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ABSTRACT: 
 
Dynamic Web data sources – sometimes known collectively as the Deep Web – increase the 
utility of the Web by providing intuitive access to data repositories anywhere that Web access is 
available.  Deep Web services provide access to real-time information, like entertainment event 
listings, or present a Web interface to large databases or other data repositories.  Recent studies 
suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, 
yet dynamic content is often ignored by existing search engine indexers owing to the technical 
challenges that arise when attempting to search the Deep Web.  To address these challenges, we 
present DYNABOT, a service-centric crawler for discovering and clustering Deep Web sources 
offering dynamic content.  DYNABOT has three unique characteristics.  First, DYNABOT utilizes a 
service class model of the Web implemented through the construction of service class 
descriptions (SCDs).  Second, DYNABOT employs a modular, self-tuning system architecture for 
focused crawling of the Deep Web using service class descriptions.  Third, DYNABOT 
incorporates methods and algorithms for efficient probing of the Deep Web and for discovering 
and clustering Deep Web sources and services through SCD-based service matching analysis.  
Our experimental results demonstrate the effectiveness of the service class discovery, probing, 
and matching algorithms and suggest techniques for efficiently managing service discovery in the 
face of the immense scale of the Deep Web. 
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Service discovery, Web crawling, Dynamic Web data, Deep Web 
 
INTRODUCTION 
 
The World Wide Web is the product of two unique approaches to document publication.  The 
traditional or “static” Web consists of documents materialized in the secondary storage of server 
systems that are hyperlinked to other Web documents.  These documents are generally accessible 
to unauthenticated users and automated agents like search engine crawlers.  The dynamic or 
“Deep Web,” in contrast, refers to the dynamic collection of Web documents that are created as a 
                                                 
1 The DynaBot project homepage is http://www.cc.gatech.edu/projects/disl/specialProjects/Dynabot.html. 
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direct response to some user query.  Deep Web services provide access to real-time information, 
like entertainment event listings, or present a Web interface to large databases or other data 
repositories.  Recent studies suggest that the size and growth rate of the dynamic Web greatly 
exceed that of the static Web (Lawrence & Giles, 1998; Lawrence & Giles, 1999).  Estimates 
suggest that the practical size of the Deep Web may be greater than 550 billion individual 
documents (Bergman, 2003).  More than half of the content of the Deep Web resides in topic-
specific databases, many of which are made available through Web services.  A full ninety-five 
percent of the Deep Web is publicly accessible information that is not subject to fees or 
subscriptions. 
 
Dynamic content is often ignored by existing search engine indexers owing to the technical 
challenges that arise when attempting to search the Deep Web.  The most significant challenge is 
the philosophical difference between the static and Deep Web with respect to how data is stored: 
in the static Web, data is stored in documents while in the dynamic Web, data is stored in 
databases or produced as the result of a computation.  This difference is fundamental and implies 
that traditional document indexing techniques, which have been applied with extraordinary 
success on the static Web, are inappropriate for the Deep Web.  Related to the data storage issue 
is the problem of data retrieval, since static Web documents are retrieved via simple HTTP calls 
while dynamic Web documents often reside behind form interfaces that are impenetrable to 
traditional crawlers.  Finally, Deep Web sources tend to be more domain-focused than their static 
Web counterparts.  While there is much to be gained from discovering and clustering Deep Web 
sources, any significant exploration of the Deep Web will require techniques that exploit service-
oriented functionality through intelligent analysis of search forms and result samples. 
 
With these challenges in mind, we present DYNABOT, a service-centric crawler for discovering 
and clustering Deep Web sources.  DYNABOT has three unique characteristics.  First, DYNABOT 
utilizes a service class model of the Web implemented through the construction of service class 
descriptions (SCDs).  Second, DYNABOT employs a modular, self-tuning system architecture for 
focused crawling of the Deep Web.  Third, DYNABOT incorporates methods and algorithms for 
efficient probing of the Deep Web and for discovering and clustering Deep Web sources and 
services through SCD-based service matching analysis. 
 
We demonstrate the capability of DYNABOT through the BLAST [Basic Local Alignment Search 
Tool] service discovery scenario. Our initial experimental results are very encouraging – 
demonstrating up to 73% success rates of service discovery and showing how the incorporation of 
service clues into the search process may improve service matching throughput.  These results 
suggest an opportunity for efficient service discovery in the face of the large and growing number 
of web services. The DYNABOT prototype has been successfully deployed by Lawrence 
Livermore National Lab for use in aiding bioinformatic service discovery and integration, and its 
further development and testing is continuing as part of the LDRD project; the goal of this project 
is to provide scientists with access to hundreds of data sources through a single, intuitive interface, 
thereby simplifying their interaction with data and enabling them to answer more complex 
questions than currently possible.2 
 
The remainder of the paper is organized as follows. We first describe our service class model and 
the construction of service class descriptions. We then outline the architectural design of 
DYNABOT with a focus on system-level design and development issues, including our Deep Web 
probing methodology and the SCD-based service matching algorithms.  We then present our 
initial experimental results that demonstrate the effectiveness and scalability of DYNABOT for 
                                                 
2 http://disl.cc.gatech.edu/LDRD/ 
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discovering domain specific Deep Web sources and services.  We then conclude the paper with a 
summary of related work and a discussion of open research issues. 
 
THE SERVICE CLASS MODEL 
 
Research on DYNABOT for automatically discovering and classifying web services is motivated 
by the need to fill the gap between the growth rate of web services and the rate at which current 
tools can interact with these services.  Given a domain of interest with defined operational 
interface semantics, can we provide superior service identification, classification, and integration 
services than the current state-of-the-art? 
 
To facilitate the domain-specific discovery of web services, we introduce the concept of service 
classes. We model a service provider S as a provider of k services s1, …, sk (k ≥ 1). The service 
class model views the spectrum of web services as a collection of service classes, which are 
services with related functions. 
 
Definition 1: A service class is a set of web services that provide similar functionality or data 
access. 
 
The definition of the desired functionality for a service class is specified in a service class 
description, which defines the relevant elements of the service class without specifying instance-
specific details.  The service class description articulates an abstract interface and provides a 
reference for determining the relevance of a particular service to a given service class.  The 
service class description is initially composed by a user or service developer and can be further 
revised via automated learning algorithms embedded in the DYNABOT service probing and 
matching process. 
 
Definition 2: A service class description (SCD) is an abstract description of a service class that 
specifies the minimum functionality that a service s must export in order to be classified as a 
member of the service class. An SCD is modeled as a triple: SCD = <T, G, P>, where T denotes 
a set of type definitions, G denotes a control flow graph, and P denotes a set of probing templates. 
 
The service class model supports the web service discovery problem by providing a general 
description of the data or functionality provided.  A service class description encapsulates the 
defining components that are common to all members of the class and provides a mechanism for 
hiding insignificant differences between individual services, including interface discrepancies that 
have little impact on the functionality of the service.  In addition, the service class description 
provides enough information to differentiate between a set of arbitrary web services. 
 
As a continuing example, consider the problem of locating members of the service class 
Nucleotide BLAST. Nucleotide BLAST services provide complex similarity search operators 
over massive genetic sequence databases. BLAST services are especially important to 
bioinformatics researchers. The relevant input features in this service class are a string input for 
specifying genetic sequences, a choice of nucleotide databases to search, and a mechanism for 
submitting the genetic sequence query to the appropriate server.  The relevant output is a set of 
sequence matches. Note that this description says nothing about the implementation details of any 
particular instance of the service class; rather, it defines a minimum functionality set needed to 
classify a service as a member of the Nucleotide BLAST service class. SCDs may also be 
defined for user-specified classes like Keyword-Based Search Engines, Stock 
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Tickers, or Hotel Reservation Services. The granularity of each SCD is subject to 
the user needs. 
 
Our initial prototype of the DYNABOT service discovery system utilizes a service class 
description composed of three building blocks: type definitions, a control pattern, and a set of 
probing templates.  The remainder of this section describes each of these components with 
illustrative examples. 
 
Type Definitions 
 
The first component of a service class description specifies the data types t ∈  T that are used by 
members of the service class.  Types are used to describe the input and output parameters of a 
service class and any data elements that may be required during the course of interacting with a 
service.  The DYNABOT service discovery system includes a type system that is modeled after the 
XML Schema (Fallside, 2001) type system with constructs for building atomic and complex 
types.  This regular expression-based type system is useful for recognizing and extracting data 
elements that have a specific format with recognizable characteristics.  Since DYNABOT is 
designed with a modular, flexible architecture, the type system is a pluggable component that can 
be replaced with an alternate implementation if such an implementation is more suitable to a 
specific service class.   
 

 
Figure 1: Nucleotide BLAST: type definitions 

 
The regular expression type system provides two basic types, atomic and complex.  Atomic types 
are simple valued data elements such as strings and integers.  The type system provides several 
built in atomic types that can be used to create user-defined types by restriction.  Atomic types 
can be composed into complex types, which are formed by composition of basic types into larger 
units.   
 

<type name="DNASequence"  
      type="string"  
      pattern="[GCATgcat-]+" /> 
 
<type name="AlignmentSequenceFragment" > 
    <element name="AlignmentName"  
             type="string"  
             pattern="[:alpha:]+:" /> 
    <element type="whitespace" /> 
    <element name="start-align-pos"  
             type="integer" /> 
    <element type="whitespace" /> 
    <element name="Sequence"  
             type="DNASequence" /> 
    <element type="whitespace" /> 
    <element name="end-align-pos" 
             type="integer" /> 
</type> 
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The DNASequence type in Figure 1 is an example of an atomic type defined by restriction in 
the nucleotide BLAST service class description.  Each type has a type name that must be unique 
within the service class description.  Atomic types include a base type specification (e.g. 
type=“string”) which can reference a system-defined type or an atomic type defined 
elsewhere in the service class description.  The base type determines the characteristics of the 
type that can be further refined with a regular expression pattern that restricts the range of values 
acceptable for the new type.  More intricate types can be defined using the complex type 
definition, which is composed of a series of elements.  Each element in a complex type can be a 
reference to another atomic or complex type or the definition of an atomic type.  List definitions 
are also allowed using the constraints minOccurs and maxOccurs, which define the expected 
cardinality of a particular sub-element within a type.  The choice operator allows types to 
contain a set of possible sub-elements from which one will match. Figure 1 shows the declaration 
for a complex type that recognizes a nucleotide BLAST result alignment sequence fragment, 
which is a string similar to: 
 

Query:   280 TGGCAGGCGTCCT 292 
 
The above string in a BLAST result would be recognized as an 
AlignmentSequenceFragment by the type recognition system during service analysis. 
 
Control Flow Graph 
 
Due to the complexity of current services, we model the underlying control flow of the service 
with a control flow graph. In the BLAST scenario, each request to the server may have multiple 
possible response types depending on the current server and data availability, as well as the user 
permissions. For example, a query that results in a list of genetic sequences under normal load 
conditions may result in a completely different Unavailable response, or, perhaps, an 
intermediate Wait 30 Seconds response until the list of resulting genetic sequences is 
returned. By defining a control flow graph to capture these different scenarios, we can help guide 
the choice of the appropriate semantic analyzer for use on each response. 
 
A service class description’s control flow graph is a directed graph G = (E,V), consisting of a set 
of state nodes V connected by directed edges e ∈  E. The state nodes in the graph represent 
control points that correspond to pages expected to be encountered while interacting with the 
service. Each state s ∈  V has an associated type t ∈  T. The directed edges depict the possible 
transition paths between the control states that reflect the expected navigational paths used by 
members of the service class.  
 
Data from a web service is compared against the type associated with the control flow states to 
determine the flow of execution of a service from one state to another. Control proceeds from a 
start state through any intermediate states until a terminal (result) state is reached. The control 
flow graph defines the expected information flow for a service and gives the automated service 
analyzer, described in the Service Analyzer section, a frame of reference for comparing the 
responses of the candidate service with the expected results for a member of the service class.  In 
order to declare a candidate service a match for the service class description, the service analyzer 
must be able to produce a set of valid state transitions in the candidate service that correspond to a 
path to a terminal state in the control flow graph.  
 
Returning to our continuing example, Figure 2 provides an illustration of a service class control 
flow graph for a Nucleotide BLAST web service. The control flow graph has four state nodes 
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that consist of a state label and a data type.  The control flow graph has a single start state that 
defines the input type a class member must contain. To be considered a candidate Nucleotide 
BLAST service, the service must produce either a single transition to a results summary state (as 
is highlighted in Figure 2) or a series of transitions through indirection states before reaching the 
summary state. This last point is critical – many web services go beyond simple query-response 
control flow to include complex control flow. In the case of Nucleotide BLAST, many 
services produce a series of intermediate results as the lengthy search is performed.  
 

 
Figure 2: Nucleotide BLAST: control flow graph 

 
DYNABOT uses the service class description control flow graph to determine that a candidate is a 
member of a particular service class and to guide the choice of semantic analyzer for finer-
grained analysis. So, when DYNABOT encounters a Protein BLAST service that resembles a 
Nucleotide BLAST service in both interface and the form of the results but differs in control 
flow, it will use the control flow analysis to appropriately catalog the service as a Protein 
BLAST service and then invoke domain-specific semantic analyzers for further analysis.  
 

State Transition States
start summary result
 empty result 
 indirection 
indirection indirection 
 summary results 
 empty result 
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      (a)         (b) 

Figure 3: Example simple (a) and complex (b) search forms 

  
Probing Templates 
 
The third component of the service class description is the set of probing templates P, each of 
which contains a set of input arguments that can be used to match a candidate service against the 
service class description and determine if it is an instance of the service class.  For example, 
Figure 3 shows two example search form interfaces for BLAST search. The example on the left 
has a relatively simple interface, including a text box for entering a DNA sequence and a single 
submit button. The example on the right is more complex, with additional search arguments for 
the specific BLAST program, the BLAST database, options for filtering query results, and so on.  
 
Our goal is to define a probing template for this search interface that is generic enough to match 
both example interfaces, but not so broad as to match non-BLAST sites. Probing templates are 
composed of a series of arguments and a single result type.  The arguments are used as input to a 
candidate service’s forms while the result type specifies the data type of the expected result.  
Figure 4 shows an example probing template used in a service class description.  The probing 
template example shows an input argument and a result type specification; multiple input 
arguments are also allowed.  The attribute required states whether an argument is a required 
input for all members of the service class.  In our running example, all members of the 
Nucleotide BLAST service class are required to accept a DNA sequence as input.  The 
argument lists the type of the input as well as a value that is used during classification.  The 
optional hints section of the argument supplies clues to the service classifier that help select the 
most appropriate input parameters on a web service to match an argument.  Finally, the output 
result specifies the response type expected from the service.  All the types referenced by a 
probing template must have type definitions defined in the type section of the SCD. 
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Figure 4: Nucleotide BLAST: probing template 

 
The argument hints specify the expected input parameter type for the argument and a list of likely 
form parameter names the argument might match.   Multiple name hints are allowed, and each 
hint is treated as a regular expression to be matched against the form parameters.  These hints are 
written by domain experts using their observations of typical members of the service class.  For 
example, a DNA sequence is almost always entered into a text input parameter, usually with 
“sequence” in its name.  The DNA Sequence argument in a Nucleotide BLAST service class 
therefore includes a name hint of “sequence” and an input hint of “text.” 
 
 
DYNABOT SOFTWARE DESIGN 
 
The problem of discovering and analyzing web services consists of locating potential services and 
determining their service interface and capabilities. The current approach to service discovery is 
to query or browse a known service registry, such as the emerging UDDI directory standard 
[http://www.uddi.org/]. However, discovery systems that rely solely on service registries have 
several drawbacks as discussed in the Introduction.  In contrast, DYNABOT relies on a 
complementary approach that relies on domain-specific service class descriptions powered by an 
intelligent Deep Web crawler. This approach is widely applicable to the existing Web, removes 
the burden of registration from service providers, and can be extended to exploit service registries 
to aid service discovery.  
 
Architecture 
 
The first component of DYNABOT is its service crawler, a modular web crawling platform 
designed to discover those web services relevant to a service class of interest.  The discovery is 
performed through a service class description-based service location and service analysis process.  
The DYNABOT service crawler starts its discovery process through a combination of visiting a set 
of given UDDI registries and a robot-based crawling of the Deep Service Web. By seeding a 
crawl with several existing UDDI registries, DYNABOT may identify candidate services that 

<example> 
  <arguments> 
    <argument required="true"> 
      <name>sequence</name> 
      <type>DNASequence</type> 
      <hints> 
        <hint>sequence</hint> 
        <inputType>text</inputType> 
      </hints> 
      <value>TTGCCTCACATTGTCACTGCAAAT 
             CGACACCTATTAATGGGTCTCACC 
      </value> 
    </argument> 
  </arguments> 
 
  <result type="SummaryPage" /> 
</example>  
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match a particular user-specified service class description. These matching services need not be 
pre-labeled by the registry; the DYNABOT semantic analyzers will determine the appropriate 
classification based on the provided service class descriptions.  
 
By expanding the discovery space through focused crawling of the Deep Web of services, 
DYNABOT may discover valuable services that are either not represented in current registries or 
are overlooked by current registry discovery tools. Recent estimates place the practical size of the 
Deep Web of web-enabled services at over 300,000 sites offering 1.2 million unique services, 
with the number of sites more than quadrupling between 2000 and 2004 (Chang et al., 2004). 
Deep Web services provide query capability that ranges from simple keyword search to complex 
forms with multiple options.  
 
DYNABOT utilizes an advanced crawler architecture that includes standard crawler components 
like a URL frontier manager (Heydon & Najork, 1999), network interaction modules, global 
storage and associated data managers, and document processors, as well as a DYNABOT-specific 
service analyzer, which analyzes the candidate services discovered through focused crawling and 
determines if a service is related to a particular domain of interest by matching it with the given 
SCD, such as the Nucleotide BLAST service class description.   
 
Crawling the Web for dynamic data sources shares many features with standard Web crawling.  
Table 1 compares the features of three classes of Web crawlers: simple, basic crawlers, advanced 
crawlers, and our own DYNABOT crawler.  The components that make up a crawler are divided 
among three major component groups: network interaction modules, global storage and 
associated data managers, and document processing modules.  The simplest crawlers require 
mechanisms for retrieving documents and determining if a particular URL has been seen.  More 
advanced crawlers will include features like mirror site detection and trap avoidance algorithms.  
DYNABOT utilizes an advanced crawler architecture for source discovery and adds a document 
processor that can determine if a dynamic Web source is related to a particular domain of interest.  
Figure 5 shows the architecture of DYNABOT.   
 
  
 Network Interaction Data Management Processing Modules 
Basic Crawler name resolver, 

document retrieval 
URL frontier, visited 
list 

link extractor, 
keyword index builder 

Advanced Crawler caching name resolver, 
multithreaded 
document retrieval 

URL frontier, visited 
list, document cache 

link extractor, 
keyword index builder, 
mirror detector, trap 
detector 

DynaBot Crawler caching name resolver, 
multithreaded 
document retrieval 

URL frontier, visited 
list, document cache 

link extractor, service 
class analyzer 

Table 1: Web crawler feature comparison 

 
Network Interaction. The network interaction modules handle the process of retrieving 
documents from the Internet, including the resolution of domain names.  The significant costs 
associated with accessing data over the Internet can be amortized using multithreading to handle 
multiple requests simultaneously.  This technique minimizes the penalty incurred when 
attempting to access a document from a server that is down or extremely slow.  A second 
optimization technique is to cache DNS requests to reduce the number of network interactions 
needed and thereby improve document throughput.  The effectiveness of DNS caching is due to 
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the high degree of domain locality in Web hyperlinks, which often reference different documents 
on the same server.  In such cases, DNS name resolution is done once for all documents in the 
domain. 
 

DNS 
Resolver

text
text

Document 
Fetcher

I
N
T
E
R
N
E
T

Link 
Extractor

Document 
Archiver

Duplicate 
Detector

Trap 
Detector

Service Class Analyzer

URL FrontierVisited List
Seed 

listMatched 
services

Document processing modules

Global data management

SCD

 
Figure 5: DynaBot System Architecture 

 
Global Data Management. The crawler’s global data management and storage components 
include the URL frontier and the visited list, which are responsible for tracking URLs the crawler 
has yet to visit as well as those that have already been processed.  Managing the immense amount 
of data that a Web crawler will encounter is a technically interesting problem due to the sheer size 
of the Web.  Global data is typically stored on disk, with caches used to reduce the disk storage 
penalty.  Some crawlers will also store archives of crawled pages. 
 
Processing Modules. The network interaction and global storage components are united by the 
processing modules, which initiate document retrieval, update the global storage with visited and 
new links, and perform any document processing required by the crawler’s designated task.  
Processing modules are pluggable components that allow the crawler to be reconfigured for new 
tasks easily.  A typical Web crawler includes a link extraction module, which extracts hyperlinks 
from the document, converts any relative links to their absolute form, and inserts them into the 
URL frontier.  More sophisticated crawlers will include modules such as a duplicate content or 
mirror detector and trapped detection facilities to prevent the crawler from becoming ensnared in 
crawler traps. 
 
Service Analyzer 
 
The task of determining the capabilities and interface of dynamic Web sources is assigned to the 
Service Analyzer, a processing module of the DYNABOT crawler.  The process of source 
discovery begins with the construction of the service class description, which directs the probing 
operations used by the service analyzer to determine the relevance of a Web source.  The service 
analyzer consists of form filter and analyzer, an extension mechanism, a query generator, a query 
prober, and a response matcher. 
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Overview. When the processor encounters a new site to test, its first task is to invoke the form 
filter, which ensures that the candidate source has a form interface (Figure 6(1)).  The second step 
(2) is to extract the set of forms from the page, load the service class description, and load any 
auxiliary modules specified by the service class description (3).  The query generator (4) 
produces a set of query probes which are fed to the query probing module (5).  Responses to the 
query probes are analyzed by the response matcher (6).  If the query response matches the 
expected result from the service class description, the Web source has matched the service class 
description and a source capability profile (7) is produced as the output of the analysis process.  
The capability profile contains the specific steps needed to successfully query the Web source.  If 
the probe was unsuccessful, additional probing queries can be attempted. 
 

Search form 
filterDocument

Service analyzer

Service 
class 

description

Form 
interface 
analyzer

Module 
selection

Type 
system

Helper 
modules

Probing 
strategy

Query 
generator

Query 
selection & 

probing

Response 
matching

Source 
capability 
definition

1

2

3

4

5 6
7

 
Figure 6: DynaBot Service Analyzer 

 
Definitions. The process of analyzing the Web source begins when the crawler passes a potential 
URL for evaluation to the source analysis processing module.  A source S for our purposes 
consists of an initial set of forms F.  Each form f ∈  F, f = (P,B) is composed of a set of 
parameters p ∈  P, p = (t,i,v) where t is the type of the parameter, such as checkbox or list, i is the 
parameter’s identifier, and v is the value of the parameter.  The form also contains a set of buttons 
b ∈  B which trigger form actions such as sending information to the server or clearing the form.  
The source S may specify a default for each parameter value v.   
 
The process of query probing involves manipulating a source’s forms to ascertain their purpose 
with the ultimate goal of determining the function of the source itself.  Although the expected 
inputs and purpose of each of the various parameters and forms on a source is usually intuitive to 
a human operator, an automated computer system cannot rely on human intuition and must 
determine the identity and function of the source’s forms algorithmically.  The query probing 
component of the DYNABOT service analyzer performs this function.  Our query prober uses 
induction-based reasoning with examples: the set of examples e ∈  E is defined as part of the 
service class description.  Each example e includes a set of arguments a ∈  A, a = (r,t,v), where r 
indicates if the example parameter is required or optional, t is the type of the parameter, and v is 
the parameter’s value. 
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DynaBot analyzes the result page, 
using the service class description’s 
result state to determine if the 
source produces appropriate results.

result 
state

start 
state

emptyindirection 

DynaBot examines the candidate 
start page for fields matching the 
start state description.  If the 
candidate page has fields 
appropriate to the description, 
DynaBot uses the probing templates 
to populate them.

Once the fields are 
populated, DynaBot tries 
to generate a result page 
by submitting the form.

 
Figure 7: DynaBot Analysis of a Matching Web Source 

 
Figure 7 illustrates the query probing process on a typical Web-based nucleotide BLAST service.  
Using the probing template as a guide, DYNABOT populates the site’s forms as it attempts to 
determine the classification of the site.  Once the fields have been populated, DYNABOT submits 
the form and checks to see if the result page matches the service class description’s result state; 
on success, the service is classified as a match.  If the service does not match, the probing process 
is repeated until a successful form configuration is found or the set of query probes is exhausted.  
 
Form Filter and Analyzer. The form filter processing step helps to reduce the service search 
space by eliminating any source S that cannot possibly match the current service class description.  
In the filtration step, shown in step 1 of Figure 6, form filter eliminates any source S from 
consideration if the source’s form set is empty, that is F = Ø.  In form analysis, shown in step 2, 
the service class description will be compared with the source, allowing the service analyzer to 
eliminate any forms that are incompatible with the service class description.  Algorithm 1 
sketches the steps involved in the form filter process. 
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Algorithm 1: Form Filter 

 
 
Module Selection. The modular design of the service class description framework and the 
DYNABOT discovery and analysis system allows many of the system components to be extended 
or replaced with expansion modules.  For example, a service class description may reference an 
alternate type system or a different querying strategy than the included versions.  Step 3 in the 
service analysis process resolves any external references that may be defined in the service class 
description or configuration files and loads the appropriate code components. 
 
Query Generation. The heart of the service analysis process is the query generation, probing, 
and matching loop shown in steps 4, 5, and 6 of Figure 6.   Generating high quality queries is a 
critical component of the service analysis process, as low-quality queries will result in incorrect 
classifications and increased processing overhead.   DYNABOT’s query generation component is 
directed by the service class description to ensure relevance of the queries to the service class.  
Queries are produced by matching the probing templates from the service class description with 
the form parameters in the source’s forms; Figure 1 shows a fragment of the probing template for 
the nucleotide BLAST service class description.   
 
Probing and Matching. Once the queries have been generated, the service analyzer proceeds by 
selecting a query, sending it to the target source, and checking the response against the result type 
specified in the service class description.  This process is repeated until a successful match is 
made or the set of query probes is exhausted.  On a match, the service analyzer produces a source 
capability profile of the target source, including the steps needed to produce a successful query. 
 
Figure 8 shows the probing results from two different services analyzed with the same nucleotide 
BLAST service class description.  Source (a) is a member of the nucleotide BLAST service class 
while source (b) is a member of the protein BLAST service class, a related  type of service that 
uses a similar interface to nucleotide BLAST but performs a different function.  Using the type 
definitions from the service class description, the service analyzer is able to determine that (a) is 
an appropriate response for a member of the nucleotide BLAST service class while (b), although 
structurally similar, is not an appropriate response.   This information allows the service analyzer 
to correctly classify these two sources despite the similarity of their responses: source (a) is 
declared a match while source (b) is not. 
 

Let S ← source with forms f ∈  F, f = (P,B) 
Let D ← the service class description with examples e ∈  E 
 
for all f = (P,B) ∈  F do 
 for all e ∈  E do 
   for all a = (r,t,v) s.t. required(a) = true do 
     if ¬∃p = (t,i,v) ∈  P s.t. at = pt then 
       F = F –  f 
if F = Ø then 
 processForms(F) 
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     (a)         (b) 

Figure 8: Example matching (a) and nonmatching (b) search results 

 
Algorithm 2 presents a sketch of the query probing and matching process.  Our prototype 
implementation includes invalid query filtering and some heuristic optimizations that are omitted 
from the algorithm presented here for clarity’s sake.  These optimizations utilize the hints 
specified in the probing template section of the service class description to match probing 
arguments with the most likely candidate form parameter.  For instance, the nucleotide BLAST 
service class description specifies that form parameters that accept text input and are named 
“sequence” are very likely to be the appropriate parameter for the DNASequence probe 
argument.  These hints are static and must be selected by the service class description author; our 
ongoing research includes a study of the effectiveness of learning techniques for matching 
template arguments to the correct form parameters.  We expect that the system should be able to 
deduce a set of analysis hints from successfully matched sources which can then be used to 
enhance the query selection process. 
 

Algorithm 2: Query Probing 

 
 
 

Let S ← source with forms f ∈  F, f = (P,B) 
Let D ← the service class description with examples e ∈  E 
 
for all f = (P,B) ∈  F do 
 Let Q ← E × P 
   for all q ∈  Q do 
     Let r ← executeQuery(q) 
     if responseMatches(r,D) then 
       processMatch(r,q,D)  
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EXPERIMENTAL RESULTS 
 
We have developed an initial set of experiments based on the DYNABOT prototype service 
discovery system to test the validity of our approach.  The experiments were designed to test the 
accuracy and efficiency of DYNABOT and the service probing and matching techniques.  We have 
divided our tests into three experiments.  The first experiment is designed to test only the probing 
and matching components of the crawler without the confounding influence of an actual web 
crawl.  Experiment 2 tests the performance of the entire DYNABOT system by performing a web 
crawl and analyzing the potential services it encounters.  Experiment 3 shows the effectiveness of 
pruning the search space of possible services by comparing an undirected crawler with one using 
a more focused methodology. 
 
The DYNABOT prototype is implemented in Java and can examine a set of supplied URLs or 
crawl the Web looking for sources matching a supplied service class description.  All experiments 
were executed on a Sun Enterprise 420R server with four 450 MHz UltraSPARC-II processors 
and 4 GB memory.  The server runs SunOS 5.8 and the Solaris Java virtual machine version 1.4.1. 
 
Crawler Configuration. The DYNABOT configuration for these experiments utilized several 
modular components to vary the conditions for each test.  All of the configurations used the same 
network interaction subsystem, in which domain name resolution, document retrieval, and form 
submission are handled by the HttpUnit user agent library (Gold, 2003).  The experiments utilized 
the service analyzer document processing module for service probing and matching.  Service 
analysis employed the same static service class description in all the tests, fragments of which 
have been shown in Figure 1 and Figure 4.  All of the configurations also included the trace 
generator module which records statistics about the crawl, including URL retrieval order, server 
response codes, document download time, and content length.  32 crawling threads were used in 
each run. 
 
We utilized two configuration variations in these experiments: the trace configuration and the 
random walk configuration.  The trace configuration is designed to follow a predetermined path 
across the Web and utilizes the trace URL frontier implementation to achieve this goal.  This 
frontier accepts a seed list in which any URLs found are crawled in the order that they appear in 
the list.  These seed lists can be either hand generated or generated from previous crawls using the 
trace generator.  In the trace configuration, no URLs can be added to the frontier and no attempt 
is made to prevent the crawler from retrieving the same URL multiple times. 
 
The random walk configuration mimics more traditional web crawlers but attempts to minimize 
the load directed at any one server.  In this configuration, the link extractor module was employed 
to extract hyperlinks from retrieved documents and insert them into the URL frontier.  The 
random walk frontier implementation uses an in-memory data structure to hold the list of URLs 
that have yet to be crawled, from which it selects one at random when a new URL is requested.  
This configuration also includes a visited list, which stores hash codes of URLs that have been 
visited which the crawler can check to avoid reacquiring documents that have already been seen. 
 
Experiment 1: BLAST Classification 
 
The first experiment tested the service analyzer processing module only and demonstrates its 
effectiveness quantitatively, providing a benchmark for analyzing the result of our subsequent 
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experiments.  In order to test the service analyzer, the crawler was configured to utilize the trace 
frontier with a hand-selected seed.  
 
The data for this experiment consists of a list of 74 URLs that provide a nucleotide BLAST gene 
database search interface; this collection of URLs was gathered from the results of several manual 
Web searches.  The sites vary widely in complexity: some have forms with fewer than 5 input 
parameters, while others have many form parameters that allow minute control over many of the 
options of the BLAST algorithm.  Some of the sources include an intermediate step, called an 
indirection, in the query submission process.  A significant minority of the sources use JavaScript 
to validate user input or modify parameters based on other choices in the form.  Despite the wide 
variety of styles found in these sources, the DYNABOT service analyzer is able to recognize a 
large number of the sites using a nucleotide BLAST service class description of approximately 
150 lines.   
 
Crawl Statistics  Number of Probes Frequency 
Number of matching sources 74  0 12 
Total number of forms 79  1-10 46 
Total number of form parameters 913  11-20 1 
Total of forms submitted 1456  21-30 2 
Maximum submissions per form 60  31-40 2 
Average submissions per form 18.43  41-50 1 
Number of matched sources 53  51-60 10 
Success rate 72.97%    
   Probe time (sec.) Frequency 
Aggregate Probe Times  <0.5 3 
Minimum probe time 3 ms  0.5-1 1 
Minimum fail time (post FormFilter) 189 s  1-5 11 
Maximum fail time (post FormFilter) 11823 s  5-10 5 
Average fail time (post FormFilter) 2807 s  10-50 10 
Minimum match time (post FormFilter) 2.3 s  50-100 2 
Maximum match time (post FormFilter) 2713 s  100-500 31 
Average match time (post FormFilter) 284 s  >500 11 

Table 2: Sites classified using the nucleotide BLAST service class description 

 
Table 2 shows the results of Experiment 1.  Sites listed as successes are those that can be 
correctly queried by the analyzer to produce an appropriate result, either a set of alignments or an 
empty BLAST result.  An empty result indicates that the site was queried correctly but did not 
contain any results for the input query used.  Since all of the URLs in this experiment were 
manually verified to be operational members of the service class, a perfect classifier would have 
achieved a success rate of 100%; the left half of Table 2 demonstrates that the DYNABOT service 
analyzer achieves an overall success rate of 73%. 
 
There are several other interesting data characteristics and experimental results presented in Table 
2.  The relatively low number of forms per source – 79 forms for 74 sources – indicates that most 
of these sources use single-form entry pages.  However, the average number of parameters per 
form is over 11 (913 parameters / 79 forms = 11.56), indicating that these forms are fairly 
complex.  We are currently exploring form complexity analysis and comparison to determine the 
extent to which the structure of a source’s forms can be used to estimate the likelihood that the 
source matches a service class description. 
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Source form complexity directly impacts the query probing component of the service analyzer, 
including the time and number of queries needed to recognize a source.  To grasp the scaling 
problem with respect to the number of form parameters and the complexity of the service class 
description, consider a Web source with a single form f containing 20 parameters, that is |P| = 20.  
Further suppose that the service class description being used to analyze the source contains a 
single probing template with two arguments, |A| = 2, and that all of the arguments are required.  
The number of combinations of arguments with parameters is then |P| choose |A| = 190, a large 
but perhaps manageable number of queries to send to a source.  The number of combinations 
quickly spirals out of control as more example arguments are added, however: with a three-
argument example the number of combinations is 1140, four arguments yields 4845, and testing a 
five argument example would require 15,504 potential combinations to be examined!   
 
Despite the scalability concerns, Table 2 demonstrates the effectiveness of the SCD-directed 
probing strategy: most of the sources were classified with less than 10 probes (58) in less than 
500 seconds (63).  These results indicate the effectiveness of the static optimizations employed by 
the service analyzer such as the probing template hints.  Our ongoing research includes an 
investigation of the use of learning techniques and more sophisticated query scoring and ranking 
to reduce these requirements further and improve the efficiency of the service analyzer. 
 
Failed sites are all false negatives that fall into two categories: indirection sources and processing 
failures.  An indirection source is one that interposes some form of intermediate step between 
entering the query and receiving the result summary.  For example, NCBI’s BLAST server 
contains a formatting page after the query entry page that allows a user to tune the results of their 
query.  Simpler indirection mechanisms include intermediate pages that contain hyperlinks to the 
results.  We do not consider server-side or client-side redirection to fall into this category as these 
mechanisms are standardized and are handled automatically by Web user agents.  Recognizing 
and moving past indirection pages presents several interesting challenges because of their free-
form nature.  Incorporating a general solution to complex, multi-step Web sources is part of our 
ongoing work (Ngu et al., 2003). 
 
Processing errors indicate problems emulating the behavior of standard Web browsers.  For 
example, some Web design idioms, such as providing results in a new window or multi-frame 
interfaces, are not yet handled by the prototype.  Support for sources that employ JavaScript is 
also incomplete.  We are working to make our implementation more compliant with standard 
Web browser behavior.  The main challenge in dealing with processing failures is accounting for 
them in a way that is generic and does not unnecessarily tie site analysis to the implementation 
details of particular sources. 
 
Experiment 2: BLAST Crawl 
 
Our second experiment tested the performance characteristics of the entire DYNABOT crawling, 
probing, and matching system.  The main purpose of this experiment is to demonstrate the need 
for a directed approach to service discovery.  Intuitively, the problem stems from the 
characteristics of the service Web environment: instances of a particular service class, such as 
nucleotide BLAST, will make up a small fraction of the sites related to the relevant domain, e.g. 
bioinformatics.  Likewise, the sites belonging to any particular domain will constitute a small 
portion of the complete Web.  Experiment 2 provides evidence to support this conjecture and 
demonstrates the need for intelligent service discovery and resource allocation.  An effective 
service discovery mechanism must use its resources wisely by spending available processing 
power on sources that are more likely to belong to the target set. 
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   Response Code Frequency 
Crawl Statistics  200 1212 
Number of URLs crawled 1349  30x 114 
Number of sites with forms 467  404 18 
Total number of forms 686  50x 6 
Total number of form parameters 2837    
Total of forms submitted 4032  Content Type Frequency 
Maximum submissions per form 10  text/html 1238 
Average submissions per form 5.88  application/pdf 36 
Number of matched sources 2  text/plain 23 
   other 52 

Table 3: Results from 06022004 crawl, Google 100 BLAST seed, random walk URL frontier 

 
The results of this experiment are presented in Table 3.  For this test, the crawler was configured 
utilizing the random walk URL frontier with link extraction and service analysis.  The initial seed 
for the frontier was the URLs contained in the first 100 results returned by Google for the search 
“bioinformatics BLAST.”  URLs were returned from the frontier at random and all retrieved 
pages had their links inserted into the frontier before the next document was retrieved.  These 
results are not representative of the Web as a whole, but rather provide insight into the 
characteristics of the environment encountered by the DYNABOT crawler during a domain-
focused crawl.  The most important feature of these results is the relatively small number of 
matched sources: despite the high relevance of the seed and subsequently discovered URLs to the 
search domain, only a small fraction of the services encountered matched the service class 
description.  The results from Experiment 1 demonstrate that the success rate of the service 
analyzer is very high, leading us to believe that the nucleotide BLAST services make up only a 
small percentage of the bioinformatics sites on the Web.  This discovery does not run counter to 
our intuition; rather, it suggests that successful and efficient discovery of domain-related services 
hinges on the ability of the discovery agent to reduce the search space by pruning out candidates 
that are unlikely to match the service class description. 
 
Experiment 3: Directed Discovery 
 
Given the small number of relevant Web services related to our service class description, 
Experiment 3 further demonstrates the effectiveness of pruning the discovery search space in 
order to find high quality candidates for probing and matching.  One important mechanism for 
document pruning is the ability to recognize documents and links that are relevant or point to 
relevant sources before invoking the expensive probing and matching algorithms.  Using the 
random walk crawler configuration as a control, this experiment tests the effectiveness of using 
link hints to guide the crawler toward more relevant sources.  The link hint frontier is a priority-
based depth-first exploration mechanism in which hyperlinks that match the frontier’s hint list are 
explored before nonmatching URLs.  For this experiment, we employed a static hint list using a 
simple string containment test for the keyword “blast” in the URL.   
 
Table 4 presents the results.  The seed lists for the URL frontiers in this experiment were similar 
to those used in Experiment 2 except that 500 Google results were retrieved and all the Google 
cache links were removed.  The link hint focused crawler discovered and matched 15 Web 
sources with a fewer number of trials per form then its random walk counterpart.  Although the 
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number of URLs crawled in the both tests was roughly equivalent, the link hint crawler found 
sources of much higher complexity as indicated by the total number of form parameters found: 
1038 for the link hint crawler versus 348 for the random walk crawler. 
 
Crawl Statistics  Crawl Statistics 
Number of URLs crawler 174  Number of URLs crawler 182 
Number of sites with forms 74  Number of sites with forms 71 
Total number of forms 108  Total number of forms 137 
Total number of form parameters 348  Total number of form parameters 1038 
Total of forms submitted 2996  Total of forms submitted 3340 
Maximum submissions per form 60  Maximum submissions per form 60 
Average submissions per form 27.74  Average submissions per form 24.38
Number of matched sources 0  Number of matched sources 15 

(a) Random walk URL frontier  (b) LinkHint “blast” frontier 
Table 4: Results from 06022004 crawl, Google 500 BLAST seed 

 
The results of Experiment 3 suggest a simple mechanism for selecting links from the URL 
frontier to move the crawler toward high quality candidate sources quickly: given a hint word, say 
“blast,” first evaluate all URLs that contain the hint word, proceeding to evaluate URLs that do 
not contain the hint word only after the others have been exhausted.  This scheme can be quite 
easily implemented using a priority queue.  However, the hint list is static and must be selected 
manually.  We are investigating the effectiveness of learning algorithms and URL ranking 
algorithms for URL selection.  This URL selection system would utilize a feedback loop in which 
the “words” contained in URLs would be used to prioritize the extraction of URLs from the 
frontier.  Words contained in URLs that produced service class matches would increase the 
priority of any URLs in the frontier that contained those words, while words that appeared in 
nonmatching URLs would likewise decrease their priority.  In order to be effective, this learning 
mechanism would also need a word discrimination component, such as term frequency inverse 
document frequency (TFIDF) measure, so that common words like “http” would have little effect 
on the URL scoring. 
 
Discussion 
 
The results of our experiments demonstrate the effectiveness of the service class model and the 
DYNABOT discovery and matching agent.  The results also suggest areas for further exploration to 
optimize the search and analysis process.   
 
We are exploring the potential of dynamic learning techniques for reducing the resource 
consumption of the service analyzer by limiting the amount of effort it expends analyzing 
unlikely services.  These techniques would perform one or more of the following functions: 
service filtering, maximum probe count adjustment, and query probe reordering.  In service 
filtering, the analyzer would evaluate the service based on its forms and eliminate it from 
consideration or reprioritize it if the service is unlikely to be a service class match.  Maximum 
probe count adjustment would allow the service analyzer to dynamically adjust the number of 
queries attempted on a per-source basis using a comparison with previously encountered services.  
Query probe reordering would allow the service analyzer to dynamically reorder query probes 
like the static reordering described previously but using information gathered dynamically during 
the crawl. 
 
The current DYNABOT prototype includes one service filtering optimization, form filter, 
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which eliminates any pages from consideration that either contain no form elements or whose 
form elements do not match the domain as defined by the service class description.  For instance, 
a page containing a form with only list boxes and radio buttons would be eliminated from 
consideration if the service class description specified a free text input.  This facility could be 
expanded to utilize information gathered from previous probing and matching operations.  Using 
form similarity comparison, the service analyzer could measure the forms in a candidate service 
against previously matched sources and, based on this comparison, eliminate the service from 
consideration or adjust the probe count and order. 
 
Another optimization that can be used to guide the analysis process is document text analysis.  
Many services contain technical jargon or other specialized vocabularies that distinguish these 
documents from those in other domains.  Using techniques like the Levenshtein string edit 
distance (Levenshtein, 1966) and term frequency analysis could help direct the crawler toward 
relevant hubs but might also be useful when performed on the start pages of services themselves.  
Much like form similarity comparison, these techniques could be used to adjust the service 
analysis properties based on the result of the comparison: services that are likely to match would 
be allocated more resources than those that are not. 
 
These techniques should improve the recognition accuracy of the DYNABOT system, allowing the 
crawler to recognize difficult services and expanding the possible types of sources amenable to 
discovery and classification using the DYNABOT service discovery approach.  Our ongoing 
research efforts include the development of several of these optimizations for the DYNABOT 
prototype; part of this development effort includes exploring other service classes that would 
provide meaningful test data and demonstrate DYNABOT's applicability to a wide range of service 
types. 
 
RELATED WORK 
 
Web crawlers have been searching and indexing the static Web since nearly the time of its 
creation.  Starting from a set of seed pages, a crawler traverses the Web and processes the sites it 
encounters while extracting new hyperlinks to crawl from the encountered sites.  Crawlers have 
generated commercial and research interest due to their popularity (Pew, 2002) and the technical 
challenges involved with scaling a crawler to handle the entire Web (Brin & Page, 1998; Miller 
& Bharat, 1998; Heydon & Najork, 1999; Broder et al., 2003).  There is active research into 
topic driven or focused crawlers (Chakrabarti et al., 1999) which crawl the Web looking for 
sites relevant to a particular topic; Srinivasan et al. (2002) present such a crawler for biomedical 
sources that includes a treatment of related systems. 
 
Our research seeks to unify complex Web data sources using automatic discovery and capability 
detection; the BLAST family of data sources have provided a test case for our approach (Rocco 
& Critchlow, 2003; Ngu et al., 2003).  The ShopBot agent (Doorenbos et al., 1997) uses a 
similar approach and is designed to assist users in the task of online shopping. ShopBot uses a 
domain description that lists useful attributes about the services in question.  The authors 
addressed the problems of learning unknown vendor sites and integrating a set of learned sources 
into a single interface.  Our present work addresses the related problem of automatically 
classifying services from an arbitrary set of sites.  The service class description format we 
describe provides greater descriptive power than ShopBot’s domain descriptions and can specify 
complex data types and source control flow information. 
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Researchers have also examined heterogeneous data integration in the domain of biological data.  
DiscoveryLink (Haas et al., 2001) provides access to wrapped data sources and includes query 
planning and optimization capabilities.  Eckman et al. (2001) present a similar system with a 
comparison to many existing related efforts.   
 
 
CONCLUSION 
 
We have presented DYNABOT, a crawler designed to discover and analyze dynamic Web data 
sources relevant to a domain of interest.  DYNABOT’s use of the service class model of the Web, 
through the construction of service class descriptions, allows an abstract rendition of the target 
domain to guide the crawler toward relevant sources and probe them for their capabilities.  
DYNABOT employs a modular, self-tuning crawling architecture and algorithms for efficient 
probing of the Deep Web.  Our experimental results demonstrate the effectiveness of the service 
class discovery mechanism which achieves recognition rates of up to 73%.  These results offer 
effective techniques for efficiently managing service discovery in the face of the immense scale 
of the Deep Web. 
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