
Process Mining, Discovery, and Integration using Distance Measures

Joonsoo Bae Ling Liu James Caverlee William B. Rouse
Chonbuk National Univ.

 South Korea
jsbae@chonbuk.ac.kr

Georgia Institute of
Technology, USA

lingliu@cc.gatech.edu

Georgia Institute of
Technology, USA

caverlee@cc.gatech.edu

Georgia Institute of
Technology, USA

bill.rouse@isye.gatech.edu

Abstract

Business processes continue to play an important
role in today’s service-oriented enterprise computing
systems. Mining, discovering, and integrating process-
oriented services has attracted growing attention in the
recent year. In this paper we present a quantitative
approach to modeling and capturing the similarity and
dissimilarity between different process designs. We
derive the similarity measures by analyzing the process
dependency graphs of the participating workflow
processes. We first convert each process dependency
graph into a normalized process matrix. Then we
calculate the metric space distance between the
normalized matrices. This distance measure can be
used as a quantitative and qualitative tool in process
mining, process merging, and process clustering, and
ultimately it can reduce or minimize the costs involved
in design, analysis, and evolution of workflow systems.

1. Introduction

With the increasing interest and wide deployment of
web services, we see a growing demand for service-
oriented architectures and technologies that support
enterprise transformation. Effective enterprise
transformation refers to strategic business agility in
terms of how efficiently an enterprise can respond to
its competitors and how timely an enterprise can
anticipate new opportunities that may arise in the
future. In the increasingly globalized economy,
enterprises face complex challenges that can require
rapid and possibly continual transformations. As a
result, more and more enterprises are focused on the
strategic management of fundamental changes with
respect to markets, products, and services [14]. Such
transformation typically has a direct impact on the
business processes of an enterprise. Enterprise
transformation may range from traditional business
process improvement to wholesale changes to the
processes supported by the enterprise – from
performing current work in a new fashion to
performing different work altogether. Each of these

challenges may lead to a differing degree of enterprise
transformation.

Fundamental to enabling the transformation of an
enterprise is the development of novel tools and
techniques for transforming the business processes of
an enterprise. In this paper, we present a critical
component to the problem of process transformation
from a web services point-of-view. In particular, we
present a novel process difference analysis method
using distance measures between process definitions of
two transactional web services. The process difference
analysis focuses on process structure and process
activity dependencies to identify distance measures
between processes.

The proposed difference analysis method achieves
three distinct goals. First, by analyzing the attributes of
process models, we present a quantitative process
similarity metric to determine the relative distance
between process models. This facilitates not only the
comparison of existing process models with each other,
but also provides the flexibility to adapt to changes in
existing business processes. Second, the proposed
method is quick and flexible, which reduces the cost of
both the analysis and design phases of web service
processes. Third, the proposed method enables the
flexible deployment of process mining, discovery, and
integration – all key features that are necessary for
effective transformation of an enterprise.

2. Web Service Process Reference Model

The web service process reference model consists of
business process definitions and the specification of
workflows among the processes with respect to data
flow, control flow, and operational views [15, 16]. We
define a business process in terms of business activity
patterns. An activity pattern consists of objects,
messages, message exchange constraints, preconditions
and postconditions [17], and is designed to specify the
service actions and execution dependencies of the
business process. An activity pattern can be viewed as
a web service process when it is executable as a web
service. We consider two types of activity patterns –

elementary activity patterns and composite activity
patterns [1, 6]. An elementary activity pattern is an
atomic unit. A composite activity pattern consists of a
one or more elementary activity patterns or other
composite activity patterns. The dependencies could
capture complex interactions between activities.

We define a business process as a collection of
business activities connected by data flow and control
flow, where each represents a business process. A
process definition can be seen as a web service (or a
collection of web services). We use data flow among
processes to define the data dependencies among
processes within a given business process. We use
control flow to capture the operational structure of the
business process service, including the process
execution ordering, the transactional semantics and
dependencies of the process. A number of workflow
specifications have gathered attention, including
BPEL4WS (BEA, IBM, Microsoft), WSFL (IBM),
XLANG (Microsoft), and XPDL (WfMC) [17]. In our
prototype development, we choose to use a variant of
BPEL4WS.

Formally, each workflow service is specified in
terms of process definitions. We can model each
process definition using a directed graph, in which the
nodes of the graph are activities. Depending on
whether the edges indicate execution dependencies or
data flow dependencies, we have a process aggregation
hierarchy or a process dependency graph. The process
aggregation hierarchy captures the hierarchical
execution ordering of activities. The process
dependency graph captures information about how
activities share information and how data flows from
one activity to another. Due to the space constraint, in
this paper we focus our discussion only on the
dependency graph. Concretely we present the process
similarity measures based on the dependency graphs of
the processes of interest.

Definition 1 (Dependency Graph, DG)
A dependency graph DG is defined by a binary tuple
<DN, DE>, where
• 1 2{ , , ..., }nDN nd nd nd= is a finite set of activity

nodes where 1n ≥ .
• 1 2{ , , ..., }mDE e e e= is a set of edges, 0m ≥ . Each

edge is of the form i jnd nd→ .

Note that in the dependency graph formulation, self-
edges are disallowed since edges are intended to denote
data flow dependencies between different activities
(nodes). Additionally, a dependency graph must be a
connected graph. Unconnected nodes and isolated
groups of nodes are disallowed in the graph, as isolated

nodes or groups of nodes are considered a separate
service process in our reference model.

As a real-life example of business process, there are
many PIPs (Partner Interface Processes) as defined by
RosettaNet[13]. PIPs define business processes
between trading partners. PIPs fit into seven Clusters,
or groups of core business processes, that represent the
backbone of the trading network. Each Cluster is
broken down into Segments and within each Segment
are individual PIPs. RosettaNet standards provide the
infrastructure for integrating business processes with
trading partners across the globe, delivering essential
value to industries and proven real-world business
results. Fig. 1 shows a standard process of procurement
order by buyer, which is in Segment 3A(Quote and
Order Entry) of Cluster 3(Order Management). This
example process has 13 activities and their
dependencies.

Analyze
ordering
needs

Set quote specifications
and create a quote

request

Process the order
status response

Analyze
purchase order

confirmation

Create
purchase

order request

Define requested
products and send price
and availability request

Analyze price and
availability responses

Create order
status query

Analyze the
changes from seller

Analyze the purchase
order acknowledgement

Make the needed
changes to the
purchase order

Cancel the
purchase order

Order completed

Fig. 1 A real-life example of business process

Given two processes and their respective
dependency graphs, there are numerous ways these two
graphs may differ. Typically, it makes more sense to
compare only those graphs that have sufficient
similarity in terms of their dependency graphs.
Consider two extreme cases: one is when the two
dependency graphs have the same set of nodes and the
other is when there is no common node between two
graphs. By assigning 1 for the first case and 0 for the
latter case, we define a comparability measure that
indicates the ratio of common nodes in two graphs.
One way to measure the extent of comparability
between two graphs is to use a user-controlled
threshold, called δ-Comparability, which is set to be
between 0 and 1. Because this value represents the
ratio of common nodes over the union of all nodes in
two graphs, the larger the value is, the greater degree
of comparability between the two graphs. Note that δ
value can not be 0 since δ = 0 means that there is no
common node between two graphs, i.e., 1 2DN DN∩ ≠ ∅ .

Definition 2 (δ-Comparability of DG)
Let 1 1 1(,)DG DN DE= and 2 2 2(,)DG DN DE= be
two dependency graphs, and δ be a user-defined
control threshold. We say that DG1 and DG2 are δ-

comparable if the condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds,

where 0 1δ< ≤

If we apply the δ-Comparability to the example

graphs shown in Fig. 2 with δ=0.5, g0 and f2 are not
comparable because the number of common nodes is
only one but the number of total nodes is 7, that is

1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0 and g2

are δ-comparable because there are 3 common nodes
and the total number of nodes is 5, thus the two graphs
satisfy the δ-comparability condition

1 2

1 2

3
0.5

5

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1 g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

Fig. 2 Examples of δ-Comparability

3. Motivating Scenarios

Given the process reference model, we consider two

motivating scenarios that benefit from the difference
analysis methodology introduced in this paper.
Consider a scenario where a company has maintained a
warehouse of existing processes used in various
business locations. Process mining[2, 3] of the process
warehouse can help the enterprise to discover
interesting associations or classifications among
business processes running at different locations or
branches of the company.

1 2
3

4

11

8 10
7
6
5

9

1 2
3

4

11

8 10
7

5
9

g2

1 2
3

4

11

8 10
7

5
9

g2

g3

1 2
3

4

11

8 10
7
6 9

g5

1 2
3

4

11

8 10
7
6 9

g51 2
3

4

11

8
7
6
5

g4

A Process Warehouse

1 2
3

4

11

8 10
7
6
5

9

δ-Value

Query Process

1 2
3

4

11

8 10
7
6
5

9

Selected Process

g3

1 2
3

4

11

10
7
6
5

9

g1

Fig. 3 Process mining example

In Fig. 3, we show a process warehouse that
contains many types of processes (for example, g1, g2,
g3, g4, g5). A typical process mining scenario is the
identification of the processes most similar to a query
process template in the process warehouse. Given a
query process and a comparability threshold δ-value,
the process mining will identify (g3) as the process that
is most similar based on the comparability criterion. It

is obvious that the concept of process similarity (or
distance) is critical to the effectiveness of process
mining.

4. Process Difference Analysis

In this section, we present the process difference
analysis method for evaluating the distance between
two processes. We first define the concept of a process
matrix and introduce the concept of a normalized
matrix. And then, we define the dependency distance
measure by measuring the difference between the
normalized matrices.

Process Dependency Graph

Process Matrix

Normalized Matrices

Distance Measure Proof of Distance Properties

δ-Comparability Filter

Ranked List of Processes

Process Warehouse,
Query Process, δ-value

Process Dependency Graph

Process Matrix

Normalized Matrices

Distance Measure Proof of Distance Properties

δ-Comparability Filter

Ranked List of Processes

Process Warehouse,
Query Process, δ-value

Fig. 4 Flow chart of Difference Analysis

In order to show the proposed procedure, we use two
derived processes that are variations of procurement
order process in Fig. 1. These two processes have 10
activities respectively but have different activities with
each other. The first process (g11) has A6 but does not
have A8, and the second process (g22) has A8 but does
not have A6. These two graphs satisfy δ-Comparability

as 1 2

1 2

9
0.5

11

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

 (a) g11 (b) g22

Fig. 5 Two extended examples of Fig. 1

4.1. Comparison Matrices
Two dependency graphs are said identical if the two

graphs have the same set of nodes and the same set of
edges. Formally we define identical dependency graphs
as follows:

Definition 3 (Identical dependency graphs)

Let
1 1 1(,)DG DN DE= and

2 2 2(,)DG DN DE= be two
dependency graphs. We say that DG1 and DG2 are
identical if the two graphs have the same set of nodes
and the same set of edges.

i) 1 2SetDN DN= ii) 1 2SetDE DE=
One way to compare and rank a set of similar

process definitions is to transform each dependency
graph into a numerical representation. This allows us to
compare the dependency graphs using similarity
distance in Euclidian distance metric space. This leads
us to introduce the concept of a process matrix. A
process matrix M is established in order to describe the
precedence dependencies between two activities (tasks).
The size of M is determined by the number of nodes in
the dependency graph and each cell in the matrix
denotes an element of M. The value of cell M(i,j) is set
either to 1 or 0 depending on whether or not there is a
precedence dependency between the two nodes i and j.

Definition 4 (Process matrix, M)
Let (,)g DN DE= be a dependency graph with

DN n= nodes. A process matrix M of g is n-by-n
matrix with n rows and n columns, and each row is
named after the node name. Let Mg(i,j) denote the
value of the ith row and the jth column in M, 1 ,i j n≤ ≤ .
We define Mg(i,j) as follows:

1 , (,)
(,)

0
i j i j

g

if nd nd DN such that nd nd DE
M i j

else

∃ ∈ ∈
=
⎧
⎨
⎩

Fig. 6 depicts the transformation of a process

dependency graph g11 shown in Fig. 5 (a) into its
process matrix M, a 10×10 matrix. Each element of M
is determined according to whether or not the
corresponding two activities have precedence
dependency. An edge between nodes A1 and A2 shows
that activity A1 precedes activity A2. Thus, Mg(A1, A2)
is set to a value of 1. There is no direct edge between
nodes A1 and A3. Thus Mg(A1, A3) is set to a value of 0.
M11 TO

 A1 A2 A3 A4 A5 A6 A7 A9 A10 A11

A1 0 1 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0
A3 0 0 0 0 1 1 1 0 0 0
A4 0 0 0 0 0 0 0 0 1 0
A5 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 1 0 0
A9 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 1

F
R
O
M

A11 0 0 0 0 0 0 0 0 0 0
Fig. 6 Process matrix of g11

In order to compare the two process dependency
graphs g11

 and g22, we need to further normalize each
process matrix that participates in the similarity
computation. Each normalized process matrix includes
the union of all sets of nodes, each from one
participating process dependency graph. We formally
introduce the concept of normalized process matrix in
Definition 5 by extending the definition of a process
matrix to include the entire union of nodes in the two
graphs. The size of the normalized matrix is increased
to the size of the union of the sets of nodes in both
graphs. For those nodes that exist in a process matrix
before normalization, the corresponding elements in
the normalized matrix are the same as those in the
process matrix. For those nodes added through the
normalization, the corresponding elements in the
normalized matrix are set to a value of 0. After
normalization, both matrices have the same number of
rows and columns, and share the same row and column
names and sequences. The normalized matrices can
then be used as an input to calculate distance.

Definition 5 (Normalized Matrix, NM)
Let

1 1 1(,)DG DN DE= and
2 2 2(,)DG DN DE= be two

dependency graphs. Let NM1 and NM2 denote the
normalized matrices for DG1 and DG2 respectively. We
generate NM1 and NM2 from DG1 and DG2 as follows.
i) The number of rows and columns are computed by

1 2m DN DN= ∪

ii) Let 1 2 1 2{ , , ..., }mDN DN A A A=U . Note that the row
and column names of NM1 and NM2 are now
normalized into the same node names

1 2, , ..., mA A A in
the union of DN1 and DN2.
iii) Let 1 (,)NM i j denote the value of the ith row and

the jth column in NM1, and 2 (,)NM i j denote the value
of the ith row and the jth column in NM2

1

1

1 if (,)
(,)

0 otherwise
i jA A DE

NM i j
∈

=
⎧
⎨
⎩

,

2

2

1 if (,)
(,)

0 otherwise
i jA A DE

NM i j
∈

=
⎧
⎨
⎩

Consider processes in Fig. 5 as an example. By
constructing normalized matrices for g11 and g22,
denoted by NM11 and NM22 respectively, the size of
NM11 of g11 is increased to 11 because NM11 should
include node A8, which was not originally included in
g11. All the elements of the newly added column for
node A8 are set to a value of 0 because there is no
dependency between any node of g11

 and node A8.
Similarly, node A6 is added in NM22. Now NM11 and
NM22 have the same row names and column names: A1

through A11. We can use NM11 and NM22 to compare
g11 and g22.

NM11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 1 0 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0 0
A3 0 0 0 0 1 1 1 0 0 0 0
A4 0 0 0 0 0 0 0 0 0 1 0
A5 0 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 0 1 0 0
A8 0 0 0 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 0

(a) NM11
NM22 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 1 0 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0 0
A3 0 0 0 0 1 0 1 0 0 0 0
A4 0 0 0 0 0 0 0 1 0 0 0
A5 0 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 1 0 0
A8 0 0 0 0 0 0 0 0 0 1 0
A9 0 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 0

(b) NM22
 Fig. 7 An example of comparison matrices

The algorithm for construction of normalized
process matrices consists of three steps. First, we must
determine whether or not DG1 and DG2 are δ-
comparable for the given δ value. Second, we compute
the size of the normalized NM by

1 2m DN DN= ∪ and label nodes in { }1 2DN DN∪ as

{ }1 2, , ... mA A A using a uniform naming scheme. Third,
we create the matrix data structures for DG1 and
DG2: 1 (,)NM i j and 2 (,)NM i j , where i, j = 1, 2, ..., m,
and assign a value of 1 or 0 to each element in the two
normalized matrices.

4.2 Distance-based Process Similarity Measures

With the concept of a normalized matrix, we now
transform the problem of comparing two processes into
the problem of computing the distance-based similarity
of the two normalized process matrices. One obvious
idea is to compute the distance of two normalized
matrices using matrix subtraction.

Consider the example processes g11 and g22 in Fig. 7.
One way of computing the distance between g11 and g22
by matrix subtraction is to simply perform subtraction

element by element. By subtracting NM22 from NM11,
we can see only five elements have values 1 and -1
respectively and the rest of the elements are 0. This
means that five elements are unmatched between the
two dependency graphs g11 and g22.

NM11-NM22 =

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 0 0 0 1 0 0 0 0 0
A4 0 0 0 0 0 0 0 -1 0 1 0
A5 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0 0 -1 0
A9 0 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 0

A drawback of this approach is that both 1 and -1

values in the resulting matrix represent the fact that
there are some discrepancies between two graphs g11
and g22 in five elements. But it does not tell the degree
of such discrepancies in terms of concrete distance
measure. Thus we need an efficient way to represent
the total number of non-zero values in the resulting
matrix.

One obvious way to capture the degree of the
difference between NM11 and NM22 is to use the sum of
the squares of elements in NM1−NM2 as shown below,
which is () () () () ()2 2 2 2 21 1 1 1 1 5+ − + + + − = because only
five elements have non-zero values 1 and -1.

11 22 11 22()()TNM NM NM NM− − =
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 1 0 0 0 0 0 0 0 0
A4 0 0 0 2 0 0 0 -1 0 0 0
A5 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 1 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 -1 0 0 0 1 0 0 0
A9 0 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 0

Interestingly, we can calculate the sum of the

squares of elements in a matrix by the notion of trace in
linear algebra. According to [5], the sum of diagonal

elements in a matrix is defined as the trace of the
matrix. The best way to calculate the sum of the
squares of elements in a matrix is using the concept of
inner products, which is defined by the trace concept.

Definition 6 (Dependency Difference Metric, d)
Let 1 1 1(,)DG DN DE= and 2 2 2(,)DG DN DE= be
two dependency graphs. Let NM1 and NM2 be the
normalized matrix of DG1 and DG2 respectively. We
define the symmetric difference metric on graphs DG1
and DG2 by the trace of the difference matrix of NM1
and NM2 as follows:

1 2 1 2 1 2(,) [() ()]Td DG DG tr NM NM NM NM= − × −
where tr[⋅] denotes the trace of a matrix, i.e., the sum
of the diagonal elements.

This distance function counts the number of edge

discrepancies between DG1 and DG2. Now, we want to
show that the dependency difference metric d satisfies
the distance measure properties. The function d is
called a metric if and only if for all graphs g1, g2, g3,
the following conditions hold [7]:

i) d(g1, g2) = 0 iff g1 and g2 are identical
ii) d(g1, g2) = d(g2, g1)
iii) d(g1, g2) ≤ d(g1, g3) + d(g3, g2).

Theorem 1. d(DG1,DG2) satisfies Distance Measure
Properties.
Proof:
Concretely, we want to prove that if 1 2A NM NM= −

and 2

1 2
1 1

(,) , ()
n n

T T

ij
i j

d DG DG A A tr A A a
= =

=< >= × = ∑∑ ,

then this distance 1 2(,)d DG DG satisfies the three
distance measure properties:

i) 1 2(,) 0d DG DG = iff DG1 and DG2 are identical,
because the matrix A becomes 0.

ii) 1 2 2 1(,) (,)d DG DG d DG DG= by the d definition.

iii) 1 2 1 3 3 2(,) (,) (,)d DG DG d DG DG d DG DG≤ +
For any two nodes i, j, let

11 if (,)
(,)

0 otherwise
i j

k

A A DE
NM i j

∈
=
⎧
⎨
⎩

 for k=1, 2, 3

Then we can show the property iii) holds.

 { }
1 2 1 2 1 2

2

, 1 2

2 1

(,) [() ()]

 (,) (,)

 (,)

T

i j

d DG DG tr NM NM NM NM

NM i j NM i j

d DG DG

= − × −

= −

=

∑ .

Now we show that the property iii) holds as well,
because 1 2(,) (,)NM i j NM i j− is either 0 or ±1, thus

we have 1 2 , 1 2(,) (,) (,)i jd DG DG NM i j NM i j= −∑ .

{ }

1 3 3 2

, 1 3 , 3 2

, 1 3 3 2

, 1 3 3 2

, 1 2

1 2

(,) (,)

 (,) (,) (,) (,)

 (,) (,) (,) (,)

 (,) (,) (,) (,)

 (,) (,)

 (,)

i j i j

i j

i j

i j

d DG DG d DG DG

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j

d DG DG

+

= − + −

= − + −

≥ − + −

= −

=

∑ ∑
∑
∑
∑

So the new process distance measure is, in fact, a
distance metric.

Since the dependency distance metric d(g1, g2)
counts the number of asymmetric arcs, it can reflect the
difference of some characteristics between two
processes, such as activity precedence, activity
commonality, flow structure, etc. Activity precedence
describes how the activities are linked and sequenced
in terms of execution ordering. The dependency
distance metric denotes the disparity of sequence
between two activities and can be extended to represent
the sequence disparities between all activities. In Fig. 8,
the distance of two processes g0 and g1, denoted by
d(g0, g1), illustrates the difference of activity
precedence. Activity commonality means how many
activities are shared between two process models. This
counts the different activities or new activities of two
processes, as illustrated by processes g0 and g2 in Fig. 8.
In addition, flow structure denotes the difference
between serial and parallel flows. Two processes g0
and g3 show the difference measurement of flow
structures, serial and parallel flows.

A B C D

A C B D A B C E A
B

D

d(g0, g1) = 6, d(g0, g2) = 2, d(g0, g3) = 3

g0

g1 g2 g3

C
Fig. 8 Examples of dependency distance

In Fig. 8, if we follow the previous procedure to
calculate the dependency distance, all of the graphs are
transformed to process network matrices and
normalized process matrices. Then the distance of
dependency between g0 and g1 is 6, the distance of g0
and g2 is 2, and the distance of g0 and g3 is 3. This
means that g0 and g2 are the most similar, which is
intuitively correct because the first three activities are
in the same sequence but only the last activity is
different. g0 and g1 are mostly different because the
sequence of the activities in g1 is quite different from
g0. In this dependency distance measure, the parallel

execution in g3 is not considered important and only
the precedence relationships and common activities are
considered important.

If we look into more extended examples in Fig. 5
again, each graph is transformed into process matrix,
and then normalized matrix. These two normalized
matrices are subtracted and squared. Finally we can get
the proposed dependency distance 5 by obtaining the
trace of it.

5. Prototypes and Evaluations

The presented concepts of this paper were
implemented to analyze the similarity of processes in
process warehouse. This system, called
“BPSAT(Business Process Similarity Analysis Tool)”,
is developed by using Java language. This prototype
system has three windows: process browser, graph
editor, and execution log output window. We can
select some processes in the left process browser, and
the selected process is shown and modified in the right
graph editor. All the execution log and analysis outputs
are displayed in the bottom window. There are also
necessary buttons in tool bar. The basic manipulation
such as creating and editing of process graph can be
done in this prototype system, and the functionality of
similarity analysis methods proposed in this paper can
be done in this system. Also other new similarity
criteria can be added in this system. The current
version of this system can be downloaded at
http://ebiz.chonbuk.ac.kr/~jsbae/bpsat.

1. Two processes are selected 2. This button(One arrow) is clicked

3. Process Dependency Distance is generated

Tool Bar

Process
Browser

Graph Editor

Execution Log & Output

Fig. 9 Prototype system of BPSAT

After we check the candidate processes to be
compared, we select two processes to be compared, g11
and g22. Then we can get the proposed process
dependency distance is generated and shown in the
output window.

6. Related Work

Although business process management systems
have been deployed in many industrial engineering
fields, research on analysis, mining and integration of
business processes are still in its infancy. One of the
representative existing studies on process improvement
is workflow mining, which investigates the traces and
results of workflow execution, and determines
significant information in order to improve the existing
workflow processes [2, 3, 4, 9, 16]. However, most of
the existing workflow mining research does not
provide a quantitative measure to compare and capture
the similarity of different workflow designs.

The graph theory in a traditional algorithm textbook
is a useful means to analyze the process definitions.
Graphs, or representative data structures, are used as an
accepted effective tool to represent the problem in
various fields, which include pattern matching and
machine recognition, such as pattern recognition, web
and XML document analysis, and schema integration
[8, 10, 18, 19]. For example, research on similarities in
graph structures can be divided into three categories.
The first category of traditional similarity is based on
graph and sub-graph isomorphism, which has several
weaknesses and distortions in the input data and the
models. In order to overcome these weaknesses, other
graph similarity analysis techniques, such as the graph
edit distance (GED) metric and maximal common sub-
graph (MCS) have been introduced [8, 19]. It is also
worth mentioning that Bunke [8] has shown that with
generic graphs, under certain assumptions concerning
the edit-costs, determining the maximum common sub-
graph is equivalent to computing the graph edit-
distance. This MCS is a basic concept of workflow
similarity that measures the common activities and
transitions of workflow processes. In this paper we
utilize the graph theory results to derive the metric
space distance metric for measuring process similarity
and difference.

Our research on workflow similarity measure is
mainly inspired by the research results on document
similarity analysis and graph similarity measures. A
large number of document similarity measures are
presented in existing literature for building document
management systems, knowledge management systems,
as well as search engines [8, 10, 12].

Finally, in order to support web service composition,
an infrastructure for searching and matchmaking of
business processes is needed. One example is using
annotated deterministic finite state automata (aDFA) to
model the business processes [18]. If a business
process is specified as aDFA, the match between two
aDFAs is determined by the intersection of their
languages. When there is non-empty intersection, the
two business processes are matched.

7. Conclusion and Future work

We have presented a difference analysis
methodology using distance measures between process
definitions of web services. The proposed difference
analysis method achieves three distinct goals. First, by
analyzing the attributes of process models, we can
present a quantitative process similarity metric to
determine the relative distance between process models.
This facilitates not only the comparison of existing
process models with each other, but also provides the
flexibility to adapt to changes in processes. Second, the
proposed method is fast and flexible, which reduces the
cost of both the analysis and design phases of complex
web service processes. Third, the proposed method
enables the flexible deployment of process mining,
discovery, and integration – all desirable functionality
that are critical for fully supporting the effective
transformation of an enterprise.

Our research on process mining, discovering and
integration through similarity analysis continues along
several directions. First, we are interested in distance
measures that can compare workflow designs with
complex block structure and various execution
constraints. Second, we are interested in developing a
prototype system that provides efficient
implementation of various similarity analysis methods,
including the dependency distance metric presented in
this paper. Furthermore we are interested in applying
the method developed to concrete case studies of
existing enterprise transformations and to evaluate and
improve the similarity measures proposed in this paper.

Acknowledgements: The first author was supported by
the Korea Research Foundation Grant (KRF-2004-003-
D00477).

8. References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B.

Kiepuszewski, and A.P. Barros, “Workflow Patterns,”
Distributed and Parallel Databases, 14(3), pages 5-51,
July 2003.

2. W.M.P. van der Aalst, B.F.van Dongen, J. Herbst, L.
Maruster, G. Schimm and A.J.M.M. Weijters, “Workflow
Mining: A Survey of Issues and Approaches,” Data and
Knowledge Engineering, 47(2), 237-267, 2003

3. W.M.P. van der Aalst, A.J.M.M. Weijters and L.
Maruster, ”Workflow Mining: Discovering Process
Models from Event Logs,” IEEE Transactions on
Knowledge and Data Engineering, 16(9), pp. 1128-1142,
2004

4. R. Agrawal, D. Gunopulos, and F. Leymann, “Mining
Process Models from Work-flow Logs”, 6th International
Conference on Extending Database Technology, pp. 469-
483, 1998.

5. Howard Anton and Chris Rorres, Elementary Linear
Algebra: Applications, John Wiley&Sons, 1994.

6. J. Bae, H. Bae, S. Kang, Y. Kim, “Automatic control of
workflow process using ECA rules,” IEEE Trans. on
Knowledge and Data Engineering, vol.16, no.8, pp.
1010-1023, 2004.

7. D. Banks and K. Carley, “Metric inference for social
networks,” Journal of classification, vol.11, pp. 121-149,
1994.

8. H. Bunke, K. Shearer, “A Graph Distance Metric based
on the Maximal Common Subgraph,” Pattern
Recognition Letters, vol.19, issues 3-4, pp. 255-259, 1998.

9. J.E. Cook and A.L. Wolf, “Software Process Validation:
Quantitatively Measuring the Correspondence of a
Process to a Model,” ACM Transactions on Software
Engineering and Methodology, 8(2), pp. 147-176, 1999.

10. K.M. Hammouda and M.S. Kamel, “Efficient Phrase-
Based Document Indexing for Web Document
Clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol.16, no.10, pp. 1279-1296, 2004.

11. F. Leymann and D. Roller, Production workflow:
concepts and techniques, Prentice Hall PRT, New Jersey,
2000.

12. W. Lian, W.W. Cheung, N. Mamoulis, S. Yiu, “An
Efficient and Scalable Algorithm for Clustering XML
Documents by Structure,” IEEE Transactions on
Knowledge and Data Engineering, vol.16, no.1, pp. 82-
96, 2004.

13. RosettaNet, http://www.rosettanet.org, RosettaNet
Standard (RosettaNet Partner Interface Processes)

14. W. B. Rouse, “A Theory of Enterprise Transformation,”
Systems Engineering, vol. 8, no. 4, 2005.

15. R. Rush and W.A. Wallace, “Elicitation of knowledge
from multiple experts using network inference,” IEEE
Transactions on Knowledge and Data Engineering, vol. 9,
no. 5, pp. 688-698, 1997.

16. Guido Schimm, “Mining exact models of concurrent
workflows,” Computers in Industry, 53, pp 265-281,
2004.

17. WfMC, Workflow Management Coalition Workflow
Standard Process Definition Interface -- XML Process
Definition Language, Document Number WFMC-TC-
1025 Version 1.13, September 7, 2005

18. Andreas Wombacher, Peter Fankhauser, Bendick
Mahleko, and Erich Neuhold, “Matchmaking for
Business Processes Based on Choreographies,”
International Journal of Web Services, vol.1, no.4, pp.
14-32, 2004

19. K. Zhang and D. Shasha, “Simple Fast Algorithms for the
Editing Distance between Trees and Related Problems,”
SIAM Journal of Computing, vol.18, no.6, pp. 1245-1262,
1989

