
LIRA: Lightweight, Region-aware Load Shedding in Mobile CQ Systems

Buğra Gedik♦♠ Ling Liu♦ Kun-Lung Wu♠ Philip S. Yu♠

♦ CERCS, College of Computing, Georgia Tech
♠ Thomas J. Watson Research Center, IBM Research
{bgedik,lingliu}@cc.gatech.edu,{klwu,psyu}@us.ibm.com

Abstract
To provide high-quality results for location-based, con-

tinual queries (CQs) in a mobile system, the query proces-
sor usually demands receiving frequent position updates from
the mobile nodes. However, processing frequent updates of-
ten causes the query processor to become overloaded, under
which updates must be dropped randomly, bringing down the
query-result accuracy and negating the benefits of frequent
updates. In this paper, we developL IRA − a lightweight,
region-aware load-shedding technique for preventively reduc-
ing the position-update load of a query processor, while main-
taining high-quality query results. Instead of receiving too
many updates and then randomly dropping some of them,
L IRA uses aregion-awarepartitioning mechanism to identify
the most beneficialshedding regionsto cut down the position
updates sent by the mobile nodes within those regions. Based
on the densities of mobile nodes and queries in a region,L IRA

judiciously applies different amounts of update reductionfor
different regions, aiming to minimize the negative impactsof
load shedding on query-result accuracy. Experimental results
show thatL IRA is vastly superior to random update dropping
and clearly outperforms other alternatives that do not possess
region-aware load-shedding capabilities. Moreover, due to its
lightweight nature,L IRA introduces very little overhead.

1 Introduction
The proliferation of mobile devices and advances in wire-

less communications are creating an increasing interest in
rich, value-added location-based services, which are expected
to form an important part of the future computing environ-
ments that will seamlessly integrate into our lives [17]. A re-
cent example from the industry is the Google Ride Finder [6]
service, which provides mobile users with the capability to
employ CQs to monitor nearby taxi services.

Mobile CQ systems serve as an enabling technology for lo-
cation monitoring applications. Scalable CQ middleware for
location monitoring has been an active area of research, at-
tested by several recent works, such as SINA [12], SRB [8],
MAI [5], and others [3, 1, 13]. In almost all of these sys-
tems, position updates and query re-evaluations are two pre-
dominant and costly components of processing location-based
CQs, consuming CPU, disk, and wireless network resources.

To produce high-quality query results, the query processor
usually demands receiving frequent position updates from the
mobile nodes. However, receiving and processing frequent
updates often causes the query processor to become over-

loaded. As a result, the update problem in mobile CQ systems
has received significant attention from the research commu-
nity, producing several spatial index structures for efficiently
integrating position updates into the system [18, 9, 11, 21].
Although indexes can speed up the processing of position up-
dates, they do not solve the fundamental problem of overload.
When overloads happen, the position updates will clog the
system buffers and cause updates to be dropped randomly,
which (as we show in this paper) is an ineffective way to han-
dle overload. Surprisingly, none of the prior works have ad-
dressed the problem of effectiveupdate load shedding. Hence,
there is a cogent need for developing intelligent update load-
shedding techniques for mobile CQ systems. The load shed-
ding algorithms should prevent overloads by reducing the
number of position updates received by the query processor,
while minimizing the side-effects on query-result accuracy.

In this paper, we develop a lightweight load-shedding tech-
nique for reducing the update load in mobile CQ systems,
called LIRA. The main idea behind LIRA is that, given an
update budget (which is either calculated automatically by
L IRA or specified as a system-levelthrottle fractionparame-
ter), LIRA creates a partitioning of the monitoring space into a
set ofshedding regionsand associates anupdate throttlerwith
each shedding region, where these update throttlers define the
amount of load shedding to be performed for each region in
accordance with the overall update budget. Generally, update
load shedding decreases the quality of query results. In LIRA

both the partitioning and the settings of the update throttlers
are performed with the objective of minimizing the negative
impact of load shedding on the accuracy of query results.

L IRA has four unique properties. First, the partitioning
scheme employed by LIRA is region-aware. Contiguous ge-
ographical areas that have similar characteristics in terms of
densities of mobile nodes and queries are grouped into the
same load shedding regions. Second, the update throttlers are
set based on the following principle: the regions where update
load shedding may cut down a large number of updates while
reducing the query-result accuracy minimally, are subjected
to larger amounts of load shedding. Third, LIRA provides an
adjustable bound on the maximum difference between the up-
date throttlers of different shedding regions, ensuring that all
mobile nodes are tracked by the system, albeit with varying
accuracies. This feature extends the applicability of LIRA to
mobile CQ systems with snapshot and historical query sup-
port. Last but not the least, LIRA introduces very little over-
head and can be employed in conjunction with CQ systems
that use update-efficient indexes, like TPR-tree [16].

http://www.cercs.gatech.edu
http://www.cc.gatech.edu
http://www.gatech.edu
http://www.watson.ibm.com
http://www.research.ibm.com
mailto:bgedik@cc.gatech.edu
mailto:lingliu@cc.gatech.edu
mailto:klwu@us.ibm.com
mailto:psyu@us.ibm.com

We evaluate our load shedding approach using realistic lo-
cation data synthetically generated using existing road maps
and real-world traffic volume data. We devise a set of evalu-
ation metrics to assess the effectiveness of LIRA and empir-
ically show that LIRA is vastly superior to update dropping
and clearly outperforms other alternatives that do not provide
full-scale, region-aware load shedding capabilities.

2 Overview
In this section we describe the fundamental concepts un-

derlying the LIRA load shedder, introduce some of the nota-
tions used in the paper, and present the system architecture.

2.1 Design Ideas

There are two major types of load shedding techniques
for reducing the number of position updates processed by
the query processor:server-actuatedand source-actuated.
In server-actuated load shedding, the position updates are
dropped by the CQ server in order to match the update ar-
rival rate with the server service rate. This has two disadvan-
tages. First, the dropped updates are unnecessarily transferred
from the mobile nodes to the CQ server, wasting the wire-
less network bandwidth. Second, the excessive updates still
have to be received by the server, and thus contribute to the
processing load. On the other hand, the source-actuated ap-
proach requires some coordination between the server and the
mobile nodes, since the load shedding decisions are made by
the server. With a lightweight process for coordination, LIRA

uses the source-actuated approach for load shedding.

2.1.1 Adjusting the Inaccuracy Threshold

A commonly used mechanism for actuating the position up-
date reduction on the mobile nodes is motion modeling, also
known asdead reckoning. Motion modeling uses approxima-
tion for location update prediction. Instead of reporting their
position updates each time they move, mobile nodes only re-
port the parameters of a model approximating their motion
when the model parameters change significantly, which is de-
cided based on aninaccuracy threshold∆ and the last re-
ported model parameters. When the predicted position of a
mobile node deviates from its actual position by more than∆,
the new motion parameters are reported, i.e., a position update
is sent by the mobile node. In LIRA this inaccuracy threshold
∆ is used as a control knob to adjust the number of position
updates sent by a mobile node.

A popular motion model is piece-wise linear approxima-
tion of the mobile node movement [20], whereas more ad-
vanced models also exist [2]. Without loss of generality, we
adopt linear motion modeling in LIRA, because the particular
motion model used is not of importance for this paper. Note
that many of the existing mobile CQ systems have built-in
support for linear motion modeling [16, 18, 5].

A straightforward but näıve way of shedding update
load is to have all mobile nodes use a single system-
controlled inaccuracy threshold. Let∆⊢ be the minimum
value that the inaccuracy threshold can take, which de-

fines the ideal resolution of position updates. Let∆⊣
be the maximum value that the inaccuracy threshold can
take, which defines the lowest resolution of position up-
dates required to achieve reasonable query-result accuracy.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

inaccuracy threshold, ∆ (meters)

u
p

d
a

te
 r

e
d

u
c

ti
o

n
 f

a
c

to
r,

 f
(∆

)

Fig. 1: Update redcution factor

The inaccuracy threshold∆
can be set to a value within
[∆⊢,∆⊣] to adjust the up-
date expenditure of the sys-
tem. By increasing∆ from
∆⊢ to ∆⊣, the number of
updates will decrease even
though this reduction is not
linear as shown in Fig. 11.
It plots f(∆), called theup-
date reduction factor. For a given inaccuracy threshold∆ ∈
[∆⊢,∆⊣], f(∆) gives the number of position updates received
relative to the case of∆ = ∆⊢. As observed from Fig. 1,
the rate of reduction in the update expenditure is more pro-
nounced while∆ is increased within the proximity of∆⊢ = 5
meters, whereas it reduces to a fixed slope (linear decrease in
the number of updates) as∆ gets closer to its maximum value
of ∆⊣ = 100 meters.

A key observation we make in this paper is that different
regions exhibit different characteristics in terms of the densi-
ties of mobile nodes and queries and can benefit from differ-
ing amounts of load shedding. This observation suggests that
a uniform∆ approach is significantly suboptimal. To under-
stand this better, we plot the desirability of load sheddingfor
regions with varying characteristics in Table 1.

H
H

H
H

H
n

m
low high

low < ×
high X >

Table 1: Region charac-
teristics and preference of

load shedding

Let n be the number of mobile nodes andm be the number
of queries within a region. Whenn is low andm is high for a
region, load shedding should be avoided as much as possible
(upper right quadrant in Table 1). This is because a small num-
ber of nodes that generate few updates are used for answering
a large number of queries for this region. This implies that
increasing∆ here will significantly impact the overall query
accuracy, while bringing only a small reduction in the number
of position updates sent to the server. In contrast, load shed-
ding is very desirable whenn is high andm is low for a region
(lower left quadrant in Table 1). In this case, a large numberof
nodes that generate many updates are used for answering few
queries. It implies that increasing∆ will minimally impact
the overall query accuracy, while bringing a large reduction
in the number of position updates sent to the server. Inter-
estingly, the ratiom/n does not completely characterize the
preference of one region over another for increasing the inac-
curacy threshold∆. This is because the overall inaccuracy in-
troduced in the mobile node positions increases linearly with
increasing∆, whereas the amount of update reductions in-

1The experimental setup and default parameters used to generate the
graphs in Fig. 1 are given in Section 4.2

creases non-linearly as∆ increases. This is why regions with
smallm andn are less attractive for load shedding compared
to the regions with largem andn (the symbols< and> indi-
cate this in Table 1), but compared to the scenario of highm
and lown both are better choices.

2.1.2 Region-aware Load Shedding

This insight leads us to a region-aware approach to update
load shedding. In LIRA we partition the geographical area
of interest intol shedding regions, denoted byAi, i ∈ [1..l].
Furthermore, we associate an inaccuracy threshold with each
shedding regionAi, denoted by∆i. We call∆i the update
throttler of the regionAi. A simple way of determining the
shedding regions is to partition the entire geographical space
of interest intol regions evenly. However, such even partition-
ing of the space is unlikely to produce an effective solution,
since the level of heterogeneity (in terms of the number of mo-
bile nodes and queries) inside two given equally-sized regions
may differ significantly. Intuitively, a region where further
partitioning generates sub-regions of similar characteristics in
terms of the densities of mobile nodes and queries does not
provide any gain with regard to reducing the number of po-
sition updates while minimizing the query-result inaccuracy.
Thus the design of the LIRA load shedder should address the
following two challenges: (1) How to partition the geographi-
cal space of interest into a set of shedding regions effectively?
(2) How to set the update throttler for each shedding region
to minimize the inaccuracy introduced in query results while
meeting our update budget constraint?

In L IRA we introduce the concept of throttle fraction to
define the position update budget of the system, denoted by
z ∈ [0, 1]. For instance,z = 0.75 means that the number
of updates should be reduced by a quarter, compared to the
case of using a common∆ = ∆⊢. The throttle fraction can
be calculated automatically by the server in reaction to over-
load situations by observing the size of the system message
queue (see Section 3.4). Alternatively, when the server is not
overloaded but the wireless communication load of receiving
updates are putting a heavy burden on the network, the throttle
fraction can be manually set as a system-level parameter.

2.2 System Architecture

Fig. 2 illustrates the system architecture of LIRA, which
consists of three layers. The first layer is formed by the mo-
bile CQ server. The server has three main responsibilities.
First, it sets the throttle fractionz to define the position update
budget of the system. Second, it is responsible for calculating
the shedding regions and the associated update throttlers for
a given update budget. Third, it is responsible for reporting
to each base station in the second layer, the subset of shed-
ding regions and update throttlers corresponding to the base
station’s coverage area.

The set of base stations that cover the space of interest form
the second layer. The base stations are assumed to be con-
nected to the mobile CQ server via the wired network. They
provide wireless networking services to the mobile nodes.

A1 AA22

A9

A7 AAA88

A11

AA3 AA4

AAA10

A5 A6

AA121

A1
...

A5
...

A12

∆1
...

∆5
...

∆12

A5 ∆5

current update
throttler used

complete
partitioning

A1... Al

all update
throttlers ∆1... ∆l

all shedding
regions

CQ server

BS

Mobile
node

Fig. 2: System Architecture

The base stations are responsible for broadcasting the subset
of load shedding regions and update throttlers corresponding
to their coverage area to mobile nodes, when the server reports
a change in the partitioning or the update throttler values.The
base stations are also responsible for sending the sheddingre-
gions and update throttlers to a mobile node entering into a
new base station’s coverage area during a hand-off.

The set of mobile nodes form the third layer of our system.
The mobile nodes are responsible for reporting their positions
to the mobile CQ server using dead reckoning. However, the
inaccuracy threshold used by a mobile node is dependent on
the region in which it resides. As a result, the mobile nodes
store a subset of shedding regions and update throttlers corre-
sponding to the coverage area of their current base station.As
they move from one shedding region to another within their
base station’s coverage area, the mobile nodes use the update
throttler corresponding to their current shedding region as the
inaccuracy threshold. This is performed locally. When the
mobile nodes switch base stations, they change the subset of
shedding regions and update throttlers they store based on the
information they receive from the new base station.

Factors Affecting the Number of Shedding Regions
From Fig. 2, one may observe an interesting trade-off in

setting the number of shedding regionsl. On the one hand, the
larger the number of shedding regions, the more fine grained
the partitioning, leading to more fully exploiting the potential
heterogeneity existent in terms of densities of mobile nodes
and queries. On the other hand, as the number of shedding re-
gions increase, the average number of update throttlers and
shedding regions per base station coverage area grows, in-
creasing the cost for each mobile node in terms of both com-
putation and communicaton. Thus a careful setting ofl is crit-
ical for the overall system scalability in terms of both service
quality and wireless communication bandwidth.

3 The LIRA Load Shedder
In this section we describe the main technical compo-

nents of the LIRA load shedder, encompassing the three major
server-side functionalities: (1) partitioning the geographical
space of interest intol shedding regions for a givenl, per-

formed by the GRIDREDUCE algorithm, (2) determining the
update throttler for each of thel shedding regions, performed
by GREEDYINCREMENT algorithm, and (3) setting the throt-
tle fractionz to adjust the system-wide position update bud-
get, performed by THROTLOOP algorithm. These three al-
gorithms work in cooperation to perform the load shedding.
In particular, the THROTLOOPalgorithm monitors the perfor-
mance of the system under the current workload and resource
availability to decide the throttle fractionz. Givenz computed
by THROTLOOPand the numberl of shedding regions speci-
fied as a system-supplied parameter, the GRIDREDUCE algo-
rithm creates a partitioning of the entire geographical space
of interest and computes the set ofl shedding regions, i.e.,
Ai (i ∈ [1..l]). Finally, givenz, l, andAi’s, the GREEDYIN-
CREMENT algorithm determines the update throttlers for thel
shedding regions, i.e.,∆i (i ∈ [1..l]).

3.1 Problem Formulation

The problem is to find a partitioning ofAi, i ∈ [1..l],
and an associated set of update throttlers∆i, i ∈ [1..l], such
that certain constraints are met (e.g., the update budget isre-
spected) and an objective function is optimized (i.e., inaccu-
racy in query results is minimized). We start with formulat-
ing the two constraints. Letni denote the number of mobile
nodes within shedding regionAi. The following two con-
straints should hold:

∑

i∈[1..l]

ni · f(∆i) ≤ z · n · f(∆⊢)

∀
i∈[1..l]

∆⊢ ≤ ∆i ≤ ∆⊣

The first constraint, which we call theupdate budget con-
straint, states that the number of updates received under the
region-aware load shedding approach should not exceedz
(throttle fraction) times the number of updates that would have
been received if there were no load shedding applied, i.e.,
we were to use a uniform inaccuracy threshold of∆⊢ for all
nodes. Note that we havef(∆⊢) = 1. The second constraint
defines the domain of update throttlers (∆i’s).

We now formulate the objective function of the problem
we want to minimize, that is the inaccuracy in query results.
For the purpose of this problem formalization we define the
inaccuracy introduced by using an update throttler value of∆i

for a given regionAi as the number of queries in the region
Ai, denoted bymi, times the inaccuracy threshold∆i, that is
mi · ∆i. When computingmi, queries partially intersecting
the shedding regionAi are fractionally counted. The objective
function that we want to minimize can be formulated as:

InAcc({Ai}, {∆i}) =
∑

i∈[1..l]

mi ·∆i

Note thatmi andni are functions of the partitioning{Ai}.
We now discuss an important extensions to this basic problem,
in order to provide a system-level control over the difference
in the inaccuracy thresholds used in different regions.

3.1.1 The Fairness Threshold

We introduce a parameter called the fairness threshold, de-
noted by∆⇔. In the original problem formulation, the shed-
ding regions that do not contain any queries (i.e.,{Ai : mi =
0}) may be overly penalized by setting their update throttlers
to maximum inaccuracy value of∆⊣, since the update reduc-
tion for those regions does not impact the query results. How-
ever, for mobile CQ systems supporting historic and ad-hoc
queries this may be undesirable, thus∆⇔ can be used to re-
duce this effect. Formally, we have the following additional
constraint on the update throttles:

∀
i,j∈[1..l]

|∆i −∆j | ≤ ∆⇔

One extreme case of∆⇔ = ∆⊣ −∆⊢ represents the orig-
inal formulation, whereas the other extreme case of∆⇔ = 0
represents the uniform∆ scenario.

We consider the partitioning and the setting of update throt-
tlers as separate problems. In what follows, we first provide
a heuristic-based partitioning algorithm for constructing the
shedding regions and then give an optimal (under certain con-
ditions) algorithm for setting the update throttlers for a given
partitioning of the space. It is worth mentioning that the prob-
lem of setting the update throttlers is not a linear program,
since the update reduction functionf is not linear and as a
result the update budget constraints are not linear.

3.2 GRIDREDUCE: Partitioning the Space

The goal of the GRIDREDUCE algorithm is to partition the
geographical space of interest intol shedding regions, such
that this partitioning produces lower query-result inaccuracy.
For each shedding regionAi generated, the algorithm also de-
termines the number of nodesni and the number of queriesmi

for that region. This information is later used by GREEDYIN-
CREMENT to set the update throttlers.

The GRIDREDUCEalgorithm works in two stages and uses
a statistics gridas the base data structure to guide its deci-
sions. The statistics grid serves as a uniform, maximum fine-
grained partitioning of the space of interest. In the first stage
of the algorithm, which follows a bottom-up process, we cre-
ate a region hierarchy over the statistics grid and aggregate
the query and mobile node statistics for the higher-level re-
gions in this hierarchy. This region hierarchy serves as a tem-
plate from which a non-uniform partitioning of the space can
be constructed. The second stage follows a top-down process
and creates the final set ofl shedding regions, starting from the
highest region in the hierarchy (the whole space). The main
idea is to selectively pick and drill down on a region using
the hierarchy constructed in the first stage. The region to drill
down is determined based on the expected gain in the query-
result accuracy, called theaccuracy gain(see Section 3.2.3),
which is computed using the aggregated region statistics.

3.2.1 The Statistics Grid

The statistics grid is anα× α evenly spaced grid over the ge-
ographical space, whereα is the number of grid cells on each
side of the space. We describe the relationship betweenα and

l later in this section. For each grid cellci,j the statistics grid
stores the average number of mobile nodesni,j and queries
mi,j for that grid cell. The only data structure maintained
over time by the LIRA load shedder is this grid.

The maintenance of the grid can be performed in a num-
ber of ways. For instance, if the mobile CQ server uses a
grid-based index on mobile node positions [10, 12] the statis-
tics grid can be trivially supported as a part of the grid index.
Alternatively, the grid can be explicitly maintained by pro-
cessing position updates. Note that it takes constant time to
process an update for maintaining the grid. Moreover, all of
the updates need not be processed, since the statistics can eas-
ily be approximated using sampling. In an off-line alternative,
the average number of mobile nodes can be pre-computed for
different times of the day based on historic data, in which case
the maintenance cost is close to zero. In all three alternatives,
maintenance of the statistics grid is a lightweight operation.
The partitioning generated by the GRIDREDUCE algorithm
using anα× α grid is called an(α, l)-partitioning.

3.2.2 Stage I: Building the Region Hierarchy

In the first stage (see lines 1- 8 in Algorithm 1), we build
a complete quad-tree over the grid. Each tree node corre-
sponds to a different region in the space, where regions get
larger as we move closer to the root node which represents
the whole space. Each level of the quad-tree is a uniform,
non-overlapping partitioning of the entire space. Througha
post-order traversal of the tree, we aggregate the statistics as-
sociated with the grid cells for each node of the tree, i.e., we
compute the number of mobile nodes and number of queries
for each tree node’s region. The first stage of the algorithm
takesO(α2) time and consumesO(α2) space.

3.2.3 Stage II: Drilling Down in the Hierarchy

In the second stage of the algorithm (see lines 9- 21 in Algo-
rithm 1) we start with the root node of the tree, i.e., the entire
space. At each step, we pick a visited tree node (initially only
the root) and replace it with its4 child nodes in the quad-tree.
This process continues until we reachl visited tree nodes (cor-
responding tol shedding regions), assumingl mod 3 = 1.
The crux of this stage lies in how we choose a region to fur-
ther partition during each step. For this purpose we maintain
a max-heap of all visited tree nodes based on their accuracy
gains, a metric we introduce below, and at each step we pick
the node with the highest accuracy gain.

Given a tree node, the accuracy gain is a measure of the ex-
pected reduction in the query-result inaccuracy, achievedby
partitioning the node’s region into4 sub-regions correspond-
ing to its child nodes. For a tree nodet, the accuracy gainV [t]
is calculated as follows. LetE[t] be the average result inac-
curacy if we only had one shedding region that ist’s region.
Formally, we haveE[t] ← min∆ (m[t] · ∆), s.t.f(∆) ≤
z · f(∆⊢). Now let Ep[t] be the average result inaccu-
racy if we had4 shedding regions that correspond to the re-
gions of t’s child nodesti, i ∈ [1..4]. Formally, we have
Ep[t] ← min{∆i}

∑4
i=1 ∆i · m[ti] subject to the constraint

Algorithm 1: (l, α)-partitioning of the space

GRIDREDUCE(α, l, z)
1) Constructlog2 α + 1-level quadrant tree over theα× α grid
2) foreach tree nodet in post-order
3) if t is a leaf node,{initialize # objs. and # qrys.}
4) ci,j : corresponding grid cell oft
5) n[t]← ni,j , m[t]← mi,j

6) else {t is not a leaf, aggregate # objs. and # qrys.}
7) ti: ith childeren oft, i ∈ [1..4]
8) n[t]←

P

4

i=1
n[ti], m[t]←

P

4

i=1
m[ti]

9) H: empty max. heap of nodes, based onV (accuracy gain) values
10) L: empty list of tree nodes,i← 0
11) t← root of the tree,H.INSERT(t)
12) while L.SIZE()+H.SIZE() < l {l regions not reached}
13) t← H.POPMAX () {region to partition}
14) if t is not a leaf{further partitioning possible}
15) for i = 1 to 4 {partition the region}
16) g ←CALCERRGAIN (ti), H.INSERT(〈ti, g〉)
17) else {t is a leaf node} {no further partitioning}
18) L.INSERT(t) {store the region inL}
19) foreach t ∈ L ∪H {process the regions}
20) ni ← n[t], mi ← m[t] {set the region statistics}
21) Ai ← Area oft’s quadrant,i← i + 1 {set the area}
CALCERRGAIN (t)
1) E ← min∆ (m[t] ·∆), s.t.f(∆) ≤ z · f(∆⊢)
2) Ep ← min{∆i}

P

4

i=1
∆i ·m[ti],

s.t.
P

4

i=1
n[ti] · f(∆i) ≤ z · n[t] · f(∆⊢)

3) V [t]← E − Ep {accuracy gain is the difference in error}

∑4
i=1 n[ti] · f(∆i) ≤ z · n[t] · f(∆⊢). Then the difference

E[t]− Ep[t] gives us the accuracy gainV [t].
The computation ofE[t] andEp[t], and thus the accuracy

gainV [t], requires solving the problem of update throttler set-
ting for a fixedl of shedding regions. Concretely, computation
of E[t] requires to solve for nodet with l = 1 and computation
of Ep[t] requires to solve for the4 child nodes oft with l = 4.
As we will show in Section 3.3, this general problem can be
solved in loglinear time onl. As a result, the accuracy gain is
computed in constant time for a tree nodet. The second stage
of the GRIDREDUCEalgorithm takesO(l·log l) time and con-
sumesO(l) space, bringing the combined time complexity to
O(l · log l + α2) and space compexity toO(α2 + l).

3.2.4 An Example Partitioning

Fig. 3 depicts an example(α, l)-partitioning. The mobile node
distribution (generated from a road map) is shown on the left,
whereas the query distribution is shown on the center, and the
final (α, l)-partitioning is shown on the right. It is important
to note that the regions are not being further partitioned when
the further partitioning will not benefit the query-result ac-
curacy. Here are the two interesting examples: the shedding
regions marked with× and∗ in Fig. 3, which we denote by
A× andA∗. We see thatA× is larger than some of the nearby
regions. This is because the number of queries is zero forA×
and as a result further partitioning is not needed.A∗ is also
larger than some of the nearby regions, but in contrast toA×
the number of queries is large forA∗. However, what mat-
ters is the heterogeneity of the region in terms of the number
of mobile nodes and queries within. In the case ofA∗ fur-
ther partitioning of the region results in sub-regions of similar
characteristics, implying that partitioning is unnecessary.

Fig. 3: An example(α, l)-partitioning

3.2.5 The Relationship Between l and α

To find a pragmatic way of configuring the statistics grid pa-
rameterα, we first observe the relationship betweenl and
α. Assume that the partitioning is performed such that all
the shedding regions are evenly sized. This will yield a grid
partitioning with

√
l number of cells on each side, which we

refer to as thel-partitioning. Our aim is to have a statistics
grid that is fine grained enough to provide us with an(α, l)-
partitioning whose non-uniformly sized shedding regions are
sufficiently flexible in terms of the size of their area compared
to the case ofl-partitioning in which all regions are equal-
sized. The side length of the minimum possible shedding re-
gion in (α, l)-partitioning is proportional to1/α (the shed-
ding region is equal to a cell of the statistics grid), whereas
the side length of a region inl-partitioning is proportional to
1/
√

l. To achieve aroundx2 times difference in the areas
of minimum possible shedding regions ofl-partitioning and
(α, l)-partitioning, we should determineα using the formula
α = 2⌊log2

(x·
√

l)⌉. Havingx = 10 provides around100 times
difference in size. In our experimental studies we have found
that this setting gives effective results.

3.3 GREEDYINCREMENT: Setting the ∆i’s

The goal of the GREEDYINCREMENT algorithm is to find
the optimal setting of the update throttlers associated with the
l shedding regions produced by the GRIDREDUCEalgorithm2,
so that the inaccuracy in query results is minimized (while re-
specting the fairness thresholds). We first consider this prob-
lem without the fairness threshold constraints. The main idea
is to increase the update throttlers in order to match the update
budget. The update throttlers that bring a larger reductionin
the update expenditure of the system in return for a smaller
reduction in the result accuracy are preferred for increment.

3.3.1 The Greedy Steps

As the name suggests, the algorithm is a greedy one. It starts
by setting all∆i’s to ∆⊢, the current update expenditureU to
n ·f(∆⊢) and the update budgetU⊣ to z ·U . Note that the ini-
tial setting is an infeasible solution since the update expendi-
ture is higher than the update budget, that isU > U⊣. At each
greedy step one of the update throttlers is selected based onthe
update gain, a criterion to be defined in the next subsection,
and is increased byc∆, called theincrement(or by a smaller
value in the case that we undershoot the update budget). When

2Note that GREEDYINCREMENT is also used within GRIDREDUCE dur-
ing computation of the accuracy gains, albeit in a much smaller scale.

∆i is incremented byc∆, the current update expenditure is de-
creased byni · (f(∆i)−f(∆i + c∆)). This process continues
until the current update expenditure decreases to match the
update budget (i.e.,U = U⊣), or all the update throttlers reach
their maximum bound (i.e.,∆ = ∆⊣). The former condition
implies that the update expenditure is reduced to a value equal
to throttle fraction times the maximum update expenditure as-
sociated with the case of∀i∈[1..l] ∆i = ∆⊢. This means that
the update constraint is satisfied. On the other hand, the lat-
ter condition implies that the update budget can not be met
for the given throttle fractionz and the update throttler range
[∆⊢,∆⊣], leading to the solution∀l∈[1..l] ∆i = ∆⊣.

3.3.2 Update Gain Calculation

The key point of GREEDYINCREMENT is the selection of the
update throttler to use at each greedy step. We pick the update
throttler that has the highest update gain. The update gain
is defined as the ratio of the decrease in update expenditure
to the additional inaccuracy introduced in the query results.
We denote the rate of decrease in the update expenditure at a
point ∆ by r(∆), and define it as the negative of the update
reduction functionf ’s derivative at point∆. Formally:

r(∆) = −d(f(x))

dx

∣

∣

∣

∣

x=∆

Based on this definition, making adx increase in∆i will
reduce the update expenditure byni · r(∆i) · dx, and will
decrease the query-result inaccuracy bymi · dx. Thus, the
update gain for the update throttler∆i, denoted bySi, is:

Si(∆) = (ni/mi) · r(∆)

In each step of the GREEDYINCREMENT algorithm, an
update throttler∆j is selected such that we havej =
argmaxi∈[1..l] Si(∆i). If the update gain for∆j is larger
than the update gain for∆k, then increasing∆j provides bet-
ter update reduction compared to∆k for the same amount of
increase in query-result inaccuracy.

3.3.3 Optimality and Setting of the Increment c∆

To provide an optimality guarantee and to guide the setting of
c∆, we approximate the update reduction functionf by a non-
increasing, piece-wise linear function ofκ segments, each of
size(∆⊣ −∆⊢)/κ. This enables us to prove the following:

Theorem 3.1. For c∆ = (∆⊣−∆⊢)/κ, theGREEDYINCRE-
MENT algorithm is optimal for the non-increasing piece-wise
linear approximation of the update reduction functionf with
κ segments of sizec∆ each.Proof: See technical report [4].

The time complexity of the GREEDYINCREMENT algo-
rithm is given byO(κ·l·log l) or byO(l·log l) if κ is constant.
The space complexity isO(l). See [4] for details.

3.3.4 Supporting the Fairness Threshold

In order to support the fairness constraints dictated by thefair-
ness threshold∆⇔, we make the following changes to the
base algorithm. At each greedy step, the update throttler with

the highest update gain, say∆i, is incremented byat most
c∆, making sure that it does not go beyond a value that will
violate the fairness constraint. Concretely, if the minimum up-
date throttler we have is∆D = minj∈[1..l] ∆j , then∆i is not
increased beyond∆D + ∆⇔. When an update throttler∆i

reaches the limit, that is we have∆i = ∆D + ∆⇔, then it is
moved to ablocked listand is not considered for the following
steps of the algorithm until it is removed from the blocked list.
Whenever the minimum update throttler∆D is changed, the
set of update throttlers in the blocked list that are no more on
the limit are removed and are included in the following steps
of the algorithm. The pseudo code of GREEDYINCREMENT

can be found in our technical report [4].

3.4 THROTLOOP: Setting the Throttle Fraction

The throttle fractionz can be adaptively adjusted by the
L IRA load shedder, when it is not set as a fixed system-level
parameter to retain only a pre-defined fraction of position up-
dates. The adjustment of the throttle fraction is performedby
the THROTLOOP, which observes the position update queue
and periodically decides the fraction of position updates that
should be retained (throttle fractionz). The aim is to reduce
the system load so that the rate at which the position updates
are received (λ) and the rate at which these updates are pro-
cessed (µ) are balanced to prevent dropping updates from the
input queue. Theutilization of the system, denoted byρ, is
given byλ/µ. Let us denote the maximum size of the input
queue byB. Assuming anM/M/1 queuing model, we should
have the following relationship betweenρ andB to make sure
that the average queue length is no more than the maximum
queue size [15]:ρ = 1− 1/B. If the utilization is larger than
1−B−1, it represents an overload situation and thus the throt-
tle fractionz should be decreased. On the other hand, if the
utilization is smaller than1− B−1, it implies that the system
is not fully utilized and the throttle fractionz should be in-
creased. This understanding leads to the following procedure
that describes the operation of THROTLOOP:

Initially: i← 0, z(i) ← 1

Periodically: u← ρ/(1−B−1), i← i + 1

z(i) ← min(1, z(i−1)/u)

4 Experimental Evaluation
In this section we present experimental results on the effec-

tiveness of the LIRA load shedder in cutting the cost of receiv-
ing and processing position updates in mobile CQ systems,
while minimally affecting the accuracy of the query results.
Before describing the experimental setup, we first define a set
of evaluation metrics to assess the effectiveness of LIRA.

4.1 Evaluation Metrics

We define two sets of evaluation metrics. The first set
of evaluation metrics is used to measure the accuracy of the
query results under load shedding and the second set of met-
rics deals with the cost of performing load shedding.

4.1.1 Query-result Accuracy

Mean Containment Error, denoted byEC
rr, defines the average

containment error in query results. Containment error for a
query result is defined as the ratio of the number of missing
and extra items in the result to the correct result set size. Let
Q denote the set of queries,R(q) denote the result set for
a queryq ∈ Q under load shedding, andR∗(q) denote the
correct result set under∀i∈[1..l] ∆i = ∆⊢. Then:

EC
rr =

∑

q∈Q

|R∗(q) \R(q)|+ |R(q) \R∗(q)|
|Q| · |R∗(q)|

Mean Position Error, denoted byEP
rr, defines the average po-

sition error in query results. Position error for a query result is
defined as the average error in the positions of mobile nodes
in the query result compared to the correct positions. Letp(o)
denote the position of a mobile nodeo in a query resultq un-
der load shedding andp∗(o) denote the correct position ofo
under∀i∈[1..l] ∆i = ∆⊢. We have:

EP
rr =

∑

q∈Q

∑

o∈q

|p(o)− p∗(o)|
|Q| · |R(q)|

Standard Deviation of Containment Error, DC
ev, and Coef-

ficient of Variance of Containment Error, CC
ov, are fairness

metrics that measure the variation among the query results in
terms of containment error. We haveCC

ov = DC
ev/EC

rr.

4.1.2 Cost of Load Shedding

To evaluate the cost incurred by load shedding, we measure
i) the time it takes to execute the adaptation step that involves
running the THROTLOOP, GRIDREDUCE, and GREEDYIN-
CREMENT algorithms andii) the number of shedding regions
that should be known by a mobile node on average. The for-
mer metric measures the cost of load shedding from the per-
spective of the server, whereas the latter measures it from the
perspective of the mobile node as well as the wireless network.

4.2 Experimental Setup

The experiments were performed using an hour long car
(mobile node) position trace3 generated from real-world road
networks available from the National Mapping Division of the
United States Geological Survey (USGS) [19] and traffic vol-
ume data taken from [7]. We used a map from the Chamblee
region of the state of Georgia in the USA (which covers a rich
mixture of expressways, arterial roads, and collector roads) to
generate the trace used in this paper. The map covers a region
of ≈ 200km2. The trace is generated by simulating the cars
going on roads in accordance with the traffic volume data.

The queries used in the experiments are range CQs. The
side length for the range queries are randomly selected from
the interval[w/2, w] wherew is called theside length pa-
rameter. We use three different distributions for the locations
of the queries, namelyProportional, Inverse, and Random.
When the query distribution is Proportional, the locations of

3The trace generator is available at
http://www.prism.gatech.edu/˜gtg470c/research/research.html#kanom

www.prism.gatech.edu/~gtg470c/research/research.html#kanom

Parameter Description Default Value
l number of shedding regions 250
α statistics grid side cell count 128
z throttle fraction 0.5

∆⊢ minimum inaccuracy threshold 5 meters
∆⊣ maximum inaccuracy threshold 100 meters
c∆ increment 1 meter
∆⇔ fairness threshold 50 meters
m/n # of queries to # of nodes ratio 0.01
w query side length 1000 meters

Table 2: Experimental parameters

the queries follow the mobile node distribution. Similarly,
they follow the inverse of the mobile node distribution when
the query distribution is Inverse, and are randomly distributed
when the query distribution is Random. Due to limited space,
in this paper we mainly present our results on the Proportional
query distribution. The results for the Inverse and Random
distributions are very similar. More details can be found in[4].

In the experiments presented in this paper we compare our
L IRA load shedder with the following alternatives:
− Random Drop: The excessive position updates are not ad-
mitted to the input FIFO queue and are dropped.− Uniform
∆: A uniform inaccuracy threshold∆ is used to retain only
throttle fraction times the original number of location updates.
The THROTLOOP algorithm is still used, but the approach is
not region-aware and thus space partitioning and update throt-
tler settings are not performed.
− Lira-Grid: A downgraded version of the LIRA load
shedder, lacking the GRIDREDUCE algorithm which deter-
mines the shedding regions based on(l, α)-partitioning. In-
stead, it uses equally-sized shedding regions based on anl-
partitioning, yet still employs GREEDYINCREMENT.

Table 2 presents the set of experimental parameters used
and the default values they take when not stated otherwise.
As we show in this section, the default settingl = 250 of
the number of shedding regions provides sufficient granular-
ity in partitioning (for a region of size≈ 200km2) to improve
the query-result accuracy significantly, while putting very lit-
tle load on the mobile nodes and the wireless network.

All experiments are performed on an IBM PC with 512MB
main memory and 2.4Ghz Intel Pentium4 processor, using
Java with Sun JDK 1.5.

4.3 Experimental Results

We present the set of experimental results in two groups.
The first group of results are on the query-result accuracy and
highlight the superiority of LIRA compared to competing ap-
proaches for shedding position update load. The second group
of results are on the additional cost brought by the LIRA load
shedder, and show that the overhead is minimal.

4.3.1 Query-result Accuracy

We study the impact of several system and workload parame-
ters on the query-result accuracy and the relative advantage of
L IRA over competing approaches.

Impact of the Throttle Fraction: The graphs in
Figs. 4 and 5 plot the mean position errorEP

rr and mean

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

10
4

throttle fraction, z

E
rrP
 r
e
la
ti
v
e
 t
o
 L
ir
a

10
0

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

m
e
a
n
 p
o
s
it
io
n
 e
rr
o
r,
 E
P

Lira
Lira-Grid
Uniform ∆
Random Drop

rr

Fig. 4: Position Error vs.
throttle fraction

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

throttle fraction, z

E
rrC
 r
e
la
ti
v
e
 t
o
 L
ir
a

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

m
e
a
n
 c
o
n
ta
in
m
e
n
t
e
rr
o
r,
 E
rrC

Lira
Lira-Grid
Uniform ∆
Random Drop

Fig. 5: Containment Error vs.
throttle fraction

containment errorEC
rr as a function of the throttle fraction

z, for the Proportional query distribution. The lefty-axis is
used to show the relative values (solid lines) with respect to
the error of LIRA and the righty-axis is used to show the
absolute errors (dashed lines). Bothy-axes are in logarithmic
scale. We make three observations from the figure.

First, the LIRA load shedder outperforms all other ap-
proaches throughout the entire throttle fraction range. Ran-
dom Drop performs the worst, followed by Uniform∆ and
Lira-Grid. At z = 0.75, Random Drop has300 times the mean
position error of LIRA, Uniform ∆ has40 times that of LIRA,
and Lira-Grid has2 times that of LIRA. At z = 0.5, Random
Drop, Uniform∆, and Lira-Grid has10, 2, and1.08 times the
EP

rr of L IRA. The results for the mean containment errorEC
rr

are similar. Second, we observe that as the throttle fraction
z gets smaller, the relative errors approach to1, while at the
same time the absolute errors increase and finally merge. The
increasing errors are the result of decreasing update budget,
whereas the relative errors decrease to1 due to the maximum
inaccuracy bound∆⊣. When the update budget gets smaller
than the minimum update expenditure of the system achieved
at∀i∈[1..l] ∆i = ∆⊣, all of the three approaches that use inac-
curacy thresholds converge at this same solution. For this ex-
perimental setting, this convergence occurs aroundz = 0.25.
Last, we observe very high (in the order of103’s) relative er-
rors for Random Drop and Uniform∆ asz gets closer to1.
This seems surprising at first, as for the case ofz = 1 (not
shown in the figures) all approaches have zero error. How-
ever, a slight decrease in the throttle fraction, that is when we
havez = 1 − ǫ, introduces some error in the query results
for the case of Random Drop and Uniform∆, whereas it in-
troduces almost no error in the case of LIRA. This is because
L IRA cuts the required fraction of position updates from the
regions that do not contain any queries. Close to none error of
L IRA nearz = 1 boosts the relative error results for Random
Drop and Uniform∆.

Impact of the Number of Shedding Regions: The graphs
in Fig. 6 plot the relative mean containment errorEC

rr of Lira-
Grid with respect to LIRA as a function of the number of shed-
ding regionsl, for different query distributions. The throttle
fraction is set asz = 0.5. We observe that Lira-Grid has up
to 35% higher containment error in query results compared
to LIRA. The improvement provided by LIRA is more pro-
nounced when Inverse query distribution is used and is small-

0 200 400 600 800 1000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

number of shedding regions, l

E
rrC

 o
f

L
ir

a
-G

ri
d

 r
e

la
ti

v
e

 t
o

 L
ir

a

Proportional

Random

Inverse−prop.

Query Dist.

Fig. 6: EC
rr of Lira-Grid w.r.t.

to LIRA vs. # of shedding regions

0 100 300 500 700 900
10

−4

10
−3

10
−2

10
−1

10
0

number of shedding regions, l

m
e

a
n

 c
o

n
ta

in
m

e
n

t
e

rr
o

r,
 E

rrC

Lira z = 0.3

Lira z = 0.5

Lira z = 0.7

Lira z = 0.9

Fig. 7: Containment Error of
L IRA vs. # of shedding regions

est for the case of Proportional query distribution. Asl in-
creases, the flexibility provided by having a larger number of
shedding regions improves the error incurred by LIRA at a
better rate than Lira-Grid, since LIRA utilizes an intelligent
space partitioning algorithm. However, whenl gets too large
the grid partitioning of Lira-Grid achieves enough granularity
to catch Lira in terms of the query-result inaccuracy, as ob-
served form the figure. This is because after a certain level of
granularity is reached, more fine-grained partitioning is of no
use, since the accuracy gain is close to zero for all of the shed-
ding regions. The graphs in Fig. 7 attest to this latter intuition.
They plot the mean containment errorEC

rr of L IRA as a func-
tion of the number of shedding regions, for different throttle
fractions. We see that the error reduction rate decreases with
increasingl and the errors stabilize. The reduction in error
is more pronounced for largerz values. Note that the default
setting ofl = 250 for the number of shedding regions is rather
conservative based on Fig. 7, yet it still performs significantly
better than the competing approaches as illustrated by Fig.5.
This conservative setting ofl also results in a lightweight load
shedding solution, as we illustrate later in this section.

Impact of the Fairness Threshold: The graphs in Fig. 8
plot the standard deviation of containment errorDC

ev (on the
left y-axis corresponding to solid lines) and coefficient of vari-
ance of containment errorCC

ov (on the righty-axis correspond-
ing to dashed lines) for LIRA and Uniform∆ as a function of
the fairness threshold∆⇔. Note that Uniform∆ does not use
a fairness threshold, thus the evaluation metrics stay constant.
The surprising observation from the figure is that, with in-
creasing fairness threshold the standard deviation in contain-
ment error decreases for LIRA and at all times stays smaller
than theDC

ev of Uniform ∆. Even though larger∆⇔ values
imply less fairness, the resulting relaxed constraints in set-
ting the update throttlers enable smaller containment errors
and thus the standard deviation also gets smaller. If we lookat
the coefficient of variance of containment error, which is a bet-
ter measure of fairness, we see that increasing∆⇔ increases
CC

ov in L IRA and Uniform∆ is more fair compared to LIRA.
To put this into simple terms, we can say that on average the
difference in errors of two query results will be smaller for
L IRA compared to Uniform∆, yet when judged based on the
relative average query errors of LIRA and Uniform∆ respec-
tively, the error in query results is more fair among different
queries in the case of Uniform∆.

0 20 40 60 80 100
10

−3

10
−1

fairness threshold (meters)

10
0

10
1

10
0

10
1

 c
o
n
ta
in
m
e
n
t
e
rr
o
r,
 C

o
v

C

Lira

Uniform ∆

c
o
e
ff
ic
ie
n
t
o
f
v
a
ri
a
n
c
e
 o
f

D
e
v

 c
o
n
ta
in
m
e
n
te
rr
o
r,

C
s
ta
n
d
a
rd
 d
e
v
ia
ti
o
n
 o
f

10
−2

128 256 512 1024 2048 4096 8192
0

500

1000

1500

number of shedding regions, l

a
d

a
p

ta
ti

o
n

 t
im

e
 (

m
s

e
c
s

)

Lira α = 128

Lira α = 256

Lira α = 512

Lira α = 1024

Fig. 8: Fairness in result accu-
racy for LIRA and Uniform∆

Fig. 9: Server side cost of con-
figuring LIRA

4.3.2 Cost of Load Shedding

The cost of load shedding consists ofi) configuring the param-
eters of LIRA on the server side, which includes setting the
throttle fraction, shedding regions, and update throttlers, ii)
broadcasting the subset of shedding regions and update throt-
tlers that correspond to the coverage area of each base station,
andiii) installing the new set of shedding regions and update
throttlers on the mobile node side.

Server Side Cost: The graphs in Fig. 9 plot the time it takes
to execute the THROTLOOP, GRIDREDUCE, and GREEDYIN-
CREMENTalgorithms as a function of the number of shedding
regionsl, for different numbers of cells (α2) for the statistics
grid. For the default parameters ofl = 250 andα = 128,
the configuration of LIRA takes around40 msecs. This will
enable frequent adaptation, even though for most applications
that involve monitoring cars or pedestrians it is unlikely that
the update load will fluctuate with a period less than tens of
minutes. Even for an adaptation period of10 minutes, the
configuration of LIRA will take only 6.6 · 10−5 fraction of
the adaptation period. Note that these values are for a re-
gion of size200km2. If we have a16 times larger region
of size3200km2 (≈ 10 times the size of Atlanta, the capi-
tal city of the state of Georgia, USA), then we should have
l = 16 · 250 = 4000, and fromα = 2⌊log2

(10·
√

l)⌉ we should
haveα = 512. For this setting the configuration of LIRA

takes500 msecs. This corresponds to8 · 10−4 fraction of a10
minute adaptation period. These numbers show that LIRA is
lightweight and introduces little overhead on the server side.

Messaging Cost: Table 3 shows the average number of
shedding regions that should be known to a base station as
a function of the base station coverage area radius. How-
ever, in reality base stations have smaller coverage regions at
places where the number of users is large (urban areas) and
larger coverage regions at places where the number of users
is small (suburban areas) [14]. This nature of base stations
match perfectly with LIRA ’s space partitioning scheme, since
the number of partitions are usually larger for dense areas and
the small base station coverage areas help decreasing the aver-
age number of shedding regions known to a mobile node. Fol-
lowing this logic, we have used a node density dependent base
station placement scheme and found that on the average each
node and thus each base station should know around41 shed-
ding regions. Assuming a shedding region (which is square

base station radius (km) 1.0 2.0 3.0 4.0 5.0

of ∆i’s per node 3.1 12.5 28.2 50.2 78.5
41 ∆i’s on average, takes41 · (3 + 1) · 4 bytes =656 bytes.

Table 3: Number of shedding regions per base station

in shape) is represented by3 floats and an update throttler is
represented by a single4 byte float, the size of the broadcast
data sent by a base station to all nodes in its coverage area
to install the shedding regions and update throttlers is around
41 · (3 + 1) · 4 bytes =656 bytes on average. To asses the
messaging cost of LIRA, compare this number to1472 bytes,
which is the maximum payload available to an UDP packet
over Ethernet with a typical MTU of1500 bytes. When LIRA

reconfigures the load shedding parameters, the new informa-
tion is installed on all mobile nodes by using an average of
one wireless broadcast packet per base station.

Mobile Node Side Cost: Since the total number of shedding
regions known to a mobile node at any time is only around41,
L IRA does not put a major burden on mobile nodes in terms
of memory consumption or processing load. By employing a
tiny 5 × 5 grid index on the mobile node side, the shedding
region that contains the current position of the mobile node
can be found quickly. As a result, LIRA will work on compu-
tationally weak mobile nodes without any problem.

5 Related Work
To the best of our knowledge, this is the first work on po-

sition update load shedding in mobile CQ systems. Several
works have appeared in the literature on handling the position
updates efficiently in mobile CQ systems [18, 9, 11, 21] or
using motion modeling to reduce the number of position up-
dates received [20, 2]. The first set of works do not directly
address the update load shedding problem, but instead aim at
decreasing the IO and CPU cost of integrating the position
updates into spatial index structures. This does not involve
suppressing or dropping the position updates from the mobile
nodes, which is inevitable when the current resources of the
system are not sufficient to handle the update load. Our work
is complementary in nature to this line of previous work. The
second set of previous work use motion modeling to cut the
update load, and ensure that the resulting position updatesdo
not have inaccuracy beyond a pre-specified threshold. A key
difference is that, our work is driven by the update budget en-
forced by the load on the system. We adjust the inaccuracy
thresholds to reduce the update expenditure of the system to
meet the update budget. In other words, our work utilizes the
previous work on motion modeling at the mobile node side
for actuating the position update suppressing. However, the
core of our solution is to find a partitioning and a set of inac-
curacy thresholds to associate with each partition, so thatthe
position updates received from the mobile nodes can answer
the queries installed in the system accurately.

There have also been a number of distributed solutions to
evaluate CQs in mobile systems [1, 8, 3]. In these systems, the
position updates are only received if they affect a query result.
Even though these systems do not provide any load shedding

capability, their update load is expected to be significantly
lower compared to solutions that track all mobile nodes. How-
ever, these solutions cannot support historic queries, since the
location updates are not received from all objects. The ad-
hoc snapshot queries are also expensive to evaluate. Interest-
ingly, L IRA can be configured to mimic the behavior of these
systems by setting the maximum inaccuracy bound to a large
value. Moreover, our system has the additional advantage of
not being tied to any specific query processing technique and
has very little overhead.

6 Conclusion
We presented LIRA, a position update load shedder for mo-

bile CQ systems. The primary feature of LIRA is its region-
awareness, which enables it to partition the space into a setof
shedding regions and apply differing amounts of update throt-
tling for different shedding regions. We developed a heuristic
algorithm to discover a partitioning of the space that leadsto
reduced error in query results, and an optimal algorithm that
sets the update throttlers associated with each shedding region
to minimize the query-result inaccuracy. We showed that the
L IRA load shedder is significantly superior to random update
dropping and uniform inaccuracy threshold schemes. More-
over, LIRA is lightweight by design and can be used in con-
junction with many of the existing update indexing and mobile
CQ processing techniques.

References
[1]Y. Cai and K. A. Hua. An adaptive query management technique for efficient real-

time monitoring of spatial regions in mobile database systems. InIEEE International
Performance Computing and Communications Conference, 2002.

[2]A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for efficient road-network-
based tracking of moving objects.IEEE TKDE, 17(5), 2005.

[3]B. Gedik and L. Liu. Distributed processing of continuously movingqueries on
moving objects in a mobile system. InEDBT, 2004.

[4]B. Gedik, L. Liu, K.-L. Wu, and P. S. Yu. LIRA: Lightweight, region-aware load
shedding in mobile CQ systems. Technical Report CERCS-06-07, GaTech, 2006.

[5]B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Processing moving queries overmoving
objects using motion adaptive indexes.IEEE TKDE, 18(5), 2006.

[6]Google RideFinder home page. http://labs.google.com/ridefinder, Febuary 2006.
[7]M. Gruteser and D. Grunwald. Anonymous usage of location-based services through

spatial and temporal cloaking. InACM MobiSys, 2003.
[8]H. Hu, J. Xu, and D. Lee. A generic framework for monitoring continuous spatial

queries over moving objects. InACM SIGMOD, 2005.
[9]C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient B+-tree based

indexing of moving objects. InVLDB, 2004.
[10]D. V. Kalashnikov, S. Prabhakar, S. Hambrusch, and W. Aref. Efficient evaluation

of continuous range queries on moving objects. InDEXA, 2002.
[11]M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting frequent updates

in r-trees: A bottom-up approach. InVLDB, 2003.
[12]M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processingof

continuous queries in spatio-temporal databases. InACM SIGMOD, 2004.
[13]S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query

indexing and velocity constrained indexing: Scalable techniques for continuous
queries on moving objects.IEEE TC, 51(10), 2002.

[14]QualComm. Wireless access solutions using 1xEV-DO. www.qualcomm.com/-
technology/1xev-do/webpapers/wpwirelessaccess.pdf, 2005.

[15]S. Ross.A First Course in Probability. Prentice Hall, 2005.
[16]S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexingthe positions

of continuously moving objects. InACM SIGMOD, 2000.
[17]C. Science and T. Board.IT Roadmap to a Geospatial Future. The National Aca-

demics Press, November 2003.
[18]Y. Tao, D. Papadias, and J. Sun. The TPR∗-Tree: An optimized spatio-temporal

access method for predictive queries. InVLDB, 2003.
[19]U.S. Department of the Interior. U.S. geological survey web page.

http://www.usgs.gov/, November 2003.
[20]O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying

databases that track mobile units.Distributed and Parallel Databases, 7(3), 1999.
[21]X. Xiong and W. G. Aref. R-trees with update memos. InIEEE ICDE, 2006.

	Introduction
	Overview
	Design Ideas
	Adjusting the Inaccuracy Threshold
	Region-aware Load Shedding

	System Architecture

	The Lira Load Shedder
	Problem Formulation
	The Fairness Threshold

	GridReduce: Partitioning the Space
	The Statistics Grid
	Stage I: Building the Region Hierarchy
	Stage II: Drilling Down in the Hierarchy
	An Example Partitioning
	The Relationship Between l and

	GreedyIncrement: Setting the i's
	The Greedy Steps
	Update Gain Calculation
	Optimality and Setting of the Increment c
	Supporting the Fairness Threshold

	ThrotLoop: Setting the Throttle Fraction

	Experimental Evaluation
	Evaluation Metrics
	Query-result Accuracy
	Cost of Load Shedding

	Experimental Setup
	Experimental Results
	Query-result Accuracy
	Cost of Load Shedding

	Related Work
	Conclusion

