
Scalable Delivery of Dynamic Content Using
a Cooperative Edge Cache Grid

Lakshmish Ramaswamy, Member, IEEE, Ling Liu, Member, IEEE, and

Arun Iyengar, Senior Member, IEEE

Abstract—In recent years, edge computing has emerged as a popular mechanism to deliver dynamic Web content to clients.

However, many existing edge cache networks have not been able to harness the full potential of edge computing technology. In this

paper, we argue and experimentally demonstrate that cooperation among the individual edge caches coupled with scalable server-

driven document consistency mechanisms can significantly enhance the capabilities and performance of edge cache networks in

delivering fresh dynamic content. However, designing large-scale cooperative edge cache networks presents many research

challenges. Toward addressing these challenges, this paper presents cooperative edge cache grid (cooperative EC grid, for short)—a

large-scale cooperative edge cache network for efficiently delivering highly dynamic Web content with varying server update

frequencies. The design of the cooperative EC grid focuses on the scalability and reliability of dynamic content delivery in addition to

cache hit rates, and it incorporates several novel features. We introduce the concept of cache clouds as a generic framework of

cooperation in large-scale edge cache networks. The architectural design of the cache clouds includes dynamic hashing-based

document lookup and update protocols, which dynamically balance lookup and update loads among the caches in the cloud. We also

present cooperative techniques for making the document lookup and update protocols resilient to the failures of individual caches. This

paper reports a series of simulation-based experiments which show that the overheads of cooperation in the cooperative EC grid are

very low, and our architecture and techniques enhance the performance of the cooperative edge networks.

Index Terms—Dynamic content caching, edge computing, cooperative caching, cache clouds.

Ç

1 INTRODUCTION

RECENTLY, edge computing has emerged as a popular
technique to efficiently deliver dynamic Web content to

the clients [1], [3], [4], [15], [25], [39]. Edge cache networks
typically have several caches at various locations on the
Internet, and the origin servers offload data and parts of the
applications to these edge caches. However, many of the
current edge cache networks have certain shortcomings that
limit their ability to effectively deliver dynamic Web
content. Consider the problem of ensuring freshness of
cached dynamic documents. Previous research has shown
that due to the frequent changing nature of these
documents, server-driven mechanisms, which can provide
stronger consistency guarantees, are essential for maintain-
ing their freshness [7], [35]. However, because of the high
overheads of these techniques, most current day edge cache
networks still rely upon the weaker time-to-live mechanism
for maintaining consistency of cached documents. Further-
more, these systems cannot adequately handle sudden

changes in request and update patterns of dynamic Web
content.

In this paper, we argue that cooperation among the
caches of an edge network can be a very effective tool in
dealing with the challenges of caching dynamic Web
content. Previously, researchers have studied cooperation
in the context of caching static documents on client-side
proxy caches [11], [13], [16], [22], [32]. A few commercial
edge cache networks like Akamai [1] adopted similar cache
cooperation models in their designs. However, in these
systems, cache cooperation is limited only to handling cache
misses. Further, these systems only support the TTL-based
weak document consistency mechanism.

1.1 Edge Cache Cooperation for Dynamic Content
Delivery

Cooperation among edge caches is a very potent technique
that can be used to enhance the capabilities of edge cache
networks serving highly dynamic Web content in multiple
ways. First, when an edge cache receives a request for a
document that is not available locally (i.e., the request is a
local miss), it can try to retrieve the document from nearby
caches rather than immediately contacting the remote
server. Local misses occur either because of first-time
requests for documents or more commonly because of
requests for documents that were evicted due to the high
costs of caching them. Irrespective of the causes of local
misses, resolving them by retrieving documents from
nearby cooperating caches can alleviate the loads on the
origin servers and reduce the latency of local misses.
Second, cooperation among the edge caches alleviates the
load induced on the origin servers by server-driven

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007 1

. L. Ramaswamy is with the Department of Computer Science, University of
Georgia, 415 Boyd Graduate Studies Research Center, Athens, GA 30602-
7404. E-mail: laks@cs.uga.edu..

. L. Liu is with the College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30332-0280.
E-mail: lingliu@cc.gatech.edu.

. A. Iyengar is with the IBM TJ Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598. E-mail: aruni@us.ibm.com.

Manuscript received 22 Mar. 2006; revised 7 Sept. 2006; accepted 20 Dec.
2006; published online 24 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0131-0306.
Digital Object Identifier no. 10.1109/TKDE.2007.1019.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

document consistency mechanisms. In edge cache networks
which incorporate cooperative consistency maintenance
protocols, the servers can communicate the update message
to only a few caches, which, in turn, distribute it to other
edge caches. Third, cooperative edge cache networks can
adopt cache management policies that are sensitive to the
cooperation among the edge caches, so that the available
resources are optimally utilized. Fourth, when a cache fails,
its load is collectively shared by the other caches in its
vicinity. Furthermore, cooperative resynchronization of
caches that are recovering from failures ameliorates server
loads.

Motivated by the benefits of edge cache cooperation we
are developing techniques and system-level facilities for
utilizing the power of low cost cache cooperation to
efficiently and scalably deliver dynamic Web content in
large-scale edge cache networks. Toward this end, in this
paper, we present the design and evaluation of cooperative
edge cache grid (cooperative EC grid, for short)—a scalable,
efficient, and failure resilient cooperative edge cache net-
work for delivering highly dynamic Web content with
varying server-update frequencies. Concretely, this paper
makes three technical contributions:

1. We experimentally study the costs and benefits of
edge cache cooperation for delivering dynamic Web
content, demonstrating that edge cache cooperation
can provide an order of magnitude improvement in
the server loads and, with careful design, it is
possible to ensure that the overheads of cooperation
are low.

2. This paper presents the architecture of cooperative
EC grid, whose design incorporates various mechan-
isms for promoting cost-effective cache cooperation
and for dealing with the constantly evolving nature
of dynamic Web content. We also introduce the
concept of cache clouds as a generic framework of
cooperation in the EC grid.

3. We present our design of individual cache clouds,
which includes novel, dynamic hashing-based coop-
eration protocols for efficient document retrievals
and updates. These protocols also balance the
document lookup and update loads dynamically
among the caches of a cloud, thereby handling
sudden changes in document access and update
patterns. Further, we also discuss two strategies to
make the protocols resilient to the failures of
individual caches.

We present several simulation-based experiments to

evaluate the proposed cooperative EC grid architecture

and the associated techniques. The results indicate that

cooperative EC grid supports effective and low-overhead

cooperation among its caches.
The rest of the paper is organized as follows: In Section 2,

we discuss the architecture of the cooperative EC grid.

Section 3 describes the design of individual cache clouds

and Sections 4 explains our failure resilience mechanisms.

Section 6 discusses the experimental evaluation of the

proposed architecture and mechanisms. We discuss the

related work in Section 7 and conclude in Section 8.

2 COOPERATIVE EDGE CACHE GRID

This section provides an overview of the design architecture
of the cooperative edge cache grid (cooperative EC grid)
discussing the salient features of its design.

2.1 Design Challenges

Designing efficient cooperative edge networks poses several
research challenges: First, an effective mechanism is needed
to decide the scale and configuration of the edge cache
network in terms of the number of caches, and the locations
where these edge caches are placed. We refer to these
challenges as cache placement problems. The challenge is to
optimize the setup and maintenance, while ensuring that
client latency is within desirable limits. Deciding which
caches should cooperate with one another, or, in other
words, grouping caches into cooperative structures such
that the efficiency and effectiveness of cooperation are
simultaneously optimized is the second major challenge in
constructing edge cache networks. Third, a dynamic and
adaptive cooperation architecture and a set of highly
efficient and failure resilient techniques are needed to deal
with the constantly evolving nature of dynamic content
delivery like continually changing document update and
user request patterns. The fourth challenge is to design
cache management (document placement and replacement)
policies such that the various resources of the cache group
are optimally utilized.

We are investigating various techniques to address these
challenges [27], [28]. In this paper, we focus on the
architectural design of the cooperative EC grid discussing
its novel features and mechanisms

2.2 Cooperative EC Grid: Design Architecture

A typical cooperative EC grid consists of several geogra-
phically distributed edge caches, and one or more origin
servers. In this paper, we assume that the client requests are
routed to a nearby cache that is likely to provide the best
performance, by employing a technique like URL rewriting
or application-layer request redirection [5], [17], [29]. The
origin servers incorporate the infrastructure (Web servers,
application servers, and backend databases) necessary for
generating the dynamic content. Further, the origin sites
also have document update engines, which continuously
monitor the changes occurring at the backend databases
and initiate appropriate update messages. In this paper, our
description of the cooperative EC grid assumes a proactive
approach for maintaining document consistency, wherein
the new version of the modified document is commu-
nicated to the caches (update-based model for consistency).
However, all the techniques and mechanisms described in
this paper work well even with an invalidation-based
document consistency model. Further, for conceptual
simplicity, our discussion in the rest of the paper assumes
that the cooperative EC grid contains a single origin server,
although all of the proposed techniques can be applied for
scenarios with multiple origin servers.

The design of the cooperative EC grid is based on the
concept of cache clouds. A cache cloud is a group of edge
caches that are located in close network proximity. The
caches belonging to a cache cloud cooperate with one
another for four basic purposes, namely, document freshness
maintenance, miss processing, resource management, and failure

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

resilience and recovery handling. The cooperative EC grid
typically contains several cache clouds. The appropriate
number of cache clouds and the size of each cloud depend
on various factors including the scale of the EC grid and the
document request and update patterns. Fig. 1 illustrates the
high-level design architecture of the cooperative edge cache
grid with 22 caches organized into five cache clouds. The
notation Ecjl represents an edge cache in the cooperative
EC grid. The exact meaning of the notation will be
explained in Section 3.

Previously, researchers have demonstrated the benefits
of cooperative miss handling in the context of proxy
caching of static documents [11], [13], [16], [22], [32]. In
contrast, server-driven document consistency schemes are
uniquely important to the performance and scalability of
dynamic content delivery, and the cooperative EC grid
provides significant benefits in this regard. In contrast to
general edge cache networks wherein the origin server has
to send update messages to each cache that holds a copy of
the document being modified, in the cooperative EC grid,
the origin server is required to send only one update
message per cache cloud, which is then cooperatively
disseminated to all the caches within each cloud that holds
a copy of the document. Further, the server is not required
to maintain the state of any cache or cache cloud. Hence, the
cooperative EC grid ameliorates the high overheads of
server-driven consistency mechanisms.

The cache clouds serve as a generic framework of
cooperation among closely located edge caches. This
framework subsumes different cooperative architectures
such as hierarchical and distributed caching architectures.
In this paper, we propose a flat cache cloud architecture in
which the caches belonging to a cloud interact with one
another as peers. Our architecture provides a scalable,
efficient, and reliable infrastructure for delivering most
common types of dynamic Web content. However, any
other architecture might also be employed, if required for
specific circumstances.

3 DESIGN OF CACHE CLOUDS

Since the cache clouds form the fundamental units of
cooperation, the strategies adopted for their design would
have a significant impact on the performance of the
cooperative EC grid. We briefly analyze the important
issues that need to be addressed while designing cache
clouds. First, in order to collaboratively handle misses,

caches should be able to locate the copies of requested
documents (if any) existing within the cache cloud. We refer
to the mechanism of locating document copies within a
cache cloud as the document lookup protocol. Second, the
cache cloud design should also incorporate a document
update protocol through which the document update
messages are communicated to the caches in the cloud that
are currently containing the respective documents. In
addition, we also need to design effective cache management
policies and failure handling mechanisms.

Fundamentally, there are two approaches to cache cloud
design, namely, centralized and distributed [27]. We have
adopted the distributed approach, since it provides better
scalability, load-balancing, and failure resilience properties.
In our design, each cache is responsible for handling the
lookup and update operations for a set of documents
assigned to it. In a cache cloud, if the cache Ecjl is
responsible for the lookup and update operations of a
cached document Dc, then we call the cache Ecjl as the
beacon point of Dc. The beacon point of a document
maintains the up-to-date lookup information, which in-
cludes a list of caches in the cloud that currently hold the
document. A cache that needs to serve a document Dc and
the server that needs to update Dc utilize this lookup
information as described later in the section. Thus, in our
design, each edge cache in the cloud plays dual roles. As a
cache, it stores documents and responds to client requests.
As a beacon point, it provides lookup and update support
for a set of documents.

Now, the problem is to decide which of the caches in the
cloud should act as the beacon point of a given document.
We refer to this as the beacon point assignment problem. In
designing the cache cloud architecture, our goal is to assign
beacon points to documents in such a manner that the
following important properties are satisfied:

1. The caches within the cloud and the origin servers
can efficiently discover the beacon point of any
document.

2. The document lookup and the update operations are
resilient to beacon point failures.

3. The load due to document lookups and updates is
well distributed among all beacon points in the
cache cloud.

4. The beacon point assignment and the load-balancing
scheme should be dynamic and adaptive to the
variations of the lookup and the update patterns.

The simple solution of assigning documents to beacon
points through a random hash function (henceforth referred
to as static hashing scheme) neither provides resilience to
beacon point failures, nor can it ensure good load balancing
among the beacon points since the lookup and update loads
often follow the highly skewed Zipf distribution. In this
paper, we propose a dynamic hashing-based mechanism for
assigning the beacon point of a document which supports
very efficient lookup and update protocols, provides good
load-balancing properties, and can adapt to changing load
patterns effectively.

3.1 Beacon Rings-Based Dynamic Hashing Scheme

As the name suggests, in the dynamic hashing scheme, the
assignment of documents to beacon points can vary over
time so that the load balance is maintained even when the

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 3

Fig. 1. Architecture of cooperative edge cache grid.

load patterns change. Consider a cache cloud with M edge
caches. We organize the edge caches of a cache cloud into
substructures called beacon rings. A cache cloud contains
one or more beacon rings, and each beacon ring has two or
more beacon points. Fig. 2 shows a cache cloud with four
beacon rings, where each beacon ring has two beacon
points. The notation Ecjl denotes the cache that acts as the
lth beacon point in the jth beacon ring. All the beacon
points in a particular beacon ring are collectively respon-
sible for maintaining the lookup information of a set of
documents. In our scheme, each document is uniquely
mapped to a beacon ring through a random hash function.
Suppose the cache cloud has K beacon rings numbered
from 0 to K � 1. A document Dc is mapped to beacon ring
j, where j ¼MD5ðURLðDcÞÞ Mod K. Here, MD5 repre-
sents the MD-5 hash function, and URL(Dc) represents the
unique identifier of the document Dc.

Suppose the document Dc is mapped to the beacon ring j
containing L caches. One of these L caches would be
assigned to serve as the primary beacon point for the
document Dc. The primary-beacon point of a document
maintains the up-to-date lookup information of the docu-
ment, and is responsible for handling the lookup and
updates of the document. All the other caches in the beacon
ring serve as backup nodes for failure resilience purposes.
Details of the failure resilience mechanism will be discussed
in detail in Section 4.

The next question that needs to be addressed is: How is
the primary beacon point assignment done? Or, in other
words, for any document, say Dc, which is mapped to
beacon ring j, how do we decide which of the L caches
belonging to the beacon ring would act as its primary
beacon-point? We propose a dynamic hashing scheme, which
not only provides very good load balancing, but is also
adaptive to changing load patterns.

Let us suppose that the L caches of the beacon ring j are
represented as fEcj0; Ec

j
1; . . . ; EcjL�1g. The dynamic hashing

technique uses an intraring hash function for distributing the
documents to the L beacon points, which works as follows:
An integer which is relatively large compared to the
number of beacon points in the beacon ring is chosen and
designated as the intraring hash generator (denoted as

IntraGen). Each document’s URL is hashed to an integer
value between 0 and ðIntraGen� 1Þ. This value is called the
document’s intraring hash value or IrH value for short. For
example, for a document Dc, the IrH value would be
IrHðDcÞ ¼MD5ðURLðDcÞÞ Mod IntraGen, where MD5
represents the MD-5 hash function, URLðDcÞ represents the
URL of the document Dc, and Mod represents the modulo
function. Various beacon rings of a cache cloud may be
configured to have different IntraGen values. However,
setting the same IntraGen value for all beacon rings
simplifies cache cloud configuration and management.

Further, the range of intraring hash values ð0; IntraGen�
1Þ is divided into L consecutive nonoverlapping subranges
represented as

fð0;MaxIrHj
0Þt; ðMinIrHj

1;MaxIrHj
1Þ; . . . ;

ðMinIrHj
L�1; IntraGen� 1Þg:

Each cache within the beacon ring is assigned to be
responsible for one such subrange, and this cache will
be chosen as the primary beacon point for all the
documents hashed into that subrange. For example, the
beacon point Ecjl is assigned to be responsible for the
range ðMinIrHj

l ;MaxIrHj
l Þ. MinIrHj

l denotes the begin-
ning and MaxIrHj

l denotes the end of the intraring hash
values assigned to the cache Ecjl . Ec

j
l will serve as the

primary beacon point of a document Dc, if IrHðDcÞ lies
within the subrange currently assigned to it. Fig. 2
shows subranges assigned to each beacon point.

3.2 Determining the Beacon Point Subranges

This section outlines the mechanism of dividing the
intraring hash range into subranges such that the load
due to document lookups and updates is balanced among
the beacon points of a beacon ring. This process is executed
periodically (in cycles) within each beacon ring and it takes
into account factors such as the beacon point capabilities
and the current loads upon them. Any beacon point within
the beacon ring may execute this process. This beacon point
collects the following information from all other beacon
points in the beacon ring.

Capability. Denoted by Cpjl , it represents the power of
the machine hosting the cache Ecjl . Various parameters such
as CPU capacity or network bandwidth may be used as
measures of capability. These parameters can be obtained
by the hardware/software specifications of the beacon
points. For example, the maximum update/lookup
throughput can provide a good estimate of the beacon
point’s capability. Various tools also exist to dynamically
monitor these parameters. In this paper, we assume a more
generic approach wherein each beacon point is assigned a
positive real value to indicate its capability.

Current Subrange Assignment. Denoted by

ðCMinIrHj
l ; CMaxIrHj

l Þ;

it represents the subrange assigned to the beacon point Ecjl
in the current cycle.

Current Load Information. Represented by CAvgLoadjl ,
it indicates the cumulative lookup and update load
averaged over the duration of the current period. The
scheme can be made more accurate if the beacon points also

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 2. Architecture of edge cache cloud.

collect load information at the granularity of individual
IrH values. Denoted by CIrHLdjl ðpÞ, it indicates the load
due to all documents whose IrH value is p. However, the
CIrHLd information is not mandatory for the scheme to
work effectively.

The aim of the periodical subrange determination
process is to update the subranges such that the load a
beacon point is likely to encounter in the next cycle is
proportional to its capability. For each beacon point, we
verify whether the fraction of the total load on the beacon
ring that it is currently supporting is commensurate with its
capability. If the fraction of load currently being handled by
a beacon point exceeds its share, then its subrange shrinks
for the next cycle, and vice-versa.

Specifically, the scheme proceeds as follows: First, we

calculate the total load being experienced by the entire

beacon ring (represented as BRingLdj), and the sum of the

capabilities of all the beacon points belonging to the ring

(represented as TotCpj). Then, for each beacon point, we

calculate its appropriate share of the total load on the

beacon ring as AptLdjl ¼
Cpj

l

TotCpj �BRingLdj. For each beacon

point, we compare its CAvgLd with its AptLd. If

CAvgLdjl > AptLdjl , then the scheme shrinks the subrange

of the beacon point for the next cycle by decreasing its

CMaxIrHj
l by a value t such that

XCMaxIrHj
l

p¼CMaxIrHj
l
�t

CIrHLdjl ðpÞ � ðCAvgLd
j
l �AptLd

j
l Þ:

When the subrange of a beacon point Ecjl shrinks, some of
its load would be pushed to the beacon point Ecjlþ1. The
scheme takes into account this additional load on the
beacon point Ecjlþ1 when deciding about its new subrange.

If CAvgLdjl < AptLdjl , then the scheme expands the
subrange of the beacon point Ec0

l by increasing its
CMaxIrH value. The amount by which CMaxIrH is
increased is determined in a very similar manner as the
shrinking case discussed above. After determining the
subrange assignments for the next cycle, all the caches in
the cache cloud and the origin server are informed about
the new subrange assignments. Thus, the caches are aware
of the current subrange assignments of all other caches
within its cache cloud. The subrange determination scheme
is described in more detail in [27]

3.2.1 Discussion

We now discuss a few important issues with respect to the
dynamic hashing mechanism and the ways in which it can
be extended for further performance improvements. Some
beacon points in a beacon ring might find it costly to
maintain the CIrHLd information for each of the hash
value within its subrange. For such beacon points CIrHLd,
all hash values in the subrange are approximated by
averaging CAvgLd over the subrange of IrH values. Thus,
it is possible for a beacon ring to have a few beacon points
that just maintain the total load information and others that
maintain load information at the granularity of individual
hash values. It is also possible that every beacon point of a
ring maintains only the total load information. In either

case, the quality of load balancing might be slightly below
what would have been achievable if all beacon points were
to maintain load information at the granularity of hash
values, or the dynamic hashing mechanism might take a
few load-balancing cycles to converge at the best-possible
range apportioning.

The dynamic hashing mechanism can be augmented
with the reorder operation [14] to reduce the computational
costs of load balancing, especially when beacon rings are
large and the beacon points experience serious load
imbalance conditions. However, the reorder operation does
not alter the quality of load balancing [14]. Further, since
beacon rings generally contain small numbers of caches, the
dynamic subrange determination operation suffices for
most scenarios.

The dynamic hashing mechanism essentially balances
the lookup and the update loads among the caches
belonging to a beacon ring. Larger beacon rings are
expected to yield better load balancing, since load balancing
occurs across more machines. In fact, by creating a single
beacon ring for each cache cloud, it is possible to balance
loads across all the caches belonging to the cloud. However,
as our experiments show, increasing the size of beacon rings
beyond two caches per ring provides incremental improve-
ments to load balancing. The load-balancing process itself
becomes complicated for large beacon rings because of the
need for coordination among many beacon points. Con-
sidering the above pros and cons, we believe that it is better
to configure the cooperative EC grid such that each beacon
ring contains a few beacon points. In most scenarios, this
approach of balancing loads within each beacon ring is
sufficient to yield very good load distribution across the
entire cache cloud. Previous works in the area of local load-
balancing algorithms have also shown similar results, albeit
in a different context [6]. In the rare scenario in which the
load balancing obtained by this strategy is inadequate, the
dynamic hashing scheme can also be extended to a bilevel
scheme wherein load balancing is also done at the level of
beacon rings. One possible approach is to map documents
into a relatively large number of buckets and assign
multiple buckets to each beacon ring depending upon its
cumulative capability.

In the dynamic subrange determination scheme, a single
beacon point in a ring collects statistics from all other
beacon points and performs subrange determination. This
raises issues such as scalability of statistics collection and
single point of failure in large beacon rings. Distributed,
multilevel approaches can be designed to mitigate such
problems. One approach would be to designate a few
beacon points as leaders. Each leader collects statistics from a
nonexclusive set of nonleader beacon points. The leader
beacon points exchange the statistics they have collected so
that each leader has data about all beacon points. Any one
of the leaders can compute subranges for the next cycle.

The appropriate duration for the subrange determination
cycle depends upon how dynamic the loads on the various
caches of the cloud are; if the load pattern is highly
dynamic, the cycle duration needs to be shorter and vice-
versa. As our experiments show, for generic scenarios, a
cycle duration of a few hundred seconds would be
sufficient to obtain good load-balancing characteristics.

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 5

The origin server and the caches within a cloud can
determine the beacon point of any document by a simple
and efficient two-step process. In the first step, the beacon
ring of the document is determined by the random hash
function. In the second step, out of the L beacon points
within the jth beacon ring, the beacon point of Dc is
determined through the intraring hash function as we
discussed before. The beacon point whose current subrange
contains IrHðDcÞ would be the beacon point of Dc.

3.2.2 Request and Update Processing in Cache Clouds

We now briefly outline the end-to-end scenario of proces-
sing client requests and document updates in cooperative
EC grid. As mentioned earlier, all caches maintain the
current subrange assignments of all other caches in their
cloud. Further, they also store the mapping between the
cache IDs and the IP addresses and port numbers of other
caches in their cloud. Suppose a client Cl requests a
dynamic document Dc from the edge cache Ecpq . If the
document is not available at Ecpq , it first determines Dc’s
beacon point (say Ecjl) through the two-step process
described above, and sends a request to it. If the cache
Ecjl has a copy of Dc, it is sent to Ecpq . Otherwise, Ecjl sends
a list of caches (if any) within the cloud that are currently
storing copies of Dc, in which case Ecpq retrieves the copy
from one of the current holders, or from the origin server if
no other cache in the cloud contains Dc. Fig. 3 illustrates the
request handling process. Similarly, when the document Dc
is modified, the origin server sends an update message to
Dc’s beacon points in various cache clouds, which, in turn,
communicate it to the appropriate caches in their clouds.

4 FAILURE RESILIENCE IN BEACON RINGS

In order to ensure that the document lookup and update
operations are resilient to beacon point failures, each
document’s lookup and update information is replicated
at all the caches in the document’s beacon ring. We now
explain two different strategies for replicating beacon
information, namely, an eager replication scheme and a
periodic replication scheme. For clarity, we refer to the lookup
and update information being maintained at a document’s

primary beacon point as the master-copy of the document’s
beacon information, and the copies present at other beacon
points as backup-replicas.

Eager Replication of Beacon Information. The eager
replication strategy takes a proactive approach for replicat-
ing beacon information. In this strategy, the backup-replicas
of the beacon information are always consistent with the
master-copy. This means that any changes to the lookup
and update information of a document (such as addition or
deletion of copies) are immediately reflected at all the
backup replicas.

When a beacon point fails, one or more of the other
beacon points within the beacon ring assume the lookup
and update responsibilities of all the documents that were
being handled by the failed beacon point (please see
Section 4.1 for further discussions on the scenario when
multiple beacon points share lookup/update responsibil-
ities of the failed beacon point). Note that backup-replica
assumes the responsibilities of all documents that were
being handled by the failed beacon point, which includes
documents that might have been assigned to it due to
failures of other beacon points. As all the replicas of the
lookup information are consistent, the backup node has
complete and up-to-date information to accurately handle
the lookups and updates of all the documents that were
originally assigned to the failed beacon point. When a failed
beacon point is reactivated, it obtains the up-to-date lookup
information from any of the other beacon points that are
currently alive and then resumes its normal operation.

Periodic Replication of Beacon Information. In contrast
to the eager replication scheme, in periodic replication there
are brief durations of time in which the backup copies of the
lookup information may be slightly out of sync when
compared with the master lookup information available on
the primary beacon point. The backup replicas of the
lookup information are made consistent with the master
copy at the end of predefined time periods called beacon

synchronization cycles. Within a beacon synchronization
cycle, any updates to the lookup information of a document
occurs only at the document’s primary beacon point if it is
alive, or at the backup node that is currently handling its
lookup and update operations. The main observation that
motivates the periodic replication is that the lookup
information of a document is a soft state that can be
recovered even when the primary beacon point fails and no
other available replica is completely up-to-date.

Suppose the cache Ecjl is the primary beacon point of a
document Dc. As in the eager replication case, if Ecjl fails,
one or more of the backup replicas takes over the lookups
and update operations of all the documents (including Dc)
that were being handled by the failed cache. For simplicity,
we discuss the scenario wherein a single backup replica, say
Ecjlþ1, takes over the lookup and update operations of all
the documents currently being handled by Ecjl , including
those documents that originally belonged to a cache that
had failed earlier and are being currently handled by Ecjl .
Better load balancing can be achieved if multiple backup
replicas share the load of the failed beacon point (Section 4.1
presents one such simple mechanism).

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 3. Client request processing in cache clouds.

Notice that the backup replica Ecjlþ1 may not have the
most up-to-date lookup information of the documents
which it takes over from Ecjl . Hence, the cache Ecjlþ1

marks the lookup information of these documents as out-
of-sync. When Ecjlþ1 gets an update message for Dc whose
lookup information is marked out-of-sync, the cache Ecjlþ1

sends an update message to all the caches in the cloud.
However, this is a special update message, wherein the
cache Ecjlþ1 notifies the caches that the lookup informa-
tion regarding the document is out-of-sync and asks all
the caches that hold the document to reregister with it.
Thus, Ecjlþ1 recovers the up-to-date lookup information of
the document Dc and, hence, removes the out-of-sync tag
from Dc’s lookup information.

When Ecjlþ1 receives a lookup request for Dc, there are
two cases to consider. If the lookup information of Dc has
been recovered through a previous update operation on Dc,
Ecjlþ1 just forwards the list of caches that currently hold a
copy of the document. In case the lookup information of Dc
is still marked as out-of-sync, Ecjlþ1 sends the lookup
information it currently holds to the requesting cache, but it
explicitly states that the lookup information may not be up-
to-date. In this scenario, there is a small chance that the
lookup information is slightly stale (the lookup information
might indicate that Dc is available at a cache when it is
actually not present and vice-versa). Our experiments show
that the probability of a cache receiving stale lookup
information is very small. The requesting cache then
decides whether to contact one of the caches that is
supposed to contain the document as per the lookup
information it received or to contact the origin server
directly.

When the primary beacon point of Dc ðEcjl Þ is reacti-
vated, it obtains the current lookup information of all the
documents that are assigned to it from Ecjlþ1 and resumes
the lookup and update functionalities. In the very rare event
of all the caches in a beacon ring failing simultaneously, the
lookups and updates of the documents are handled by
sending the appropriate messages to all the caches in the
cloud. In both eager and periodic replication schemes, the
backup replica that takes over the lookup and update
responsibilities of a failed cache sends a message to all
caches in the cache cloud. Similarly, when a beacon point
recovers from its failure, it notifies all other caches in the
cloud.

4.1 Discussion

Failure Detection. The cooperative EC grid employs heart-
beat messages to detect failures of caches. Within a beacon
ring, logically adjacent caches periodically send heartbeat
messages to each other. The recipient of a heartbeat
message acknowledges it, thereby confirming that it is
alive. A cache that does not respond to two consecutive
heartbeat messages is assumed to have failed, and the
sender initiates the beacon point failure handling mechan-
ism. The sender also informs all other caches in the cloud
about the failure, and the beacon points update their lookup
information so that the failed cache is not included in the
document lookup requests until its recovery. Failures might
also be noted by nonadjacent caches or the origin server
when they do not receive responses to their lookup/update

or document retrieval requests, in which case they notify
the adjacent beacon points, and the failure is confirmed by
them through heartbeat messages.

Multiple Backup Replica Takeover for Better Load
Balancing. Until now, we have assumed that a single
backup replica would take over the update/lookup opera-
tions of all the documents that were being handled by the
failed cache. However, this might lead to a temporary load
imbalance (until the next subrange determination cycle).
This problem can be mitigated by having multiple backup
replicas share the responsibilities of the failed beacon point.
One straightforward way to achieve this would be to split
the IrH value range assigned to the failed cache Ecjl among
multiple backup replicas. The drawback of this approach is
that each cache might be handling nonconsecutive sets of
IrH values, which complicates the lookup and update
mechanisms. A second approach would be to split the IrH
range assigned to the cache Ecjl between Ecjl�1 and Ecjlþ1. In
case of significant load imbalance, any one of these two
caches can start the subrange determination process so that
load balance is restored in the beacon ring. In case all but
one of the beacon points of a ring have failed for very long
durations of time, the single beacon surviving beacon point
could be migrated to another beacon ring in order to
maintain load balancing.

Comparing Eager and Periodic Replication Strategies.
We now briefly discuss the relative pros and cons of the
eager and the periodic replication schemes. There are two
advantages to the eager replication scheme. First, a cache
trying to retrieve a document always receives up-to-date
lookup information. Second, there is no need to flood the
network with lookup and update messages, except in the
very rare event of all the beacon points belonging to a
beacon ring failing simultaneously. However, the eager
replication scheme suffers from the drawback that when the
beacon information of a document is modified, all the
beacon points in the document’s beacon ring have to be
informed. This message overhead could be heavy and may
affect the cache clouds’ performance. In contrast, the
periodic replication scheme just requires a single message
to be communicated when the document’s lookup informa-
tion is modified. Therefore, the message overheads are
significantly lower. But, with periodic replication, there is a
small chance that a cache trying to retrieve a document
might receive lookup information that is slightly stale. This,
in the worst-case, might result in the cache contacting the
origin site even though a copy of the document was
available within the cache cloud. However, our experiments
show that the probability of a cache receiving stale beacon
information is very low. Therefore, we believe that periodic
replication is a good choice, unless the rate of beacon point
failure is very high.

5 DESIGN RATIONALE

In this section, we briefly explain the design rationale of the
cooperative EC grid. For purposes of clarity, we compare
our design to other possible alternatives such as hierarchical
and distributed architectures with ICP-based object lookup
mechanisms and bloom filter-based summary cache proto-
cols [13] which were used in many cooperative proxy-
caching schemes, mainly for serving static Web documents.

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 7

In the cooperative EC grid, the number of messages
circulated for performing a document lookup is never
greater than two, while both hierarchical and distributed
architectures with ICP-based document lookups induce
very high (up to N � 1) messages per document lookup,
where N denotes the total number of caches in the edge
cache network) message overheads. Strategies similar to
summary cache protocol alleviate the lookup message
overhead by maintaining approximate lookup information
at each proxy. However, the summary cache may some-
times yield inaccurate lookup information, which can
introduce serious inaccuracies in the document update
process (discussed in the next paragraph). Further, the
lookup message in the cooperative EC grid only has to
traverse a single hop, which makes it very efficient. These
assertions about the costs of document lookups are valid
even when the respective primary beacon point has failed,
as long as the beacon point failure has been previously
detected and a backup replica has taken over the lookup
and update responsibilities. In the rare event when a lookup
request first detects the failure of the beacon point for the
first time, the requesting cache has to contact one of the
backup replicas, which would result in one additional
message.

In cooperative EC grid the number of messages sent-out
by the origin server per document update is never greater
than the number of clouds in the grid, whereas the update
load on the server of the ICP-based distributed architecture
might be as high as the number of caches in the EC grid.
While techniques such as bloom filters can reduce the
message load, they cannot ensure that an update message
would reach all the caches containing the document.
Further, in our scheme, the update messages have to
traverse exactly two hops.

Three aspects of our document lookup/update mechan-
isms need closer examination. One concern is whether the
two-step document retrieval procedure affects the latency
experienced by the clients. We contend that effects of our
lookup procedure on the client latency are minimal due to
two main reasons. First, the caches belonging to a cloud are
located near to one another and, thus, the cost of intracloud
communications are expected to be very low. Second, the
amount of data exchanged during the lookup protocol is on
the order of a few bytes. For such short communications,
connection establishment costs dominate the data transfer
costs. Since the number of caches in each cloud is limited,
the caches can maintain persistent connections to one
another thereby eliminating the connection establishment
costs for each lookup.

The second issue is the overheads of storing and
maintaining the beacon information at various caches. The
beacon information of each document just consists of the
document ID and a list of identifiers of caches in the cloud
that currently contain the document. Thus, the beacon
information stored at each cache is very small when
compared to the amount of data cached for serving client
requests. In order to ensure consistency of the beacon
information, a cache that either stores a new copy or
removes an existing one needs to notify the document’s
beacon point, which would cost one message consisting of a
few bytes of data. The communication can be further
optimized by purging documents periodically and sending
collective notification messages. Pure ICP-based systems do

not maintain any group-wide information about the
documents available in the individual caches and hence,
there are no maintenance costs. By contrast, in directory-
based schemes like summary cache, changes to directory
information have to be reflected in all other cooperating
caches costing N � 1 messages. Summary cache ameliorates
this load by accumulating the changes and updating the
directory copies periodically. Our periodic replication-
based failure resilience scheme requires that the backup
replicas of the beacon information be made consistent with
the master copy at the end of each beacon synchronization
cycle thereby inducing a message load of L messages per
beacon synchronization cycle, where L represents the
number of beacon points in the ring. Since beacon rings
are typically very small, the message overheads of the
failure resilience protocol are minimal.

The third issue is the low geographical scalability of the
URL hashing mechanism used in the dynamic hashing
scheme. We believe that this does not pose a serious
problem to the performance of the cooperative EC grid
since the caches among which URLs are hashed belong to a
single cache cloud and hence would be in close network
proximity.

Thus, we conclude that the cooperative EC grid
architecture and our cache cloud design are well suited
for efficiently delivering dynamic Web content with varying
server-update frequencies.

6 EXPERIMENTS AND RESULTS

We have performed a range of experiments to evaluate the
cooperative EC grid architecture and the various associated
algorithms. Our experimental study has three main goals:
1) studying the benefits and costs of edge cache cooperation
for dynamic content delivery, 2) evaluating the architectural
design of the cooperative EC grid, and 3) studying the
performance of the two replication schemes for providing
failure resilience.

6.1 Experimental Setup

The experimental study was conducted through trace-based
simulations of edge cache networks. The simulator can be
configured to simulate different caching architectures such
as edge cache network with no cooperation, cooperative
EC grid, hierarchical architecture, and distributed architec-
ture. Further, it can also simulate various techniques
including static hashing with no failure resilience, dynamic
hashing with eager replication, and dynamic hashing with
periodic replication. The underlying network was simu-
lated using GT-ITM network topology generator according
to the hierarchical transit-stub model [40]. Our decision to
use GT-ITM was motivated by the fact that GT-ITM is one
of the most widely used topology generators for simulating
various large-scale distributed systems [9], [18]. Although
there is an on-going debate on the accuracies of various
network topology generators, it is commonly believed that
the topologies generated by GT-ITM are fairly realistic [21].
We also note that the configuration settings that we have
used for generating the topologies have been adopted by
several previous research projects [9].

Each cache in the edge cache network receives requests
continuously from a request trace file. In the cooperative
EC grid, the request is processed according to the protocol

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

described in Section 3.1. If the document is available within
the cache receiving the request, it is recorded as a local hit.
If the document is retrieved from another cache in the
cloud, it is a cloud hit, and the request is a miss if the
document is retrieved from the origin server. In noncoo-
perative edge cache networks, the cache suffering a local
miss directly contacts the origin server to retrieve the
document. The server reads continuously from an update-
trace file and utilizes the document update protocol
provided by the architecture to communicate the updated
version of the document to the appropriate set of caches.

We use two types of data sets for our experiments. Most
of our experiments are based upon a data set which is
derived from real request and update traces from a major
IBM sporting event Web site1 (henceforth referred to as
Sydney). The original request logs contained client requests
received at various geographically distributed caches, and
the update logs contained updates generated at the origin
server. The logs contained 52,527 unique documents with
the mean and median of document sizes being 65.3 Kilobytes
and 48.3 kilobytes, respectively. The access pattern of
documents resembles the Zipf distribution with Zipf
parameter � ¼ 0:72. The access pattern of documents also
demonstrates moderately high temporal correlation. The
mean and median duration between two consecutive
accesses to the same document are 151.6 and 154.7 minutes,
respectively. The correlation between the document access
and update patterns was 0.43. The requests were segregated
based on their client-ids, and the requests from a few
random clients were combined to generate the request-logs.
Each cache was driven by one such request log. Most of our
experiments are based upon real access and update rates. In
order to study the effects of update and access rates on the
proposed system, we also use a few artificially chosen
document update and access rates in a small subset of
experiments. The second data set, called Zipf-0.9 data set, is
synthetic and contains 100,000 unique documents. The
mean and median size of documents are 60.0 kilobytes
and 43 kilobytes, respectively. In this data set, both
document accesses and updates follow the Zipf distribution
(power-law distribution), with the Zipf parameter value set
to 0.9. The mean and median duration between two
consecutive accesses to the same document are 138.2 and
188.3 minutes, respectively. The correlation between the
access and update patterns of this workload was 0.57.

The main costs of caching dynamic documents are the

loads imposed by the server-driven document freshness

maintenance schemes on the edge cache network. These

costs increase as the number of documents stored at each

cache increases. In our simulator, we can control the

number of documents stored in each cache through a

parameter called cache limit. This parameter specifies an

upper limit on the number of documents stored at a cache.

The cache limit of an edge cache Ecjl is defined as the

percentage of the total number of unique documents in the

trace that the cache Ecjl is permitted to store. In other words,

if the cache limit of Ecjl is set to Cl and if TotalDocs

represents the total number of unique documents in the

trace, Ecjl cannot store more than bCl�TotalDocs100 c documents.

The caches in our simulator support two cache replacement

policies. The first is the well-known least recently used (LRU)

policy. The second policy, which we call access-update

sensitive policy (AU) policy, evicts the document with the

highest update frequency
client access frequency ratio from the cache. The AU policy

aims to optimize the cumulative load on the server due to

document consistency maintenance and client accesses by

evicting documents that have high update rates but low

access rates (thereby minimizing the consistency load on the

server), and retaining documents that have relatively high

access rates but low update frequencies (thus minimizing

the load due to client accesses). In the experiments reported

in this paper, all the caches employ the AU replacement

policy. The caches are in a cold state at the beginning of the

simulation and are warmed up by client accesses. When the

variations of the vital performance parameters over several

successive time units have become minimal, we conclude

that the system has reached its steady state. All results were

collected several time intervals after the system reaches its

steady state. In this section, the term unit time corresponds

to a single minute.

6.2 Costs and Benefits of Cooperation

In the first set of experiments, we study the costs and
benefits of cache cooperation for edge cache networks
which serve highly dynamic Web content by comparing the
performance of the cooperative EC grid scheme to the edge
cache networks wherein the caches interact only with the
server and do not cooperate with one another. The edge
cache networks which do not support cooperation are
henceforth called noncooperative edge cache networks (non-
cooperative EC network). For brevity, in the performance
graphs, the cooperative EC grid is represented as CEC Grid,
and the noncooperative EC network is denoted as NC Ntwk.

The first experiment considers a cooperative EC grid and
a noncooperative EC network with identical configurations
in terms of the numbers of caches, their relative positions
within the wide area network, and the request and update
traces that drive them. Both the cooperative EC grid and the
noncooperative EC network contain 120 caches. For the
cooperative EC grid, the caches are organized into 12 cache
clouds. Each cloud is comprised of five beacon rings with
each beacon ring containing two caches. We vary the cache
limit of the caches and study its impact on the performance
of the cooperative EC grid and the noncooperative
EC network. The graph in Fig. 4 compares the server loads
of the two schemes when the cache limit varies from 1
percent to 100 percent. The server load is measured in terms
of the number of bytes of data sent out by the server per
unit time. The performance is evaluated at two document
update rates, namely, 195 updates per unit time, which is
the real update rate of the trace, and 400 updates per unit
time. The term update rate is defined as follows: Suppose
update count of a document Dc represents the number of
times Dc changed during the course of the simulation. The
update rate is defined as the ratio of the sum of the update
counts of all the documents in the trace to the amount of
time elapsed during the simulation. However, the number
of updates that reach a particular cache in unit time
depends upon the number and the set of documents stored

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 9

1. The Sydney 2000 Olympic Games Web site.

at the cache. For example, when the cache limit was set to
50 percent the average number of document updates per
unit that were seen at the caches was about 104.6.

As the graph indicates, the server loads of the coopera-
tive EC grid are an order of magnitude less than the
corresponding values for the noncooperative EC network at
both update rates. For example, when the update rate is set
to 195 and cache limit is set to 50 percent, server loads of the
cooperative EC grid and the noncooperative EC network
are 115 and 915 MBs, respectively. Thus, irrespective of the
numbers of documents stored in the cache, cooperation
among caches reduces the load on the origin server. The
valley shaped curves of the server loads can be explained as
follows: Low cache limit results in high miss rates thereby
placing high document access loads on the server. On the
other hand, when cache limit is very high the server incurs
high document consistency maintenance costs, which again
increases its load.

To gain a better understanding of this phenomenon, in
Fig. 5, we plot the loads incurred at the origin server due to
document accesses and document updates in both coopera-
tive EC grid and noncooperative EC network, as the
percentages of documents cached varies from 1 percent to
100 percent, when the document update rate is set to
400 updates per unit time. As the cache limit increases, the
access loads on the servers of both schemes drop, whereas
their document update loads increase. For the noncoopera-
tive EC network, the load due to document updates
overtakes the access load when the cache limit is around
35 percent, whereas for the cooperative EC grid, the update
load becomes the dominating factor when the cache limit is
around 25 percent.

One of the concerns about promoting cooperation in
edge cache networks serving dynamic content is whether
cache cooperation causes severe increases in the loads on
the individual caches. In order to answer this question, in
Fig. 6, we measure the average number of bytes sent out per
unit time (henceforth referred to as outgoing byte load) by the
caches of the cooperative EC grid and the noncooperative
EC network when the percentage of cached documents
varies from 1 percent to 100 percent. In a noncooperative
EC network, the outgoing byte load of a cache is comprised
of the documents that are dispatched from the cache in
response to client requests. In contrast, the outgoing byte
load in the cooperative EC grid is the aggregate of mainly
three kinds of loads, namely, load due to client requests,

load due to document requests from other caches in the
cloud, and load incurred by conveying document updates
to caches in the cloud (as a beacon point). The outgoing byte
loads on the caches in the cooperative EC grid are about
16 percent and 23 percent higher than the loads of the
caches in the noncooperative EC network, when the
document update rate was set to 195 and 400, respectively.
Thus, the overheads of cooperation on individual caches are
within reasonable bounds. The interaction between the
request load and the update load again comes into play and
causes the valley shaped curve of the cache loads.

In the second experiment, we study the effects of
document update rates on the benefits and costs of
cooperation in edge cache networks. The configuration of
the cooperative EC grid and the noncooperative EC net-
work are the same as in the previous experiment. Fig. 7
shows the total server load in terms of the bytes dispatched
per unit time for both cooperative EC grid and the non
cooperative EC network when the document update rate
varies from 100 to 500. The vertical line at 195 indicates the
actual update rate of the trace. The cache limit is set to two
values, namely, 25 percent and 50 percent. Note that in this
graph, the Y-axis is on log-scale. The server loads for the
noncooperative EC network is 7 times to 8 times higher than
the corresponding values of the cooperative EC grid. Fig. 8
shows the average loads (in terms of bytes dispatched per
unit time) on the caches of the cooperative EC grid and the

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 4. Effects of cooperation on server load (varying cache limit). Fig. 5. Document access and update loads on server (varying cache

limit).

Fig. 6. Effects of cooperation on cache load (varying cache limit).

noncooperative EC network as the update rate varies from
100 to 500 updates per unit time, when the cache limit of
each cache is set to 25 percent and 50 percent. As the results
demonstrate, the increase in average cache loads as a result
of cooperation is very moderate (16 percent to 25 percent).

The third experiment studies the impact of document
access rates on cooperative EC grid and noncooperative
edge cache network. The system configurations are the
same as in previous experiments. In Fig. 9, we plot the
numbers of bytes dispatched per unit time by the servers of
cooperative EC grid and noncooperative edge cache net-
work as the access rates at caches varies from 100 document
accesses per unit time to 3,000 accesses per unit time, when
the cache limit is set to 25 percent and 50 percent. The Y-axis
of this graph is again on log-scale. The vertical line indicates
the actual access rate of the trace. The results reaffirm the
observation of the previous experiment that the server load
of the noncooperative EC network is about an order of
magnitude higher than that of the cooperative EC grid. We
have also measured the loads on individual caches at
various access rates. The average numbers of bytes
dispatched per unit time by caches of the cooperative
EC grid is only slightly higher than those of the non-
cooperative edge cache network. For example, when cache
limit is set to 25 percent and access rates of caches are
2,500 requests per unit time, the average cache load of the
cooperative EC grid is 14 percent higher than that of the
noncooperative edge cache network.

In the fourth experiment (Fig. 10), we compare the
scalability properties of the cooperative EC grid and the
noncooperative EC network with respect to the number of
caches in the network. We evaluate the cumulative loads on
the origin servers of the cooperative EC grid and non-
cooperative edge cache network when numbers of caches in
the system vary from 20 to 200. We assume that the number
of clients scales linearly with the number of caches in the
system. Two different configurations for the cooperative
EC grid are considered; in the first configuration (repre-
sented as CEC Grid: Config �1), the number of clouds in
the EC grid is set to bN10c and, in the second (represented as
CEC Grid: Config �2), the number of clouds is set to bN20c,
where N represents the total number of caches in the edge
cache network. We use the real document update rates
(195 updates per unit time) for this experiment. The cache
limit is set to 25 percent. The Y-axis of the graph denotes the
server loads on the log-scale. The cumulative load on the
origin server of the noncooperative EC network grows
almost at the same rate as the number of caches, whereas
the server loads of the cooperative EC grid increase at a
much lower rate. It was also observed that the consistency
loads form a large fraction of the cumulative server load.
This experiment demonstrates the scalability benefits of
effective cache cooperation.

In the final experiment of this set, we estimate the
average latencies of the cooperative EC grid and the

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 11

Fig. 7. Effects of cooperation on server load (varying update rate).

Fig. 8. Effects of cooperation on cache load (varying update rate).

Fig. 9. Effects of cooperation on server load (varying access rate).

Fig. 10. Scalability benefits of edge cache cooperation.

noncooperative edge cache network. The response time of a
request is, in general, composed of two types of compo-
nents, namely, the time consumed at various caches and
servers to process the request (which we call processing
component) and the time taken to transfer the document
among servers, caches, and clients (communication compo-
nent). The communication components are determined by
the GT-ITM network simulator package [40]. We make a
few simplifying assumptions for computing the processing
component. Most of these assumptions are based on prior
research results [10], [30] In case a cache contains the
document that is being requested (by clients or other
caches), the time required for the cache to respond lies
within the range (100, 200) milliseconds and it varies
linearly with the document size. In case the request reaches
the origin server, we distinguish two scenarios. If the
request is for static data, the server response time is in the
range (100, 200) and varies linearly with the size of the
document. Previous studies have shown that the time
required for generating dynamic documents is, in general,
orders of magnitude higher than serving static documents
[10]. Accordingly, if the request reaching the server is for
dynamic content, we assume that the response time at the
server is uniformly distributed in the range (1,000, 2,000)
milliseconds. However, note that the server response of
1,000 milliseconds does not imply that the throughput of
the server is 1 per second. Servers handle multiple requests
simultaneously, and hence exhibit higher throughputs.
Fig. 12 compares the average response times of the
cooperative EC grid and noncooperative edge cache net-
work when the total numbers of caches in the system is 120
and 500. In each case, the number of clouds is set to bN10c. We
measure latency values when the cache limits are set to
25 percent and 50 percent. The average response latency of
the 120 cache noncooperative EC grid are 25 percent and
22 percent higher than the corresponding values for the
cooperative EC grid when the cache limit is set to 25 percent
and 50 percent, respectively. At a cache limit of 50 percent,
both edge cache networks yield significantly lower average
latencies because of higher local hit rates. Further, the
document lookup phase of processing a miss in the
cooperative EC grid constitutes less than 4 percent of the
cumulative average latency of processing a miss, thus
demonstrating that our two-phase document retrieval
process does not adversely impact the latency of the
cooperative EC grid. The GT-ITM network simulator does

not support persistent connections. The latency may be
further reduced by using persistent connections for com-
munications among caches and the server.

6.3 Evaluating the Design of Cache Clouds

Our next set of experiments study the performance of the
techniques that we have proposed for designing individual
cache clouds. We first evaluate the load-balancing proper-
ties of the beacon ring-based dynamic hashing scheme on a
cooperative EC grid containing 120 caches. For most
experiments in this set, the cooperative EC grid was
configured to have 12 clouds each having 10 caches. All
the caches are assumed to be of equal capabilities, which
implies that perfect load balancing is achieved when all of
the beacon points encounter same amount of load. Further,
the intraring hash generators (IntraGens) are set to 999 for
all beacon rings. Since the dynamic hashing scheme
essentially works at the level of individual clouds, we
report the results on a representative cloud of the
cooperative EC grid. We use the coefficient of variation of
the loads on the beacon points to quantify load balancing.
Coefficient of variation is defined as the ratio of the
standard deviation of the load distribution to the mean
load. The lower the coefficient of variation, the better is the
load balancing.

We compare the load balancing accomplished by the
static and the dynamic hashing schemes in a cache cloud
with 10 caches. The caches are organized into five beacon
rings, with each beacon ring containing two beacon points.
The cache limit is set to 50 percent, and the document update
rate is 400 updates per unit time. The cycle length for the
subrange determination process was set to 250 time units for
all beacon rings. The bar graph in Fig. 13 shows the load
distribution among the beacon points for the static and the
dynamic hashing schemes on the Sydney data set. On the X-
axis are the beacon points in decreasing order of their loads,
and on the Y-axis are the loads in terms of the number of
updates and lookups being handled by the beacon points per
unit time. With static hashing, the load on the most heavily
loaded beacon point is 1.35 times the mean load of the cache
cloud. In the dynamic hashing scheme this ratio decreases to
1.06, resulting in a 20 percent improvement over the static
hashing scheme. The dynamic hashing scheme also reduces
the coefficient of variation by 61 percent. For the Zipf-0.9
data set dynamic hashing improves the ratio of the heaviest
load to the mean load by 37 percent and coefficient of

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 11. Effects of cloud size on server load. Fig. 12. Effects of cooperation on latency.

variation by 63 percent. The load distribution graph of the
Zipf-0.9 data set is contained in [27].

We now study the effects of the dynamic hashing
mechanism on the cumulative loads of the caches due to
the two distinct roles they play in the cooperative EC grid,
namely, responding to client requests and handling the
lookups and updates of a set of documents. Fig. 14 shows
the distribution of the cumulative loads among the caches
for the static and the dynamic hashing schemes for the
Sydney data set. The cumulative cache loads are measured
in terms of the total numbers of bytes dispatched by the
caches per unit time. As the graph shows, the distribution of
the cumulative loads among the caches of the dynamic
hashing scheme is better balanced than the caches in the
static hashing scheme. The results for the Zipf-0.9 data set
indicate similar patterns, albeit on a larger scale.

In the next experiment, we study the effect of the size of
the beacon rings on load balancing. We evaluate the
dynamic hashing scheme on cache clouds consisting of 10,
20, and 40 caches. For each cache cloud, we consider three
configurations in which each beacon ring contains 2, 5, and
10 beacon points. Fig. 15 indicates the results of the
experiment on the Sydney data set. The dynamic hashing
scheme with two beacon points per ring provides signifi-
cantly better load balancing in comparison to static hashing.
When the size of the beacon rings is further increased, we
observe an incremental improvement in the load balancing

achieved by the dynamic hashing scheme. The reason for
the observed behavior is explained in Section 3.1.

The third experiment (Fig. 16) of this set studies the
impact of the data set characteristics on the static and the
dynamic hashing schemes. For this experiment, we consider
several data sets all of which follow the Zipf distribution
with Zipf parameters ranging from 0.0 to 0.99, and measure
the coefficients of variations at various Zipf values. The
skewness of the load increases with increasing value of the
Zipf parameter. As the skewness in the load increases the
coefficient of variation values also increase for both
schemes. However, the increase is more rapid for the static
hashing scheme. At a Zipf parameter value of 0.9, the
coefficient of variation for the static hashing scheme is 0.65,
whereas it is 0.44 for the dynamic hashing scheme.

6.4 Evaluating Failure Resilience Mechanisms

In this set of experiments, we evaluate the performance of
the two approaches for providing resilience to beacon point
failures, namely, the eager and the periodic replication
mechanisms. The experiments are performed on a coopera-
tive EC grid of 120 caches. We report the results on
representative clouds of the cooperative EC grid.

The individual beacon points of the cache cloud can fail
at arbitrary points of time. The failure pattern of an
arbitrary beacon point is modeled as a Weibull process with
increasing failure rates. Weibull processes are commonly
used in reliability engineering to model failure patterns of

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 13

Fig. 13. Lookup and update load distribution among caches (Sydney

data set).

Fig. 14. Distribution of cumulative load in cache cloud (Sydney data set).

Fig. 15. Impact of beacon ring size on load balancing.

Fig. 16. Impact of Zipf parameter on load balancing.

systems and system components. The Weibull process is
characterized by the probability distribution function
fðtÞ ¼ ���t��1e�ð�tÞ

�

, where � is called the scale parameter
and � is called the shape parameter. In the Weibull function,
if � is set to values greater than 1.00, then we obtain a class
of distributions that exhibit increasing failure rates (IFR). In
IFR distributions, the probability of a component failing
during an arbitrary time period ðT0 þ TdÞ given that the
component has not failed until the time instant T0, grows
with increasing values of T0. In the current context, IFR
lifetime distributions imply that a beacon point that has not
failed in the recent past has a higher probability of failure
than a beacon point that has failed and has been restored
recently. Our assumption about IFR of caches is based upon
previous research results which indicate that most system
failures are due to software crashes, and software crashes
generally exhibit IFR distributions typically because of data
corruption and error accumulation over time [8]. In our
experiments, the beacon points are active for long stretches
of time, whereas the durations of failures are very short. At
the end of the failure duration, the beacon point begins the
recovery process. We use two metrics to quantify the
performance of the scheme, namely, beacon information
availability and the induced message load. All the simula-
tions were run for 5,000 time units. We experimented with �
being set to 2.0, 3.0, 4.0, and 5.0. The results of the various
trials showed similar trends. We report the results when �
was set 2.0. � was set to appropriate values to obtain
various failure rates reported in the experiments.

Fig. 17 compares the dynamic hashing scheme (with
failure resilience support through eager or periodic replica-
tion) and the static hashing scheme (with no failure
resilience support) with respect to their beacon information
availabilities. The X-axis of the graph indicates the failure
rates of the individual beacon points, and the Y-axis shows
the percentage of lookup and update requests for which the
beacon information was not available. The graph indicates
that the dynamic hashing scheme (with failure resilience
support) provides an order of magnitude improvement in
beacon information availability over the static hashing
scheme. A total of 378 beacon point failures were recorded,
which included multiple failures of individual beacon
points. The maximum number of beacon points in the
cloud that were down at the same time was 3, and the
maximum number of beacon points of the same beacon ring

that were down at the same time was 2, although both of
these were rare and lasted for very short durations of time.
The observed results can be explained as follows: In static
hashing, when a beacon point fails, the lookups and
updates of all the documents mapped to it encounter
unavailable beacon information, whereas in the dynamic
hashing scheme, a lookup or an update request for a
document encounters the unavailable beacon information
condition only when all the beacon points belonging to the
document’s beacon ring have failed.

Next, we study the performance of the various failure
resilience schemes with respect to the message loads
induced by them within the cache cloud. In Fig. 18 and
Fig. 19, we plot the number of lookup/update messages
circulated per unit time with each of the three schemes in
cache clouds consisting of 10 and 6 caches, respectively. In
each case, the clouds are configured such that the each
beacon ring contains two beacon points. The X-axes of the
graphs indicate the failure rate of beacon points, and the
Y-axes show the numbers of messages circulated in unit
time. The synchronization cycle durations of all beacon
rings are set to 250 time units, which implies that the
backup replica of each document’s lookup information is
made consistent with its master copy once in every 250 time
units. We have experimented with other synchronization
cycle durations to obtain similar results.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 17. Improvement in beacon information availability. Fig. 18. Network load with various failure resilience schemes (10 caches

per cloud).

Fig. 19. Network load with various failure resilience schemes (six caches

per cloud).

A few interesting observations emerge from these two
graphs. First, as we mentioned in Section 4, eager replica-
tion scheme is costly in terms of the message cost. In fact,
when the failure rates of the beacon points are low, the no
failure resilience scheme is better than the eager replication
scheme. However, as the failure rate increases, the number
of messages in the no failure resilience scheme grows at a
fast rate, and it overtakes the message cost of the eager
replication scheme when the failure rate is around 0.018.
This phenomenon is due to the fact that as the failure rate
increases, the frequency of cloud-wide flooding in the no
resilience scheme rises sharply. The periodic replication
scheme performs better than both the no failure resilience
approach and the eager replication scheme at all values of
failure rates.

Although the periodic replication scheme provides
significant performance benefits, it has the problem that a
cache trying to retrieve a document might receive stale
lookup information. In the next two experiments, we show
that the probability of caches receiving stale lookup
information is very low, and hence this problem has little
impact on the overall performance of the cache cloud. In
Fig. 20 and Fig. 21, we plot the percentage of lookup
requests receiving stale beacon information at various
values of the synchronization cycle duration for a cache
cloud with 10 caches and 6 caches, respectively. The
duration of the synchronization cycle is likely to have
considerable impact on the percentage of lookups receiving
stale beacon information because it determines how
frequently the backup copies of the lookup information
are made consistent with the master copy.

We observe that the percentages of lookups receiving
stale information are very small at both cache cloud sizes.
For a cache cloud with 10 caches, when the failure rate is
0.010, the percentage of stale lookups ranges between
0.03 percent and 0.08 percent as the duration of the
synchronization duration varies from 10 time units to
500 time units. Hence, we see that even when the duration
of the synchronization cycle is significantly long, the
percentage of stale lookups is very low. It should also be
noted that a stale lookup does not affect the correctness of
the document retrieval protocol (please see Section 4).
Considering the low message overhead and the very small
probability of stale lookups, we conclude that periodic
replication scheme is a good choice for providing resilience
to beacon point failures.

7 RELATED WORK

Edge computing has received considerable attention from
the research community in recent years. Further, it has been
adopted by companies such as Akamai [1], and by products
like IBM’s Websphere Edge Server [3] and Oracle’s 10g
Application server [4]. ACDN [25] is an edge computing
platform that supports automatic redeployment of applica-
tions as necessitated by changing request patterns. Yuan
et al. [39] present a comparative study of four different
offloading strategies, showing that a simple strategy of
offloading the functionality of composing Web pages from
fragments can be very effective in terms of latency and
server load reduction. We note that our design of the
cooperative EC grid supports this offloading strategy. Gao
et al. [15] propose an edge caching scheme that alleviates
consistency maintenance costs by according different levels
of consistency to different objects depending upon the
application semantics.

The above edge caching schemes regard individual edge
caches as completely independent entities, and they do not
provide support for cooperation among their edge caches.
Akamai’s edge cache networks have incorporated limited
cooperation among its caches [1], wherein the cooperation is
restricted to serving cache misses. Moreover, these edge
cache networks only provide Time-to-Live-based (TTL)
weaker consistency guarantees. In contrast, the cooperative
EC grid utilizes cache cooperation in multiple ways to
enhance dynamic content delivery, and it provides stronger
document consistency guarantees through low-cost, server-
driven protocols.

Previously, cooperation among caches has been studied
in the context of client-side proxy caches [11], [13], [22], [32].
Internet Cache Protocol (ICP) [16] was designed specifically
for communication among the Web caches. Researchers
have also developed various alternatives for optimizing
communication costs and other performance parameters,
prominent among which are directory-based schemes [13],
[32], cache routing schemes [33], [34], and multicast-based
schemes [22]. In directory-based schemes, each cache
maintains possibly inexact and incomplete listings of the
contents of all other cooperating caches, where as multicast-
based schemes utilize IP level multicasting for intercache
communication. Routing schemes hash each document to a
cache in the cooperative group which is responsible for

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 15

Fig. 20. Staleness of beacon information in periodic replication

(10 caches in cloud).

Fig. 21. Staleness of beacon information in periodic replication (six

caches in cloud).

retrieving and storing the document. Our dynamic hashing
scheme can be viewed as a combination of directory and
hashing techniques, wherein documents are mapped to
beacon points via the dynamic hashing mechanism and
each beacon point maintains up-to-date lookup information
on the documents that are mapped to it. These schemes are
not very effective for dynamic content delivery since they
do not provide support for stronger consistency mechan-
isms and do not consider the costs of document updates in
their design.

Ninan et al. [23] describe cooperative leases—a lease-based
mechanism for maintaining document consistency among a
set of caches. Shah et al. [31] present a dynamic data
disseminating system among cooperative repositories in
which a dissemination tree is constructed for each data item
based on the coherency requirements of the repositories.
The server circulates the updates to the data item through
this tree. The focus of both these works is on the problem of
consistency maintenance of documents among a set of
caches. In contrast, our cooperative EC grid architecture
systematically addresses various aspects of cooperation
such as collaborative miss handling, cooperative consis-
tency management, efficient and failure-resilient document
lookups and updates, and cost-sensitive document place-
ments. Researchers have proposed schemes such as
adaptive push-pull and different variants of the generic
lease-based framework for minimizing the overheads of the
basic server-driven consistency mechanism for cached
dynamic content [7], [20], [35], [36], [37], [38]. Low cost
cache cooperation techniques that we have proposed can
further improve the efficiency and scalability of these
consistency maintenance schemes.

Consistent hashing [19] is related to the dynamic hashing
scheme proposed in this paper. While consistent hashing
can provide reasonable load-balancing properties, it cannot
easily adapt to sudden changes in lookup and update
patterns. In contrast, adaptability to changing update and
lookup patterns is an important feature of the dynamic
hashing scheme. Additionally, there is a considerable body
of literature addressing various problems in the general
area of dynamic content delivery [2], [12], [24], [26].

8 CONCLUSIONS

Although caching on the edge of the Internet has been a
popular technique to deliver dynamic Web content, most
edge caching systems do not provide adequate support for
cooperation among the individual edge caches. This paper
demonstrates that cache cooperation can provide significant
benefits to edge cache networks. We present cooperative
EC grid—a large-scale edge cache network specifically
designed to support low-cost cooperation among its caches.
The architecture of cooperative EC grid is based on the
concept of cache clouds, which are a group of edge caches
that cooperate for the purposes of maintaining document
freshness, serving client-requests, managing cumulative
resources, and providing failure resilience. Our design of
cache clouds incorporates several novel strategies for
improving the efficiency and effectiveness of cooperation,
such as beacon ring-based dynamic hashing schemes for
documents lookups and updates, and two schemes for
replicating lookup information in order to provide resi-
lience to beacon point failures. This paper reports series of

experiments showing that the proposed techniques are very

effective in enhancing the performance of edge cache

networks.

ACKNOWLEDGMENTS

This work is partially sponsored by US National Science

Foundation (NSF) CSR, US NSF CyberTrust, US NSF ITR,

an IBM Faculty Award, an IBM SUR grant, an Air Force

AFOST grant, and a grant from the UGA research

foundation. They also would like to thank the reviewers

and the subject editor for their helpful comments. A shorter

version of this paper appeared in the Proceedings of the 25th

International Conference on Distributed Computing Systems

(ICDCS ’05), Columbus, OH, June 2005 [27].

REFERENCES

[1] Akamai Technologies Incorporated, http://www.akamai.com,
2006.

[2] Edge Side Includes—Standard Specification, http://www.esi.org,
2006.

[3] IBM WebSphere Edge Server, http://www-3.ibm.com/software/
Webservers/edgeserver/, 2006.

[4] “Oracle Corporation: Application Server 10g Release 2,” white
paper, http://www.oracle.com/technology/products/ias/pdf/
1012_nf_paper.pdf, 2006.

[5] A. Acharya, A. Shaikh, R. Tewari, and D. Verma, “MPLS-Based
Rrquest Routing,” Proc. Int’l Workshop Web Caching and Content
Distribution (WCW), 2001.

[6] A. Anagnostopoulos, A. Kirsch, and E. Upfal, “Stability and
Efficiency of a Random Local Load Balancing Protocol,” Proc. Ann.
Symp. Foundations of Computer Science (FOCS), 2003.

[7] M. Bhide, P. Deolasse, A. Katker, A. Panchbudhe, K. Ramamri-
tham, and P. Shenoy, “Adaptive Push-Pull: Disseminating
Dynamic Web Data,” IEEE Trans. Computers, vol. 51, no. 6, June
2002.

[8] V. Castelli, R.E. Harper, P. Heidelberger, S.W. Hunter, K.S.
Trivedi, K. Vaidyanathan, and W.P. Zeggert, “Proactive Manage-
ment of Software Aging,” IBM J. Research and Development, vol. 45,
no. 2, 2001.

[9] M. Castro, P. Druschel, A.-M. Kermarec, and A. Rowstron,
“Scribe: A Large Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE J. Selected Areas in Comm., vol. 20,
no. 8, 2002.

[10] J. Challenger, P. Dantzig, A. Iyengar, M.S. Squillante, and L.
Zhang, “Efficiently Serving Dynamic Data at Highly Accessed
Web Sites,” IEEE/ACM Trans. Networking, vol. 12, no. 2, Apr. 2004.

[11] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K.
Worell, “A Hierarchical Internet Object Cache,” Proc. 1996
USENIX Technical Conf., 1996.

[12] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and K.
Ramamritham, “Proxy-Based Acceleration of Dynamically Gen-
erated Content on the World Wide Web: An Approach and
Implementation,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, 2002.

[13] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” Proc. ACM
SIGCOMM ’98, 1998.

[14] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. Int’l Conf. Very Large Databases (VLDB), 2004.

[15] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar,
“Improving Availability and Performance with Application-
Specific Data Replication,” IEEE Trans Knowledge and Data Eng.,
vol. 17, no. 1, Jan. 2005.

[16] Internet Cache Protocol: Protocol Specification, Version 2, 1997,
http://icp.ircache.net/rfc2186.txt.

[17] A. Iyengar, E. Nahum, A. Shaikh, and R. Tewari, “Web Caching,
Consistency, and Content Distribution,” The Practical Handbook of
Internet Computing, M.P. Singh, ed. Chapmann and Hall/CRC
Press, 2005.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

[18] J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and J.W.
O’Toole, Jr., “Overcast: Reliable Multicasting with an Overlay
Network,” Proc. Fourth Symp. Operating System Design and
Implementation (OSDI), 2000.

[19] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web
Caching with Consistent Hashing,” Proc. Eighth Int’l World Wide
Web Conf., 1999.

[20] W.-S. Li, W.-P. Hsiung, D.V. Kalshnikov, R. Sion, O. Po, D.
Agrawal, and K.S. Candan, “Issues and Evaluations of Caching
Solutions for Web Application Acceleration,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB ’02), 2002.

[21] N. Malouch, Z. Liu, D. Rubenstein, and S. Sahu, “A Graph
Theoretic Approach to Bounding Delay in Proxy-Assisted, End-
System Multicast,” Proc. 10th IEEE Int’l Workshop on Quality of
Service (IWQoS), 2002.

[22] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V.
Jacobson, “Adaptive Web Caching: Towards a New Global
Caching Architecture,” Computer Networks and ISDN Systems,
vol. 30, no. 22-23, Nov. 1998.

[23] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R.
Tewari, “Scalable Consistency Maintenance in Content Distribu-
tion Networks Using Cooperative Leases,” IEEE Trans. Knowledge
and Data Eng., vol. 15, no. 4, July/Aug. 2003.

[24] S. Podlipnig and L. Boszormenyi, “A Survey of Web Cache
Replacement Strategies,” ACM Computing Surveys, vol. 35, no. 4,
Dec. 2003.

[25] M. Rabinovich, Z. Xiao, and A. Aggarwal, “Computing on the
Edge: A Platform for Replicating Internet Applications,” Proc.
Eighth Int’l Workshop Web Content Caching and Distribution, 2003.

[26] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic
Detection of Fragments in Dynamic Web Pages and Its Impact on
Caching,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 6, June
2005.

[27] L. Ramaswamy, L. Liu, and A. Iyengar, “Cache Clouds:
Cooperative Caching of Dynamic Documents in Edge Networks,”
Proc. 25th Int’l Conf. Distributed Computing Systems (ICDCS ’05),
2005.

[28] L. Ramaswamy, L. Liu, and J. Zhang, “Efficient Formation of Edge
Cache Groups for Dynamic Content Delivery,” Proc. Int’l Conf.
Distributed Computing Systems (ICDCS), 2006.

[29] S. Rangarajan, S. Mukherjee, and P. Rodriguez, “User Specific
Request Redirection in a Content Delivery Network,” Proc. Int’l
Workshop Web Content Caching and Distribution (IWCW), 2003.

[30] M.-C. Rosu and D. Rosu, “Kernel Support for Faster Web Proxies,”
Proc. USENIX Ann. Technical Conf., 2003.

[31] S. Shah, K. Ramamritham, and P. Shenoy, “Resilient and
Coherence Preserving Dissemination of Dynamic Data Using
Cooperating Peers,” IEEE Trans. Knowledge and Data Eng., vol. 15,
no. 7, July 2004.

[32] R. Tewari, M. Dahlin, H. Vin, and J. Kay, “Beyond Hierarchies:
Design Considerations for Distributed Caching on the Internet,”
Proc. Int’l Conf. Distributed Computing Systems, 1999.

[33] D. Thaler and C. Ravihsankar, “Using Name-Based Mappings to
Increase Hit Rates,” IEEE/ACM Trans. Networking, vol. 6, no. 1,
Feb. 1998.

[34] V. Valloppillil and K.W. Ross, “Cache Array Routing Protocol
v1.0.,” Internet Draft, 1997.

[35] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar, “Engineering Web
Cache Consistency,” ACM Trans. Internet Technology, vol. 2, no. 3,
Aug. 2002.

[36] J. Yin, L. Alvisi, M. Dahlin, and C. Lin, “Volume Leases for
Consistency in Large-Scale Systems,” IEEE Trans. Knowledge and
Data Eng. (TKDE), vol. 11, no. 4, June 1999.

[37] H. Yu, L. Breslau, and S. Shenker, “A Scalable Web Cache
Consistency Architecture,” Proc. ACM SIGCOMM ’99 Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Comm., 1999.

[38] H. Yu and A. Vahdat, “Design and Evaluation of a Conit-Based
Continuous Consistency Model for Replicated Services,” ACM
Trans. Computer Systems, vol. 20, no. 3, Aug. 2002.

[39] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of Edge Caching/
Offloading for Dynamic Content Delivery,” IEEE Trans. Knowledge
and Data Eng., vol. 16, no. 11, Nov. 2004.

[40] E.W. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” Proc. IEEE INFOCOM, 1996.

Lakshmish Ramaswamy received the PhD
degree in computer science from the Georgia
Institute of Technology. He is an assistant
professor in the Computer Science Department
at the University of Georgia. His research
interests are in distributed computing systems
and data management, including overlay net-
works, systems for generation, caching, and
delivery of dynamic Web content, and efficient
processing of large data sets in distributed

systems. Dr. Ramaswamy is the recipient of the best paper award of
the 13th World Wide Web Conference (WWW ’04) and the 2005 Pat
Goldberg Memorial Best Paper Award. He has served on program
committees of several international conferences and workshops. He is a
member of the IEEE and the IEEE Computer Society.

Ling Liu is an associate professor in the College
of Computing at the Georgia Institute of Tech-
nology. There she directs the research programs
in the Distributed Data Intensive Systems Lab
(DiSL), examining performance, security, priv-
acy, and data management issues in building
large-scale distributed computing systems.
Dr. Liu and the DiSL research group have been
working on various aspects of distributed data
intensive systems, ranging from decentralized

overlay networks, mobile computing and location-based services,
sensor network and event stream processing, to service-oriented
computing and architectures. She has published more than 150 interna-
tional journal and conference articles in the areas of Internet computing
systems, Internet data management, distributed systems, and informa-
tion security. Her research group has produced a number of open
source software systems, among which the most popular ones include
WebCQ and XWRAPElite. Dr. Liu has received distinguished service
awards from both the IEEE and the ACM and has played key leadership
roles on program committee, steering committee, and organizing
committees for several IEEE conferences, including the IEEE Interna-
tional Conference on Data Engineering (ICDE), the IEEE International
Conference on Distributed Computing (ICDCS), the International
Conference on Web Services (ICWS), and the International Conference
on Collaborative Computing (CollaborateCom). Dr. Liu is currently on
the editorial board of several international journals, including the IEEE
Transactions on Knowledge and Data Engineering, the International
Journal of Very Large Database Systems (VLDBJ), and the International
Journal of Web Services Research. Dr. Liu is the recipient of the best
paper award at WWW 2004 and the best paper award at the IEEE
ICDCS 2003, a recipient of 2005 Pat Goldberg Memorial Best Paper
Award, and a recipient of IBM faculty award in 2003 and 2006. Dr. Liu’s
research is primarily sponsored by the US National Science Foundation,
the US Defense Advanced Research Projects Agency, the Department
of Energy, and IBM. She is a member of the IEEE and the IEEE
Computer Society.

Arun Iyengar received the PhD degree in
computer science from the Massachusetts
Institute of Technology. He does research and
development into Web performance and capa-
city planning, caching, storage allocation, and
distributed computing at IBM’s T.J. Watson
Research Center. He is co-editor-in-chief of the
ACM Transactions on the Web, chair of the
IEEE Computer Society’s Technical Committee
on the Internet, chair of IFIP Working Group 6.4

on Internet Applications Engineering, and an IBM Master Inventor. He is
a senior member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RAMASWAMY ET AL.: SCALABLE DELIVERY OF DYNAMIC CONTENT USING A COOPERATIVE EDGE CACHE GRID 17

