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1 Introduction

With the deployment of wide-area sensor systems and
Internet-based continuous-query applications, process-
ing stream data has become a critical task. As an
important method in data analysis, recently clustering
has attracted more and more attention in analyzing and
monitoring streaming data [5, 1]. The initial research
has shown that clustering stream data can provide im-
portant clues about new emerging data patterns so that
the decision makers can predict the coming events and
react in near real time. Stream data clustering is espe-
cially important to the time-critical areas such as dis-
aster monitoring, anti-terrorism, and network intrusion
detection. As many of such applications also include a
large amount of categorical data, clustering the categori-
cal data streams becomes an interesting and challenging
problem. Surprisingly, very few [2] have addressed the
problems related to clustering categorical data streams.

The change of critical clustering structure in data
streams provides the most important information,
which includes three forms: new emerging clusters,
drifting cluster centers that is caused by expanding clus-
ters, and disappearing clusters that is caused by the
convergence of growing clusters. The latter two aspects
can be effectively indicated by the change of the “Best
K” number of clusters. To our knowledge, none has ad-
dressed the problem of monitoring the change of clus-
tering structure for categorical data streams.

We have developed the BKPlot method and ACE
algorithm [3] for identifying the critical clustering struc-
ture in large static categorical datasets. However, iden-
tifying critical clustering structures in data streams
presents particular challenges, primarily in fast pro-
cessing time and restricted memory consumption. In
this paper, we propose a framework for monitoring the
change of critical clustering structure in categorical data
streams. The key idea is based on the summarization
tree structure, called Hierarchical Entropy Tree (HE-
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Tree for short), and the extended ACE algorithm work-
ing on the HE-Tree structure. HE-Tree utilizes a small
amount of memory to summarize the entropy property
of the data streams, and groups the data records into
a bunch of sub-clusters located at the HE-Tree leaf
nodes. The extended ACE algorithm is able to han-
dle the snapshot sub-clusters (often a few hundreds)
and generate approximate snapshot BKPlots for identi-
fying the Best K at certain time interval. The difference
between the clustering structures can be conveniently
identified by comparing the distinctive points on the
snapshot BKPlots.

2 Entropy-based Categorical Clustering

The framework is based on entropy-based categorical
clustering. Due to the space limitation, please refer to
the paper [3] for the detailed background introduction.
Below, we give the necessary notations and definitions,
and the important metric Incremental Entropy, which
is used in HE-Tree and the extended ACE algorithm.

Notations and Definitions Consider that a dataset
S with N records and d columns, is a sample set of the
discrete random vector X = (x1, x2, . . . , xd). For each
component xj , 1 6 j 6 d, xj takes a value from the
domain Aj . Aj is conceptually different from Ak(k 6= j).
There are a finite number of distinct categorical values
in domain(Aj) and we denote the number of distinct
values as |Aj |. Let p(xj = v), v ∈ Aj , represent
the probability of xj = v, we define the estimated
entropy of the dataset S as follows. Ĥ(X) = H(X|S) =
−∑d

j=1

∑
v∈Aj

p(xj = v|S) log2 p(xj = v|S)
Let CK = {C1, C2, . . . , CK} represent a partition of

dataset S and nk be the number of records in the cluster
Ck. It has been shown [6, 2] that categorical clustering
is equivalent to minimizing the item 1

dN

∑K
k=1 nkĤ(Ck),

which is named as the “expected entropy” of partition
CK , and notated as H̄(CK).

Incremental Entropy While expected-entropy de-
scribes the average intra-cluster quality, incremental en-
tropy is a measure used to describe the similarity be-
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tween any two clusters [3]. Intuitively, merging the two
clusters that are similar in the inherent structure will
not increase the disorderliness (expected-entropy) of the
partition, while merging dissimilar ones will inevitably
bring larger disorderliness. Therefore, this increase of
expected entropy has some correlation with the similar-
ity between clusters. Let Cp ∪ Cq represent the mer-
gence of two clusters Cp and Cq, and Cp and Cq have
np and nq members, respectively. We name Im(Cp, Cq)
= (np + nq)Ĥ(Cp ∪ Cq)− (npĤ(Cp) + nqĤ(Cq)) > 0
as the “Incremental Entropy (IE)” of merging the clus-
ters Cp and Cq. Note that Im(Cp, Cq) is always non-
negative [3] and Im(Cp, Cq) = 0 suggests that the two
clusters have the identical structure regardless of the
cluster size. IE plays an important role in construct-
ing a hierarchical clustering scheme, where minimizing
IE measure is equivalent to minimizing the expected-
entropy criterion.

BKPlot method Let the neighboring partitions be
two clustering schemes having K and K + 1 number
of clusters, respectively. The basic idea of BKPlot is to
investigate the entropy difference between any two opti-
mal neighboring partitions and to find the characteris-
tics that are related to the critical clustering structure.
Let the expected-entropy of the optimal partition be
H̄opt(CK) = min{H̄i(CK)}, where H̄i(CK) be any pos-
sible K-cluster partitions. We define the increasing rate
of entropy between the optimal neighboring partitions
as I(K) = H̄opt(CK) − H̄opt(CK+1). The important
result [3] is that I(K) curve (the Entropy Character-
istic Graph (ECG), Figure 2) implies two levels of dif-
ference between the neighboring partitions, and this is
used to understand where the critical clustering struc-
ture emerges. An ECG shows that the similar partition
schemes with different K are at the same “plateau”.
From plateau to plateau there are the critical points
implying the significant change of clustering structure.
These critical points are highlighted in the second-order
differential of ECG, which is named as “Best-K Plot

(BKPlot)”.
Exact BKPlots cannot be achieved in practice, since

I(K) is based on the optimal K-cluster scheme which
involves entropy minimization. However, since we only
pay attention to the peak/valley points, approximate
but accurate BKPlots are possible to get. A hierarchical
clustering algorithm ACE in [3] is proposed to generate
high-quality BKPlots. However, we can not apply
ACE algorithm directly to data streams due to its high
complexity.

3 HE-Tree: Summarizing Clustering Structure
of Categorical Data Streams

In this section, we design the summarization structure
− Hierarchical Entropy Tree (HE-Tree). The basic idea
of HE-Tree is to coarsely but rapidly assign the records
from the data stream onto hundreds of subclusters.
These subclusters will be enough to give us an accu-
rate sketch of the clustering structure. HE-Tree can
effectively summarize the old records and adapt to the
new coming records. Incremental Entropy metric plays
an important role in the summarization process. A HE-
Tree consists of two key components:

1. HE-node structure, which summarizes the entropy
characteristics of a group of records and facilitate
fast processing of stream data items;

2. Incremental-Entropy based lookup/assigning algo-
rithm, which helps to adapt the changing clustering
structure.

Given the fixed height h and fanout f , HE-Tree is
constructed in two stages:

1. the growing stage, which grows the tree to full size;

2. the absorbing stage, which absorb the new coming
items into the leaf nodes of the full tree.

Summary Table. Since computing cluster entropy is
based on counting the occurrences of categorical values



in each column, summary table is used to keep the
counters for each cluster. For each categorical value
vij ∈ Aj , we have an element T [vij ] in summary table
as the counter.
Nodes in HE-Tree. HE-Tree is a balanced tree similar
to B-tree, where each node has f entries and the entries
in the leaf nodes represents the nc subclusters. As
shown in Figure 4, each entry in leaf node contains a
summary table, and a leaf node also contains a Im table
(Incremental Entropy table) with (f + 1)2 entries and
a heap in size of f for fast locating and merging the
entries. Im table, together with the heap, keeps track
of the minimum Im. An internal node (non-leaf) in
the tree contains only the aggregation information of
its child nodes.

Let a summary table represented with a vector
~s and the entropy characteristic of any internal node
Ci denoted as ECi(ni, ~si), where ni is the number of
records summarized by this node. Let Cij , 1 6 j 6 f
represent the child nodes of Ci. HE-Tree maintains the
following property.

ECi(n,~s) =
f∑

j=1

ECij(nij , ~sij) = ECi(
f∑

j=1

nij ,

f∑

j=1

~sij)

The key of HE-Tree is to approximately minimize the
overall expected entropy by locally minimizing the
expected entropy of the selected branch H̄(Cf

i ) in each
update of the tree.
Growing Phase. The tree grows until the number of
leaf nodes reaches dnc/fe. The first subroutine is for
locating the target leaf node for insertion. The search
begins at the root node. Let e denote the inserted record
and ei denote one of the entry in current node. Since
each entry in the internal node is the summarization of
its sub-tree, we can find the most similar entry to e by
finding the minimum Im among Im(e, ei), i = 1..f , i.e.

et = argminei{Im(e, ei), i = 1..f}

Iteratively, the same criterion is applied to the selected
child node until a leaf node is reached. If the target
leaf node has empty entries and Im(e, ei) 6= 0 for each
occupied entry ei, the record is assigned an empty entry.
Otherwise, the new record is merged to the identical
entry.

When the target leaf node is full, a split operation is
applied. In split algorithm, we partition the entries into
two groups. First, two pivot entries (er, es) are found
in the target node that lead to maximum Im among all
possible pairs, i.e., they are the most dissimilar pair.

(er, es) = argmaxer,es{Im(er, es), i = 1..f}

The rest entries are then assigned to the two clusters so
that the overall expected-entropy of the partition keeps
minimized. A new node is generated accommodating
one of the two sets of entries, while a new entry is
added into the parent node pointing to the new node.
The insertion/splitting continues until the number of
leaf entries reaches nc, and then the growing phase is
turned to the absorbing phase.
Absorbing Phase. In this phase, the same locating
algorithm is applied to locate the target leaf node for
the new record. Instead of insertion in the leaf node, we
merge the most similar two items among the f+1 items
– the f entries in the leaf node plus the new record.
This allows the tree to rapidly adapt to the change of
clustering structure in the leaf level. When a new record
comes, only f calculations of incremental entropy are
needed to update the Im table and the heap, which are
then used to select the most similar two to merge.

3.1 Setting of Parameters The setting of the two
parameters f and nc can affect the efficiency and
quality of summarization. Let h be the height of the
tree (root is at level 1). For simplicity, we always
construct full trees and allow nc = fh to vary from
hundreds to thousands. In experiment, we show that
a smaller f always results in faster summarization, but
can undermine the quality of summarization when the
clustering structure is changing dramatically. On the
other hand, larger f increases the ability adapting to the
change of clustering structure but also increases the cost
in the absorbing phase. To tradeoff the performance and
robustness, we can set the tree to be 2 ∼3 layers, with
f = 10 ∼ 20.

3.2 Complexity of HE-Tree The time complexity
of constructing HE-Tree can be divided into two phases.
In the growing phase, about fh records are inserted
into the tree and each record needs at most O(hf)
comparison to locate the target node. In the absorption
phase, besides the cost of locating, each insertion also
costs O(f) incremental-entropy calculation that costs
O(dm). Therefore, the cost will be O((h+dm)f). With
the fixed setting of small f and h, the total cost is only
dominated by the factor dm. Similarly, we can infer
that a HE-Tree needs O((dm + f)fh+1) memory, which
is also determined by dm.

4 Framework for Monitoring the Change of
Clustering Structure

With the HE-Tree and the extended ACE algorithm,
which clusters only the sub-clusters at the HE-Tree
leaf entries, we can precisely monitor the change of
clustering structure in the categorical data stream. The
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framework is illustrated in Figure 5. The working
mechanism can be described as follows.

1. The records from the data stream are inserted into
the HE-Tree sequentially.

2. At certain time interval ∆t, the summary tables
in the leaf nodes are dumped out (to a piece of
memory or to hard disk).

3. the extended ACE algorithm are performed on the
snapshot as soon as it is dumped, the result of
which generates a BKPlot.

The consecutive BKPlots are analyzed to see the differ-
ence between the clustering structures. BKPlots can be
represented as a function B(K), where K is the number
of clusters and the distinctive B(K)s indicate the candi-
date best Ks. Without loss of generality, we suppose the
first κ distinctive Ks on BKPlots are Γ = {k1, k2, . . . kκ}.
Let Γold and Γnew represent two set of Ks on the con-
secutive BKPlots, respectively. There are two kinds of
important differences we need to notice.

1. If Γold 6= Γnew, the clustering structure is dramati-
cally changed and we need to analyze the snapshot
of Γnew in detail.

2. If Γold = Γnew, but at certain ki that |B(knew
i ) −

B(kold
i )| > θ, where θ is a threshold raising an

alarm, which indicates some minor change of clus-
tering structure.

5 Experimental Results

The goal of the experiments is two-fold. 1) We in-
vestigate the parameter setting of HE-Tree and give
the estimate of appropriate settings; 2) We want to
show that HE-Tree summarization together with the
extended ACE algorithm can provide high-quality mon-
itoring.
Datasets The synthetic dataset DS1 has a two-layered
clustering structure (Figure 6) with 30 attributes and

N rows. It has four same-sized clusters in the top
layer. Each cluster has random categorical values
selected from {‘0’,‘1’,‘2’,‘3’,‘4’, ‘5’} in some distinct set
of attributes (the dark area in Figure 6), while the
rest attributes are set to ‘0’. Two of the four clusters
also have clustering structure in the second layer. This
dataset is primarily used in exploring the effect of the
parameters of HE-Tree to summarization. We also use a
real discretized dataset, “US Census 1990 Data ”, which
has 68 dimensions and about 2 million records. The
visualization of its sample dataset is shown in Figure
11.
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5.1 Parameter Setting for HE-Tree For simplic-
ity, we always use full trees in the experiment. Intu-
itively, for a fixed f , the higher the tree , the finer the
granularity of summarization will be delivered. Since we
often care about the clustering structures with less than
20 clusters, a short tree with less than one thousand sub-
clusters is enough for achieving a high-quality BKPlot.
Thus, we fix h = 2 with varying fan-out f from 10 to 30
in experiments. A set of datasets (20 datasets) in the
same structure shown in Figure 6 are generated and the
result is based on the 20 runs of different datasets.

Figure 7 shows the linear complexity of HE-Tree
summarization, which is consistent with our analysis.
Figure 8 shows the effect of different settings to the qual-



ity of clustering result for “Unordered DS1”. Unordered
DS1 randomly orders the records from different clusters.
Thus, any considerably long segment of the unordered
DS1 stream contains the primary clustering structure
shown in Figure 6. The result shows some variances
between the error rates for different f , but overall the
error rates are similar and low, which is consistent with
the clustering structure of the data stream.

“Ordered DS1” shows a more interesting scenario,
where the clustering structure is dramatically changed
in the stream. We observed that the setting of f may
significantly affect the quality of monitoring. Figure 9
shows the result of sequentially processing the clusters
C11 to C4. A tree with larger f is more adaptive to the
change of clustering structure. It shows that increasing
f from 10 to 20 can considerably reduce the error,
but f = 30 will not significantly improve the result of
f = 20. Balanced with the time cost and the robustness,
f = 20 seems the best for efficiently adapting the change
of structure.

5.2 Robustness of HE-Tree/Extended ACE We
run the experiment on the real US Census data. A
small sample set of 500 records is used to show the orig-
inal clustering structure, and two large sample sets with
10K and 100K, respectively, simulates two data streams.
The sample sets are uniformly drawn from the original
dataset, therefore, the clustering structure is preserved.
All BKPlots (Figure 10) strongly suggest the best K
is 3, while K=2 is probably another candidate, which
is consistent with the visualized clustering structure in
the paper [4]. The result shows that HE-Tree summa-
rization can preserve the primary clustering structure
and thus HE-Tree combined with the extended ACE
method is a robust approach for monitoring the change
of clustering structure.
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5.3 Monitoring the Changes We also demonstrate
the progressive monitoring results of the data stream
Census-stream. We partition the census dataset into
four parts and mix the parts sequentially so that the
special clustering structures appear in different stages as
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Figure 11: Monitoring Census-stream.

Figure 11 shows. At first snapshot, there are clearly two
clusters; in the second one, the third cluster emerges;
finally, a two-layer clustering structure (K=2 and 3)
appears in the third snapshot.

6 Conclusion

In this paper, we address the problem of detecting
the change of clustering structure in categorical data
streams, with the combination of the BKPlot method
and the Hierarchical Entropy Tree (HE-Tree) algorithm.
HE-Tree summarizes the stream clustering structure
into a small number of leaf nodes. In order to observe
the change of clustering structure, snapshots of the leaf
entries of HE-Tree are dumped in certain time interval,
which is then processed by the extended ACE clustering
algorithm to generate high-quality BKPlots. With
the snapshot BKPlots we can conveniently identify
whether and how the clustering structure in the stream
is changed.
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