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Abstract— Determining the location of mobile devices is a 
necessary system function for a growing number of location 
based services (LBS). The most popular method for location 
determination is GPS, however GPS has known accuracy and 
environmental limitations, many of which are exacerbated in 
dense urban areas. Wireless Positioning Systems (WPS) on the 
other hand, demonstrate location accuracy largely inverted to 
that of GPS – the denser the urban setting, the more accurate the 
location estimation is in general. Large-scale WPS differs from 
satellite based positioning in at least two aspects; first, wireless 
positioning systems typically derive their location estimates based 
on observed beacon locations such as through wardriving, and 
second, WPS lacks a mechanism to maintain highly synchronized 
clocks. This results in lower accuracy and a lower confidence 
factor in the use of wireless positioning. This paper presents a 
location estimation method that improves location accuracy for 
WPS through the use of digital map-matching of wardriving 
data. We have conducted initial experiments to evaluate our 
map-matching algorithm along with the enhanced location 
estimation approach and demonstrate its effectiveness for 
measuring and improving the accuracy of large-scale wireless 
positioning systems.  We demonstrate extensions to a look-ahead 
map-matching algorithm to improve the accuracy and motivate 
further research in the area of large-scale map matching. 
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I. INTRODUCTION 

WiFi Positioning Services (WPS) rely on accurately 
determining the location of wireless access points (APs) or 
‘beacons’ to estimate the physical location of a WiFi enabled 
device.  The process of determining the location of these 
beacons is at the heart of any system that will rely on these 
beacons for subsequent location based services. 

This research describes a method to improve the AP 
location estimation process by introducing topological and 
geographical constraints in the form of street network models 
to reduce the amount of error.  The process of detecting and 
correcting errors of location estimation based on map 
information is referred to as map-matching. 

The Global Positioning System (GPS) provides the basis 
for determining the location of WiFi beacons through a process 

called wardriving. Wardriving refers to the act of searching for 
WiFi  networks by moving vehicle. It involves using a car or 
truck and a WiFi-equipped computer, such as a laptop or a 
PDA, to detect the WiFi networks. It is well known that GPS 
readings are not 100% accurate and can have errors due to a 
number of factors.  Location accuracy is generally expressed as 
an error within a percentage confidence band. For GPS, the 
horizontal accuracy is within 22 meters 95% of the time [1].  
WPS systems have been characterized as having outdoor 
positioning with median error of 13-40 meters in one test [7] 
and 46-63 meters in another [11].  

There are numerous areas within wireless positioning 
systems in which accuracy improvements can be made. This 
includes such things as improved coverage, sophisticated signal 
propagation models, the use of directional antennas, the 
inclusion of signal arrival time, and map-matching.  This paper 
looks at the particular problem of improving the estimation of 
the location of a vehicle during scanning for access points 
through a technique known as map-matching.  This does not 
preclude the use of other techniques, which are largely 
complementary. 

We describe a look-ahead technique for improving map-
matching accuracy. As distinguished from real-time map-
matching algorithms, look-ahead map-matching refers to the 
ability to use future GPS readings to help identify the current 
point in question.  In addition to describing the basic look-
ahead map-matching algorithm (LAMM), we develop an 
optimization to further improve the accuracy of the basic 
LAMM approach based on curve ‘smoothness’. Our look-
ahead algorithm is an example of a curve-to-curve fitting 
algorithm. Look-ahead improves the accuracy of route 
selection by playing forward the GPS readings beyond the 
current point in question. By using a locally focused process 
and incrementally culling out untenable routes, the system aims 
to bound the execution time while maintaining highly accurate 
results.  

In contrast to most existing MM systems that have been 
focused on real-time navigation improvements, and thus have 
been limited to using only past and current information for map 
matching, in our look-ahead map-matching system, we are not 



constrained to real-time which enables us to extend previous 
approaches with look-ahead capabilities, improving the end 
result by comparing a set of possible arc matches based on 
future travel information.  One of the distinct features of our 
approach is that we do not depend on global knowledge, rather 
using local knowledge on an incremental algorithm, to perform 
look-ahead map-matching.  

The rest of the paper proceeds as follows: we first provide 
some background and systems details, and then describe the 
basic LAMM algorithm as well as an additional optimization, 
followed by experimental evaluation. The paper concludes with 
a brief review of related work and a conclusion. 

II. BACKGROUND 

Systems for estimating location based on radio beacons 
have been a topic of pragmatic and academic research for many 
years.  These systems have taken many forms, from the 
commercially available outdoor GPS [1] and related navigation 
systems, to indoor location systems such as the Bat System [8], 
RADAR [2] and Cricket [9].  There are many applications 
where location information is essential.  Although not all 
applications require the same degree of accuracy, it is obvious 
that the availability of more accurate information enables more 
applications to take advantage of the location information. 

This research focuses on improving the accuracy of WiFi  
location systems, but may have relevance to other systems as 
well.  

A. Wardriving and WiFi Positioning 

Examples of large-scale WPS include Intel’s Place Lab 
[7][12] and the Skyhook Wireless1 WPS.  These systems rely 
on scanning the public airwaves for WiFi access points and 
building a database of location information related to these 
access points.   

To conduct this study, we acquired the rights to analyze a 
dataset provided by Skyhook Wireless.  A fleet of drivers that 
systematically drive urban areas to scan for 802.11 WiFi access 
points collects this data.  Skyhook Wireless gathered the 
current dataset during the time between April 2004 and 
October 2006. This data corresponds to the systematic scanning 
in several hundred cities throughout the United States and parts 
of Canada.  

The data is logged using a proprietary scanning software 
package from Skyhook Wireless in a process often referred to 
as ‘wardriving’, a term derived from wardialing which was 
popularized by the movie “WarGames”. The software runs on 
custom configured mobile devices connected to a standard GPS 
device via serial or Bluetooth communications. During 
scanning, no connections are established to the access points. 
This software utilizes commercial access points to automate the 
upload of scanned data to a central server. Upon upload, the 
scanning data is processed to produce the correlation of each 

                                                             
1 Commercial service available from 
http://www.skyhookwireless.com/ 

access point with its GPS location and signal strength 
information.  

The system measures the signal strength and gathers access 
point information from the radio signal produced by each AP. 
For each access point, this includes multiple records that 
include its name or Service Set Identifier (SSID), the Media 
Access Control (MAC) address and the timestamp when the 
AP was scanned. Concurrent with the logging of this data, the 
geolocation in the form of latitude, longitude, number of 
satellites, and error is captured using GPS.  These GPS 
readings are the subject of the current research.  

Various algorithms and methods have been developed to 
provide better estimation of the location of wireless access 
points based on signal readings.  Several of these are discussed 
in [6] and [10] and range from fairly simple triangulation to 
more complex hierarchical Bayesian sensor models [13]. 

These efforts are all intended to improve the accuracy of 
the location estimation and have been shown to be useful in 
certain circumstances.  Map-matching to correct for GPS errors 
is expected to be complimentary to subsequent radio 
propagation model improvements. 

B. Map-Matching 

Map-matching is the process by which the sensor 
information is integrated with digital maps. The digital maps 
consist of various geometric objects; the primary object of 
interest for this research is the network of road segments.  This 
digital data includes the geographic coordinates which can be 
compared against the GPS coordinates to constrain the GPS 
readings to points that lie on the road network. 

Conventional map matching searches digital maps to fit 
sensor based location information to a given map.  This process 
is commonly visible in GPS navigation systems that plot a 
traveler’s course on a map to aid in navigation. These map-
matching algorithms are also used in transportation planning 
and analysis, route planning, and automated vehicle control. 

III. SYSTEM & METHODOLOGY 

Due to space constraints, we focus the description of our 
system on raw data collection, processing of access point 
location, and overall map-matching. We refer to the system as 
Access Point Location based Map-Matching system, APL-MM 
for short. This section outlines the architecture of the APL-MM 
system and defines the basic terminology used for defining the 
goal of the map matching problem, an overview of the system 
architecture, and the structured definition of the map-matching 
function and the digital map. 

A. System Architecture 

In the context of our problem, map-matching is the process 
that correlates the sequence of GPS readings detected and 
collected by wardriving to the shape of a corresponding digital 
road database. Raw sensor data is introduced into the system 
from various scanners.  This raw data is fused with the 



incoming WiFi access point data to estimate location. Our 
current implementation utilizes the GPS records to perform the 
map-matching, producing adjusted GPS records, which can be 
used to refine the AP location estimation. 

Our map-matching system currently contains over 16 
million access point beacons related to over 420 million GPS 
records. The GPS records are captured in 1-second intervals. 
This dataset represents some 12 person-years worth of driving 
data.  At 25 km/hour (which corresponds to a random sampling 
of the data), this corresponds to some 2.6 million kilometers of 
driving data. This likely represents a large portion of the 6.4 
million kilometers of public roads in the United States 
according to the Bureau of Transportation Statistics [20].   

The map we use in this study is the entire United States. 
The scale of the system and the amount of data being studied 
presents several challenges in terms of data processing and map 
matching verification. The scale of the system and the datasets 
also make a global knowledge solution untenable in an 
operational mode, even to process a daily addition of some 
500,000 GPS readings, approximately 125 hours of scan data at 
1 second intervals.  

B. Reference Model 

The GPS sensor data consists of timed geographic points 
plus a scanner ID, referred to as GPS readings.  The scanner ID 
is simply the MAC address of the device that captured the 
sensor data. Additional GPS information such as the satellite 
count and horizontal dilution of precision (HDOP) is not 
currently used. 

The combination of scanner ID and timestamp allow for the 
determination of a ‘session’ or so-called sub-trajectories as 
defined in [16]. These sub-trajectories represent contiguous 
readings and are created by splitting the dataset based on gaps 
in subsequent timestamps. Sub-trajectories may also be created 
based on failure of the algorithm to locate an appropriate 
extension to the current trajectory, due to either extreme GPS 
error or incorrect map data. In the APL-MM system, each 
session is represented by a sequence of contiguous GPS 
readings gathered during wardriving. The process of session 
determination is accomplished during execution rather than 
requiring a data pre-processing phase.  

The map-matching function translates the sequences from 
raw GPS readings onto the nearest road in a digital road 
database, which represents a road network consisting of nodes 
and links. Nodes represent intersection points and links 
represent road segments or arcs.  

C. Digital Map Data 

The data we utilize for the road network is based on the 
Feature Class ‘A’ road designation in the Tiger data [21]. A 
road segment (referred to as an arc in the remainder of the 
document) consists of 2 to n points.  These points are 
connected in a serial fashion. 

In general, we are most concerned with the end points or 
“nodes” of a given arc, however for distance calculations, we 
must consider a piecewise distance calculation measuring the 
distance from a given point to each segment within an arc. 

The road arcs are generally between 10 meters and 100 
meters in length with an approximate mean of 50 meters. 
According to the U.S. Census Bureau [20], the accuracy of the 
TIGER/Line data is not as accurate as its six significant digits 
imply. It is intuitive that more accurate data should ease the 
map-matching problem by reducing error introduced by the 
digital map, thus we expect the algorithm to perform at least as 
good using commercially accurate map data. 

IV. ALGORITHMS 

To better understand the design objectives and algorithm 
optimizations employed in the APL-MM system, this section 
presents variations of map-matching algorithms. We first study 
a simple point-to-curve based algorithm and describe the 
potential problems with the simple map-matching algorithm. 
We then describe our design of the basic LAMM algorithm.  
We introduce an extension to improve the basic look-ahead 
algorithm by incorporating a better model for the physical 
constraints. 

A. Simple Distance Based Matching 

This naive map-matching algorithm translates the raw GPS 
readings onto the nearest road based on a simple distance 
calculation. Figure 1 shows an example result of applying such 
a simple algorithm to sequences of GPS readings collected by 
wardriving. Clearly, the basic implementation of map-
matching, which ‘snaps’ GPS readings to the nearest road, can 
generate many errors. 

 
Figure 1.  An example of problems with simple map-matching. 

Here, the ‘tents’ represent the adjusted GPS readings based 
on a simple closest arc calculation. This approach, called 
Simple Distance Map Matching (SDMM), produced results 
that were generally good if the only road near the track was in 
parallel with the wardriver’s actual route. However, when a 
perpendicular road was discovered, the points were snapped to 
that road rather than to the one on which the driver was 
traveling.   



The figure also illustrates issues when multiple roads run 
parallel to the track of the traveler, causing the points to be 
snapped to the incorrect arc.  The driver’s actual driving route 
is traveling east on Highpoint Rd. and then proceeding south on 
Ravenwood Dr. However, the simple distance map-matching 
produces an incorrect and disconnected path, which is 
obviously an error caused by map-matching. The type of error 
associated with the distance from the actual road arc is 
commonly referred to as the ‘cross-track’ error.  

In addition, this example demonstrates the issue with using 
a straight linear projection with no interpolation, thus, even 
when a point is mapped to the correct arc, it is unclear whether 
the point is in the correct position relative linearly to the arc 
itself. We refer to this type of error as the ‘along-track’ error. 

By looking closer at the problems encountered by the 
SDMM approach, we observe that if we can apply global 
knowledge to look ahead we could continuously correct the 
map-matching accuracy of the simple MM adjustments to the 
distance between the raw GPS readings to the nearby road arc. 
This can help eliminate the cross-track errors. This analysis 
motivates us to design a map-matching algorithm with look-
ahead to reduce these erroneous adjustments.  

B. Map-matching with look-ahead 

Due to the size of the dataset, a global knowledge algorithm 
will not be used.  However, due to the inaccuracies of simple 
point-to-curve map matching algorithms and our ability to 
‘look into the future’, a look-ahead greedy algorithm is needed.  
The proposed approach uses a ‘GPS look-ahead’ algorithm to 
build graphs of potential paths that could be traveled.  The 
algorithm uses a tunable look-ahead parameter with a proposed 
starting limit of 6 points.  Details of the algorithm and methods 
to cull the potential graphs are introduced below and detailed in 
subsequent sections. 

Algorithms which focus on look-ahead suffer from the 
potential for exponential growth of paths as it creates all 
possible paths from the current arc out look-ahead points 
forward.  GPS points are compared to all arcs in the possible 
graph in order to cull untenable routes from the graph.  This 
process can create a very large number of possible paths even 
though a small number of them are actual candidate routes. 

One approach to finding additional arcs to add to the 
candidate routes is by ‘walking’ the graph of the road network.  
Alternatively, one can search for road arcs that are ‘close’ to a 
given GPS point and choose those that extend any of the 
existing candidate routes.  Our algorithm uses the latter method 
for extending candidate routes.   

For our experiments, we chose a look-ahead value of 6, 
which provides adequate future information while providing 
minimal impact on performance. 

The next step is to find the first set of arcs that match the 
initial GPS reading.  In our algorithm, the ‘first’ point is 
actually an average of the first seed points to establish a set of 
starting candidate arcs (where seed=5). The candidate arcs 

associated with a GPS 
reading is defined as those 
arcs that intersect with the 
circle range defined by a 
certain radius r (where r = 
40 m) of the GPS reading as 
shown in Figure 2.   

Now we describe the 
look-ahead map-matching 
(LAMM) algorithm. Let Pi 
denote the current location 
of the GPS sensor sequence, 

look-ahead denotes the look-ahead factor and Ai denotes the ith 
arc in the set of streets of the road network associated with the 
GPS reading.  

The LAMM algorithm proceeds in seven steps. Step 1 
performs the task of obtaining the arc look-ahead using look-
ahead GPS readings, as described above. Step 2 seeds the 
algorithm by locating initial candidate arcs based on the 
average of the first seed GPS readings.  Step 3 computes the 
candidate arcs and extends the candidate tracks. Step 4 
determines the track curves that best fit the road network by 
choosing arcs that extend candidate tracks and selecting the 
best-fit curve set of tracks.  The best fit is based on a distance 
confidence factor for each point up to the look-ahead point and 
extends work presented in [19]. Step 5 retrieves the next GPS 
reading. Step 6 is reached at the end of a session (either by 
running out of GPS records, due to non-contiguous GPS 
readings, or due to inability to extend the candidate tracks).  
This step uses the SDMM algorithm to handle the ‘tail’ of the 
GPS records since we cannot use the full look-ahead 
information for these points.  Finally, step 7 starts the algorithm 
over if we have more sessions to process. 

A sketch of the LAMM algorithm is given below: 

1) Fill Buffer: Load the look-ahead buffer with look-ahead 
GPS readings (Pi – Pi+ look-ahead). 

2) Seed Candidate Tracks: Find starting candidate arc(s) 
Acandidate where the distance from the average seed points is 
less than 2r.  

3) Extend Candidate Tracks: Find next set of arcs by 
choosing arcs that are connected to previous Acandidate  arcs 
and are less than r from Pi. If Pi can’t be matched to any 
candidate tracks, flag point Pi and skip to step 6 (end of 
session).  

4) Choose Best Set of Candidate Tracks: Reduce available 
paths by: 

a) Choose best-fit curve !
Best

 from  Pi  Pi+look-ahead. 

b) Eliminate candidate paths that do not have the chosen 
arc in current tail position. 

5) Get More GPS Readings: If there are more GPS readings 
available obtain the next GPS reading and repeat algorithm 
from step 3. 

 
Figure 2. Choosing candidate 

road arcs. 

 



6) Find Best Track: Choose best-fit curve !
Best

from all 

candidate tracks.  

7) Start Next Session: If there are more GPS readings (i.e. 
we ended a session but there is more data), begin at step 1. 

The algorithm depends on the function !
Best

to determine 

the candidate arcs that best fit the road network.  This function 
is weighted sum of the distance match based on linear distance.   
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This formula assigns a weight between 0 and 1 for each of 
the look-ahead points and the match to the candidate arcs. 
Points greater than 100m away will not contribute to the 
summation. 

The LAMM algorithm improves on the simple distance 
map-matching algorithm, though it does not overcome all of 
the errors.  For example, in some instances, the LAMM 
exacerbates the tendency to snap GPS readings to cross roads 
that provide a better fit to multiple GPS readings, but clearly is 
not the actual route that was taken. Figure 3 shows an example 
of this scenario. The LAMM adjustments on the Eastshore Dr. 
are computed incorrectly due to the crossing of Highpoint Rd. 
with Eastshore Dr. The dots located on the road segments 
represent the corrected readings. 

 
Figure 3. Basic look-ahead map-matching. 

V. LOOK-AHEAD MM WITH SMOOTHNESS CONSTRAINT 

We have shown that the look-ahead feature does not correct 
for all errors. This is especially true at intersections and 
crossroads where the GPS reading may present a smaller 
distance than from the actual road being traveled. In order to 
address this problem, in the first prototype of ALP-MM 
system, we introduce a type of constraint: smoothness of MM 

adjustments.  We incorporate this constraint into the Step 4 of 
the basic LAMM algorithm for determining the best fit !

Best 
. 

A. Distance-based Smoothness 

We incorporate a new factor, called the distance-based 
smoothness, into our LAMM algorithm.  This factor 
encourages the system to choose arcs in which the distance 
between subsequent adjusted readings is similar to the distance 
between their respective GPS readings.  This smoothness factor 
reduces the tendency for ‘snapped’ readings to jump, thus 
helping the adjusted readings to conform to a smoother 
mapping. 

An example of the process with smoothness added can be 
seen in Figure 4 with travel direction indicated by the arrows. 

 
Figure 4. Look-ahead with smoothness constraint. 

Smoothness is modeled as a constraint that compares the 
distance between subsequent GPS readings and the distance 
between their associated adjusted locations (points). This 
smoothness constraint encourages adjusted points to have 
similar offsets from each other as the distance between their 
corresponding original GPS readings, thus reducing false 
adjustments. The smoothness constraint is modeled as follows: 
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     # represents the 'smoothness' of the fit between two

adjacent points and their equivalent map-matched points

such that D = difference between distance from 
point P

j+1
 to P

j
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j
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The smoothness constraint assigns each candidate track with a 
smoothness score ψs based on the relative match between each 
set of GPS points and their equivalent map-matched points 
within each candidate track. This equation weights close fitting 
contiguous points more than those that ‘jump’ around relative 
to the original GPS readings. 

In the ALP_MM system, we revise the basic LAMM 
algorithm by applying this constraint to the initial confidence 
factor that is calculated for each generated arc-point 



combination on each candidate route. Concretely, we modify 
the function !

Best
defined in Section IV for determining the 

road arcs that best fit the road network (the map) by revising 
the !

candidatei
 as follows: 

 !"
candidatei

="
candidatei

# $
S

 (3) 

This final  !"
candidatei

from Eq. (3) is used to determine the best 

fit for point  Pi to some arc A. 

VI. RESULTS 

Measuring the effectiveness of map-matching requires the 
knowledge of several pieces of information. First, the actual 
path followed by the wardriver must be known, and second, the 
actual set of positions at which the GPS readings were obtained 
must be known.  Without either of these, one cannot prove the 
correctness of the map-matching algorithm.  With only the 
wardriving route, one can ensure that the set of arcs chosen for 
the final path is correct, but the individual points on the route 
may not be matched correctly on the digital map. Similarly, 
with only the known set of sampled positions, an incorrect 
route may be chosen during the map-matching by, for example, 
including intersecting or parallel arcs.  However, there are a 
number of techniques that can be employed to measure the 
quality of the results. 

VII. VERIFICATION 

This section describes the experimental evaluation results 
of using this map-matching technique on samples of data from 
the real-world dataset. We examine the impact on the raw data 
as well as the accuracy improvement in determining the 
location of an end-user device.  

The accuracy of the system can be judged from two 
perspectives.  First, the correction of the GPS readings could be 
verified using sophisticated assisted GPS combined with dead 
reckoning.  This process is both time-consuming and expensive 
to perform on a large scale due to equipment costs and the need 
to re-scan the areas to be verified. A second technique for 
measuring the improvement is to use the actual WPS system to 
estimate locations and compare the results with the corrected 
data.  This is the method we promote in this paper. It has the 
advantage of being able to be automated to scale across the 
entire database of location information.   

Verifying that the map-matching results accurately reflect 
the actual path and position of the driver during the data 
acquisition has proven to be quite difficult.  One must 
essentially use a guaranteed correct map-matching algorithm 
and maintain an independent ‘corrected’ dataset of the actual 
path that was taken by the driver. Our validation of the map-
matching algorithm is based on knowledge of the route driven 
by the driver.  While the route was known for the data, the 
actual position en route is not, reducing our ability to correct 
for along-track error. 

We employed a sampling technique to validate the map-
matching algorithm.  With foreknowledge of the path taken by 
particular drivers, we manually sampled the output of the map-
matching algorithm to verify that the data was adjusted 
correctly.  On average, the algorithm matched between 88% 
and 92% of the GPS points correctly, while the remaining 
points were not adjusted.   We now describe the impact on end-
device location estimation and outline the assumptions that are 
made.  

A. Experimental Technique 

Two areas were chosen to test the system.  The first 
included an area in Boston called Boylston that had relatively 
‘clean’ data due to minimal obstructions.  The second test area, 
in Chicago, had less reliable GPS data due to the dense urban 
setting and a more complex road network. Table 1 presents 
relevant information about each test data set.  The MM Match 
column represents the percent of GPS points that the map-
matching algorithm successfully matched to a road segment. 

TABLE 1. TEST REGION CONFIGURATIONS. 

Location Area Road 
Segments 

GPS 
Points 

MM 
Match 

Boylston 3 km2 539 91,287 88.3%2 
Chicago 11 km2 2752 15,591 91.7% 

 

The validation relied on a data set that was gathered by 
separately driving the area in question.  The data was manually 
matched to map segments with interpolation of points between 
segment endpoints.  This data then represented ‘ground-truth’ 
for the end-user device.  Using this for comparison, we 
analyzed how the WPS system performed using the original 
GPS data versus the location estimation based on the map-
matched data.  In other words, the WPS system itself was used 
to measure the accuracy of its output. 

Figure 5 shows the location estimation for an end-user 
device based on the original GPS data mapped against the 
estimation based on the map-match corrected data.  Notice that 
neither sets of data are completely matched to the map – this is 
due to the error in the WPS system, as the results are after the 
WPS system has estimated an end user device, not the actual 
GPS data. 

 
Figure 5. Example of end-device estimation error.  In aggregate the map-

matched data led to more accurate end-device location estimates. 

                                                             
2 The lower match ration for Boylston is partially due to a section in 
which newer roads were not included in the map data set. 



Figure 6 illustrates the improvement that was measured 
based on the map-matching algorithm. The cumulative 
distribution function (CDF) is use to indicate the probability 
that a location estimation was within the error bound indicated 
on the X-axis.   

 
Figure 6. Cumulative distribution function for Boylston.  Top line represents 

the corrected data while the lower line represents the original data.  

In this instance, we demonstrate the error distance for both 
the original GPS data (lower line) and the map-matched data 
(upper line). Results that skew the function to the left of the 
graph represent improved accuracy for the data set. For 
example, 60% will be within 28 meters for corrected data and 
within 33 meters for the original data. On average the map-
matched data (top line) showed an improvement of 2.7 meters, 
averaging approximately 5% improvement for each GPS point. 
The 5% improvement is considered a significant improvement 
for this particular region due to the relative accuracy of the 
GPS data.  

Our second battery of tests involved a data set from 
downtown Chicago (an area with known GPS errors). In terms 
of the distance of error, the addition of map-matching decreases 
the average error distance significantly from nearly 84 meters 
to just under 73 meters. 

Again, we take a look at the cumulative distribution 
function for Chicago shown in Figure 7. 

 
Figure 7. Cumulative distribution function for Chicago. 

The two curves shown in Figure 7 depict the original GPS 
(lower curve) data compared against the adjusted GPS data. 
The Chicago test indicates potential overall accuracy 
improvement of 13%.   

The improved results were based on adjusting only one of 
the many driver tracks in each region.  Thus, we can expect this 
to be a lower bound on the improvements – the more tracks 
that are corrected should, intuitively, continue to improve the 
location estimation accuracy.  

VIII. RELATED WORK 

Map-matching algorithms come in several flavors including 
point-to-point matching [5] in which the GPS reading is simply 
matched to the closest ‘node’ or ‘shape point’ in the map 
network.  This method is sensitive to error in both the GPS 
positioning as well as the map data. 

Point-to-curve matching provides another alternative 
geometric approach [5].  Rather than matching only to the 
nearest point as specified in the map network, the navigation 
point is ‘snapped’ to the closest curve – generally an arc as 
defined in the digital map.  As we will demonstrate below, this 
method allows for error in dense urban settings or where the 
GPS error is large. 

More advanced algorithms incorporate additional 
information.  One such class of methods is the curve-to-curve 
approach in which the trajectory of the navigation information 
is matched to the trajectory of the map data. 

Previous efforts have relied on GPS signals as the primary 
source, adding dead reckoning and map-matching when 
necessary.  This research examines the use of map-matching to 
reduce error for all GPS readings (assuming map information is 
available for the given area).  However, as warned by Quddus 
in [15], “If a good digital network map is not used in the MM 
process, the positions estimated from the MM process may be 
worse than the positions from stand-alone GPS”.  Part of this 
research includes the verification of improvement based on the 
MM process. 

Ochieng, Quddus and Noland [14] provide a good overview 
of various map-matching algorithms, while Wenk, Salas, and 
Pfoser [16] provide more detail relevant to global curve-
matching algorithms, which are related to the work presented 
here. There are several examples of systems that use global or 
look-ahead knowledge [3][18].  These approaches provide the 
basis from which our research will extend with a focus on 
providing an efficient algorithm with high accuracy. [11] 
provides a good discussion on the problem and issues with 
accurately locating access points and the resultant effect on 
localization based on inaccurate access point location 
information.  

The look-ahead capability is possible due to the post-
processing nature of this problem. Real-time map matching 
algorithms have focused on determination of the position based 
on previous and current information, but were confined by the 
nature of temporal constraints, i.e. they didn’t know the future.  
While most post-processing algorithms have been devised 
using global knowledge and full path exploration.  

Our look-ahead algorithm can be viewed as a hybrid of 
Brakatsoulas et al’s [4] Incremental algorithm and Wenk et al’s 



[17] Adaptive Clipping algorithm. The unique feature of our 
approach is the look-ahead based curve-to-curve fitting 
algorithm, which improves the reliability estimation with look-
ahead, essentially playing forward the GPS readings beyond 
the current point in question.  By using a locally focused 
algorithm and incrementally culling out untenable routes, the 
system is able to bound the execution time to a linear function 
while maintaining highly accurate results. 

IX. CONCLUSION 

Outdoor wireless positioning systems based on WiFi access 
points, though still in its infancy stage, has shown a growing 
promise as a potential complementary technology to GPS and 
other location services. Understanding the accuracy of such a 
system and determining methods to improve that accuracy are 
likely to enhance the usefulness of WiFi positioning systems in 
providing location based services.  

This paper introduces the notion of look-ahead map-
matching and presents a location estimation method to improve 
the quality of wardriving data. Our WiFi location estimation 
approach consists of a constraint-based look-ahead map-
matching algorithm. Our experimental results have shown that 
the WPS empowered with our map-matching method improves 
location estimation and can quantify the accuracy of the WiFi 
location estimation from wardriving data by reducing GPS 
error via the utilization of a digital map database.  
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