DG1 and DG2 are 
identical if the two graphs have the same set of nodes 
and the same set of edges. 

i) 1 2SetDN DN=     ii) 1 2SetDE DE=    
One way to compare and rank a set of similar 

process definitions is to transform each dependency 
graph into a numerical representation. This allows us to 
compare the dependency graphs using similarity 
distance in Euclidian distance metric space. This leads 
us to introduce the concept of a process matrix. A 
process matrix M is established in order to describe the 
precedence dependencies between two activities (tasks). 
The size of M is determined by the number of nodes in 
the dependency graph and each cell in the matrix 
denotes an element of M. The value of cell M(i,j) is set 
either to 1 or 0 depending on whether or not there is a 
precedence dependency between the two nodes i and j. 

 
Definition 4 (Process matrix, M) 
Let ( , )g DN DE= be a dependency graph with 

DN n=  nodes. A process matrix M of g is n-by-n 
matrix with n rows and n columns, and each row is 
named after the node name. Let Mg(i,j) denote the 
value of the ith row and the jth column in M, 1 ,i j n≤ ≤ . 
We define Mg(i,j) as follows: 

1          ,    ( , )
( , )

0                                                                           
i j i j

g

if nd nd DN such that nd nd DE
M i j

else

∃ ∈ ∈
=
⎧
⎨
⎩

 

 
Fig. 6 depicts the transformation of a process 

dependency graph g11 shown in Fig. 5 (a) into its 
process matrix M, a 10×10 matrix. Each element of M 
is determined according to whether or not the 
corresponding two activities have precedence 
dependency. An edge between nodes A1 and A2 shows 
that activity A1 precedes activity A2. Thus, Mg(A1, A2) 
is set to a value of 1. There is no direct edge between 
nodes A1 and A3. Thus Mg(A1, A3) is set to a value of 0. 
M11 TO 

 A1 A2 A3 A4 A5 A6 A7 A9 A10 A11

A1 0 1 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0
A3 0 0 0 0 1 1 1 0 0 0
A4 0 0 0 0 0 0 0 0 1 0
A5 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 1 0 0
A9 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 1

F 
R 
O 
M 

A11 0 0 0 0 0 0 0 0 0 0
Fig. 6  Process matrix of g11 

In order to compare the two process dependency 
graphs g11

 and g22, we need to further normalize each 
process matrix that participates in the similarity 
computation. Each normalized process matrix includes 
the union of all sets of nodes, each from one 
participating process dependency graph. We formally 
introduce the concept of normalized process matrix in 
Definition 5 by extending the definition of a process 
matrix to include the entire union of nodes in the two 
graphs. The size of the normalized matrix is increased 
to the size of the union of the sets of nodes in both 
graphs. For those nodes that exist in a process matrix 
before normalization, the corresponding elements in 
the normalized matrix are the same as those in the 
process matrix. For those nodes added through the 
normalization, the corresponding elements in the 
normalized matrix are set to a value of 0. After 
normalization, both matrices have the same number of 
rows and columns, and share the same row and column 
names and sequences. The normalized matrices can 
then be used as an input to calculate distance. 
 
Definition 5 (Normalized Matrix, NM) 
Let 

1 1 1( , )DG DN DE=  and 
2 2 2( , )DG DN DE=  be two 

dependency graphs. Let NM1 and NM2 denote the 
normalized matrices for DG1 and DG2 respectively. We 
generate NM1 and NM2 from DG1 and DG2 as follows. 
i) The number of rows and columns are computed by 

1 2m DN DN= ∪  

ii) Let 1 2 1 2{ , , ..., }mDN DN A A A=U . Note that the row 
and column names of NM1 and NM2 are now 
normalized into the same node names

1 2, , ..., mA A A  in 
the union of DN1 and DN2. 
iii) Let 1 ( , )NM i j  denote the value of the ith row and 

the jth column in NM1, and 2 ( , )NM i j  denote the value 
of the ith row and the jth column in NM2 

1

1

1        if ( , )  
( , )

0        otherwise            
i jA A DE

NM i j
∈

=
⎧
⎨
⎩

, 

2

2

1        if ( , )  
( , )

0        otherwise            
i jA A DE

NM i j
∈

=
⎧
⎨
⎩

 

Consider processes in Fig. 5 as an example. By 
constructing normalized matrices for g11 and g22, 
denoted by NM11 and NM22 respectively, the size of 
NM11 of g11 is increased to 11 because NM11 should 
include node A8, which was not originally included in 
g11. All the elements of the newly added column for 
node A8 are set to a value of 0 because there is no 
dependency between any node of g11

 and node A8. 
Similarly, node A6 is added in NM22. Now NM11 and 
NM22 have the same row names and column names: A1 



through A11. We can use NM11 and NM22 to compare 
g11 and g22. 

NM11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 1 0 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0 0
A3 0 0 0 0 1 1 1 0 0 0 0
A4 0 0 0 0 0 0 0 0 0 1 0
A5 0 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 0 1 0 0
A8 0 0 0 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 0

(a) NM11 
NM22 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 1 0 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0 0
A3 0 0 0 0 1 0 1 0 0 0 0
A4 0 0 0 0 0 0 0 1 0 0 0
A5 0 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 1 0 0
A8 0 0 0 0 0 0 0 0 0 1 0
A9 0 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 0

(b) NM22 
 Fig. 7  An example of comparison matrices 

The algorithm for construction of normalized 
process matrices consists of three steps. First, we must 
determine whether or not DG1 and DG2 are δ-
comparable for the given δ value. Second, we compute 
the size of the normalized NM by 

1 2m DN DN= ∪ and label nodes in { }1 2DN DN∪  as 

{ }1 2, , ... mA A A  using a uniform naming scheme. Third, 
we create the matrix data structures for DG1 and 
DG2: 1 ( , )NM i j  and 2 ( , )NM i j , where i, j = 1, 2, ..., m, 
and assign a value of 1 or 0 to each element in the two 
normalized matrices. 

 
4.2 Distance-based Process Similarity Measures 

With the concept of a normalized matrix, we now 
transform the problem of comparing two processes into 
the problem of computing the distance-based similarity 
of the two normalized process matrices. One obvious 
idea is to compute the distance of two normalized 
matrices using matrix subtraction.  

Consider the example processes g11 and g22 in Fig. 7. 
One way of computing the distance between g11 and g22 
by matrix subtraction is to simply perform subtraction 

element by element. By subtracting NM22 from NM11, 
we can see only five elements have values 1 and -1 
respectively and the rest of the elements are 0. This 
means that five elements are unmatched between the 
two dependency graphs g11 and g22.  

 
NM11-NM22 = 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 0 0 0 1 0 0 0 0 0
A4 0 0 0 0 0 0 0 -1 0 1 0
A5 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0 0 -1 0
A9 0 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 0

 
A drawback of this approach is that both 1 and -1 

values in the resulting matrix represent the fact that 
there are some discrepancies between two graphs g11 
and g22 in five elements. But it does not tell the degree 
of such discrepancies in terms of concrete distance 
measure. Thus we need an efficient way to represent 
the total number of non-zero values in the resulting 
matrix.  

One obvious way to capture the degree of the 
difference between NM11 and NM22 is to use the sum of 
the squares of elements in NM1−NM2 as shown below, 
which is ( ) ( ) ( ) ( ) ( )2 2 2 2 21 1 1 1 1 5+ − + + + − =  because only 
five elements have non-zero values 1 and -1.  

 

11 22 11 22( )( )TNM NM NM NM− − = 
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 1 0 0 0 0 0 0 0 0
A4 0 0 0 2 0 0 0 -1 0 0 0
A5 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 1 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 -1 0 0 0 1 0 0 0
A9 0 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 0

 
Interestingly, we can calculate the sum of the 

squares of elements in a matrix by the notion of trace in 
linear algebra. According to [5], the sum of diagonal 



elements in a matrix is defined as the trace of the 
matrix. The best way to calculate the sum of the 
squares of elements in a matrix is using the concept of 
inner products, which is defined by the trace concept.  

 
Definition 6 (Dependency Difference Metric, d) 
Let 1 1 1( , )DG DN DE=  and 2 2 2( , )DG DN DE=  be 
two dependency graphs. Let NM1 and NM2 be the 
normalized matrix of DG1 and DG2 respectively. We 
define the symmetric difference metric on graphs DG1 
and DG2 by the trace of the difference matrix of NM1 
and NM2 as follows: 

1 2 1 2 1 2( , ) [( ) ( ) ]Td DG DG tr NM NM NM NM= − × −  
where tr[⋅] denotes the trace of a matrix, i.e., the sum 
of the diagonal elements.  

 
This distance function counts the number of edge 

discrepancies between DG1 and DG2. Now, we want to 
show that the dependency difference metric d satisfies 
the distance measure properties. The function d is 
called a metric if and only if for all graphs g1, g2, g3, 
the following conditions hold [7]: 

 
i)  d(g1, g2) = 0 iff g1 and g2 are identical 
ii) d(g1, g2) = d(g2, g1) 
iii)  d(g1, g2) ≤ d(g1, g3) + d(g3, g2). 
 

Theorem 1. d(DG1,DG2) satisfies Distance Measure 
Properties.  
Proof:  
Concretely, we want to prove that if 1 2A NM NM= −  

and 2

1 2
1 1

( , ) , ( )
n n

T T

ij
i j

d DG DG A A tr A A a
= =

=< >= × = ∑∑ , 

then this distance 1 2( , )d DG DG satisfies the three 
distance measure properties: 

i) 1 2( , ) 0d DG DG =  iff DG1 and DG2 are identical, 
because the matrix A becomes 0.  

ii) 1 2 2 1( , ) ( , )d DG DG d DG DG=  by the d definition. 

iii) 1 2 1 3 3 2( , ) ( , ) ( , )d DG DG d DG DG d DG DG≤ +  
For any two nodes i, j, let 

11        if ( , )  
( , )

0        otherwise            
i j

k

A A DE
NM i j

∈
=
⎧
⎨
⎩

 for k=1, 2, 3 

Then we can show the property iii) holds. 

 { }
1 2 1 2 1 2

2

, 1 2

2 1

( , ) [( ) ( ) ]

                    ( , ) ( , )

                     ( , )

T

i j

d DG DG tr NM NM NM NM

NM i j NM i j

d DG DG

= − × −

= −

=

∑ .  

Now we show that the property iii) holds as well, 
because 1 2( , ) ( , )NM i j NM i j−  is either 0 or ±1, thus 

we have 1 2 , 1 2( , ) ( , ) ( , )i jd DG DG NM i j NM i j= −∑ . 

{ }

1 3 3 2

, 1 3 , 3 2

, 1 3 3 2

, 1 3 3 2

, 1 2

1 2

( , ) ( , )

  ( , ) ( , ) ( , ) ( , )

   ( , ) ( , ) ( , ) ( , )

   ( , ) ( , ) ( , ) ( , )

   ( , ) ( , )

   ( , )

i j i j

i j

i j

i j

d DG DG d DG DG

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j

d DG DG

+

= − + −

= − + −

≥ − + −

= −

=

∑ ∑
∑
∑
∑

So the new process distance measure is, in fact, a 
distance metric.  

Since the dependency distance metric d(g1, g2) 
counts the number of asymmetric arcs, it can reflect the 
difference of some characteristics between two 
processes, such as activity precedence, activity 
commonality, flow structure, etc. Activity precedence 
describes how the activities are linked and sequenced 
in terms of execution ordering. The dependency 
distance metric denotes the disparity of sequence 
between two activities and can be extended to represent 
the sequence disparities between all activities. In Fig. 8, 
the distance of two processes g0 and g1, denoted by 
d(g0, g1), illustrates the difference of activity 
precedence. Activity commonality means how many 
activities are shared between two process models. This 
counts the different activities or new activities of two 
processes, as illustrated by processes g0 and g2 in Fig. 8. 
In addition, flow structure denotes the difference 
between serial and parallel flows. Two processes g0 
and g3 show the difference measurement of flow 
structures, serial and parallel flows. 

A B C D

A C B D A B C E A
B

D

d(g0, g1) = 6, d(g0, g2) = 2, d(g0, g3) = 3

g0

g1 g2 g3

C  
Fig. 8 Examples of dependency distance 

In Fig. 8, if we follow the previous procedure to 
calculate the dependency distance, all of the graphs are 
transformed to process network matrices and 
normalized process matrices. Then the distance of 
dependency between g0 and g1 is 6, the distance of g0 
and g2 is 2, and the distance of g0 and g3 is 3. This 
means that g0 and g2 are the most similar, which is 
intuitively correct because the first three activities are 
in the same sequence but only the last activity is 
different. g0 and g1 are mostly different because the 
sequence of the activities in g1 is quite different from 
g0. In this dependency distance measure, the parallel 



execution in g3 is not considered important and only 
the precedence relationships and common activities are 
considered important. 

If we look into more extended examples in Fig. 5 
again, each graph is transformed into process matrix, 
and then normalized matrix. These two normalized 
matrices are subtracted and squared. Finally we can get 
the proposed dependency distance 5 by obtaining the 
trace of it. 
 
5. Prototypes and Evaluations 
 

The presented concepts of this paper were 
implemented to analyze the similarity of processes in 
process warehouse. This system, called 
“BPSAT(Business Process Similarity Analysis Tool)”, 
is developed by using Java language. This prototype 
system has three windows: process browser, graph 
editor, and execution log output window. We can 
select some processes in the left process browser, and 
the selected process is shown and modified in the right 
graph editor. All the execution log and analysis outputs 
are displayed in the bottom window. There are also 
necessary buttons in tool bar. The basic manipulation 
such as creating and editing of process graph can be 
done in this prototype system, and the functionality of 
similarity analysis methods proposed in this paper can 
be done in this system. Also other new similarity 
criteria can be added in this system. The current 
version of this system can be downloaded at 
http://ebiz.chonbuk.ac.kr/~jsbae/bpsat. 

1. Two processes are selected 2. This button(One arrow)  is clicked

3. Process Dependency Distance is generated

Tool Bar

Process
Browser

Graph Editor

Execution Log & Output

 
Fig. 9 Prototype system of BPSAT 

After we check the candidate processes to be 
compared, we select two processes to be compared, g11 
and g22. Then we can get the proposed process 
dependency distance is generated and shown in the 
output window. 
 
6. Related Work 
 

Although business process management systems 
have been deployed in many industrial engineering 
fields, research on analysis, mining and integration of 
business processes are still in its infancy. One of the 
representative existing studies on process improvement 
is workflow mining, which investigates the traces and 
results of workflow execution, and determines 
significant information in order to improve the existing 
workflow processes [2, 3, 4, 9, 16]. However, most of 
the existing workflow mining research does not 
provide a quantitative measure to compare and capture 
the similarity of different workflow designs.  

The graph theory in a traditional algorithm textbook 
is a useful means to analyze the process definitions. 
Graphs, or representative data structures, are used as an 
accepted effective tool to represent the problem in 
various fields, which include pattern matching and 
machine recognition, such as pattern recognition, web 
and XML document analysis, and schema integration 
[8, 10, 18, 19]. For example, research on similarities in 
graph structures can be divided into three categories. 
The first category of traditional similarity is based on 
graph and sub-graph isomorphism, which has several 
weaknesses and distortions in the input data and the 
models. In order to overcome these weaknesses, other 
graph similarity analysis techniques, such as the graph 
edit distance (GED) metric and maximal common sub-
graph (MCS) have been introduced [8, 19]. It is also 
worth mentioning that Bunke [8] has shown that with 
generic graphs, under certain assumptions concerning 
the edit-costs, determining the maximum common sub-
graph is equivalent to computing the graph edit-
distance. This MCS is a basic concept of workflow 
similarity that measures the common activities and 
transitions of workflow processes. In this paper we 
utilize the graph theory results to derive the metric 
space distance metric for measuring process similarity 
and difference.  

Our research on workflow similarity measure is 
mainly inspired by the research results on document 
similarity analysis and graph similarity measures. A 
large number of document similarity measures are 
presented in existing literature for building document 
management systems, knowledge management systems, 
as well as search engines [8, 10, 12].  

Finally, in order to support web service composition, 
an infrastructure for searching and matchmaking of 
business processes is needed. One example is using 
annotated deterministic finite state automata (aDFA) to 
model the business processes [18]. If a business 
process is specified as aDFA, the match between two 
aDFAs is determined by the intersection of their 
languages. When there is non-empty intersection, the 
two business processes are matched. 

  



7. Conclusion and Future work 
 

We have presented a difference analysis 
methodology using distance measures between process 
definitions of web services. The proposed difference 
analysis method achieves three distinct goals. First, by 
analyzing the attributes of process models, we can 
present a quantitative process similarity metric to 
determine the relative distance between process models. 
This facilitates not only the comparison of existing 
process models with each other, but also provides the 
flexibility to adapt to changes in processes. Second, the 
proposed method is fast and flexible, which reduces the 
cost of both the analysis and design phases of complex 
web service processes. Third, the proposed method 
enables the flexible deployment of process mining, 
discovery, and integration – all desirable functionality 
that are critical for fully supporting the effective 
transformation of an enterprise.  

Our research on process mining, discovering and 
integration through similarity analysis continues along 
several directions. First, we are interested in distance 
measures that can compare workflow designs with 
complex block structure and various execution 
constraints. Second, we are interested in developing a 
prototype system that provides efficient 
implementation of various similarity analysis methods, 
including the dependency distance metric presented in 
this paper. Furthermore we are interested in applying 
the method developed to concrete case studies of 
existing enterprise transformations and to evaluate and 
improve the similarity measures proposed in this paper. 
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