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Abstract loaded. As aresult, the update problem in mobile CQ systems
has received significant attention from the research commu-

To provide high-quality results for location-based, con- " duci | lind ¢ )
tinual queries (CQs) in a mobile system, the query proces—_n'w’ producing several spatial index structures for efitly

sor usually demands receiving frequent position updatas fr integrating position updates into the system [18, 9, 11, 21]

the mobile nodes. However, processing frequent updates O‘AIthough indexes can speed up the processing of position up-

ten causes the query processor to become overloaded, und(gf"tes' they do not solve the fundamental problem of overload

which updates must be dropped randomly, bringing down theWhen overloads happen, the position updates will clog the

query-result accuracy and negating the benefits of frequen?ys_tem buffers and_ cause upda’;es tq be dr(_)pped randomly,
updates. In this paper, we develtpra — a lightweight, which (as we show in this paper) is an ineffective way to han-

. ; : ; dle overload. Surprisingly, none of the prior works have ad-
region-aware load-shedding technique for preventivetiue ) .
ing the position-update load of a query processor, whilemai dressed the problem of effectiupdate load sheddingience,

taining high-quality query results. Instead of receivirmpt there is a cogent need for developing intelligent updatd-loa

many updates and then randomly dropping some of themshedding techniques for mobile CQ systems. The load shed-

LIRA uses aregion-awargpartitioning mechanism to identify ding algor|thm§_ should prevent _overloads by reducing the
the most beneficiadhedding regiont cut down the position number of position updates received by the query processor,

updates sent by the mobile nodes within those regions. Base"(‘fhiIe m_inimizing the side—eﬁegts on query—result accyrac
on the densities of mobile nodes and queries in a rediora . In this paper, we develop a Ilghtwe|ght Ioaq-sheddlng tech-
judiciously applies different amounts of update reducfion mc;lu% fch)r red#‘;‘”g th_e ‘_Jdpdaf ang :an ”_‘Obr'F CQ systems,
different regions, aiming to minimize the negative impadts calied LRA. € main 1dea benind IrA 15 that, given an
load shedding on query-result accuracy. Experimentalltssu update bUdg?? (which s either calculated agtomatlcally by
show thatL IRA is vastly superior to random update dropping LIRA or specified as a system-lewélrottle fractionparame-

and clearly outperforms other alternatives that do not gsss tert) ' If"EA dc(;eates a parngonmg qftthe moc;uttorlt?]g ?tFI) acgtlr]nto a
region-aware load-shedding capabilities. Moreover, dudg setolshedding regionand assoclates afpaate throttierwl

lightweight natureL IRA introduces very little overhead. each shedding region, where these update throttlers daéne t
amount of load shedding to be performed for each region in

1 Introduction accordancg with the overall updatg budget. Generally, tepda
) . i ) .. load shedding decreases the quality of query results.rma L
The proliferation of mobile devices and advances in wire-poih the partitioning and the settings of the update trewtl
less communications are creating an increasing interest ire performed with the objective of minimizing the negative
rich, value-qdded location-based services, Whlch arecmelpe impact of load shedding on the accuracy of query results.
to form an important part of the future computing environ- | kA has four unique properties. First, the partitioning
ments that will seamlessly integrate into our lives [17].AT  gcheme employed byikA is region-aware Contiguous ge-
cent example from the industry is the Google Ride Finder [6]graphical areas that have similar characteristics ingest
service, which provides mobile users with the capability t0 yensities of mobile nodes and queries are grouped into the
employ CQs to monitor nearby taxi services. same load shedding regions. Second, the update throttéers a
Mobile CQ systems serve as an enabling technology for 10et hased on the following principle: the regions where tepda
cation monitoring applications. Scalable CQ middleware fo 554 shedding may cut down a large number of updates while

location monitoring has been an active area of research, akqqycing the query-result accuracy minimally, are subjgct
tested by several recent works, such as SINA [12], SRB [8lg jarger amounts of load shedding. Thirdria provides an

MAI [5], and others [3, 1, 13]. In almost all of these sys- aqjystable bound on the maximum difference between the up-
tems, position updates and query re-evaluations are o preyate throttlers of different shedding regions, ensurirag il
dominant and costly components of processing locatior®as qpile nodes are tracked by the system, albeit with varying
CQs, consuming CPU, disk, and wireless network resources 4ccyracies. This feature extends the applicability méA_to

To produce high-quality query results, the query processofygpile CQ systems with snapshot and historical query sup-
usually demands receiving frequent position updates fl@n t 6 | a5t but not the least,IkA introduces very little over-
mobile nodes. However, receiving and processing frequenEead and can be employed in conjunction with CQ systems
updates often causes the query processor to become oVef;at use update-efficient indexes, like TPR-tree [16].
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We evaluate our load shedding approach using realistic lofines the ideal resolution of position updates. L&t
cation data synthetically generated using existing roagsma be the maximum value that the inaccuracy threshold can
and real-world traffic volume data. We devise a set of evalu-take, which defines the lowest resolution of position up-
ation metrics to assess the effectiveness igfaALand empir-  dates required to achieve reasonable query-result agcurac
ically show that LRA is vastly superior to update dropping The inaccuracy threshold  +
and clearly outperforms other alternatives that do notigev can be set to a value Withirﬁg'z

full-scale, region-aware load shedding capabilities. [A-, A4] to adjust the up-f§017
2 Overview date expenditure of the sysg 7

tem. By increasing) from go4

In this section we describe the fundamental concepts unA_ to A4, the number of §°3

derlying the LRA load shedder, introduce some of the nota- updates will decrease evefioy

tions used in the paper, and present the system architecture though this reduction is not % e~z "4 50" 70 85" 50 700
2.1 Design Ideas ||nea_r as shown |n F|£E inaccuracy threshold, A (meters)

. . . It plots f(A), called theup-

There are o major types of load shedding teChanueSdaf'ze rechILScti)on factorForF; given inaccuracy threshaldl €

for reducing the number of position updates processed bXAF,Aﬁ], F(A) gives the number of position updates received
the query processorserver-actuatedand source-actuated . tive to the case of — A,. As observed from Fig. 1

In server-actuated load sht_edding, the position updates A'fhe rate of reduction in the update expenditure is more pro-
Qropped b)./ the CQ server n order to ”.‘atCh the “Pdate aMounced whileA is increased within the proximity ek = 5

rival ratg with the server service rate. This has twp disadva meters, whereas it reduces to a fixed slope (linear decrease i
tages. First, the dropped updates are unnecessarilyaraecf the number of updates) @sgets closer to its maximum value
from the mobile nodes to the CQ server, wasting the wire-

) ) of Ay =100 meters.
less network bandwidth. Second, the excessive updatés Stl? A key observation we make in this paper is that different

have to be :eczlv%j b% the ﬁ ervher, (ejmdhthus contribute t?jth?egions exhibit different characteristics in terms of tleasi-
processing load. On the other hand, the source-actuated ae,q ¢ mopile nodes and queries and can benefit from differ-
proach requires some coordination between the server @nd th, o o, nts of load shedding. This observation suggests tha
mobile nodes, since the load shedding decisions are made by '\ iform A approach is significantly suboptimal. To under-

the server. With a lightweight process for coordinatiorRA. g5 this better, we plot the desirability of load sheddang
uses the source-actuated approach for load shedding. regions with varying characteristics in Table 1.

Fig. 1: Update redcution factor

2.1.1 Adjusting the Inaccuracy Threshold m . _

i i - n low | high Table 1: Region charac-
A commonly used mechanism for actuating the position up- teristics and preference of
date reduction on the mobile nodes is motion modeling, also IQW < X load shedding
known asdead reckoningMotion modeling uses approxima- high v >
tion for location update prediction. Instead of reportihgit Letn be the number of mobile nodes amdbe the number

position updates each time they move, mobile nodes only reef queries within a region. Whemis low andm is high for a

port the parameters of a model approximating their motionregion, load shedding should be avoided as much as possible
when the model parameters change significantly, which is de¢upper right quadrant in Tableé 1). This is because a smalknum
cided based on amaccuracy thresholdA and the last re- ber of nodes that generate few updates are used for answering
ported model parameters. When the predicted position of a large number of queries for this region. This implies that
mobile node deviates from its actual position by more than  increasingA here will significantly impact the overall query
the new motion parameters are reported, i.e., a positioatepd accuracy, while bringing only a small reduction in the numbe

is sent by the mobile node. InikA this inaccuracy threshold of position updates sent to the server. In contrast, load-she

A is used as a control knob to adjust the number of positionding is very desirable whemis high andn is low for a region
updates sent by a mobile node. (lower left quadrant in Table 1). In this case, a large nunolber

A popular motion model is piece-wise linear approxima- nodes that generate many updates are used for answering few
tion of the mobile node movement [20], whereas more ad-queries. It implies that increasingy will minimally impact
vanced models also exist [2]. Without loss of generality, wethe overall query accuracy, while bringing a large reductio
adopt linear motion modeling inIRA, because the particular in the number of position updates sent to the server. Inter-
motion model used is not of importance for this paper. Noteestingly, the ration/n does not completely characterize the
that many of the existing mobile CQ systems have built-in preference of one region over another for increasing the ina
support for linear motion modeling [16, 18, 5]. curacy threshold\. This is because the overall inaccuracy in-

A straightforward but rize way of shedding update troduced in the mobile node positions increases linearti wi
load is to have all mobile nodes use a single system-ncreasingA, whereas the amount of update reductions in-
controlled inaccuracy threshold. Lét; be the minimum
value that the inaccuracy threshold can take, which de

1The experimental setup and default parameters used to gertbet
‘graphs in Fig. 1 are given in Section 4.2



creases non-linearly as increases. This is why regions with complete *. CQserver
smallm andn are less attractive for load shedding compared partitioning E
to the regions with larger andn (the symbols< and> indi-

all shedding Ay 4

cate this in Table 1), but compared to the scenario of high regions
and lown both are better choices. roners AL A

2.1.2 Region-aware Load Shedding

This insight leads us to a region-aware approach to update
load shedding. In IRA we partition the geographical area

current update ‘.5

of interest intol shedding regions, denoted by, i € [1..1]. throttler used || -
Furthermore, we associate an inaccuracy threshold with eac [ Mk
shedding regiord;, denoted byA;. We call A; the update As | As : N
throttler of the regiond;. A simple way of determining the AplAn| 17

shedding regions is to partition the entire geographicatsp
of interest intd regions evenly. However, such even partition-
ing of the space is unlikely to produce an effective solution ) } )
since the level of heterogeneity (in terms of the number of mo The base stat_lons are responsible for broadcasting thelsubs
bile nodes and queries) inside two given equally-sizecbregi of Ioaq shedding regions anq update throttlers correspgndi
may differ significantly. Intuitively, a region where fugh to thewcoyerage area to.moblle nodes, when the serverteepor
partitioning generates sub-regions of similar charasties in & change in the partitioning or the update throttler valiés
terms of the densities of mobile nodes and queries does ndl@Se stations are also responsible for sending the shexzling
provide any gain with regard to reducing the number of po-910ns and upqlate throttlers to a mob_|le node entering into a
sition updates while minimizing the query-result inacoyra N€W base station’s coverage area during a hand-off.
Thus the design of theika load shedder should address the _ 1€ set of mobile nodes form the third layer of our system.
following two challenges: (1) How to partition the geograph 1 he mobile nodes are responsible for reporting their pmssti
cal space of interest into a set of shedding regions effelgtv Fo the mobile CQ server using dead r'eckonlng. However, the
(2) How to set the update throttler for each shedding regiorinaccuracy threshold used by a mobile node is dependent on
to minimize the inaccuracy introduced in query results whil the region in which it resides. As a result, the mobile nodes
meeting our update budget constraint? store a subset of shedding regions and update throttlemi_srcor

In LIRA we introduce the concept of throttle fraction to SPonding to the coverage area of their current base sta®n.
define the position update budget of the system, denoted b§’€y move from one shedding region to another within their
» € [0,1]. For instance; = 0.75 means that the number Pase station’s coverage area, the mobile nod_es use theeupdat
of updates should be reduced by a quarter, compared to thirottler corresponding to their current shedding regisithe
case of using a commoA = A.. The throttle fraction can inaccuracy threshold. This is .performed locally. When the
be calculated automatically by the server in reaction ta-ove Mobile nodes switch base stations, they change the subset of
load situations by observing the size of the system messagghedding regions and update throttlers they store baseeon t
queue (see Section 3.4). Alternatively, when the serveotis n information they receive from the new base station.
overloaded but the wireless communication load of recgivin Factors Affecting the Number of Shedding Regions
updates are putting a heavy burden on the network, theléarott ~ From Fig.| 2, one may observe an interesting trade-off in
fraction can be manually set as a system-level parameter.  setting the number of shedding regidn®©n the one hand, the
larger the number of shedding regions, the more fine grained
the partitioning, leading to more fully exploiting the potial

Fig. 2 illustrates the system architecture aRk, which  heterogeneity existent in terms of densities of mobile sode
consists of three layers. The first layer is formed by the mo-gng queries. On the other hand, as the number of shedding re-
bile CQ server. The server has three main responsibilitiesgiOns increase, the average number of update throttlers and
First, it sets the throttle fractionto define the position update shedding regions per base station coverage area grows, in-
budget of the system. Second, it is responsible for caioglat  creasing the cost for each mobile node in terms of both com-
the shedding regions and the associated update throttlers f ptation and communicaton. Thus a careful settingi®trit-

a given update budget. Third, it is responsible for repgrtin jca) for the overall system scalability in terms of both seev
to each base station in the second layer, the subset of shegyality and wireless communication bandwidth.

ding regions and update throttlers corresponding to the bas
station’s coverage area. 3 TheLIRA Load Shedder

The set of base stations that cover the space of interest form |n this section we describe the main technical compo-
the second layer. The base stations are assumed to be coments of the IRA load shedder, encompassing the three major
nected to the mobile CQ server via the wired network. Theyserver-side functionalities: (1) partitioning the geqgrieal
provide wireless networking services to the mobile nodes.space of interest intd shedding regions for a giveh per-

Fig. 2: System Architecture

2.2 System Architecture



formed by the @IDREDUCE algorithm, (2) determining the 3.1.1 TheFairness Threshold

update throttler for each of tHeshedding regions, performed \ye jntroduce a parameter called the fairess threshold, de-
by GREEDYINCREMENT algorithm, and (3) setting the throt- e hyA . In the original problem formulation, the shed-

tle fractionz to adjust the system-wide position update bud- ding regions that do not contain any queries (iel; : m; =

get, performed by HROTLOOP algorithm. These three al- (1)\nay e overly penalized by setting their update throttlers

gorithms work in cooperation to perform the load shedding.to maximum inaccuracy value @, since the update reduc-
In particular, the HROTL 0OPalgorithm monitors the perfor- i for those regions does not impact the query results. How

mance of the system under the current workload and resourcyer. for mobile CQ systems supporting historic and ad-hoc
availability to decide the throttle fraction Givenz computed queries this may be undesirable, thivs, can be used to re-

b_y THROTLOOPand thg numbet of shedding regions speci- duce this effect. Formally, we have the following additibna
fied as a system-supplied parameter, tlreBREDUCE algo- constraint on the update throttles:

rithm creates a partitioning of the entire geographicakcepa
of interest and computes the setiohedding regions, i.e., 7, ,EVD ; |A; —Aj| < Ag
A; (i € [1..1]). Finally, givenz, I, and A;’s, the GREEDYIN- e

CREMENT algorithm determines the update throttlers forthe . One extreme case ., = A4 — A, represents the orig-
. . . . inal formulation, whereas the other extreme caségof = 0
shedding regions, i.eA; (i € [1..1]).

represents the uniforA scenario.

3.1 Problem Formulation We consider the partitioning and the setting of update throt
The problem is to find a partitioning afl;,i € [1..1], tlers as separate problems. In what follows, we first provide

and an associated set of update throttlfsi € [1..]], such & heuristic-based partitioning algorithm for construgtthe

that certain constraints are met (e.g., the update budget is shedding regions and then give an optimal (under certain con

spected) and an objective function is optimized (i.e., guac ~ ditions) algorithm for setting the update throttlers forizeg

racy in query results is minimized). We start with formulat- partitioning of the space. It is worth mentioning that thetpr

ing the two constraints. Let; denote the number of mobile lem of setting the update throttlers is not a linear program,

nodes within shedding regiod;. The following two con-  since the update reduction functighis not linear and as a

straints should hold: result the update budget constraints are not linear.
Z ni- f(A) < z-n- f(AL) 3.2 GRrIDReEDUCE: Partitioning the Space
ie[1..1] The goal of the @ DREDUCE algorithm is to partition the
v oAl <A <AL geographical space of interest intehedding regions, such
i€fl..d] that this partitioning produces lower query-result inaecy.

The first constraint, which we call thgpdate budget con- For each shedding regioh; generated, the algorithm also de-
straint, states that the number of updates received under théermines the number of nodesand the number of queries;
region-aware load shedding approach should not exeeed for that region. This information is later used byrREEDYIN-
(throttle fraction) times the number of updates thatwoaldeh ~ CREMENTto set the update throttlers.
been received if there were no load shedding applied, i.e., The GRIDREDUCEalgorithm works in two stages and uses

we were to use a uniform inaccuracy threshold\ef for all a statistics gridas the base data structure to guide its deci-
nodes. Note that we hay§A,-) = 1. The second constraint sions. The statistics grid serves as a uniform, maximum fine-
defines the domain of update throttlers;s). grained partitioning of the space of interest. In the firagst

We now formulate the objective function of the problem of the algorithm, which follows a bottom-up process, we cre-
we want to minimize, that is the inaccuracy in query results.ate a region hierarchy over the statistics grid and aggeegat
For the purpose of this problem formalization we define thethe query and mobile node statistics for the higher-level re
inaccuracy introduced by using an update throttler valugd,of  gions in this hierarchy. This region hierarchy serves asm te
for a given regiond; as the number of queries in the region plate from which a non-uniform partitioning of the space can
A;, denoted byn;, times the inaccuracy threshals}, thatis ~ be constructed. The second stage follows a top-down process
m; - A;. When computingn;, queries partially intersecting and creates the final seticshedding regions, starting from the
the shedding regiod; are fractionally counted. The objective highest region in the hierarchy (the whole space). The main
function that we want to minimize can be formulated as: idea is to selectively pick and drill down on a region using

_ the hierarchy constructed in the first stage. The regionito dr
Indec({Ai}, {Ai}) = Z mi - A down is determined based on the expected gain in the query-
el result accuracy, called theccuracy gain(see Sectioh 3.2.3),

Note thatm; andn; are functions of the partitioningA;}.  \hich is computed using the aggregated region statistics.
We now discuss an important extensions to this basic prgblem

in order to provide a system-level control over the diffeen 21 TheStatisticsGrid

in the inaccuracy thresholds used in different regions. The statistics grid is an x « evenly spaced grid over the ge-
ographical space, whereis the number of grid cells on each
side of the space. We describe the relationship betwiesml



[ later in this section. For each grid ce]l; the statistics grid Algorithm 1: (I, a)-partitioning of the space
stores the average number of mobile nodes and queries | GribRebucE«, 1, 2)
m; ; for that grid cell. The only data structure maintained |1) Constructog, « + 1-level quadrant tree over the x a grid
over time by the IRA load shedder is this grid. 2) foreach tree node in post-order =

. . . 3) if t is a leaf node{initialize # objs. and # qry$.
The maintenance of the g_rld can be_performed in a num+ 4 ¢:.;: corresponding grid cell of
ber of ways. For instance, if the mobile CQ server uses as) nlt] < ng g, mt] — m; ;
grid-based index on mobile node positions [10, 12] thesstati | 6) else {t iihnot_a leaf, aggregate # objs. and # fys.
tics grid can be trivially supported as a part of the grid inde | ) t:: 4" childeren oft, i € [1.4]

. R .. . . 8) nft] «— Zi:1 nlt;], mft] — Zi:1 mlt;]
Alternatively, the grid can be explicitly maintained by pro _
cessing position updates. Note that it takes constant time t 22)) f ':r?‘ftg’lgf‘gf' t?gg"r"g;Z;disbbased‘omaccuracy gain) values
process an update for maintaining th_e grid. More_oyer, all ofl 11) + — oot of the tree, H.INSERT(Y)
the updates need not be processed, since the statisticagan e| 12) while L.Size()+H.Size() < I {I regions not reachgd
ily be approximated using sampling. In an off-line alteiveat 13)  t < H.PoPMAX() {region to partitior}

the average number of mobile nodes can be pre-computed fog?) ¢S notaleaf{further partitioning possible

. h ) . . : 15 for ¢ = 1 to4 {partition the regio
different times of the day based on historic data, in whicteca 16; Zg <—CA|_C{|§RRGAIN(ti), I?T.IESERT((ti, 9))
the maintenance cost is close to zero. In all three alteesti | 17)  else {t is a leaf nodg {no further partitioning
maintenance of the statistics grid is a lightweight operati 12; oreach f-'NLSLEJRI}(tg {store tf;ﬁ feg'Q”I}"'L}
- . . oreac € process the regions
Th.e partitioning .ge.nerated by theR@F\’.E.DU.CE algorithm 20)  ns — nft], mi — mlt] {set the region statistigs
using an x « grid is called an(«, [)-partitioning. 21)  A; — Areaoft’s quadrant,i « i + 1 {set the areh

CALCERRGAIN(t)

1) E — mina (m[t]- A), st. f(A) < z- f(Ap)

In the first stage (see lines - 8 in Algorithm 1), we build |2) Ep — minga,y Sty Ai - mlti],

a complete quad-tree over the grid. Each tree node corre st iy nfti] - f(A) < z-nft] - f(AR)
sponds to a different region in the space, where regions get)V 11— F — By {accuracy gainis the difference in erfor

larger as we move closer to the root node which represents .
the whole space. Each level of the quad-tree is a uniform%:é]—l ”gi][tj é i(viis) ui tﬁé Zﬂgé\ éﬁgg‘h&?en the difference
—-E, .

non-overlapping partitioning of the entire space. Throagh .
post-order traversal of the tree, we aggregate the statias- T he computation OE [t} and £, 1], and thus the accuracy
gainV[t], requires solving the problem of update throttler set-

sociated with the grid cells for each node of the tree, i.e.,, w * for a fixed! of sheddi X c el ati
compute the number of mobile nodes and number of querieéIng oraftixed of snedding regions. t-oncretely, computation
of E[t] requires to solve for nodewith | = 1 and computation

f h ' ion. The fi f the algorith . . .
tgrkee:(g(agfﬁn:gienz L%%gﬂme@(eaggsstpséige of the algorit Mot E,[t] requires to solve for th& child nodes of with I = 4.

As we will show in Section 3.3, this general problem can be
323 Stagell: Drilling Down in the Hierarchy solved in loglinear time ol As a result, the accuracy gain is
In the second stage of the algorithm (see lines 9- 21 in Algo-computed in constant time for a tree nad@he second stage
rithm| 1) we start with the root node of the tree, i.e., therenti 0f the GRIDREDUCEalgorithm takeg)(I-log /) time and con-
space. At each step, we pick a visited tree node (initially on sumesO(() space, bringing the combined time complexity to
the root) and replace it with its child nodes in the quad-tree. O(l - logl + o) and space compexity 0(a* +1).

This process continues until we redahsited tree nodes (cor- 324 An Example Partitioning

responding td shedding regions), assumimhgmod 3 = 1.

3.2.2 Stagel: Building the Region Hierarchy

The crux of this stage lies in how we choose a region to fur—g;gﬁ&ﬁgfg:ﬁ:ﬁg&p}fgﬁ ;\pragggomngg' ilgig]v:/)r?lcl)i rt]rc:(ejTe ft
th titi i h step. For thi intai o
er partition during each step. For this purpose we maintai whereas the query distribution is shown on the center, aad th

a max-heap of all visited tree nodes based on their accuracxn (o0 1 itioning is shown on the riaht. It is important
gains, a metric we introduce below, and at each step we pick al (o, 1)-partitioning is shown on the right. It is importa

the node with the highest accuracy gain. to note that the regions are not being further partitionedmwh

Given a tree node, the accuracy gain is a measure of the e}he further partitioning will not benefit the query-resutt-a

pected reduction in the query-result inaccuracy, achidyed curacy. Here are t.he two m'gere_stlng examples: the shedding
o \ e ; regions marked with< and=x in Fig.|3, which we denote by

partitioning the node’s region intb sub-regions correspond- P dA. W thatl.. is | th fih b

ing to its child nodes. For a tree notléhe accuracy gaii [¢] x anas,. Ve see < 1S 1arger than some of te nearby

is calculated as follows. LeE[t] be the average result inac- ;engfjlo:s.a'l'rtgs 'ﬁ ?er?ﬁg?eat?ti_gl;r:bgr fo?uneertlaedseﬁ _zer:lt;i(())r
curacy if we only had one shedding region that'ssregion. S sult Tu partitioning 1S . 1S as

) larger than some of the nearby regions, but in contrast,to
Formally, we haveE[t] — mina (m[t] - A), s.t. f(A) < th ber of ies is | fof. H hat mat
z - f(Ar). Now let E,[t] be the average result inaccu- N € nurt‘r;] er:c; quer|e§t|s ?{Ee x .ov;/ever, V\]ft;‘ ma-b
racy if we had4 shedding regions that correspond to the re- irs Isb'l N ederoger(;el y ot the r'fr?'lon Im tﬁrms oemﬁfnum er
gions oft's child nodest;,i € [1..4]. Formally, we have ot mobile nodes and queries within. In the cas ur-
Bt . N +1 subiect to the constraint ther partitioning of the region results in sub-regions afigr

plt] = minga,y 3oy Ai - miti] subj : characteristics, implying that partitioning is unnecegsa



object distribution query distribution reduced grid

Hi
H

mz: i A, isincremented bya, the current update expenditure is de-

e ey g creased by - (f(Ai) — f(Ai+ca)). This process continues

I H until the current update expenditure decreases to match the
Hi-HA | update budget (i.el] = US), or all the update throttlers reach

B "t their maximum bound (i.,eA = A4). The former condition
implies that the update expenditure is reduced to a valualequ
] LI to throttle fraction times the maximum update expenditigre a

HiiH

M

_ R sociated with the case fc; ; A; = Ar. This means that
Fig. 3: An example{c, [)-partitioning the update constraint is satisfied. On the other hand, the lat
3.25 TheRelationship Between [ and « ter condition implies that the update budget can not be met

To find a pragmatic way of configuring the statistics grid pa- foAr thz givle : ;hrottle fr:actiolrz _ar.;d the uApdelteAthrottler range
rametera, we first observe the relationship betwekeand [Ar, A], leading to the solutioNie(1.y Ai = A,
a. Assume that the partitioning is performed such that all3.3.2 Update Gain Calculation

the shedding regions are evenly sized. This will yield a gridhe key point of ®REEDYINCREMENT S the selection of the
partitioning with v/ number of cells on each side, which we ,,qate throttler to use at each greedy step. We pick the epdat
refer to as thé-partitioning. Our aim is to have a statistics rottler that has the highest update gain. The update gain
grid that is fine grained enough to provide us with(@nl)- s gefined as the ratio of the decrease in update expenditure
partitioning whose non-uniformly sized shedding regior&s a 4 the additional inaccuracy introduced in the query result
sufficiently flexible in terms of the size of their area conggzar  \ne denote the rate of decrease in the update expenditure at a

to the case of-partitioning in which all regions are equal- it A by r(A), and define it as the negative of the update
sized. The side length of the minimum possible shedding re;qquction functionf’s derivative at pointA. Formally:

gion in (a, I)-partitioning is proportional td /« (the shed-

ding region is equal to a cell of the statistics grid), wherea r(A) = _d(f(l"))

the side length of a region ilpartitioning is proportional to de |,_a

1/V1. To achieve around? times difference in the areas Based on this definition, makingd increase inA; will
of minimum possible shedding regions lepartitioning and  reduce the update expenditure by - r(A;) - dz, and will
(a, 1)-partitioning, we should determine using the formula  decrease the query-result inaccuracyrby- dz. Thus, the
o = 2Uog2(=VD1 Havingz = 10 provides around00 times  update gain for the update throttldr;, denoted bys;, is:
difference in size. In our experimental studies we have doun Si(A) = (ns/my) - 1(A)

that this setting gives effective results. ! v

3.3 GREEDYINCREMENT: Setting the A;’s In each step of the BEEDYINCREMENT algorithm, an
update throttlerA; is selected such that we have =
argmaz;cpi.q) Si(A;). If the update gain ford; is larger
than the update gain faky, then increasing\ ; provides bet-
ter update reduction comparedAq, for the same amount of
increase in query-result inaccuracy.

The goal of the ®REEDYINCREMENT algorithm is to find
the optimal setting of the update throttlers associated thi¢
[ shedding regions produced by tha(BREDUCEaIgorithrﬁ,
so that the inaccuracy in query results is minimized (whele r
specting the fairness thresholds). We first consider ttab-r
lem without the fairness threshold constraints. The masaid 3.3.3 Optimality and Setting of the Increment ca

is to increase the update throttlers in order to match thatapd To provide an optimality guarantee and to guide the setting o

budget. The updatg throttlers that bring a larger redudtion ¢, We approximate the update reduction functjoy a non-
the update expenditure of the system in return for a Sma"efncreasing, piece-wise linear function efsegments, each of

reduction in the result accuracy are preferred for incrdmen size(A, — Ay )/x. This enables us to prove the following:

3.3.1 The Greedy Steps

] ) Theorem 3.1. For ca = (A4 — Ar)/k, the GREEDYINCRE-
As the name suggests, the algorithm is a greedy one. It start§e 1 algorithm is optimal for the non-increasing piece-wise
by setting allA;’s to A, the current update expenditueto  |ingar approximation of the update reduction functipnvith

n- f(Ar) and the update budgst, to - U. Note that the ini- . segments of size, each.Proof: See technical report [4].
tial setting is an infeasible solution since the update egpe

ture is higher than the update budget, thdf is- U4. At each The time complexity of the BEEDYINCREMENT algo-
greedy step one of the update throttlers is selected bagbé on rithm is given byO(x-1-logl) or by O(l-log) if x is constant.
update gaina criterion to be defined in the next subsection, The space complexity i©(). See[4] for details.

and is increased byx, called theincrement(or by a smaller 334 Supporting the Fairness Threshold

value in the case that we undershoot the update budget). When i . .
In order to support the fairness constraints dictated byatine

°Note that GREEDYINCREMENT is also used within @ DREDUCE dur- ness threshold\ .., we make the following changes to the
ing computation of the accuracy gains, albeit in a much smaikes base algorithm. At each greedy step the update throttker wi




the highest update gain, say;, is incremented byt most
ca, making sure that it does not go beyond a value that will
violate the fairness constraint. Concretely, if the minimup-
date throttler we have & = minjc;1. ) Aj, thenA; is not
increased beyond» + A.,. When an update throttlek;
reaches the limit, that is we have;, = Ax + A, thenitis
moved to alocked listand is not considered for the following
steps of the algorithm until it is removed from the blockesd. li
Whenever the minimum update throttl&r. is changed, the
set of update throttlers in the blocked list that are no mare o

the limit are removed and are included in the following steps

of the algorithm. The pseudo code oRGEDYINCREMENT
can be found in our technical report [4].

3.4 THROTLOOPR: Setting the Throttle Fraction
The throttle fractionz can be adaptively adjusted by the

4.1.1 Query-result Accuracy

Mean Containment Erroidenoted by2 ¢, defines the average

containment error in query results. Containment error for a
query result is defined as the ratio of the number of missing
and extra items in the result to the correct result set sie¢. L
@ denote the set of querie®}(¢) denote the result set for

a queryg € @ under load shedding, ani*(¢) denote the
correct result set undéfic(; ; A; = Ar. Then:

(@) \ R(g)| + |R(q) \ R*(q)]
Q- |R*(q)

Mean Position Error denoted byE” | defines the average po-

sition error in query results. Position error for a queryieis
defined as the average error in the positions of mobile nodes
in the query result compared to the correct positions pi.e}

LIRA load shedder, when it is not set as a fixed system-levetlenote the position of a mobile nodeén a query resul un-

parameter to retain only a pre-defined fraction of positipa u
dates. The adjustment of the throttle fraction is perforimgd
the THROTLOOP, which observes the position update queue
and periodically decides the fraction of position updatex t
should be retained (throttle fractiar). The aim is to reduce

the system load so that the rate at which the position updatestandard Deviation of Containment ErjoD
are received X) and the rate at which these updates are pro-ficient of Variance of Containment Erro

der load shedding ang"(0) denote the correct position of
undervici. A; = A-. We have:

oy Y O -re

qEQ 0€q

Q- [R(q)]

¢ and Coef-

ev?

£C | are fairness

ouv’?

cessed () are balanced to prevent dropping updates from themetrics that measure the variation among the query results i

input queue. Thaitilization of the system, denoted by, is
given by \/u. Let us denote the maximum size of the input
queue byB. Assuming an\/ /M /1 queuing model, we should
have the following relationship betwegrand B to make sure

terms of containment error. We haw®& = DS, /EC..
4.1.2 Cost of Load Shedding
To evaluate the cost incurred by load shedding, we measure

that the average queue length is no more than the maximuri) the time it takes to execute the adaptation step that iegolv

queue size [15]p = 1 — 1/B. If the utilization is larger than

running the HROTLOOP, GRIDREDUCE, and (REEDYIN-

1—B~!, itrepresents an overload situation and thus the throt:CREMENT algorithms and) the number of shedding regions
tle fractionz should be decreased. On the other hand, if thethat should be known by a mobile node on average. The for-

utilization is smaller thant — B!, it implies that the system
is not fully utilized and the throttle fraction should be in-
creased. This understanding leads to the following prasedu
that describes the operation oFiROTLOOP.

Initially: i «— 0, 2 — 1
Periodically: v« p/(1 — B™1), i —i+1

20— min(1, 2079 /)

4 Experimental Evaluation

mer metric measures the cost of load shedding from the per-
spective of the server, whereas the latter measures it fnrem t
perspective of the mobile node as well as the wireless n&twor

4.2 Experimental Setup

The experiments were performed using an hour long car
(mobile node) position tracegenerated from real-world road
networks available from the National Mapping Division oéth
United States Geological Survey (USGS) [19] and traffic vol-
ume data taken from [7]. We used a map from the Chamblee
region of the state of Georgia in the USA (which covers arich

In this section we present experimental results on the-effecmixture of expressways, arterial roads, and collector spaml

tiveness of the LRA load shedder in cutting the cost of receiv-

generate the trace used in this paper. The map covers a region

ing and processing position updates in mobile CQ systemsof ~ 200km?. The trace is generated by simulating the cars

while minimally affecting the accuracy of the query results

going on roads in accordance with the traffic volume data.

Before describing the experimental setup, we first defing a se The queries used in the experiments are range CQs. The

of evaluation metrics to assess the effectiveness®iL

4.1 Evaluation Metrics

We define two sets of evaluation metrics. The first set

side length for the range queries are randomly selected from
the interval[w/2, w] wherew is called theside length pa-
rameter We use three different distributions for the locations
of the queries, namelProportional Inverse and Random

of evaluation metrics is used to measure the accuracy of thgynen the query distribution is Proportional, the locatiofis o

query results under load shedding and the second set of met-

rics deals with the cost of performing load shedding.

3The trace generator is available at
http://www.prismgatechedu/"gtg470¢/ researcliresearcthtml#tkanom


www.prism.gatech.edu/~gtg470c/research/research.html#kanom

Parameter Description Default Value 10! : : : : 10° 10° 10°
l number of shedding regions 250 \
a statistics grid side cell count 128 10 S 0 " 07 e
z throttle fraction 0.5 Sem w e g
A minimum inaccuracy threshold 5 meters £ T Y R § 3 0’ 2
A maximum inaccuracy threshold 100 meters § e op - % 10 E
cA increment 1 meter 5w . gl w0’ g
Ao fairness threshold 50 meters W A g 2 L §
m/n # of queries to # of nodes ratiqg 0.01 0’ - 107 e DG L
w query side length 1000 meters . - - it A op
Table 2: Experlmental parameters 0 02 thg;?llefrac(?rﬁ,z oe ! 0 o2 thr%;lefractioo.rsl,z o8 !
the queries follow the mobile node distribution. Similarly Fig. 4: Position Errorvs.  Fig. 5: Containment Error vs.
they follow the inverse of the mobile node distribution when throttle fraction throttle fraction

the query distribution is Inverse, and are randomly digtéd  containment erro=C. as a function of the throttle fraction
when the query distribution is Random. Due to limited space,z, for the Proportional query distribution. The lgftaxis is

in this paper we mainly present our results on the Propation used to show the relative values (solid lines) with respect t
query distribution. The results for the Inverse and Randomthe error of LRA and the righty-axis is used to show the
distributions are very similar. More details can be founfin absolute errors (dashed lines). Bgtlaxes are in logarithmic

In the experiments presented in this paper we compare ouscale. We make three observations from the figure.

LIRA load shedder with the following alternatives: First, the LRA load shedder outperforms all other ap-
— Random Drop: The excessive position updates are not ad-proaches throughout the entire throttle fraction rangen-Ra
mitted to the input FIFO queue and are droppedJniform dom Drop performs the worst, followed by Uniforth and

A: A uniform inaccuracy threshold is used to retain only  Lira-Grid. Atz = 0.75, Random Drop ha300 times the mean
throttle fraction times the original number of location apek.  position error of LRA, Uniform A has40 times that of LRA,

The THROTLooP algorithm is still used, but the approach is and Lira-Grid ha® times that of LRA. At z = 0.5, Random

not region-aware and thus space partitioning and updaté thr Drop, UniformA, and Lira-Grid had0, 2, and1.08 times the

tler settings are not performed. EF of LIRA. The results for the mean containment ek,

— Lira-Grid: A downgraded version of the IRA load are similar. Second, we observe that as the throttle fractio
shedder, lacking the @DREDUCE algorithm which deter- 2 gets smaller, the relative errors approacH tevhile at the
mines the shedding regions based(ény)-partitioning. In-  same time the absolute errors increase and finally merge. The
stead, it uses equally-sized shedding regions based @n an increasing errors are the result of decreasing update budge
partitioning, yet still employs GEEDYINCREMENT. whereas the relative errors decrease thue to the maximum

Table[ 2 presents the set of experimental parameters usddaccuracy bound\4. When the update budget gets smaller
and the default values they take when not stated otherwisehan the minimum update expenditure of the system achieved
As we show in this section, the default settihg= 250 of atVicpi.g A; = A, all of the three approaches that use inac-
the number of shedding regions provides sufficient granular curacy thresholds converge at this same solution. For xais e
ity in partitioning (for a region of size- 200km?) to improve  perimental setting, this convergence occurs arourd0.25.
the query-result accuracy significantly, while puttingyét- Last, we observe very high (in the orderiaf®’s) relative er-
tle load on the mobile nodes and the wireless network. rors for Random Drop and Uniform\ asz gets closer td.

All experiments are performed on an IBM PC with 512MB This seems surprising at first, as for the case &f 1 (not
main memory and 2.4Ghz Intel Pentium4 processor, usingshown in the figures) all approaches have zero error. How-
Java with Sun JDK 1.5. ever, a slight decrease in the throttle fraction, that iswie
havez = 1 — ¢, introduces some error in the query results
for the case of Random Drop and Uniforyy whereas it in-

We present the set of experimental results in two groupsyroquces almost no error in the case okk. This is because
The first group of results are on the query-result accurady an g a cuts the required fraction of position updates from the
highlight the superiority of LRA compared to competing ap- regions that do not contain any queries. Close to none efror o

proaches for shedding position update load. The seconggrou| |z nearz = 1 boosts the relative error results for Random
of results are on the additional cost brought by theA_load Drop and UniformA.

shedder, and show that the overhead is minimal.

4.3 Experimental Results

Impact of the Number of Shedding Regions: The graphs
431 Query-result Accuracy in Fig.'6 plot the relative mean containment erkfr. of Lira-
We study the impact of several system and workload parameGrid with respect to IRA as a function of the number of shed-
ters on the query-result accuracy and the relative advarthg  ding regiong, for different query distributions. The throttle
LIRA over competing approaches. fraction is set ag = 0.5. We observe that Lira-Grid has up
to 35% higher containment error in query results compared
to LIRA. The improvement provided byiRA is more pro-
nounced when Inverse query distribution is used and is small

Impact of the Throttle Fraction: The graphs in
Figs.[4 and 5 plot the mean position errBf, and mean
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Fig. 8: Fairness in result accufig. 9: Server side cost of con-
racy for LIRA and UniformA figuring LIRA

est for the case of Proportional query distribution. (Ag- 432 Cost of Load Shedding

creases, the flexibility provided by having a larger numider o The cost of load shedding consistg pEonfiguring the param-
shedding regions improves the error incurred gA-at a  eters of LRA on the server side, which includes setting the
better rate than Lira-Grid, sinceika utilizes an intelligent  throttle fraction, shedding regions, and update thrattle)
space partitioning algorithm. However, whegets too large  broadcasting the subset of shedding regions and update thro
the grid partitioning of Lira-Grid achieves enough gramitya tlers that correspond to the coverage area of each basenstati
to catch Lira in terms of the query-result inaccuracy, as ob-andii:) installing the new set of shedding regions and update
served form the figure. This is because after a certain ldvel othrottlers on the mobile node side.

granularity is reached, more fine-grained partitioningfin® Server SideCost:  The graphs in Fig.|9 plot the time it takes
use, since the accuracy gain is close to zero for all of thé-she to execute the FIROTL 00P. GRIDREDUCE. and GREEDYIN-

_?_'r?g relglonhs. The graphs n Fig. 7 attest t]?Lth'S latter ;E"m' CREMENTalgorithms as a function of the number of shedding
ey plot the mean containment ertf, of LIRA as a func- regionsl, for different numbers of cellsaf?) for the statistics

;ion .Of thevr\}umber r(])f sr;]edding re%iong, for diff(;erent thg)tt .grid. For the default parameters bf= 250 anda = 128,
ractions. We see that the error reduction rate decreasas Wi, qndguration of IrRA takes aroundi0 msecs. This will

increasingl and the errors stabilize. The reduction in error enable frequent adaptation, even though for most apicsti
is more pronounced for largervalues. Note that the default that involve monitoring cars or pedestrians it is unlikigt

setting Ofl.: 250 for the n_umber of_she_zddmg regions1s rather the update load will fluctuate with a period less than tens of
conservative based on .F@' 7, yetitstil per_forms S|gnrftQa_ minutes. Even for an adaptation period Iof minutes, the
beFter than the.compe.tlng approaches as |II_ustratgd biBFig. configuration of LRA will take only 6.6 - 10~ fraction of
This cgnservat!ve setting _d)ialso results Ina Ilghtwe|_ght load the adaptation period. Note that these values are for a re-
shedding solution, as we illustrate later in this section. gion of size200km?. If we have al6 times larger region

Impact of the Fairness Threshold: The graphs in Fig. |8 of size 3200km? (=~ 10 times the size of Atlanta, the capi-
plot the standard deviation of containment erfafy, (on the  tal city of the state of Georgia, USA), then we should have
left y-axis corresponding to solid lines) and coefficient of vari- | — 16 . 250 = 4000, and froma = 201°82(10-vD1 we should
ance of containment err6i<, (on the righty-axis correspond-  havea = 512. For this setting the configuration ofiRA

ing to dashed lines) for IRA and UniformA as a function of  takes500 msecs. This correspondsge10~* fraction of a10

the fairness threshold . Note that UniformA does notuse  minute adaptation period. These numbers show thaa lis

a fairness threshold, thus the evaluation metrics staytantis  Jightweight and introduces little overhead on the servee si
The surprising observation from the figure is that, with in-

creasing fairness threshold the standard deviation inagont
ment error decreases fonRA and at all times stays smaller
than theD¢, of Uniform A. Even though largeA ., values
imply less fairness, the resulting relaxed constraintseifa s
ting the update throttlers enable smaller containmentrgrro
and thus the standard deviation also gets smaller. If wedbok

——Lira o=128
1000 —O— Lira o =256
——Lira a=512

containment error, Cﬁv
adaptation time (msecs)

mean containment error, EC
3
standard deviation of
containmenterror, Of
3
coefficient of variance of

EC of Lira-Grid relative to Lira

Fig. 6: EC. of Lira-Grid w.rt. Fig. 7: Containment Error of
to LIRA vs. # of shedding regiond_IRA vs. # of shedding regions

Messaging Cost: Table[3 shows the average number of
shedding regions that should be known to a base station as
a function of the base station coverage area radius. How-
ever, in reality base stations have smaller coverage regibn
places where the number of users is large (urban areas) and
larger coverage regions at places where the number of users
the coefficient of variance of containment error, which ig& b is small (suburba_n areas,tﬂ14]. Th's. 'f‘a“.”e of base st_at|ons

. . T match perfectly with LRA’s space partitioning scheme, since
ter measure of fairness, we see that increagingincreases "

the number of partitions are usually larger for dense areds a

CS in LIRA and UniformA is more fair compared to IRA. : .
ov S . the small base station coverage areas help decreasingsihe av
To put this into simple terms, we can say that on average the

) . , age number of shedding regions known to a mobile node. Fol-
difference in errors of two query results will be smaller for lowina this loaic. we have used a node density dependent base
LIRA compared to Uniform\, yet when judged based on the 9 gic, y dep

) . station placement scheme and found that on the average each
relative average query errors ofAa and UniformA respec- .
. . . . ) node and thus each base station should know ardustied-
tively, the error in query results is more fair among differe

queries in the case of Uniforay ding regions. Assuming a shedding region (which is square



[ base station radius (kmjl 1.0 | 2.0 [ 30 [ 40 | 50 | capability, their update load is expected to be signifigantl
[ #ofAispernode [ 31] 125[ 28.2[50.2] 785 | lower compared to solutions that track all mobile nodes. How
4L A;'s onaverage, takesl - (3 + 1) - 4 bytes =656 bytes. ever, these solutions cannot support historic queriesesime
Table 3: Number of shedding regions per base station location updates are not received from all objects. The ad-
in shape) is represented Byfloats and an update throttler is hoc snapshot queries are also expensive to evaluate. dtitere
represented by a singlebyte float, the size of the broadcast ingly, LIRA can be configured to mimic the behavior of these
data sent by a base station to all nodes in its coverage aresystems by setting the maximum inaccuracy bound to a large
to install the shedding regions and update throttlers isrado  value. Moreover, our system has the additional advantage of
41 - (34 1) - 4 bytes =656 bytes on average. To asses the not being tied to any specific query processing technique and
messaging cost of IRA, compare this number tbi72 bytes,  has very little overhead.
which is the maximum payload available to an UDP packet6 C lusi
over Ethernet with a typical MTU af500 bytes. When LRA onciusion
reconfigures the load shedding parameters, the new informa- We presented IRA, a position update load shedder for mo-
tion is installed on all mobile nodes by using an average ofbile CQ systems. The primary feature ofRa is its region-
one wireless broadcast packet per base station. awareness, which enables it to partition the space intoaf set
MoaobileNode SideCost:  Since the total number of shedding shedding regions and apply differing amounts of updatethro

regions known to a mobile node at any time is only arotind tling for different shedding regions. We developed a heigris

Lira does not put a major burden on mobile nodes in termsalgonthm to discover a partitioning of the space that |eads

of memory consumption or processing load. By employing are?ugﬁ d er(rjozlntr?u$trly results, _art1d dan_t(;ptlmr;]ll a;:ggn'_[_hm tha
tiny 5 x 5 grid index on the mobile node side, the shedding SEIs the update throttiers assoclated with ach she Grugre
to minimize the query-result inaccuracy. We showed that the

region that contains the current position of the mobile nodeL load shedder is significantl ior t d dat
ca b ound ki A el il workon compu L5805 A oty uneror o e e
tationally weak mobile nodes without any problem. over, LIRA is lightweight by design and can be used in con-
5 Reated Work junction with many of the existing update indexing and mebil
CQ processing techniques.

To the best of our knowledge, this is the first work on po-
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