
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 1

ASAP: An Adaptive Sampling Approach to Data

Collection in Sensor Networks
Buğra Gedik, Member, IEEE, Ling Liu, Senior Member, IEEE, and Philip S. Yu, Fellow, IEEE

Abstract— One of the most prominent and comprehensive ways
of data collection in sensor networks is to periodically extract raw
sensor readings. This way of data collection enables complex
analysis of data, which may not be possible with in-network
aggregation or query processing. However, this flexibility in data
analysis comes at the cost of power consumption. In this paper
we develop ASAP − an adaptive sampling approach to energy-
efficient periodic data collection in sensor networks. The main
idea behind ASAP is to use a dynamically changing subset of
the nodes as samplers such that the sensor readings of the
sampler nodes are directly collected, whereas the values of the
non-sampler nodes are predicted through the use of probabilistic
models that are locally and periodically constructed. ASAP can be
effectively used to increase the network lifetime while keeping the
quality of the collected data high, in scenarios where either the
spatial density of the network deployment is superfluous relative
to the required spatial resolution for data analysis or certain
amount of data quality can be traded off in order to decrease the
power consumption of the network. ASAP approach consists of
three main mechanisms. First, sensing-driven cluster construction
is used to create clusters within the network such that nodes with
close sensor readings are assigned to the same clusters. Second,
correlation-based sampler selection and model derivation are used
to determine the sampler nodes and to calculate the parameters
of the probabilistic models that capture the spatial and temporal
correlations among the sensor readings. Last, adaptive data
collection and model-based prediction are used to minimize the
number of messages used to extract data from the network. A
unique feature of ASAP is the use of in-network schemes, as
opposed to the protocols requiring centralized control, to select
and dynamically refine the subset of the sensor nodes serving
as samplers and to adjust the value prediction models used
for non-sampler nodes. Such runtime adaptations create a data
collection schedule which is self-optimizing in response to the
changes in the energy levels of the nodes and environmental
dynamics. We present simulation-based experimental results and
study the effectiveness of ASAP under different system settings.

Index Terms— C.2.7.c Sensor networks, C.2.0.b Data commu-
nications, H.2.1.a Data models

I. INTRODUCTION

THE proliferation of low-cost tiny sensor devices (such as

the Berkeley Mote [1]) and their unattended nature of

operation make sensor networks an attractive tool for extracting

and gathering data by sensing real-world phenomena from the

physical environment. Environmental monitoring applications are

expected to benefit enormously from these developments, as

evidenced by recent sensor network deployments supporting such

applications [2], [3]. On the downside, the large and growing

number of networked sensors present a number of unique system

• B. Gedik and P. S. Yu are with the IBM T.J. Watson Research Center, 19

Skyline Dr., Hawthorne, NY 10532. E-mail: {bgedik,psyu}@us.ibm.com.

• L. Liu is with the College of Computing, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA 30332. E-mail: lingliu@cc.gatech.edu.

design challenges, different from those posed by existing com-

puter networks:

(1) Sensors are power-constrained. A major limitation of sensor

devices is their limited battery life. Wireless communication is a

major source of energy consumption, where sensing can also play

an important role [4] depending on the particular type of sensing

performed (e.g. solar radiation sensors [5]). On the other hand,

computation is relatively less energy consuming.

(2) Sensor networks must deal with high system dynamics.

Sensor devices and sensor networks experience a wide range

of dynamics, including spatial and temporal change trends in

the sensed values that contribute to the environmental dynamics,

changes in the user demands that contribute to the task dynamics

as to what is being sensed and what is considered interesting

changes [6], and changes in the energy levels of the sensor

nodes, their location or connectivity that contribute to the network

dynamics.

One of the main objectives in configuring networks of sensors

for large scale data collection is to achieve longer lifetimes for the

sensor network deployments by keeping the energy consumption

at minimum, while maintaining sufficiently high quality and

resolution of the collected data to enable meaningful analysis.

Furthermore, the configuration of data collection should be re-

adjusted from time to time, in order to adapt to changes resulting

from high system dynamics.

A. Data Collection in Sensor Networks

We can broadly divide data collection, a major functionality

supported by sensor networks, into two categories. In event-based

data collection (e.g. REED [7]), the sensors are responsible for

detecting and reporting (to a base node) events, such as spotting

moving targets [8]. Event-based data collection is less demanding

in terms of the amount of wireless communication, since local

filtering is performed at the sensor nodes, and only events are

propagated to the base node. In certain applications, the sensors

may need to collaborate in order to detect events. Detecting com-

plex events may necessitate non-trivial distributed algorithms [9]

that require involvement of multiple sensor nodes. An inherent

downside of event-based data collection is the impossibility of

performing in-depth analysis on the raw sensor readings, since

they are not extracted from the network in the first place.

In periodic data collection, periodic updates are sent to the

base node from the sensor network, based on the most recent

information sensed from the environment. We further classify

this approach into two. In query-based data collection, long

standing queries (also called continuous queries [10]) are used

to express user or application specific information interests and

these queries are installed “inside” the network. Most of the

schemes following this approach [11], [12] support aggregate

queries, such as minimum, average, and maximum. These types of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 2

queries result in periodically generating an aggregate of the recent

readings of all nodes. Although aggregation lends itself to simple

implementations that enable complete in-network processing of

queries, it falls short in supporting holistic aggregates [11] over

sensor readings, such as quantiles. Similar to the case of event-

based data collection, the raw data is not extracted from the

network and complex data analysis that requires integration of

sensor readings from various nodes at various times cannot be

performed with in-network aggregation.

The most comprehensive way of data collection is to extract

sensor readings from the network through periodic reporting

of each sensed value from every sensor node1. This scheme

enables arbitrary data analysis at a sensor stream processing

center once the data is collected. Such increased flexibility in

data analysis comes at the cost of high energy consumption due to

excessive communication and consequently decreases the network

lifetime. In this paper we develop ASAP − an adaptive sampling

approach to energy efficient periodic data collection. The main

idea behind ASAP is to use a carefully selected, dynamically

changing subset of nodes (called sampler nodes) to sense and

report their values and to predict the values of the rest of the

nodes using probabilistic models. Such models are constructed by

exploiting both spatial and temporal correlations existent among

the readings of the sensor nodes. Importantly, these models are

locally constructed and revised in order to adapt to changing

system dynamics.

B. Perspective Place in Related Literature

Before presenting the contributions of this paper, we will first

put our work into perspective with respect to previous work in

the area of model-based data collection.

Model-based data collection is a technique commonly applied

to reduce the amount of communication required to collect sensor

readings from the network or to optimize the sensing schedules

of nodes to save energy. Examples include the BBQ [4] and

Ken [13] sensor data acquisition systems. There are two main

processes involved in model-based data collection. These are

the probabilistic model construction and the model-based value

prediction. However, different approaches differ in terms of the

kinds of correlations in sensor readings that are being modeled,

as well as with regard to where in the system and how the model

construction and prediction are performed. According to the the

first criterion, we can divide the previous work in this area into

two categories: intra-node modeling and inter-node modeling.

In intra-node modeling, correlations among the readings of

different type sensors on the same node are modeled, such as

the correlations between the voltage and temperature readings

within a multi-sensor node. For instance, BBQ [4] models these

intra-node correlations and creates optimized sensing schedules

in which low cost sensor readings are used to predict the values

of the high cost sensor readings. The strong correlations among

the readings of certain sensor types enable accurate prediction

in BBQ. In the context of intra-node correlations, model-based

prediction support for databases [14] and attribute correlation-

aware query processing techniques [15] have also been studied.

In inter-node modeling, correlations among the readings of

same type sensors on different but spatially close-by nodes are

modeled. For instance, Ken [13] uses the spatial and temporal

1Sometimes referred to as SELECT * queries [13].

correlations among the sensor node readings to build a set of prob-

abilistic models, one for each correlated cluster of nodes. Such

models are used by the cluster heads within the sensor network to

suppress some of the sensor readings that can be predicted at the

server side using the constructed models, achieving data collection

with low messaging overhead but satisfactory accuracy.

In this paper our focus is on inter-node modeling, which can

also be divided into two sub-categories based on where in the sys-

tem the probabilistic models are constructed. In centralized model

construction, the probabilistic models as well as the node clusters

corresponding to these probabilistic models are constructed on the

server or base node side, whereas in localized model construction

the models are locally discovered within the sensor network in

a decentralized manner. Ken [13] takes the former approach. It

uses historical data from the network to create clusters, select

cluster heads, and build probabilistic models. This approach is

suitable for sensor network deployments with low level of system

dynamics, since the probabilistic models are not updated once

they are built.

ASAP promotes in-network construction of probabilistic models

and clusters. There are two strong motivations for this. First,

when the environmental dynamics are high the probabilistic

models must be revised or re-constructed. A centralized approach

will introduce significant messaging overhead for keeping the

probabilistic models up-to-date, as it will later be proven in

this paper. Second, the energy levels of nodes will likely differ

significantly due to the extra work assigned to the cluster head

nodes. As a result, the clusters may need to be re-constructed

to balance the energy levels of nodes, so that we can keep the

network connectivity high and achieve a longer network lifetime.

Localized approaches to model construction are advantageous

in terms of providing self-configuring and self-optimizing ca-

pabilities with respect to environmental dynamics and network

dynamics. However, they also create a number of challenges due

to decentralized control and lack of global knowledge. In partic-

ular, ASAP needs decentralized protocols for creating clusters to

facilitate local control and utilize the local control provided by

these clusters to automatically discover a set of subclusters that

are formed by nodes sensing spatially and temporally correlated

values, making it possible to construct probabilistic models in

an in-network and localized manner. ASAP achieves this through

a three-phase framework that employs localized algorithms for

generating and executing energy-aware data collection schedules.

The rest of this paper is organized as follows. In Section II, we

give a basic description of our system architecture and provide

an overview of the algorithms involved in performing adaptive

sampling. In Sections III, IV, and V, we describe the main

components of our solution in turn, namely (i) sensing-driven

cluster construction, (ii) correlation-based sampler selection and

model derivation, and (iii) adaptive data collection with model-

based prediction. Discussions are provided in Section VI. In

Section VII, we present several results from our performance

study. We compare our work with the related work in Section VIII

and conclude in Section IX.

II. SYSTEM MODEL AND OVERVIEW

We describe the system model and introduce the basic con-

cepts through an overview of the ASAP architecture and a brief

discussion on the set of algorithms employed. For reference

convenience, the set of notations used in the paper are listed in



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 3

Fig. 1. Network Architecture

Tables I, II, III, and IV. Each table lists the notations introduced

in its associated section.

A. Network Architecture

We design our adaptive sampling-based data collection frame-

work using a three-layer network architecture. The first and basic

layer is the wireless network formed by N sensor nodes and a

data collection tree constructed on top of the network. We denote

a node in the network by pi, where i ∈ {1, . . . , N}. Each node is

assumed to be able to communicate only with its neighbors, that

is, the nodes within its communication range. The set of neighbor

nodes of node pi is denoted by nbr(pi). The nodes that can

communicate with each other form a connectivity graph. Figure 1

depicts a segment from a network of hundred sensor nodes. The

edges of the connectivity graph are shown with light blue lines

(light gray in grayscale). Sensor nodes use a data collection tree

for the purpose of propagating their sensed values to a base node.

The base node is also the root of the data collection tree. This tree

is formed in response to a data collection request, which starts the

data collection process. In Figure 1, base node is the shaded one

labeled as “56”. The edges of the data collection tree are shown in

red color (dark gray in grayscale) in Figure 1. The data collection

tree can be easily build in a distributed manner, for instance, by

circulating a tree formation message originated from the base

node and making use of a min-hop parent selection policy [16],

or similar algorithms used for in-network aggregation [12], [11].

The second layer of the architecture consists of node clusters,

which partition the sensor network into disjoint regions. Each

node in the network belongs to a cluster and each cluster elects

a node within the cluster to be the cluster head. There is also

a cluster-connection tree with the cluster head as its root node,

used to establish the communication between the cluster head

and the other nodes in the cluster. We associate each node pi

with a cluster head indicator hi, i ∈ {1, . . . , N}, to denote the

cluster head node of the cluster that node pi belongs to. The set of

cluster head nodes are denoted by H , and is defined formally as

H = {pi| hi = pi}. Note that hi = pi implies that pi is a cluster

head node (of cluster i). A cluster with pi as its head node is

denoted by Ci and is defined as the set of nodes that belong to it,

including its cluster head node pi. Formally, Ci = {pj | hj = pi}.

Given a node pj has pi as its cluster head (hj = pi), we say pj is

in Ci (pj ∈ Ci). A cluster is illustrated on the upper left corner of

Notation Meaning

N Total number of nodes in the network

pi ith node in the network

nbr(pi) Neighbors of node pi in the connectivity graph

ei(t) Energy left at node pi at time t

hi Cluster head node of the cluster that node pi belongs to

H Set of cluster head nodes in the network

Ci Set of nodes in the cluster with head node pi

Gi Set of subclusters in cluster Ci, where Gi(j) is
the set of nodes in the jth subcluster in Gi

Ki Number of subclusters in Gi, also denoted as |Gi|
Si Data collection schedule for cluster Ci, where Si[pj ] is

the status (sampler/non-sampler) of node pj in Si

TABLE I

NOTATIONS FOR NETWORK ARCHITECTURE

Figure 1 with a closed line covering the nodes that belong to the

cluster. The cluster head node is drawn in bold and is labeled as

“12”. An example cluster-connection tree is shown in the figure,

where its edges are drawn in dark blue (using dashed lines).

The third layer of our architecture is built on top of the node

clusters in the network, by further partitioning each node cluster

into a set of subclusters. Each node in the network belongs to a

subcluster. The set of subclusters in Ci is denoted by Gi, where

the number of subclusters in Ci is denoted by Ki where Ki =

|Gi|. A subcluster within Gi is denoted by Gi(j), j ∈ {1, . . . , Ki},

and is defined as the set of nodes that belong to the jth subcluster

in Gi. Given a node cluster Ci, only the head node pi of this

cluster knows all its subclusters. Thus the subcluster information

is local to the cluster head node pi and is transparent to other

nodes within the cluster Ci. In Figure 1 we show four subclusters

for the node cluster of head node “12”. The subclusters are circled

with closed dashed lines in the figure.

A key feature of ASAP is that, not all of the nodes in the

network need to sense and report their readings to the base node

via the data collection tree. One of the design ideas is to partition

the node cluster in such a way that we can elect a few nodes within

each subcluster as the sampling nodes and create a probabilistic

model to predict the values of other nodes within this subcluster.

From now on, we refer to the nodes that do sense and report to

the base node as sampler nodes. In Figure 1 sampler nodes are

marked with double circled lines (i.e., nodes labeled “3”, “11”,

“21”, and “32”). For each cluster Ci there exists a data collection

schedule Si, which defines the nodes that are samplers in this

node cluster. We use the Boolean predicate denoted by Si[pj ] as

an indicator that defines whether the node pj ∈ Ci is a sampler

or not. We use the [] notation whenever the indexing is by nodes.

B. Adaptive Sampling-based Data Collection Overview

We give an overview of the three main mechanisms that form

the crux of the ASAP approach. Detailed descriptions of these

mechanism are provided in the subsequent sections.

The first mechanism is to construct clusters within the network.

This is achieved by the sensing-driven cluster construction algo-

rithm, that is executed periodically at every τc seconds, in order to

perform cluster refinement by incorporating changes in the energy

level distribution and the sensing behavior changes of the nodes.

We call τc the clustering period. The node clustering algorithm

performs two main tasks − cluster head selection and cluster

formation. The cluster head selection component is responsible



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 4

for defining the guidelines on how to choose certain number of

nodes in the network to serve as cluster heads. An important

design criterion for cluster head selection is to make sure that on

the long run the job of being a cluster head is evenly distributed

among all the nodes in the network to avoid burning out the

battery life of certain sensor nodes too early. The cluster formation

component is in charge of constructing clusters according to two

metrics. First, nodes that are similar to each other in terms of their

sensor readings in the past should be clustered into one group.

Second, nodes that are clustered together should be close to each

other in terms of network hops. The first metric is based on value

similarity of sensor readings, which is a distinguishing feature

compared to naive minimum-hop based cluster formation, where

a node joins the cluster that has the closest cluster head in terms

of network hops.

The second mechanism is to create the subclusters for each of

the node clusters. The goal of further dividing the node clusters

into subclusters is to facilitate the selection of the nodes to serve

as samplers and the generation of the probabilistic models for

value predication of non-sampler nodes. This is achieved by

the correlation-based sampler selection and model derivation

algorithm that is executed periodically at every τu seconds. τu

is called the schedule update period. Concretely, given a node

cluster, the cluster head node carries out the sampler selection

and model derivation task locally in three steps. In the first step,

the cluster head node uses infrequently sampled readings from

all nodes within its cluster to capture the spatial and temporal

correlations in sensor readings and calculate the subclusters so

that the nodes whose sensor readings are highly correlated are put

into the same subclusters. In the second step, these subclusters

are used to select a set of sampler nodes such that there is at least

one sampler node selected from each subcluster. This selection

of samplers forms the sampling schedule for the cluster. We

introduce a system-wide parameter σ ∈ (0, 1] to define the average

fraction of nodes that should be used as samplers. σ is called

the sampling fraction. Once the sampler nodes are determined,

only these nodes report sensor readings to the base node and

the values of the non-sampler nodes will be predicted at the

processing center (or the base node) using probabilistic models

that are constructed in an in-network manner for each subcluster

and reported to the base node. Thus, the third step here is to

construct and report a probabilistic model for each subcluster

within the network. We introduce a system-supplied parameter

β, which defines the average size of the subclusters. β is called

the subcluster granularity and its setting influences the size and

number of the subclusters used in the network.

The third mechanism is to collect the sensed values from the

network and to perform the prediction after the sensor readings

are received. This is achieved by the adaptive data collection and

model-based prediction algorithm. The adaptive data collection

component works in two steps: (1) Each sampler node senses

a value every τd seconds, called the desired sampling period.

τd sets the temporal resolution of the data collection. (2) To

empower ASAP with self-adaptation, we also need to periodically

but infrequently collect (at the cluster heads) sensor readings from

all nodes within a cluster. Concretely, at every τf seconds (τf

is a multiple of τd) all nodes perform sensing. These readings

are collected (through the use of cluster-connection trees) and

used by the cluster head nodes, aiming at incorporating the

newly established correlations among the sensor readings into

Notation Meaning

si Head selection probability

ri Round counter of node pi used for clustering

TTL Max. number of hops a cluster formation message can travel

µi Mean of the sensor readings node pi has sensed

Ti Smallest hop distances from the cluster heads in proximity of
pi, as known to pi during cluster formation

Vi Sensor reading means of the cluster heads in proximity of pi,
as known to pi during cluster formation

Zi Attraction scores for the cluster heads in proximity of pi,
where Zi[pj ] is the attraction score for node pj ∈ H

fc Cluster count factor

α Data importance factor

τc Clustering period

TABLE II

NOTATIONS FOR SENSING-DRIVEN CLUSTERING

the decision making process of the correlation-based sampler

selection and model derivation algorithm. τf is a system-supplied

parameter, called the forced sampling period. The model-based

prediction component is responsible for estimating the values of

the non-sampler nodes within each subcluster, using the readings

of the sampler nodes and the parameters of the probabilistic

models constructed for each subcluster.

III. SENSING-DRIVEN CLUSTER CONSTRUCTION

The goal of sensing-driven cluster construction is to form a

network organization that can facilitate adaptive sampling through

localized algorithms, while achieving the global objectives of

energy-awareness and high quality data collection. In particular,

clusters help perform operations such as sampler selection and

model derivation in an in-network manner. By emphasizing on

sensing-driven clustering, it also helps to derive better prediction

models to increase the prediction quality.

A. Cluster Head Selection

During the cluster head selection phase, nodes decide whether

they should take the role of a cluster head or not. Concretely,

every node is initialized not to be a cluster head and does not have

an associated cluster in the beginning of a cluster head selection

phase. A node pi first calculates a value called the head selection

probability, denoted by si. This probability is calculated based

on two factors. The first one is a system-wide parameter called

the cluster count factor, denoted by fc. It is a value in the range

(0,1] and defines the average fraction of nodes that will be selected

as cluster heads. The factors that can affect the decision on the

number of clusters and thus the setting of fc include the size

and density of the network. The second factor involved in the

setting of si is the relative energy level of the node. We denote

the energy available at node pi at time t as ei(t). The relative

energy level is calculated by comparing the energy available at

node pi with the average energy available at the nodes within its

one hop neighborhood. The value of the head selection probability

is then calculated by multiplying the cluster count factor with the

relative energy level. Formally,

si = fc ∗
ei(t) ∗ (|nbr(pi)| + 1)

ei(t) +
P

pj∈nbr(pi)
ej(t)

.

This enables us to favor nodes with higher energy levels for

cluster head selection. Once si is calculated, node pi is chosen as



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 5

a cluster head with probability si. If selected as a cluster head, pi

sets hi to pi indicating that it now belongs to the cluster with head

pi (itself) and also increments its round counter, denoted by ri to

note that a new cluster has been selected for the new clustering

round. If pi is not selected as a cluster head, it waits for some time

to receive cluster formation messages from other nodes. If no such

message is received, it repeats the whole process starting from

the si calculation. Considering most realistic scenarios governing

energy values available at nodes and practical settings of fc (<

0.2), this process results in selecting ≈ fc ∗ N cluster heads.

B. Cluster Formation

The cluster formation phase starts right after the cluster head

selection phase. It organizes the network of sensors into node

clusters in two major steps: message circulation and cluster

engagement.

1) Message Circulation: This step involves the circulation of

cluster formation messages within the network. These messages

are originated at cluster head nodes. Once a node pi is chosen

to be a cluster head, it prepares a message m to be circulated

within a bounded number of hops, and structures the message m

as follows. It sets m.org to pi. This field represents the originator

of the cluster formation message. It sets m.ttl to TTL − a system-

wide parameter that defines the maximum number of hops this

message can travel within the network. This field indicates the

number of remaining hops the message can travel. It sets m.rnd

to its round counter ri. It sets m.src to pi, indicating the sender

of the message. Finally, it sets m.dmu to µi. Here, µi denotes

the mean of the sensor readings node pi has sensed during the

time period preceding this round (ri) of cluster formation. The

message m is then sent to all neighbors of node pi.

Upon reception of a message m at a node pi, we first compare

the rnd field of the message to pi’s current round counter ri. If

m.rnd is smaller than ri, we discard the message. If m.rnd is

larger than ri, then this is the first cluster formation message pi

has received for the new round. As a result, we increment ri to

indicate that node pi is now part of the current round. Moreover,

we initialize two data structures, denoted by Ti and Vi. Both are

initially empty. Ti[pj ] stores the shortest known hop count from

a cluster head node pj to node pi, if a cluster formation message

is received from pj . Vi[pj ] stores the dmu field of the cluster

formation message that originated from the head node pj and

reached pi. Once the processing of the rnd field of the message

is over, we calculate the number of hops this message traveled, by

investigating the ttl field, which yields the value 1+TTL−m.ttl.

If Ti[m.org] is not empty (meaning this is not the first message

we received in this round that originated from node m.org) and

T [m.org] is smaller than or equal to the number of hops the

current message has traveled, we discard the message. Otherwise,

we set T [m.org] to 1 + TTL − m.ttl and Vi[m.org] to m.dmu.

Once Ti and Vi are updated with the new information, we modify

and forward the message to all neighbors of pi, except the node

specified by src field of the message. The modification on the

message involves decrementing the ttl field and setting the src

field to pi.

2) Cluster Engagement: This step involves making a decision

about which cluster to join, once the information on hop distances

and mean sample values are collected. Concretely, a node pi

that is not a cluster head performs the following procedure to

determine its cluster. For each cluster head node from which

it has received a cluster formation message in this round (i.e.

{pj | Ti[pj ] 6= ∅}), it calculates an attraction score, denoted by

Zi[pj ] for the cluster head pj . Then it joins the cluster head with

the highest attraction score, i.e., it sets hi to argmaxpj (Zi[pj ]).

The calculation of the attraction score Zi[pj ] involves two factors:

hop distance factor and data distance factor.

Hop distance factor is calculated as 1 − Ti[pj ]/TTL. It

takes its minimum value 0 when pi is TTL hops away

from pj and its maximum value 1 − 1/TTL when pi is

one hop away from pj . Data distance factor is calculated as

N (Vi[pj ]| µi, ς
2
i )/N (µi| µi, ς

2
i ). Here, N represents the Normal

distribution and ς2i is a locally estimated variance of the sensed

values at node pi. The data distance factor measures the similarity

between the mean of the sensor readings at node pi and the mean

readings at its cluster head node pj . It takes its maximum value of

1 when Vi[pj ] is equal to µi. Its value decreases as the difference

between Vi[pj ] and µi increases, and approaches to 0 when the

difference approaches to infinity. This is a generic way to calculate

the data distance factor and does not require detailed knowledge

about the data being collected. However, if such knowledge is

available, a domain-specific data distance function can be applied.

For instance, if a domain expert can set a system-wide parameter

∆ to be the maximum acceptable bound of the difference between

the mean sample value of a node and the mean sample value of its

head node, then we can specify a distance function f(d) = d/∆,

where d is set to |Vi[pj ]−µi|. In this case, the data distance factor

can be calculated as max(0, 1 − f(d)). With this definition, the

distance factor will take its maximum value of 1 when d is 0,

and its value will linearly decrease to 0 as d reaches ∆.

We compute the attraction score as a weighted sum of the hop

distance factor and the data distance factor, where the latter is

multiplied by a factor called data importance factor, denoted by

α. α takes a value in the range [0,∞). A value of 0 means only

hop distance is used for the purpose of clustering. Larger values

result in a clustering that is more dependent on the distances

between the mean sample values of the nodes.

C. Effect of α on Clustering

We use an example scenario to illustrate the effect of α on

clustering. Figure 2 (a) shows an arrangement of 100 sensor

nodes and the connectivity graph of the sensor network formed

by these nodes. In the background, it also shows a colored image

that represents the environmental values that are sensed by the

nodes. The color on the image changes from tones of red (light

gray in grayscale) to tones of blue (dark gray in grayscale)

moving diagonally from the upper right corner to the lower left

corner, representing a decrease in the sensed values. Figures 2 (b),

(c), and (d) show three different clusterings of the network for

different values of α (0, 10, and 20, respectively), using fc = 0.1

and TTL = 5. Each cluster is shown with a different color.

Nodes within the same cluster are labeled with a unique cluster

identifier. The cluster head nodes are marked with a circle. It is

clearly observed that, with increased α, the clusters tend to align

diagonally, resulting in a clustering where nodes sampling similar

values are assigned to the same clusters. However, this effect is

limited by the value of TTL, since a node cannot belong to a

cluster whose cluster head is more that TTL hops away. We

provide a quantitative study on the effect of α on the quality of

the clustering in Section VII.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 6

1

1
1 1

1

1

1

1
1

11 1

2
2

2
2

3
3

3

4

4

4 4
4 4

44
4

4 4
44

4 4
4

4

4 4
4 4

4 44
4

5

5
5

5 5
5

5 5

5 5

5 5

5
5

5

6

6

6
6

7

7
7 7

7

7 7

7
7 7

7
7

7
7

7

8

8
8

8

8

8

9

9 9 9
9

9
9

9 9 9

9
9

9 9

9 9

1

1
1 1

1
1

1
1

11 1

2
2

2

3
3

3 3

3

4

4

4 4 4

4 4
4 4

44
4

4
44

4
4

4

4 4

4

5

5
5

5 5 5

5 5 5

5 5

5 5
5

5 5

5 5

5

6

6
6 6

6

6 6

6 6
6

6
6

6

6

66

7

7

7

7
7

8

8
8

8

8

9

9 9 9
9

9
9

9 9

9
9

9 9

9 9

1

1
1 1

1

1
1

11

2’
2

2

2 2

3
3

3 3

3

3

4

4

4
4

4

4 4 4 4

4 4
4 4

44
4

4
44

4

4

5

5

5
5

5

5 5 5

5 5 5

5 5

5 5
5

5 5 5
5

5 5
5 5

6

6
6

6

6

6 6
6

6
6

6

6

66

7

7

7

7
7

8

8
8

8

8

9

9 9
9

9

9 9

9

9 9

9

(a) (b)

(c) (d)

Fig. 2. Sensing-driven clustering

From Figure 2(c) and (d), one can observe that combining

hop distance factor and sensor reading similarity captured by

data distance factor, some of the resulting clusters may appear

disconnected. As discussed in the previous section, by creating a

cluster-connection tree for each node cluster, we guarantee that

a cluster head node can reach all nodes in its cluster. When the

number of connected subcomponents within a cluster is large,

the overhead for a cluster head to communicate with nodes

within its cluster will increase. However, the number of connected

subcomponents of a sensing-driven cluster can not be large in

practice due to three major reasons: First, since there is a fixed

TTL value used in cluster creation, the nodes that belong to the

same cluster can not be more than a specified number of hops

away, thus it is not possible that two nodes from different parts of

the network are put within the same cluster just because the values

they are sensing are very similar. Second, the decision to join a

cluster is not only data dependent. Instead, it is a combination

(adjusted by α) of hop distance factor and data distance factor

that defines a node’s affinity to join a cluster. As a result, unless

TTL and α values are both set to impractically large values,

there won’t be many connected components belonging to the

same cluster. Finally, since the sensor readings are expected to

be spatially correlated, it is unlikely to have contiguous regions

with highly heterogeneous sensor readings (which would have

resulted in clusters with many connected subcomponents).

D. Setting of the Clustering Period, τc

The setting of clustering period τc involves two considerations.

First, the cluster head nodes have additional responsibilities when

compared to other nodes, due to sampler selection and model

derivation (discussed in the next section), which causes them

to consume energy at higher rates. Therefore, large τc values

may result in imbalanced power levels and decrease network

connectivity in the long run. Consequently, the value of τc

parameter should be small enough to enable selection of alternate

nodes as cluster heads. However, its value is expected to be much

larger than the desired sampling and forced sampling periods, τd

and τf . Second, time dependent changes in sensor readings may

render the current clustering obsolete with respect to data distance

Notation Meaning

Di Forced samples collected at node pi ∈ H , where Di[pj ] is
the series of consecutive forced samples from node pj ∈ Ci

Ci Correlation matrix at node pi ∈ H , where Ci[pu, pv ] is
the correlation between the series Di[pu] and Di[pv ]

Di Subclustering distance matrix at node pi ∈ H , where
Di[pu, pv ] is the subclustering distance between pu and pv

β Subcluster granularity

σ Sampling fraction

τu Schedule update period

TABLE III

NOTATIONS FOR CORRELATION-BASED SAMPLER SELECTION AND MODEL

DERIVATION

factor. For instance in environmental monitoring applications,

different times of a day may result in different node clusters.

Thus, clustering period should be adjusted accordingly to enable

continued refinement of the clustering structure in response to

different sensing patterns resulting from environmental changes.

IV. CORRELATION-BASED SAMPLER SELECTION AND MODEL

DERIVATION

The goal of sampler selection and model derivation is three

fold. First, it needs to further group nodes within each node

cluster into a set of subclusters such that the sensor readings

of the nodes within each subcluster are highly correlated (thus

prediction is more effective). Second, it needs to derive and report

(to nodes within the cluster) a sampling schedule that defines the

sampler nodes. And third, it needs to derive and report (to the

base node) parameters of the probabilistic models associated with

each subcluster, so that value prediction for non-sampler nodes

can be performed. Correlation-based sampler selection and model

derivation is performed by each cluster head node through a three-

step process, namely subclustering, sampler selection, and model

and schedule reporting. We now describe these steps in detail.

A. Subclustering

Higher correlations among the nodes within a subcluster typi-

cally lead to higher quality sampler selection and higher accuracy

in model-based value prediction of non-sampler nodes. Thus,

given a cluster, the first issue involved in developing an effective

subclustering is to obtain sensor readings from the nodes within

this cluster. The second issue is to compute correlations between

nodes within the cluster and define a correlation distance metric

that can be used as the distance function for subclustering.

1) Forced Sampling: Recall from Section II-B that we have

introduced the concept of forced sampling period. By periodically

collecting sensor readings from all nodes within a cluster (forced

sampling), the cluster head nodes can refine the subclustering

structure when a new run of the subclustering process is started.

Subclustering utilizes the forced samples collected during the

most recent clustering period to generate a new set of subclusters,

each associated with a newly derived correlation-based probabilis-

tic model. We denote the forced samples collected at cluster head

node pi by Di. Di[pj ] denotes the column vector of consecutive

forced samples from node pj , where pj is in the node cluster with

pi as the head (i.e., pj ∈ Ci).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 7

2) Correlation Matrix and Distance Metric: During subclus-

tering, a cluster head node pi takes the following concrete actions.

It first creates a correlation matrix Ci such that for any two

nodes in the cluster Ci, say pu and pv , Ci[pu, pv] is equal to

the correlation between the series Di[pu] and Di[pv], formally

(Di[pu] − E[Di[pu]]) ∗ (Di[pv] − E[Di[pv]])T

L ∗
p

Var(Di[pu]) ∗
p

Var(Di[pv])
,

where L is the length of the series and T represents matrix

transpose. This is a textbook definition [17] of correlation between

two series, expressed using the notations introduced within the

context of this work. Correlation values are always in the range

[−1, 1], -1 and 1 representing strongest negative and positive

correlations. A value of 0 implies two series are not correlated.

As a result, the absolute correlation can be used as a metric to

define how good two nodes are, in terms of predicting one’s sensor

reading from another’s. For each node cluster, we first compute

its correlation matrix using forced samples. Then we calculate

the correlation distance matrix, denoted by Di. Di[pu, pv] is

defined as 1 − |Ci[pu, pv]|. Once we get the distance metric, we

use agglomerative clustering [18] to subcluster the nodes within

cluster Ci into Ki number of subclusters, where Gi(j) denotes

the set of nodes in the jth subcluster. We use a system-wide

parameter called subcluster granularity, denoted by β, to define

the average subcluster size. Thus, Ki is calculated by ⌈|Ci|/β⌉.

We’ll discuss the effects of β on performance later in this section.

The pseudo code for the subclustering step is given within the

SUBCLUSTERANDDERIVE procedure in Alg. 1.

B. Sampler Selection

This step is performed to create or update a data collection

schedule Si for each cluster Ci, in order to select the subset

of nodes that are best qualified to serve as samplers throughout

the next schedule update period τu. After a cluster head node pi

forms the subclusters, it initializes the data collection schedule

Si to zero for all nodes within its cluster, i.e. Si[pj ] = 0, ∀pj ∈
Ci. Then for each subcluster Gi(j), it determines the number of

sampler nodes to be selected from that subcluster based on the

size of the subcluster Gi(j) and the sampling fraction parameter

σ defined in Section II. Nodes with more energy remaining are

preferred as samplers within a subcluster and at least one node

is selected (Si[pj ] = 1 if pj is selected) as a sampler node from

each subcluster. Concretely, we calculate the number of sampler

nodes for a given subcluster Gi(j) by ⌈σ∗|Gi(j)|⌉. Based on this

formula, we can derive the actual fraction of the nodes selected

as samplers. This actual fraction may deviate from the system-

supplied sampling fraction parameter σ. We refer to the actual

fraction of sampler nodes as the effective σ to distinguish it from

the system-supplied σ. The effective σ can be estimated as fc ∗
⌈1/(fc ∗ β)⌉ ∗ ⌈β ∗ σ⌉. The pseudo code for the derivation step is

given within the SUBCLUSTERANDDERIVE procedure in Alg. 1.

C. Model and Schedule Reporting

This is performed by a cluster head node in two steps, after

generating the data collection schedule for each node cluster. First,

the cluster head informs the nodes about their status as samplers or

non-samplers. Then the cluster head sends the summary informa-

tion to the base node, which will be used to derive the parameters

DERIVESCHEDULE(pi ∈ H)

(1) Periodically, every τu seconds

(2) Di: data collected since last schedule derivation, Di[pj ](k) is the kth

forced sample from node pj collected at node pi

(3) (Si, Ci, Gi)← SUBCLUSTERANDDERIVE(pi , Di)

(4) for j ← 1 to |Gi|
(5) Xi,j : Xi,j [pu] = E[Di[pu]]; pu ∈ Gi(j)
(6) Yi,j : Yi,j [pu, pv ] = Ci[pu, pv ] ∗

p

Var(Di[pu]) ∗
p

Var(Di[pv ]); pu, pv ∈ Gi(j), u < v
(7) SENDMSG(base,Xi,j ,Yi,j )

(8) foreach pj ∈ Ci

(9) Di[pj ]← ∅
(10) SENDMSG(pj , Si[pj ])

SUBCLUSTERANDDERIVE(pi ∈ H)

(1) ∀pu, pv ∈ Ci, Ci[pu, pv ]← Correlation between Di[pu], Di[pv ]
(2) ∀pu, pv ∈ Ci, Di[pu, pv ]← 1− |Ci[pu, pv ]|
(3) Ki ← ⌈|Ci|/β⌉ /* number of subclusters */

(4) Cluster the nodes in Ci, using Di as distance metric, into Ki subclusters

(5) Gi(j) : nodes in the jth subcluster within Ci, j ∈ {1, . . . , Ki}
(6) t← Current time

(7) ∀pu ∈ Ci, Si[pu]← 0
(8) for j ← 1 to Ki

(9) a← ⌈σ ∗ |Gi(j)|⌉
(10) foreach pu ∈ Gi(j), in decreasing order of eu(t)
(11) Si[pu]← 1
(12) if a = |{pv| Si[pu] = 1}| then break

(13) return (Si, Ci, Gi)

Alg. 1. Correlation-based Sampler Selection and Model Derivation

of the probabilistic models used in predicting the values of non-

sampler nodes. To implement the first step, a cluster head node

pi notifies each node pj within its cluster about pj’s new status

with regard to being a sampler node or not by sending Si[pj ]

to pj . To realize the second step, for each subcluster Gi(j), pi

calculates a data mean vector for the nodes within the subcluster,

denoted by Xi,j , as follows: Xi,j [pu] = E[Di[pu]], pu ∈ Gi(j). pi

also calculates a data covariance matrix for the nodes within the

subcluster, denoted by Yi,j and defined as follows: Yi,j [pu, pv] =

Ci[pu, pv] ∗
p

Var(Di[pu]) ∗
p

Var(Di[pv]), pu, pv ∈ Gi(j). For

each subcluster Gi(j), pi sends Xi,j , Yi,j and the identifiers of

the nodes within the subcluster, to the base node. This information

will later be used for deriving the parameters of a Multi-Variate

Normal (MVN) model for each subcluster (see Section V). The

pseudo code is given as part of the DERIVESCHEDULE procedure

of Alg. 1.

D. Effects of β on Performance

The setting of the system supplied parameter β (subcluster

granularity) affects the overall performance of an ASAP-based

data collection system, especially in terms of sampler selection

quality, value predication quality, messaging cost, and energy

consumption. Intuitively, large values of β may decrease the

prediction quality, because it will result in large subclusters with

potentially low overall correlation between its members. On the

other hand, too small values will decrease the prediction quality,

since the opportunity to exploit the spatial correlations fully will

be missed with very small β values. Regarding the messaging cost

of sending model derivation information to the base node, one

extreme case is where each cluster has one subcluster (very large

β). In this case, the covariance matrix may become very large and

sending it to the base station may increase the messaging cost and

have a negative effect on the energy-efficiency. In contrast, smaller

β values will result in a lower messaging cost, since covariance



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 8

Notation Meaning

Xi,j Data mean vector for nodes in Gi(j), where Xi,j [pu] is
the mean of the forced samples from node pu ∈ Gi(j).

Yi,j Data covariance matrix for nodes in Gi(j). Yi,j [pu, pv ]
is the covariance between the series Di[pu] and Di[pv ]

U+

i,j Set of nodes belonging to Gi(j) that are samplers

U−i,j Set of nodes belonging to Gi(j) that are not samplers

W+

i,j Set of last reported sensor readings of nodes in U+

i,j

W−

i,j Set of predicted sensor readings of nodes in U−i,j

τd Desired sampling period

τf Forced sampling period

TABLE IV

NOTATIONS FOR ADAPTIVE DATA COLLECTION AND MODEL-BASED

PREDICTION PARAMETERS

values of node pairs belonging to different subclusters will not be

reported. Although the second dimension favors a small β value,

decreasing beta will increase the deviation of effective σ from the

system specified σ, introducing another dimension. For instance,

having β = 2 will result in a minimum effective σ of around

0.5, even if σ is specified much smaller. This is because each

subcluster must have at least one sampler node. Consequently,

the energy saving expected when σ is set to a certain value is

dependent on the setting of β. In summary, small β values can

make it impossible to practice high energy saving/low prediction

quality scenarios. We investigate these issues quantitatively in our

experimental evaluation (see Section VII).

E. Setting of the Schedule Update Period, τu

The schedule update period τu is a system supplied parameter

and it defines the time interval for re-computing the subclusters

of a node cluster in the network. Several factors may affect the

setting of τu. First, the nodes that are samplers consume more

energy compared to non-samplers, since they perform sensing

and report their sensed values. Consequently, the value of τu

parameter should be small enough to enable selection of alternate

nodes as samplers through the use of energy-aware schedule

derivation process, in order to balance the power levels of the

nodes. Moreover, such alternate node selections help in evenly

distributing the error of prediction among all the nodes. As a re-

sult, τu is provisioned to be smaller compared to τc, so that we can

provide fine-grained sampler re-selection without much overhead.

Second, the correlations among sensor readings of different nodes

may change with time and deteriorate the prediction quality. As a

result, the schedule update period should be adjusted accordingly,

based on the dynamics of the application at hand. If the rate at

which the correlations among the sensors change is extremely

high for an application, then the sub-clustering step may need

to be repeated frequently (small τu). This can potentially incur

high messaging overhead. However, it is important to note that

ASAP still incurs less overhead compared to centralized model-

based prediction frameworks, since the model parameters are re-

computed within the network in a localized manner.

V. ADAPTIVE DATA COLLECTION AND MODEL-BASED

PREDICTION

ASAP achieves energy efficiency of data collection services by

collecting sensor readings from only a subset of nodes (sampler

nodes) that are carefully selected and dynamically changing (after

every schedule update period, τu). The values of non-sampler

nodes are predicted using probabilistic models whose parameters

are derived from the recent readings of nodes that are spatially

and temporally correlated. The energy saving is a result of smaller

number of messages used to extract and collect data from the

network, which is a direct benefit of smaller number of sensing

operations performed. Although all nodes have to sense after

every forced sampling period (recall that these readings are used

for predicting the parameters of MVN models for the subclusters),

these forced samples do not propagate up to the base node, and are

collected locally at cluster head nodes. Instead, only a summary

of the model parameters are submitted to the base node after each

correlation-based model derivation step.

In effect, one sensor value for each node is calculated at the

base node (or at the sensor stream processing center). However,

a sensor value comes from either a direct sensor reading or a

predicted sensor reading. If a node pi is a sampler, i.e. Sj [pi] = 1

where hi = pj , it periodically reports its sensor reading to the

base node using the data collection tree, i.e. after every desired

sampling period τd, except when forced sampling and desired

sampling periods coincide (recall that τf is a multiple of τd).

In the latter case, the sensor reading is sent to the cluster head

node hi using the cluster-connection tree, and is forwarded to

the base node from there. If a node pi is a non-sampler node,

i.e. Sj [pi] = 0 where hi = pj , then it only samples after every

forced sampling period, and its sensor readings are sent to the

cluster head node hi using the cluster-connection tree and are not

forwarded to the base node. The pseudo code for this is given by

SENSDATA procedure in Alg. 2.

A. Calculating predicted sensor values

The problem of predicting the sensor values of non-sampler

nodes can be described as follows. Given a set of sensor values

belonging to the same sampling step from sampler nodes within a

subcluster Gi(j), how can we predict the set of values belonging

to non-sampler nodes within Gi(j), given the mean vector Xi,j

and covariance matrix Yi,j for the subcluster. We denote the

set of sampler nodes from subcluster Gi(j) by U+
i,j , defined as

{pu| pu ∈ Gi(j), Si[pu] = 1}. Similarly, we denote the set of non-

sampler nodes by U−i,j , defined as {pu| pu ∈ Gi(j), Si[pu] = 0}.

Let W+
i,j be the set of sensor values from the same sampling step,

received from the sampler nodes in U+
i,j . Using a MVN model to

capture the spatial and temporal correlations within a subcluster,

we utilize the following theorem from statistical inference [17],

to predict the values of the non-sampler nodes:

Theorem 1: Let X be a MVN distributed random variable with

mean µ and covariance matrix Σ. Let µ be partitioned as

»

µ1

µ2

–

and Σ partitioned as

»

Σ11 Σ12

Σ21 Σ22

–

. According to this, X is

also partitioned as X1 and X2. Then the distribution of X1 given

X2 = A is also MVN with mean µ∗ = µ1 +Σ12 ∗Σ−1
22 ∗ (A−µ2)

and covariance matrix Σ∗ = Σ11 − Σ12 ∗ Σ−1
22 ∗ Σ21.

In accordance with the theorem, we construct µ1 and µ2 such

that they contain the mean values in Xi,j that belong to nodes in

U−i,j and U+
i,j , respectively. A similar procedure is performed to

construct Σ11, Σ12, Σ21, and Σ22 from Yi,j . Σ11 contains a subset

of Xi,j which describes the covariance among the nodes in U−i,j ,

and Σ22 among the nodes in U+
i,j . Σ12 contains a subset of Xi,j

which describes the covariance between the nodes in U−i,j and



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 9

SENSDATA(pi)

(1) if Sj [pi] = 0, where hi = pj

(2) Periodically, every τf seconds

(3) di ← SENSE()

(4) SENDMSG(hi, di)

(5) else Periodically, every τd seconds

(6) di ← SENSE()

(7) t← Current time

(8) if mod(t, τf ) = 0
(9) SENDMSG(hi, di)

(10) else

(11) SENDMSG(base, di)

PREDICTDATA(i, j, U+, U−, W+)

U+ = {p
u
+
1

, . . . , p
u
+

k

} : set of sampler nodes in Gi(j)

U− = {p
u
−

1

, . . . , p
u
−

l

} : set of non-sampler nodes in Gi(j)

W+ : W+(a), a ∈ {1, . . . , k} is the value reported by node p
u
+
a

(1) Xi,j : mean vector for Gi(j)
(2) Yi,j : covariance matrix for Gi(j)
(3) for a← 1 to l
(4) µ1(a)← Xi,j [p

u
−

a
]

(5) for b← 1 to l, Σ11(a, b)← Yi,j [p
u
−

a
, p

u
−

b

]

(6) for b← 1 to k, Σ12(a, b)← Yi,j [p
u
−

a
, p

u
+

b

]

(7) for a← 1 to k
(8) µ2(a)← Xi,j [p

u
+
a

]

(9) for b =← 1 to k, Σ22(a, b)← Yi,j [p
u
+
a

, p
u
+

b

]

(10) µ∗ = µ1 + Σ12 ∗ Σ−1

22
∗ (W+ − µ2)

(11) Σ∗ = Σ11 − Σ12 ∗ Σ−1

22
∗ ΣT

12

(12) Use N (µ∗, Σ∗) to predict values of nodes in U−

Alg. 2. Adaptive Data Collection and Model-based Prediction

U+
i,j , and Σ21 is its transpose. Then the theorem can be directly

applied to predict the values of non-sampler nodes U−i,j , denoted

by W−i,j . W−i,j can be set to µ∗ = µ1 + Σ12 ∗Σ−1
22 ∗ (W+

i,j − µ2),

which is the maximum likelihood estimate, or N (µ∗, Σ∗) can

be used to predict the values with desired confidence intervals.

We use the former in this paper. The details are given by the

PREDICTDATA procedure in Alg. 2.

B. Prediction Models

The detailed algorithm governing the prediction step can

consider alternative inference methods and/or statistical models

with their associated parameter specifications, in addition to the

prediction method described in this section and the Multi-Variate

Normal model used with data mean vector and data covariance

matrix as its parameters.

Our data collection framework is flexible enough to accommo-

date such alternative prediction methodologies. For instance, we

can keep the MVN model and change the inference method to

Bayesian inference. This can provide significant improvement in

prediction quality if prior distributions of the sensor readings are

available or can be constructed from historical data. This flexi-

bility allows us to understand how different statistical inference

methods may impact the quality of the model-based prediction.

We can go one step further and change the statistical model used,

as long as the model parameters can be easily derived locally at

the cluster heads and are compact in size.

C. Setting of the Forced and Desired Sampling Periods, τf , τd

The setting of the forced sampling period τf involves three

considerations. First, increased number of forced samples (thus

smaller τf ) is desirable, since it can improve the ability to capture

correlations in sensor readings better. Second, large number of

forced samples can cause the memory constraint on the sensor

nodes to be a limiting factor, since the cluster head nodes are

used to collect forced samples. Pertaining to this, a lower bound

on τf can be computed based on the number of nodes in a cluster

and the schedule update period τu. For instance, if we want the

forced samples to occupy an average memory size of M units

where each sensor reading occupy R units, then we should set τf

to a value larger than τu∗R
fc∗M

. Third, less frequent forced sampling

results in smaller set of forced samples, which is more favorable

in terms of messaging cost and overall energy consumption. In

summary, the value of τf should be set taking into account the

memory constraint and the desired trade-off between prediction

quality and network lifetime. The setting of desired sampling

period τd defines the temporal resolution of the collected data

and is application specific.

VI. DISCUSSIONS

In this section, we discuss a number of issues related with

our adaptive sampling-based approach to data collection in sensor

networks.

Setting of the ASAP Parameters: There are a number of system

parameters involved in ASAP. Most notable are: α, τd, τc, τu, τf ,

and β. We have described various trade-offs involved in setting

these parameters. We now give a general and somewhat intuitive

guideline for a base configuration of these parameters. Among

these parameters, τd is the one that is most straightforward to

set. τd is the desired sampling period and defines the temporal

resolution of the collected data. It should be specified by the

environmental monitoring applications. When domain-specific

data distance functions are used during the clustering phase, a

basic guide for setting α is to set it to 1. This results in giving

equal importance to data distance and hop distance factors. The

clustering period τc and schedule update period τu should be set

in terms of the desired sampling period τd. Other than the cases

where the phenomenon of interest is highly dynamic, it is not

necessary to perform clustering and schedule update frequently.

However, re-clustering and re-assigning sampling schedules help

achieve better load balancing due to alternated sampler nodes

and cluster heads. As a result, one balanced setting for these

parameters is τc = 1 hour and τu = 15 minutes, assuming τd = 1

second. From our experimental results, we conclude that these

values result in very little overhead. The forced sampling period

τf defines the number of the sensor readings used for calculating

the probabilistic model parameters. For the suggested setting of

τu, having τf = 0.5 minutes results in having 30 samples out of

900 readings per schedule update period. This is statistically good

enough for calculating correlations. Finally, β is the subcluster

granularity parameter and based on our experimental results, we

suggest a reasonable setting of β ∈ [5, 7]. Note that both small

and large values for β will degrade the prediction quality.

Messaging Cost and Energy Consumption: One of the most

energy consuming operations in sensor networks is the sending

and receiving of messages, although the energy cost of keeping

the radio in the active state also incurs non-negligible cost [19].

The latter is especially a major factor when the desired sampling

period is large and thus the listening of the radio dominates

the cost in terms of energy consumption. Fortunately, such large

sampling periods also imply great opportunities for saving energy

by turning off the radio. It is important to note that ASAP operates



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 10

in a completely periodic manner. During most of the time there is

no messaging activity in the system, since all nodes sample around

the same time. As a result, application-level power management

can be applied to solve the idle listening problem. There also

exist generic power management protocols for exploiting timing

semantics of data collection applications [20]. For smaller desired

sampling periods, energy saving MAC protocols like S-MAC [21]

can also be employed in ASAP (see Section VII-B).

Practical Considerations for Applicability: There are two

major scenarios in which the application of ASAP in a periodic

data collection tasks is very effective. First, in scenarios where

the spatial resolution of the deployment is higher than the spatial

resolution of the phenomena of interest, ASAP can effectively

increase the network life time. The difference in the spatial

resolution of the deployment and the phenomena of interest

can happen due several factors, including (i) high cost of re-

deployment due to harsh environmental conditions, (ii) differing

levels of interest in the observed phenomena at different times,

and (iii) different levels of spatial resolution of the phenomena

at different times (ex. Biological systems show different levels

of activity during day and night). Second, ASAP can be used to

reduce the messaging and sensing cost of data collection, when

a small reduction in the data accuracy is acceptable in return

for a longer network lifetime. This is achieved by exploiting the

strong spatial and temporal correlations existent in many sensor

applications. The ASAP solution is most appropriate when these

correlations are strong. For instance, environmental monitoring

is a good candidate application for ASAP, whereas anomaly

detection is not.

VII. PERFORMANCE STUDY

We present simulation-based experimental results to study the

effectiveness of ASAP. We divided the experiments into three

sets. The first set of experiments study the performance with

regard to messaging cost. The second set of experiments study

the performance from the energy consumption perspective (using

results from ns2 network simulator). The third set of experiments

study the quality of the collected data (using a real-world dataset).

Further details about the experimental setup are given in Sections

VII-A, VII-B, and VII-C.

For the purpose of comparison, we introduce two variants

of ASAP − central approach and local approach. The central

approach presents one extreme of the spectrum, in which both

the model prediction and the value prediction of non-sampling

nodes are carried out at the base node or processing center

outside the network. This means that all forced samples are

forwarded to the base node to compute the correlations centrally.

In the local approach, value prediction is performed at the cluster

heads instead of the processing center outside the network, and

predicted values are reported to the base node. The ASAP solution

falls in between these two extremes. We call it the hybrid

approach due to the fact that the spatial/temporal correlations

are summarized locally within the network, whereas the value

prediction is performed centrally at the base node. We refer to

the naı̈ve periodic data collection with no support for adaptive

sampling, as no-sampling approach.

A. Messaging Cost

Messaging cost is defined as the total number of messages sent

in the network for performing data collection. We compare the

messaging cost for different values of the system parameters. In

general, the gap between the central and hybrid approaches, with

the hybrid being less expensive thus better, indicates the savings

obtained by only reporting the summary of the correlations

(hybrid approach), instead of forwarding the forced samples up

to the base node (central approach). On the other hand, the gap

between the local and no-sampling approaches, with the local

approach being more expensive, indicates the overhead of cluster

construction, sampler selection and model derivation, and adaptive

data collection steps. Note that the local approach does not have

any savings due to adaptive sampling, since a value (direct or

predicted reading) is reported for all nodes in the system.

The default parameters used in this set of experiments are as

follows. The total time is set to T = 106 units. The total number of

nodes in the network is set to N = 600 unless specified otherwise.

fc is selected to result in an average cluster size of 30 nodes.

Desired and forced sampling periods are set to τd = 1 and τf = 10

time units, respectively. Schedule update period is set to τu = 900

time units and the clustering period is set to τc = 3600 time

units. The sampling fraction is set to σ = 0.25 and the subcluster

granularity parameter is set to β = 10. The nodes are randomly

placed in a 100m x 100m grid and the communication radius of

the nodes is taken as 5m.

1) Effect of the Sampling Fraction, σ: Figure 3(a) plots the

total number of messages as a function of the sampling fraction

σ. We make several observations from the figure. First, the central

and hybrid approaches provide significant improvement over local

and no-sampling approaches. This improvement decreases as σ

increases, since increasing values of σ imply that larger number of

nodes are becoming samplers. Second, the overhead of clustering

as well as schedule and model derivation can be observed by

comparing the no-sampling and local approaches. Note that the

gap between the two is very small and implies that these steps

incur very small messaging overhead. Third, the improvement

provided by the hybrid approach can be observed by comparing

the hybrid and central approaches. We see an improvement

ranging from 50% to 12% to around 0%, while σ increases from

0.1 to 0.5 to 0.9. This shows that the hybrid approach is superior

to the central approach and is effective in terms of the messaging

cost, especially when σ is small.

2) Effect of the Forced Sampling Period, τf : Figure 3 (b)

plots the total number of messages as a function of the desired

sampling period to forced sampling period ratio (τd/τf ). In this

experiment τd is fixed at 1 and τf is altered. We make two

observations. First, there is an increasing overhead in the total

number of messages with increasing τd/τf , as it is observed from

the gap between the local and no-sampling approaches. This is

mainly due to the increasing number of forced samples, which

results in higher number of values from sampler nodes to first visit

the cluster head node and then reach the base node, causing an

overhead compared to forwarding values directly to the base node.

Second, we observe that the hybrid approach prevails over other

alternatives and provides an improvement over central approach,

ranging from 10% to 42% while τd/τf ranges from 0.1 to 0.5.

This is because the forced samples are only propagated up to the

cluster head node with the hybrid approach.

3) Effect of the Total Number of Nodes: Figure 3 (c) plots the

total number of messages as a function of the total number of

nodes. The main observation from the figure is that, the central

and hybrid approaches scale better with increasing number of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 11

0 500 1000 1500
0

1

2

3

4

5

6

7

8

9
x 10

9

# of nodes

#
 o

f 
m

e
s

s
a

g
e

s

hybrid

central

local

no-sm

(c)

(a)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

9

σ (sampling fraction)

#
 o

f 
m

e
s

s
a

g
e

s

hybrid

central

local

no-sm

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

9

τ
d
 / τ

f

#
 o

f 
m

e
s

s
a

g
e

s

hybrid

central

local

no-sm

(b)

20 40 60 80 100 120 140
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

average cluster size (3 x β )

#
 o

f 
m

e
s

s
a

g
e

s

hybrid

central

local

no-sm

x 10
9

(d)

Fig. 3. Messaging cost as a function of: (a) sampling fraction, (b) desired sampling period to forced sampling period ratio,
(c) number of nodes, (d) average subcluster size

nodes, where the hybrid approach keeps its relative advantage

over the central approach (around %25 in this case) for different

network sizes.

4) Effect of the Average Cluster Size: Figure 3 (d) plots the

total number of messages as a function of the average cluster

size (i.e. 1/fc). β is also increased as the average cluster size is

increased, so that the average number of subclusters per cluster

is kept constant (around 3). From the gap between local and no-

sampling approaches, we can see a clear overhead that increases

with the average cluster size. On the other hand, this increase

does not cause an overall increase in the messaging cost of the

hybrid approach until the average cluster size increases well over

its default value of 30. It is observed from the figure that the best

value for the average cluster size is around 50 for this scenario,

where smaller and larger values increase the messaging cost. It is

interesting to note that in the extreme case, where there is a single

cluster in the network, the central and hybrid approaches should

converge. This is observed from the right end of the x-axis.

B. Results on Energy Consumption

We now present results on energy consumption. We used the

ns2 network simulator [22] to simulate the messaging behavior

of the ASAP system. The default ASAP parameters were set in

accordance with the results from Section VII-A. The radio energy

model parameters are taken from [21] (0.0135 Watts for rxPower

and 0.02475 Watts for txPower). Moreover, the idle power of

the radio in listening mode is set to be equal to the rxPower in

receive mode. We used the energy-efficient S-MAC [21] protocol

at the MAC layer, with a duty cycle setting of 0.3. N = 150

nodes were placed in a 50m x 50m area, forming a uniform grid.

The default communication range was taken as 5m. We study

both the impact of the sampling fraction and the node density

(by changing communication range) on the energy consumption

of data collection.

1) Effect of the Sampling Fraction, σ: Figure 4 plots the

average per node energy consumption (in Watts) as a function of

the sampling fraction (σ), for alternative approaches. The results

show that ASAP (the hybrid approach) provides between 25%

to 45% savings in energy consumption compared to the no-

sampling approach, when σ ranges from 0.5 to 0.1. Compare this

to 85% to 50% savings in the number of messages from Figure 3.

The difference is due to the cost of idle listening. However,

given that we have assumed the listening power of the radio is

same with the receiving power, there is still good improvement

provided by the adaptive sampling framework, which can further

be improved with more elaborate power management schemes or

more advanced radio hardware.

2) Effect of Node Density: Figure 5 plots the average per

node energy consumption (in Watts) as a function of the node

density, for alternative approaches. Node density is defined as

the number of nodes in a unit circle, which is the circle formed

around the node that defines the communication range. The

node density is altered by keeping the number of nodes same,

but increasing the communication range without altering the

power consumption parameters of the radio. We observe from

Figure 5 that the improvement provided by ASAP in terms of

per node average energy consumption, compared to that of no-

sampling approach, slightly increases from 38% to 44%, when

the node density increases from 5 nodes to 15 nodes per unit

circle. Again the difference between the local and no-sampling



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 12

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.012

0.014

0.016

0.018

0.020

0.022

0.024

α (sampling fraction)

p
e

r 
n

o
d

e
 e

n
e

rg
y

 c
o

n
s

u
m

p
ti

o
n

 (
W

)

45% = energy savings

43%

39%

36%
35%

32%
29%

28%

25%

hybrid

central

local

no−sm

Fig. 4. Energy consumption as a function of sampling fraction

5 7.5 10 12.5 15

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

node density (nodes per unit circle)

p
e
r 

n
o

d
e
 e

n
e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

W
)

hybrid

central

local

no−sm

0.014

Fig. 5. Energy consumption as a function of node density

approach is negligible, which attests to the small overhead of the

infrequently performed clustering and sub-clustering steps of the

ASAP approach.

C. Data Collection Quality

We study the data collection quality of ASAP through a set of

simulation based experiments using real data. In particular, we

study the effect of the data importance factor α on the quality

of clustering, the effect of α, β and subclustering methodology

on the prediction error, the trade-off between network lifetime

(energy saving) and prediction error, and the load balance in ASAP

schedule derivation. For the purpose of the experiments presented

in this section, 1000 sensor nodes are placed in a square grid

with a side length of 1 unit and the connectivity graph of the

sensor network is constructed assuming that two nodes that are

at most 0.075 units away from each other are neighbors. Settings

of other relevant system parameters are as follows. TTL is set to

5. The sampling fraction σ is set to 0.5. The subcluster granularity

parameter β is set to 5 and fc is set to 0.02 resulting in an average

cluster size of 50. The data set used for the simulations is derived

from the GPCP One-Degree Daily Precipitation Data Set (1DD

Data Set) [23]. It provides daily, global 1x1-degree gridded fields

of precipitation measurements for the 3-year period starting from

January 1997. This data is mapped to our unit square and a sensor

reading of a node at time step i is derived as the average of the

five readings from the ith day of the 1DD data set whose grid

locations are closest to the location of the sensor node (since the

dataset has high spatial resolution).

1) Effect of α on the Quality of Clustering: Figure 6 plots the

average coefficient of variance (CoV) of sensor readings within

the same clusters (with a solid line using the left y-axis), for

different α values. For each clustering, we calculate the average,

maximum, and minimum of the CoV values of the clusters, where

CoV of a cluster is calculated over the mean data values of the

sensor nodes within the cluster. Averages from several clusterings

are plotted as an error bar graph in Figure 6, where the two

ends of the error bars correspond to the average minimum and

average maximum CoV values. Smaller CoV values in sensor

readings imply a better clustering, since our aim is to gather

together sensor nodes whose readings are similar. We observe

that increasing α from 0 to 4 decreases the CoV around 50%,

where further increase in α does not provide improvement for this

experimental setup. To show the interplay between the shape of

the clusters and sensing-driven clustering, Figure 6 also plots the

CoV in the sizes of the clusters (with a dashed line using the right

y-axis). With the hop-based clustering (i.e., α = 0), the cluster

sizes are expected to be more evenly distributed when compared

to the sensing-driven clustering. Consequently, the CoV in the

sizes of the clusters increases with increasing α, implying that

the shape of the clusters are being influenced by the similarity

of the sensor readings. These results are in line with our visual

inspections from Figure 2 in Section III-C.

2) Effect of α on the Prediction Error: In order to observe

the impact of data-centric clustering on the prediction quality, we

study the effect of increasing the data importance factor α on the

prediction error. The second column of Table V lists the mean

absolute deviation (MAD) of the error in the predicted sensor

values for different α values listed in the first column. The value

of MAD relative to the mean of the data values (2.1240) is also

given within the parenthesis in the first column. Although we

observe a small improvement around 1% in the relative MAD

when α is increased from 0 to 4, the improvement is much

more prominent when we examine the higher end of the 90%

confidence interval of the absolute deviation, given in the third

column of Table V. The improvement is around 0.87, which

corresponds to an improvement of around 25% relative to the

data mean.

3) Effect of β on the Prediction Error: As mentioned in

Section IV-D, decreasing subcluster granularity parameter β is

expected to increase effective σ. Higher effective σ values imply

larger number of sampler nodes and thus improves the error in

prediction. Figure 7 illustrates this inference concretely, where the

mean absolute deviation (MAD) in the predicted sensor values and

effective σ are plotted as a function of β. MAD is plotted with a

dashed line and is read from the left y-axis, whereas effective σ

is plotted with a dotted line and is read from the right y-axis. We

see that decreasing β from 10 to 2 decreases MAD around 50%

(from 0.44 to 0.22). However, this is mainly due to the fact that

the average number of sampler nodes is increased by 26% (0.54 to

0.68). To understand the impact of β better and to decouple it from

the number of sampler nodes, we fix effective σ to 0.5. Figure 7

plots MAD as a function of β for fixed effective σ, using a dash-

dot line. It is observed that both small and large β values result

in higher MAD whereas moderate values for β achieve smaller

MAD. This is very intuitive, since small sized models (small



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 13

−1 0 1 2 3 4 5 6
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

C
o

V
 i

n
 s

iz
e

s
 o

f 
d

i!
e

re
n

t 
c

lu
s
te

rs

−1
0

0.5

1

1.5

2

2.5

3

3.5

α (data importance factor)

A
v

e
ra

g
e

 C
o

V
 i

n
 s

e
n

s
o

r 
re

a
d

in
g

s
 w

it
h

in
 s

a
m

e
 c

lu
s
te

rs

Fig. 6. Clustering quality with varying α

Mean Absolute %90 Confidence

α Deviation (Relative) Interval

0 0.3909 (0.1840) [0.0325, 2.5260]

1 0.3732 (0.1757) [0.0301, 2.0284]

2 0.3688 (0.1736) [0.0296, 1.9040]

3 0.3644 (0.1715) [0.0290, 1.7796]

4 0.3600 (0.1695) [0.0284, 1.6552]

TABLE V

ERROR FOR DIFFERENT α VALUES

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

M
e

a
n

 A
b

s
o

lu
te

 D
e

v
ia

ti
o

n

β (subcluster granularity)

 
 

2 4 6 8 10
0.52

0.56

0.6

0.64

0.68

0.7

E
!

e
c

ti
v

e
 

σ

MAD with "xed σ = 0.5

MAD with "xed e!ective σ = 0.5

   e!ective σ

Fig. 7. Effect of β on prediction error

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

M
e

a
n

 A
b

s
o

lu
te

 D
e

v
ia

ti
o

n

σ (sampling fraction)

correlation−based

distance−based

randomized

Fig. 8. MAD with different subclusterings

β) are unable to fully exploit the available correlations between

the sensor node readings, whereas large sized models (large β)

become ineffective due to the decreased amount of correlation

among the readings of large and diverse node groups.

4) Effect of Subclustering on the Prediction Error: This exper-

iment shows how different subclustering methods can affect the

prediction error. We consider three different methods: correlation-

based subclustering (as described in Section IV), distance-based

subclustering in which location closeness is used as the metric for

deciding on subclusters, and randomized subclustering which is a

straw-man approach that uses purely random assignment to form

subclusters. Note that the randomization of the subclustering pro-

cess will result in sampler nodes being selected almost randomly

(excluding the effect of first level clustering and node energy-

levels). Figure 8 plots MAD as a function of σ for these three dif-

ferent methods of subclustering. The results listed in Figure 8 are

averages of large number of subclusterings. We observe that the

randomized and distance-based subclusterings perform up to 15%

and 10% worse respectively, when compared to the correlation-

based subclustering, in terms of the mean absolute deviation of

the error in value predication. The differences between these three

methods in terms of MAD is largest when σ is smallest and

disappears as σ approaches to 1. This is quite intuitive, since

smaller σ values imply that the prediction is performed with

smaller number of sampler node values, and thus gives poorer

results when the subclusterings are not intelligently constructed

using the correlations to result in better prediction.

5) Prediction Error/Lifetime Trade-off: We study the trade-off

between the prediction error and the network lifetime by simu-

lating ASAP with dynamic σ adjustment for different σ reduction

rates. We assume that the main source of energy consumption

in the network is wireless messaging and sensing. We set up

a scenario such that, without ASAP the average lifetime of the

network is T = 100 units. This means that, the network enables

us to collect data with 100% accuracy for 100 time units and

then dies out. For comparison, we use ASAP and experiment with

dynamically decreasing σ as time progresses, in order to gradually

decrease the average energy consumption, while introducing an

increasing amount of error in the collected data. Figure 9 plots

the mean absolute deviation (MAD) as a function of time, for

different σ reduction rates. In the figure T/x, x ∈ {1, 2, 4, 6, 8, 10}
denotes different reduction rates, where σ is decreased by 0.1

every T/x time units. σ is not dropped below 0.1. A negative

MAD value in the figure implies that the network has exceeded

its lifetime. Although it is obvious that the longest lifetime is

achieved with the highest reduction rate (easily read from the

figure), most of the time it is more meaningful to think of lifetime

as bounded by the prediction error. In other words, we define the

ǫ-bounded network lifetime as the longest period during which

the MAD is always below a user defined threshold ǫ. Different

thresholds are plotted as horizontal dashed lines in the figure,

crossing the y-axis. In order to find the σ reduction rate with

the highest ǫ-bounded network lifetime, we have to find the

error line that has the largest x-axis coordinate (lifetime) such

that its corresponding y-axis coordinate (MAD) is below ǫ and

above zero. Following this, the approach with the highest ǫ-

bounded lifetime is indicated over each ǫ line together with the

improvement in lifetime. We observe that higher reduction rates

do not always result in a longer ǫ-bounded network lifetime. For

instance, T/4 provides the best improvement (around 16%) when



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 14

0 20 40 60 80 100 120 140 160 180 200

0

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Time (in epochs)

M
e

a
n

 A
b

so
lu

te
 d

e
v

ia
ti

o
n

 

T

T/2

T/4

T/6

T/8

T/10

T/2, 8%

T/4, 16%

T/6, 24%

T/8, 40%

T/10, 90%

Fig. 9. Prediction error vs. lifetime trade-off

2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

95

100

β

Im
p

ro
v

e
m

e
n

t 
in

 v
a

ri
a

n
ce

 o
f 

sa
m

p
li

n
g

σ = 0.2

σ = 0.4

σ = 0.6

σ = 0.8

Fig. 10. Load balance in schedule derivation

ǫ is around 0.4, whereas T/8 provides the best improvement

(around 40%) when ǫ is around 0.8.

6) Load Balance in Sampler Selection: Although saving bat-

tery life (energy) and increasing average lifetime of the network

through the use of ASAP is desirable, it is also important to

make sure that the task of being a sampler node is equally

distributed among the nodes. To illustrate the effectiveness of

ASAP in achieving the goal of load balance, we compare the

variation in the amount of time nodes have served as a sampler

between our sampler selection scheme and a scenario where the

sampler nodes are selected randomly. The improvement in the

variance (i.e., the percentage of decrease in variance when using

our approach compared to randomized approach) is plotted as a

function of β for different σ values in Figure 10. For all settings,

we observe an improvement above 50% provided by our sampler

selection scheme.

VIII. RELATED WORK

In Section I-A we have discussed the distinction between ASAP

and other types of data collection approaches, such as those

based on event detection [24] and in-network aggregation [11].

In summary, ASAP is designed for energy efficient periodic

collection of raw sensor readings from the network, for the

purpose of performing detailed data analysis that can not be done

using in-network executed queries or locally detected events. The

energy saving is a result of trading-off some level of data accuracy

in return for increased network lifetime, which is achieved by

using a dynamically changing subset of the nodes as samplers.

This is in some ways similar to previously proposed energy

saving sensor network topology formation algorithms, such as

PEAS [25], where only a subset of the nodes are made active,

while preserving the network connectivity. ASAP uses a similar

logic, but in a different context and for a different purpose:

only a subset of the nodes are used to actively sense, while the

quality of the collected data is kept high using locally constructed

probabilistic models to predict the values of the non-sampler

nodes.

In Section I-B we have discussed the relation of ASAP to other

model-based data collection frameworks, such as BBQ [4] and

Ken [13]. In summary, our solution is based on the inter-node

modeling approach like [13], where models are built to capture

and exploit the spatial and temporal correlations among the same

type sensor readings of different nodes. This is unlike BBQ [4],

where multi-sensor nodes are assumed and intra-node correlations

among the readings of different type sensors within the same node

are modeled. Our approach differs from Ken [13] with respect

to where in the system the probabilistic models are constructed.

Ken builds probabilistic models centrally and does not revise

these models under changing system dynamics. We show that for

deployments with high system dynamics, a localized approach

like ours can perform adaptation with small overhead, thanks to

our novel data-centric cluster construction and correlation-based

subclustering algorithms.

There are a number of other recent works [26], [27] that has

considered the trade-off between energy consumption and data

collection quality. In [26] algorithms are proposed to minimize

the sensor node energy consumption in answering a set of user

supplied queries with specified error thresholds. The queries are

answered using uncertainty intervals cached at the server. These

cached intervals are updated using an optimized schedule of

server-initiated and sensor-initiated updates. ASAP is not bound

to queries and collects data periodically, so that both online and

offline applications can make use of the collected data.

Snapshot Queries [27] is another work relevant to ours. In [27],

each sensor node is either represented by one of its neighbors or

it is a representative node. Although this division is similar to

sampler and non-sampler nodes in ASAP, there is a fundamental

difference. The neighboring relationship imposed on represen-

tative nodes imply that the number of representatives is highly

dependent on the connectivity graph of the network. For instance,

as the connectivity graph gets sparse, the number of representative

nodes may grow relative to the total network size. This restriction

does not apply to the number of sampler nodes in ASAP, since the

selection process is supported by a clustering algorithm and is not

limited to one-hop neighborhoods. In [27], representative nodes

predict the values of their dependent neighbors for the purpose

of query evaluation. This can cut down the energy consumption

dramatically for aggregate queries, since a single value will be

produced as an aggregate from the value of the representative

node and the predicted values of the dependent neighbors. How-

ever this local prediction will not support such savings when

queries have holistic aggregates [11] or require collection of

readings from all nodes. Thus, ASAP employs a hybrid approach

where prediction is performed outside the network. Moreover,

the model-based prediction performed in ASAP uses correlation-

based schedule derivation to subcluster nodes into groups based



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 15

on how good these nodes are in predicting each other’s value.

As opposed to this, snapshot queries does not use a model and

instead employs binary linear regression for each representative-

dependent node pair.

Our adaptive sampling approach to energy efficient data collec-

tion in sensor networks uses probabilistic models, whose parame-

ters are locally inferred at the cluster head nodes and are later used

at the base node to predict the values of non-sampler sensor nodes.

Several recent works have also proposed to use probabilistic

inference techniques to learn unknown variables within sensor

networks [28], [29], [30], [31]. In [29], regression models are

employed to fit a weighted combination of basis functions to

the sensor field, so that a small set of regression parameters

can be used to approximate the readings from the sensor nodes.

In [31], probabilistic models representing the correlations between

the sensor readings at various locations are used to perform

distributed calibration. In [30], a distributed fusion scheme is

described to infer a vector of hidden parameters that linearly relate

to each sensor’s reading with a Gaussian error. Finally, in [28] a

generic architecture is presented to perform distributed inference

in sensor networks. The solution employs message passing on

distributed junction-trees, and can be applied to a variety of

inference problems, such as sensor field modeling, sensor fusion,

and optimal control.

The literature includes many works on clustering, sampling,

and prediction. However, the novelty of our approach is in

applying these concepts in the context of sensor networks and

showing that they can be performed in an in-network man-

ner without centralized control. For instance, the first layer of

clustering presented as part of ASAP helps reduce the global

problem into a set of localized problems that can be solved in a

decentralized way using the cluster heads. The model generation

and sampler selection are performed by the cluster heads and

require communication with only the nodes within a cluster. Our

experimental results show that the overall approach significantly

benefits messaging cost of the data collection applications.

IX. CONCLUSION

We introduced an adaptive sampling approach for energy-

efficient periodic data collection in sensor networks, called ASAP.

We showed that ASAP can be effectively used to increase the

network lifetime, while still keeping the quality of the collected

data high. We described three main mechanisms that form the

crux of ASAP. First, sensing-driven cluster construction is used

to create clusters within the network, such that nodes with

close sensor readings are assigned to the same clusters. Second,

correlation-based sampler selection and model derivation is used

to determine the sampler nodes and to calculate the parameters of

the MVN models that capture the correlations among the sensor

readings within same subclusters. Last, adaptive data collection

and model-based prediction is used to minimize the number of

messages used to collect data from the network, where the values

of the non-sampler nodes are predicted at the base node using

the MVN models. Different than any of the previously proposed

approaches, ASAP can revise the probabilistic models through

the use of in-network algorithms with low messaging overhead

compared to centralized alternatives.

Acknowledgment. This work is partially sponsored by grants

from NSF CSR, NSF ITR, NSF CyberTrust, NSF SGER, an IBM

SUR grant, and a grant from AFOSR.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
physical world with pervasive networks,” IEEE Pervasive Computing,
vol. 1, no. 1, January 2002.

[2] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proceedings of

ACM WSNA, 2002.

[3] M. Batalin, M. Rahimi, Y. Yu, S. Liu, G. Sukhatme, and W. Kaiser, “Call
and response: Experiments in sampling the environment,” in Proceedings

of ACM SenSys, 2004.

[4] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
“Model-driven data acquisition in sensor networks,” in Proceedings of

VLDB, 2004.

[5] “Taos Inc. ambient light sensor (ALS),” http://www.taosinc.com
/images/product/document/tsl2550-e58.pdf, December 2004.

[6] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proceedings

of ACM MobiCom, 1999.

[7] D. J. Abadi, S. Madden, and W. Lindner, “REED: Robust, efficient
filtering and event detection in sensor networks,” in Proceedings of

VLDB, 2005.

[8] D. Li, K.Wong, Y. Hu, and A. Sayeed, “Detection, classification, tracking
of targets in micro-sensor networks,” IEEE Signal Processing Magazine,
March 2002.

[9] J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group management
for track initiation and maintenance in target localization applications,”
in Proceedings of IPSN, 2003.

[10] L. Liu, C. Pu, and W. Tang, “Continual queries for internet scale event-
driven information delivery,” IEEE Transactions on Knowledge and Data

Engineering, vol. 11, no. 4, July/August 1999.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networks,” in Proceedings of

USENIX OSDI, 2002.

[12] S. Madden, R. Szewczyk, M. Franklin, and D. Culler, “Supporting
aggregate queries over ad-hoc wireless sensor networks,” in Proceedings

of IEEE WMCSA, 2002.

[13] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Approximate
data collection in sensor networks using probabilistic models,” in Pro-

ceedings of IEEE ICDE, 2006.

[14] A. Deshpande, C. Guestrin, and S. R. Madden, “Using probabilistic mod-
els for data management in acquisitional environments,” in Proceedings

of CIDR, 2005.

[15] A. Deshpande, C. Guestrin, W. Hong, and S. Madden, “Exploiting
correlated attributes in acquisitional query processing,” in Proceedings

of IEEE ICDE, 2005.

[16] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu, “PINCO: A pipelined
in-network compression scheme for data collection in wireless sensor
networks,” in Proceedings of IEEE ICCCN, 2003.

[17] G. Casella and R. L. Berger, Statistical Inference. Duxbury Press, June
2001.

[18] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, August 2000.

[19] “Moteiv. telos revb datasheet,” http://www.moteiv.com/pr/2004-12-09-
telosb.php, December 2004.

[20] O. Chipara, C. Lu, and G.-C. Roman, “Efficient power management
based on application timing semantics for wireless sensor networks,” in
Proceedings of IEEE ICDCS, 2005.

[21] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in Proceedings of IEEE INFOCOM, 2002.

[22] “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/, January
2006.

[23] “Global precipitation climatology project,” http://www.ncdc.noaa.gov
/oa/wmo/wdcamet-ncdc.html, December 2004.

[24] C. I. ans Ramesh Govindan and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks,” in
Proceedings of ACM MobiCom, 2000.

[25] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Peas: A robust energy
conserving protocol for long-lived sensor networks,” in Proceedings of

IEEE ICDCS, 2003.

[26] Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Energy efficient data
collection in distributed sensor environments,” in Proceedings of IEEE

ICDCS, 2004.

[27] Y. Kotidis, “Snapshot queries: Towards data-centric sensor networks,”
in Proceedings of IEEE ICDE, 2005.

[28] M. Paskin and C. Guestrin, “A robust architecture for distributed
inference in sensor networks,” in Proceedings of IEEE IPSN, 2005.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2007 16

[29] C. Guestrin, R. Thibaux, P. Bodik, M. A. Paskin, and S. Madden,
“Distributed regression: An efficient framework for modeling sensor
network data,” in Proceedings of IEEE IPSN, 2004.

[30] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proceedings of IEEE IPSN, 2005.

[31] V. Byckovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “A collabo-
rative approach to in-place sensor calibration,” in Proceedings of IEEE

IPSN, 2003.

Buğra Gedik received the B.S. degree in Computer
Science from the Bilkent University, Ankara, Turkey,
and the Ph.D. degree in Computer Science from
the College of Computing at the Georgia Institute
of Technology, Atlanta, GA, USA. He is with the
IBM Thomas J. Watson Research Center, currently
a member of the Software Tools and Techniques
Group. Dr. Gedik’s research interests lie in data
intensive distributed computing systems, spanning
data-centric overlay networks, mobile and sensor-
based data management, and data stream processing.

His research focus is on developing system-level architectures and techniques
to address scalability problems in distributed continual query systems and
information monitoring applications. He is the recipient of the ICDCS 2003
best paper award. He has served in the program committees of several
international conferences, such as ICDE, MDM, and CollaborateCom. He
was the co-chair of the SSPS’07 workshop and co-PC chair of the DEPSA’07
workshop, both on data stream processing systems.

Ling Liu is an Associate Professor in the College of
Computing at Georgia Institute of Technology. There
she directs the research programs in Distributed
Data Intensive Systems Lab (DiSL), examining per-
formance, security, privacy, and data management
issues in building large scale distributed comput-
ing systems. Dr. Liu and the DiSL research group
have been working on various aspects of distributed
data intensive systems, ranging from decentralized
overlay networks, mobile computing and location
based services, sensor network and event stream

processing, to service oriented computing and architectures. She has published
over 200 international journal and conference articles in the areas of Internet
Computing systems, Internet data management, distributed systems, and
information security. Her research group has produced a number of open
source software systems, among which the most popular ones include WebCQ
and XWRAPElite. Dr. Liu has received distinguished service awards from
both the IEEE and the ACM and has played key leadership roles on program
committee, steering committee, and organizing committees for several IEEE
conferences, including IEEE International Conference on Data Engineering
(ICDE), IEEE International Conference on Distributed Computing (ICDCS),
International Conference on Web Services (ICWS), and International Con-
ference on Collaborative Computing (CollaborateCom). Dr. Liu is currently
on the editorial board of several international journals, including IEEE
Transactions on Knowledge and Data Engineering, International Journal of
Very Large Database systems (VLDBJ). Dr. Liu is the recipient of best paper
award of WWW 2004 and best paper award of IEEE ICDCS 2003, a recipient
of 2005 Pat Goldberg Memorial Best Paper Award, and a recipient of IBM
faculty award in 2003, 2006. Dr. Lius research is primarily sponsored by NSF,
DARPA, DoE, and IBM.

Philip S. Yu received the B.S. Degree in E.E. from
National Taiwan University, the M.S. and Ph.D.
degrees in E.E. from Stanford University, and the
M.B.A. degree from New York University. He is
with the IBM Thomas J. Watson Research Center
and currently manager of the Software Tools and
Techniques group. His research interests include
data mining, Internet applications and technologies,
database systems, multimedia systems, parallel and
distributed processing, and performance modeling.
Dr. Yu has published more than 500 papers in

refereed journals and conferences. He holds or has applied for more than
300 US patents.

Dr. Yu is a Fellow of the ACM and a Fellow of the IEEE. He is associate ed-
itors of ACM Transactions on the Internet Technology and ACM Transactions
on Knowledge Discovery from Data. He is on the steering committee of IEEE
Conference on Data Mining and was a member of the IEEE Data Engineering
steering committee. He was the Editor-in-Chief of IEEE Transactions on
Knowledge and Data Engineering (2001-2004), an editor, advisory board
member and also a guest co-editor of the special issue on mining of databases.
He had also served as an associate editor of Knowledge and Information
Systems. In addition to serving as program committee member on various
conferences, he was the program chair or co-chairs of the IEEE Workshop
of Scalable Stream Processing Systems (SSPS’07), the IEEE Workshop on
Mining Evolving and Streaming Data (2006), the 2006 joint conferences
of the 8th IEEE Conference on E-Commerce Technology (CEC’ 06) and
the 3rd IEEE Conference on Enterprise Computing, E-Commerce and E-
Services (EEE’ 06), the 11th IEEE Intl. Conference on Data Engineering,
the 6th Pacific Area Conference on Knowledge Discovery and Data Mining,
the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, the 2nd IEEE Intl. Workshop on Research Issues on
Data Engineering: Transaction and Query Processing, the PAKDD Workshop
on Knowledge Discovery from Advanced Databases, and the 2nd IEEE Intl.
Workshop on Advanced Issues of E-Commerce and Web-based Information
Systems. He served as the general chair or co-chairs of the 2006 ACM
Conference on Information and Knowledge Management, the 14th IEEE Intl.
Conference on Data Engineering, and the 2nd IEEE Intl. Conference on Data
Mining. He has received several IBM honors including 2 IBM Outstanding
Innovation Awards, an Outstanding Technical Achievement Award, 2 Research
Division Awards and the 88th plateau of Invention Achievement Awards.
He received a Research Contributions Award from IEEE Intl. Conference
on Data Mining in 2003 and also an IEEE Region 1 Award for “promoting
and perpetuating numerous new electrical engineering concepts” in 1999. Dr.
Yu is an IBM Master Inventor.


