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Abstract— Tuple dropping, though commonly used for load
shedding in most data stream operations, is generally inadequate
for multi-way, windowed stream joins. The join output rate can
be unnecessarily reduced because tuple dropping fails to exploit
the time correlations likely to exist among interrelated streams.
In this paper, we introduce GrubJoin − an adaptive, multi-way,
windowed stream join that effectively performs time correlation-
aware CPU load shedding. GrubJoin maximizes the output rate
by achieving near-optimal window harvesting, which picks only
the most profitable segments of individual windows for the join.
Due mainly to the combinatorial explosion of possible multi-way
join sequences involving different window segments, GrubJoin
faces unique challenges that do not exist for binary joins, such
as determining the optimal window harvesting configuration
in a time efficient manner and learning the time correlations
among the streams without introducing overhead. To tackle
these challenges, we formalize window harvesting as an opti-
mization problem, develop greedy heuristics to determine near-
optimal window harvesting configurations and use approximation
techniques to capture the time correlations. Our experimental
results show that GrubJoin is vastly superior to tuple dropping
when time correlations exist and is equally effective when time
correlations are nonexistent.
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I. INTRODUCTION

In today’s highly networked world, businesses often rely on

time-critical tasks that require analyzing data from on-line sources

and generating responses in real-time. In many industries, the on-

line data to be analyzed comes in the form of data streams, i.e.,

as time-ordered series of events or readings. Examples include

stock tickers in financial services, link statistics in networking,

sensor readings in environmental monitoring, and surveillance

data in Homeland Security. In these examples, rapidly increasing

rates of data streams and stringent response time requirements of

applications force a paradigm shift in how the data are processed,

moving away from the traditional “store and then process”

model of database management systems (DBMS’s) to “on-the-fly

processing” model of emerging data stream management systems

(DSMS’s). This shift has recently created a strong interest in

research on DSMS-related topics, in both academia [1], [2], [3]

and industry [4], [5].

In DSMS’s, CPU load shedding is needed in maintaining high

system throughput and timely response when the available CPU
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resource is not sufficient to handle the processing demands of

the continual queries installed in the system, under the current

rates of the input streams. Without load shedding, the mismatch

between the available CPU and the query service demands will

result in delays that violate the response time requirements of the

queries. It will also cause unbounded growth in system queues that

overloads memory capacity and further bogs down the system. As

a solution to these problems, CPU load shedding can be broadly

defined as a mechanism to reduce the amount of processing

performed for evaluating continual stream queries, in an effort

to match the service rate of a DSMS to its input rate, at the cost

of producing minimally degraded output.

Windowed stream joins are one of the most common, yet

costliest when compared with selections or projections, operations

in DSMS’s. M-way, windowed stream joins are key operators used

by many applications to correlate events in multiple streams [6].

For example, let us look at the following two stream join

applications:

Example 1 [7] - Tracking objects using multiple video (sensor)

sources: Assuming that scenes (readings) from video (sensor)

sources are represented by multi-attribute tuples of numerical

values (join attribute), we can perform a distance-based similarity

join to detect objects that appear in all of the sources.

Example 2 [8] - Finding similar news items from different news

sources: Assuming that news items from CNN, Reuters, and BBC

are represented by weighted keywords (join attribute) in their

respective streams, we can perform a windowed inner product

join to find similar news items from different sources (here we

have m = 3).

Time correlations often exist among tuples in interrelated

streams, because causal events manifest themselves in these

streams at different, but correlated, times. With time correlations,

for pairs of matching tuples from two streams, there exists a

non-flat match probability distribution, which is a function of the

difference between their timestamps. For instance, in Example 2,

it is more likely that a news item from one source will match with

a temporally close news item from another source. In this case

the streams are almost aligned and the probability that a tuple

from one stream will match with a tuple from another stream

decreases as the difference between their timestamps increases.

The streams can also be nonaligned, either due to delays in the

delivery path, such as network and processing delays, or due to

the time of event generation effect inherent in the application. As

an illustration to the nonaligned case, in Example 1, similar tuples

appearing in different video streams or similar readings found in

different sensor streams will have a lag between their timestamps,
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due to the time it takes for an object to pass through all cameras

or all sensors

However, the lags or time correlations between tuples of

different streams generally are unpredictable at the application

design time and can vary significantly during runtime. This is

further exacerbated by the unpredictable nature of the stream

rates, which impacts the processing delays that contribute to the

time lags. Therefore, it is not possible to deal with unpredictable

time correlations by simply incorporating a fixed time window in

the join predicates. More importantly, in order to accommodate

the dynamic nature of the time correlations, the join window sizes

tend to be large in user specifications, which often cause the

system to be overloaded. As a result, it is important to develop

a time correlation-aware load shedding framework for m-way,

windowed stream joins, particularly in the face of bursty stream

rates.

So far, the predominantly used approach to CPU load shedding

in stream joins has been tuple dropping [9], [10]. This can be

seen as a stream throttling approach, where the rates of the input

streams are sufficiently reduced via the use of tuple dropping,

in order to sustain a stable system. However, tuple dropping

generally is not effective in shedding CPU load for multi-way,

windowed stream joins. The output rate can be unnecessarily de-

graded because tuple dropping does not recognize, hence fails to

exploit, time correlations that are likely to exist among interrelated

streams.

In this paper, we present GrubJoin1: an adaptive, multi-way,

windowed stream join that effectively performs time correlation-

aware CPU load shedding. While shedding load, GrubJoin maxi-

mizes the output rate by achieving near-optimal window harvest-

ing within an operator throttling framework. In contrast to stream

throttling, operator throttling performs load shedding within the

stream operator, i.e., regulating the amount of work performed

by the join, similar in spirit to the concept of partial processing

described in [8] for two-way stream joins. This requires altering

the processing logic of the multi-way join by parameterizing it

with a throttle fraction. The parameterized join incurs only a

throttle fraction of the processing cost required to perform the

full join operation. As a side effect, the quantity of the output

produced may be decreased when load shedding is performed.

To maximize the output rate while shedding CPU load, window

harvesting picks only the most profitable segments of individual

join windows for the join operations while ignoring the less valu-

able ones, similar to farmers harvesting fruits, like strawberries,

by picking only the ripest while leaving the less ripe untouched.

For efficient implementation, GrubJoin divides each join win-

dow into multiple, small-sized segments of basic windows. Due

mainly to the combinatorial explosion of possible multi-way join

sequences involving segments of different join windows, GrubJoin

faces a set of challenges in performing window harvesting. These

challenges are unique to multi-way, windowed stream joins and

do not exist for two-way, windowed stream joins. In particular,

there are three major challenges:

− First, mechanisms are needed to configure window harvesting

parameters so that the throttle fraction imposed by operator

throttling is respected. We should also be able to assess the

1As an intransitive verb, grub means “to search laboriously by digging”. It
relates to the way that the most profitable segments of individual join windows
are picked and processed with window harvesting in order to maximize the
join output.

optimality of these mechanisms in terms of the output rate, with

respect to the best achievable for a given throttle fraction and

known time correlations between the streams.

− Second, in order to be able to react and adapt to the possibly

changing stream rates in a timely manner, the reconfiguration of

window harvesting parameters must be a lightweight operation,

so that the processing cost of reconfiguration does not consume

the processing resources used to perform the join.

− And third, we should develop low cost mechanisms for learning

the time correlations among the streams, in case they are not

known or are changing and should be adapted.

In general, these challenges also apply to the binary joins.

However, it is the m-way joins that necessitate the development

of heuristic algorithms for window harvesting configuration and

approximation techniques for learning time correlations, due to

the high cost of these steps for increasing m.

We tackle the first challenge by developing a cost model and

formulating window harvesting as an optimization problem. We

handle the latter two challenges by developing GrubJoin - a multi-

way stream join algorithm that employs (i) greedy heuristics

for making near-optimal window harvesting decisions, and (ii)

approximation techniques to capture the time correlations among

the streams.

GrubJoin has been implemented and shown to be very effective

in DAC (disaster assistance claim monitoring) [6], a large-scale

reference application running on System S [5], a distributed

stream processing middleware under development at the IBM T.

J. Watson Research Center since 2003. In DAC, the join window

sizes of GrubJoin must be relatively large to accommodate the

unknown time correlations, which are not only workload depen-

dent but also impacted by the upstream operator performance

and processing logic. Otherwise, there would not be any join

result at all when a tuple from one stream expires before the

tuples, from another stream, with which it is to be joined even

arrive. However, large window sizes can easily cause system

overload. GrubJoin offers an effective solution to this problem.

The join window sizes can be as large as needed to accommodate

unpredictable time correlations, and the system overload, if it

exists, will be effectively handled via adaptive time correlation-

aware load shedding.

To the best of our knowledge, this is the first comprehensive

work2 on time correlation-aware CPU load shedding for multi-

way, windowed, stream joins that are adaptive to the input

stream rates. However, we are not the first to recognize and

take advantage of the time correlation effect in join processing.

In the context of two-way stream joins with limited memory,

the age-based load shedding framework of [12] pointed out the

importance of the time correlation effect and exploited it to make

tuple replacement decisions. The work presented in [13] showed

significant performance gains in approximate sliding window join

processing when temporal correlations and reference locality are

taken into account. Furthermore, in the context of traditional

joins, the database literature includes join operators, such as Drag-

Join [14], that capitalized on the time of data creation effect in

data warehouses, which is very similar to the time correlation

effect in stream joins. Moreover, similar time correlation assump-

2An earlier version of this work appeared in a conference [11], which
focuses on the fundamental concepts of window harvesting and operator
throttling. This journal version provides the complete details of GrubJoin.
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tions are used to develop load shedding techniques for two-way

stream joins in [8]. However, the window harvesting problem, as it

is formulated in this paper, involves unique challenges stemming

from the multi-way nature of the join.

The rest of this paper is organized as follows. Section II intro-

duces stream and join models and presents the basics of multi-

way stream join processing. Section III describes our operator

throttling framework. Section IV describes window harvesting and

formalizes the configuration of window harvesting parameters as

an optimization problem. Section V describes GrubJoin, including

the heuristics and approximations it uses for reconfiguration and

learning purposes. Section VI presents experimental results and

Section VII provides discussions. Section VIII gives related work

and Section IX concludes the paper.

II. PRELIMINARIES

Before going into the details of operator throttling and window

harvesting, in this section we present our window-based stream

join model, introduce some notations, and describe the basics of

multi-way, windowed stream join processing.

We denote the ith input stream by Si, where i ∈ [1..m] and

m ≥ 2 denotes the number of input streams of the join operator,

i.e., we have an m-way join. Each stream is a sequence of tuples

ordered by an increasing timestamp. We denote a tuple by t

and its timestamp by T (t). Current time is denoted by T . We

assume that tuples are assigned timestamps upon their entrance

to the DSMS. We do not enforce any particular schema type for

the input streams. Schemas of the streams can include attributes

that are single-valued, set-valued, user-defined, or binary. The

only requirement is to have timestamps and an appropriate join

condition defined over the input streams. We denote the current

rate, in terms of tuples per second, of an input stream Si as λi.

input tuples

poped

input tuples

pushed 

S1

S2

S3

input streams

input buffers join windows and join operator

output tuples

pushed 

output buffer

multi-way join performed

Fig. 1. Multi-way, windowed stream join processing, join
directions, and join orders for each direction
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An m-way stream join operator has m join windows, as shown

in the 3-way join example of Figure 1. The join window for

stream Si is denoted by Wi, and has a user-defined size, in terms

of seconds, denoted by wi. A tuple t from Si is kept in Wi only

if T ≥ T (t) ≥ T − wi. The join operator has buffers (queues)

attached to its inputs and output. The input stream tuples are

pushed into their respective input buffers either directly from their

source or from output of other operators. The join operator fetches

the tuples from its input buffers, processes the join, and pushes

the resulting tuples into the output buffer.

The GrubJoin algorithm we develop in this paper can be seen

as a descendant of MJoin [15]. MJoins have been shown to be

very effective for performing fine-grained adaptation and are very

suitable for streaming scenarios, where the rates of the streams

are bursty and may soar during peak times. In an MJoin, there are

m different join directions, one for each stream, and for each join

direction there is an associated join order. The ith direction of

the join describes how a tuple t from Si is processed by the join

algorithm, after it is fetched from the input buffer. The join order

for direction i, denoted by Ri = {ri,1, ri,2, . . . , ri,m−1}, defines

an ordered set of window indexes that will be used during the

processing of t ∈ Si. In particular, tuple t will first be matched

against the tuples in window Wl, where l = ri,1. Here, ri,j is the

jth join window index in Ri. If there is a match, then the index

of the next window to be used for further matching is given by

ri,2, and so on. For any direction, the join order consists of m−1

distinct window indices, i.e., Ri is a permutation of {1, . . . , m}−
{i}. Although there are (m−1)! possible choices of orderings for

each join direction, this number can be smaller depending on the

join graph of the particular join at hand. We discuss join order

selection in Section V. Figure 1 illustrates join directions and

orders for a 3-way join. Once the join order for each direction

is decided, the processing is carried out in an NLJ (nested-loop)

fashion. Since we do not focus on any particular type of join

condition, NLJ is a natural choice.

Table I serves as a reference table for the commonly used

notation in the paper.

III. OPERATOR THROTTLING

Operator throttling is a load shedding framework for stream op-

erators. It regulates the amount of load shedding to be performed

by calculating and maintaining a throttle fraction, and relies on

an in-operator load shedding technique to reduce the CPU cost

of executing the operator in accordance with the throttle fraction.

We denote the throttle fraction by z. It has a value in the range

(0, 1]. Concretely, the in-operator load shedding technique should

adjust the processing logic of the operator such that the CPU cost

of executing it is reduced to z times the original. As expected,

this will have side-effects on the quality or quantity of the output

from the operator. In the case of stream joins, applying in-operator

load shedding will result in a reduced output rate. Note that the

concept of operator throttling is general and applies to operators

other than joins. For instance, an aggregation operator can use

the throttle fraction to adjust its aggregate re-evaluation interval

to shed load [16], or a data compression operator can decrease

its compression ratio based on the throttle fraction [17].

A. Setting of the Throttle Fraction

The correct setting of the throttle fraction depends on the

performance of the join operator under current system load and

the incoming stream rates. We capture this as follows.

Let us denote the adaptation interval by ∆. This means that

the throttle fraction z is adjusted every ∆ seconds. Let us denote

the tuple consumption rate of the join operator for Si, measured

for the last adaptation interval, by αi. In other words, αi is the

tuple pop rate of the join operator for the input buffer attached

to Si, during the last ∆ seconds. On the other hand, let λ′i be

the tuple push rate for the same buffer during the last adaptation

interval. Using αi’s and λ′i’s we capture the performance of the
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Si, i ∈ [m1 ith input stream, out of m
Wi sliding window defined on Si

wi size of Wi in time units

Bi,j , j ∈ [ni
1

jth basic window in Wi, out of ni

b basic window size in time units

T, T (t) current time and tuple t’s timestamp

λi tuple arrival rate of stream Si

αi tuple consumption rate for stream Si

β, γ join performance and boost factor

Ri join order for a tuple from Si

ri,j , j ∈ [m−1
1

jth window index in order Ri

z overall throttle fraction

zi,j harvest fraction for Wri,j , for Si tuples

sv
i,j index of the basic window in Wl,

l = ri,j , with rank v for Si tuples

pk
i,j score of the kth basic window in Wl,

l = ri,j , (i.e., Bl,k) for Si tuples

Ai,j random variable representing timestamp
difference of Si and Sj tuples in join output

fi,j probability distribution function for Ai,j

Li histogram associated with Wi

ω window shredding sampling parameter

TABLE I

NOTATION REFERENCE TABLE − LIST OF COMMONLY USED NOTATION

join operator under current system load and incoming stream

rates, denoted by β, as:

β =

m
X

i=1

αi/

m
X

i=1

λ′i.

The β value is used to adjust the throttle fraction as follows. We

start with a z value of 1, optimistically assuming that we will be

able to fully execute the operator without any overload. At each

adaptation step (∆ seconds), we update z from its old value zold

based on the formula:

z =

(

β · zold β < 1;

min(1, γ · zold) otherwise.

If β is smaller than 1, z is updated by multiplying its old

value with β, with the aim of adjusting the amount of shedding

performed by the in-operator load shedder to match the tuple

consumption rate of the operator to the tuple production rate of

the streams. Otherwise (β ≥ 1), the join is able to process all

the incoming tuples with the current setting of z, in a timely

manner. In this latter case, z is set to minimum of 1 and γ · zold,

where γ is called the boost factor and we have γ > 1. This is

aimed at increasing the throttle fraction, assuming that additional

processing resources are available. If not, the throttle fraction will

be readjusted during the next adaptation step. Note that, higher

values of the boost factor result in being more aggressive at

increasing the throttle fraction.
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Fig. 2. Throttle fraction adaptation example.

Figure 2 shows an example of throttle fraction adaptation from

our implementation of GrubJoin using operator throttling. In

this example ∆ is set to 4 seconds and γ is set to 1.2. Other

experimental parameters are not of interest for this example. The

input stream rates are shown as a function of time using the

left y-axis, and the throttle fraction z is shown as a function

of time using the right y-axis. Looking at the figure, besides

the observation that the z value adapts to the changing rates by

following an inversely proportional trend, we also see that the

reaction in the throttle fraction follows the rate change events with

a delay due to the length of the adaptation interval. Although in

this example ∆ is sufficiently small to adapt to the bursty nature

of the streams, in general its setting is closely related with the

length of the bursts. Moreover, the time it takes for the in-operator

load shedder to perform reconfiguration in accordance with the

new throttle fraction is an important limitation in how frequent

the adaptation can be performed, thus how small ∆ can be. We

discuss more about this in Section IV-B.

B. Buffer Capacity vs. Tuple Dropping

As opposed to stream throttling, operator throttling does not

necessarily drop tuples from the incoming streams. The decision

of how the load shedding will be performed is left to the in-

operator load shedder, which may choose to retain all unexpired

tuples within its join windows. However, depending on the size of

the input buffers, operator throttling framework may still result in

dropping tuples outside the join operator, albeit only during times

of mismatch between the last set value of the throttle fraction

and its ideal value. As an example, consider the starting time of

the join, at which point we have z = 1. If the stream rates are

higher than the operator can handle with z set to 1, then the gap

between the incoming tuple rate and the tuple consumption rate

of the operator will result in growing number of tuples within

buffers. This trend will continue until the next adaptation step,

at which time throttle fraction will be adjusted to stabilize the

system. However, if during this interval the buffers fill up, then

some tuples will be dropped. The buffer size can be increased to

prevent tuple dropping, at the cost of introducing delay. If buffer

sizes are small, then tuple dropping will be observed only during

times of transition, during which throttle fraction is higher than

what it should ideally be. The appropriate buffer size to use is

dependent on the delay requirements of the application at hand.

Thus, we do not automatically adjust the buffer size. However,

we study the impact of buffer size on tuple dropping behavior in

Section VI-B.7.

IV. WINDOW HARVESTING

Window harvesting is an in-operator load shedding technique

we develop for multi-way, windowed stream joins. The basic

idea behind window harvesting is to use only the most profitable

segments of the join windows for processing, in an effort to

reduce the CPU demand of the operator, as dictated by the throttle

fraction. By making use of the time correlations among the
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streams in deciding which segments of the join windows are most

valuable for output tuple generation, window harvesting aims at

maximizing the output rate of the join. In the rest of this section,

we first describe the fundamentals of window harvesting and then

formulate it as an optimization problem.

A. Fundamentals

Window harvesting involves organizing join windows into a set

of basic windows and for each join direction, selecting the most

valuable segments of the windows for executing the join.

1) Basic Windows: Each join window Wi is divided into basic

windows of size b seconds. Basic windows are treated as integral

units, thus there is always one extra basic window in each join

window to handle tuple expiration. In other words, Wi consists of

1+ni basic windows, where ni = ⌈wi/b⌉. The first basic window

is partially full, and the last basic window contains some expired

tuples (tuples whose timestamps are out of the join window’s time

range, i.e., T (t) < T−wi). Every b seconds the first basic window

fills completely and the last basic window expires totally. Thus,

the last basic window is emptied and it is moved in front of the

basic window list as the new first basic window.

At any time, the unexpired tuples in Wi can be organized into

ni logical basic windows, where the jth logical basic window

(j ∈ [1..ni]), denoted by Bi,j , corresponds to the ending ϑ portion

of the jth basic window plus the beginning 1 − ϑ portion of the

(j + 1)th basic window. We have ϑ = δ/b, where δ is the time

elapsed since the last basic window expiration took place. It is

important to note that, a logical basic window always stores tuples

belonging to a fixed time interval relative to the current time. This

small distinction between logical and real basic windows become

handy when selecting the most profitable segments of the join

windows to process. Basic window related concepts are illustrated

in Figure 3.

There are two major advantages of using basic windows.

First, basic windows make expired tuple management more

efficient [18]. This is because the expired tuples are removed

from the join windows in batches, i.e., one basic window at a

time. Second, without basic windows, accessing tuples in a logical

basic window will require a search operation to locate a tuple

within the logical basic window’s time range. In general, small

basic windows are more advantageous in better capturing and

exploiting the time correlations. On the other hand, too small

basic windows will cause overhead in join processing as well as

in window harvesting configuration. This trade-off is studied in

Section VI-B.4.

2) Configuration Parameters: There are two sets of configura-

tion parameters for window harvesting, which together determine

the segments of the windows that will be used for join processing,

namely harvest fractions and window rankings. Before formally

describing these parameters, we first give an example to provide

intuition to their definitions. Consider a tuple t(i) arriving on

stream Si that is to be compared against the tuples in windows

other than Wi, following the order defined by Ri. Let us consider

the step where we are to compare t(i) against the window which is

the jth one in the join order Ri. In other words, we are to process

Wl, where l = ri,j . There are two important decisions to make

here: (1) How much of Wl do we process? (harvest fractions are

used to answer this) and (2) Which basic windows within Wl do

we process? (window rankings are used to answer this)

• Harvest fractions; zi,j , i ∈ [1..m], j ∈ [1..m − 1]: For the ith

direction of the join, the fraction of the jth window in the join

order (i.e., join window Wl, where l = ri,j) that will be used for

join processing is determined by the harvest fraction parameter

zi,j ∈ (0, 1]. There are m · (m − 1) different harvest fractions.

The settings of these fractions are strongly tied with the throttle

fraction and the time correlations among the streams. The details

will be presented in Section IV-B.

• Window rankings; sv
i,j , i ∈ [1..m], j ∈ [1..m − 1], v ∈

[1..nri,j ]: For the ith direction of the join, we define an ordering

over the logical basic windows of the jth window in the join

order (i.e., join window Wl, where l = ri,j), such that sv
i,j gives

the index of the logical basic window that has rank v in this

ordering. Bl,s1
i,j

is the first logical basic window in this order,

i.e., the one with rank 1. The ordering defined by sv
i,j values is

strongly influenced by the time correlations among the streams.

In summary, the most profitable segments of the join window

Wl, where l = ri,j , that will be processed during the execution

of the ith direction of the join is selected as follows. We first

pick Bl,s1
i,j

, then Bl,s2
i,j

, and so on, until the total fraction of Wl

processed reaches zi,j . Other segments of Wl that are not picked

are ignored and not used during the execution of the join.
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Fig. 3. Example of window harvesting.

Figure 3 shows an example of window harvesting for a 3-way

join, for the join direction R1. In the example, we have ni = 5

for i ∈ [1..3]. This means that we have 5 logical basic windows

within each join window and as a result 6 basic windows per join

window in practice. The join order for direction 1 is given as

R1 = {3, 2}. This means W3 is the first window in the join order

of R1 (i.e., r1,1 = 3) and W2 is the second (i.e., r1,2 = 2). We

have z1,1 = 0.6. This means that nr1,1 · z1,1 = 5 · 0.6 = 3 logical

basic windows from Wr1,1 = W3 are to be processed. In this

example, harvest fractions are set to result in picking an integral

number of logical basic windows for join processing. Noting that

we have s1
1,1 = 4, s2

1,1 = 3, and s3
1,1 = 5, the logical basic

windows within W3 that are going to be processed are selected

as 3, 4, and 5. They are marked in the figure with horizontal lines,

with their associated rankings written on top. The corresponding

portions of the basic windows are also shaded in the figure. Note

that there is a small shift between the logical basic windows and

the actual basic windows (recall ϑ from Section IV-A.1). Along

the similar lines, the logical basic windows 2 and 3 from W2

are also marked in the figure, noting that r1,2 = 2, z1,2 = 0.4

corresponds to 2 logical basic windows, and we have s1
1,2 = 3,

s2
1,2 = 2.
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B. Configuration of Window Harvesting

Configuration of window harvesting involves setting the win-

dow ranking and harvest fraction parameters. This configuration

is performed during the adaptation step, every ∆ secs.

1) Setting of Window Rankings: We set window ranking pa-

rameters sv
i,j’s in two steps. First step is called score assignment.

Concretely, for the ith direction of the join and the jth window

in the join order Ri, that is Wl where l = ri,j , we assign a score

to each logical basic window within Wl. We denote the score of

the kth logical basic window, which is Bl,k, by pk
i,j . We define

pk
i,j as the probability that an output tuple (. . . , t(i), . . . , t(l), . . .)

satisfy the following:

b · (k − 1) ≤ T (t(i)) − T (t(l)) ≤ b · k.

Here, t(i) denotes a tuple from Si. This way, a logical basic

window in Wl is scored based on the likelihood of having an

output tuple whose encompassed tuples from Si and Sl have an

offset between their timestamps such that this offset is within the

time range of the logical basic window.

The score values are calculated using the time correlations

among the streams. For now, we will assume that the time

correlations are given in the form of probability density functions

(pdfs) denoted by fi,j , where i, j ∈ [1..m]. Let us define Ai,j as

a random variable representing the difference T (t(i))−T (t(j)) in

the timestamps of tuples t(i) and t(j) encompassed in an output

tuple of the join. Then fi,j : [−wi, wj ] → [0,∞) is the probability

density function for the random variable Ai,j . With this definition,

we have pk
i,j =

R b·k
b·(k−1) fi,ri,j

(x)dx. In practice, we develop a

lightweight method for approximating a subset of these pdfs and

calculating pk
i,j’s from this subset efficiently. The details are given

in Section V-B.2.

The second step of the setting of window ranking parameters

is called score ordering. In this step, we sort the scores {pk
i,j :

k ∈ [1..nri,j ]} in descending order and set sv
i,j to k, where v is

the rank of pk
i,j in the sorted set of scores. If the time correlations

among the streams change, then a new set of scores and thus a

new assignment for the window rankings is needed. This is again

handled by the reconfiguration performed at every adaptation step.

2) Setting of Harvest Fractions: Harvest fractions are set by

taking into account the throttle fraction and the time correlations

among the streams. First, we have to make sure that the CPU

cost of performing the join agrees with the throttle fraction z.

This means that the cost should be at most equal to z times

the cost of performing the full join. Let C({zi,j}) denote the

cost of performing the join for the given setting of the harvest

fractions, and C(1) denote the cost of performing the full join.

We say that a particular setting of harvest fractions is feasible iff

z · C(1) ≥ C({zi,j}).

Second, among the feasible set of settings of the harvest

fractions, we should prefer the one that results in the maximum

output rate. Let O({zi,j}) denote the output rate of the join

operator for the given setting of the harvest fractions. Then

our objective is to maximize O({zi,j}). In short, we have an

optimization problem:

Optimal Window Harvesting Problem:

argmax
{zi,j}

O({zi,j})

s.t. z · C(1) ≥ C({zi,j}).

C. Formulation of C({zi,j}) and O({zi,j})

The formulations of the functions C and O are similar to

previous work [19], [9], with the exception that we integrate time

correlations among the streams into the processing cost and output

rate computations.

For the formulation of C, we will assume that the processing

cost of performing the NLJ join is proportional to the number

of tuple comparisons made per time unit. We do not include the

cost of tuple insertion and removal in the following derivations,

although they can be added with little effort.

The total cost C is equal to the sum of the costs of individual

join directions, where the cost of performing the ith direction is

λi times the number of tuple comparisons made for processing

a single tuple from Si. We denote the latter with Ci. Thus, we

have:

C =
m

X

i=1

(λi · Ci)

Ci is equal to the sum of the number of tuple comparisons made

for processing each window in the join order Ri. The number of

tuple comparisons performed for the jth window in the join order,

that is Wri,j , is equal to the number of times Wri,j is iterated over,

denoted by Ni,j , times the number of tuples used from Wri,j . The

latter is calculated as zi,j · Si,j , where Si,j = λri,j · wri,j gives

the number of tuples in Wri,j . We have:

Ci =

m−1
X

j=1

`

zi,j · Si,j · Ni,j

´

Ni,j , which is the number of times Wri,j is iterated over for

evaluating the ith direction of the join, is equal to the number

of partial join results we get by going through only the first j −
1 windows in the join order Ri. We have Ni,1 = 1 as a base

case. Ni,2, that is the number of partial join results we get by

going through Wri,1 , is equal to Pi,1 · σi,ri,1
· Si,1, where σi,ri,1

denotes the selectivity between Wi and Wri,1 , and as before Si,1

is the number of tuples in Wri,1 . Here, Pi,1 is a yield factor that

accounts for the fact that we only use zi,j fraction of Wri,j . If the

pdfs capturing the time correlations among the streams are flat,

then we have Pi,j = zi,j . We describe how Pi,j is generalized to

arbitrary time correlations shortly. By noting that for j ≥ 2 we

have Ni,j = Ni,j−1 · Pi,j−1 · σi,ri,j−1
· Si,j−1 as our recursion

rule, we generalize our formulation as follows:

Ni,j =

j−1
Y

k=1

`

Pi,k · σi,ri,k
· Si,k

´

In the formulation of Pi,j , for brevity we will assume that zi,j

is a multiple of 1/nri,j , i.e., an integral number of logical basic

windows are selected from Wri,j for processing. Then we have:

Pi,j =

zi,j ·nri,j
X

k=1

p
sk

i,j

i,j /

nri,j
X

k=1

pk
i,j

To calculate Pi,j , we use a scaled version of zi,j which is the

sum of the scores of the logical basic windows selected from

Wri,j divided by the sum of the scores from all logical basic

windows in Wri,j . Note that pk
i,j’s (logical basic window scores)

are calculated from the time correlation pdfs as described earlier

in Section IV-B.1. If fi,j is flat, then we have pk
i,j = 1/nri,j , ∀k ∈

[1..nri,j ] and as a consequence Pi,j = zi,j . Otherwise, we have

Pi,j > zi,j . This means that we are able to obtain Pi,j fraction of
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the total number of matching tuples from Wri,j by iterating over

only zi,j < Pi,j fraction of Wri,j . This is a result of selecting the

logical basic windows that are more valuable for producing join

output. This is accomplished by utilizing the window rankings

during the selection process. Recall that these rankings (sv
i,j’s)

are calculated from logical basic window scores.

We easily formulate O using Ni,j’s. Recalling that Ni,j is equal

to the number of partial join results we get by going through only

the first j − 1 windows in the join order Ri, we conclude that

Ni,m is the number of output tuples we get by fully executing

the ith join direction. Since O is the total output rate of the join,

we have:

O =
m

X

i=1

λi · Ni,m

D. Brute-force Solution

One way to solve the optimal window harvesting problem is to

enumerate all possible harvest fraction settings assuming that the

harvest fractions are set to result in selecting an integral number

logical basic windows, i.e., ∀ i∈[1..m]
j∈[1..m−1]

, zi,j ·nri,j ∈ N. Although

straightforward to implement, this brute-force approach results

in considering
Qm

i=1 nm−1
i possible configurations. If we have

∀i ∈ [1..m], ni = n, then we can simplify this as O(nm2

). As

we will show in the experimental section, this is computationally

very expensive due to the long time required to solve the opti-

mization problem with enumeration, making it almost impossible

to perform frequent adaptation. In the next section we will discuss

an efficient heuristic that can find near-optimal solutions quickly,

with much smaller computational complexity.
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Fig. 4. Optimal window harvesting example.

Example of Optimal Configuration: Figure 4 shows an example

scenario illustrating the setting of window harvesting parameters

optimally. In this scenario we have a 3-way join with stream

rates λ1 = 300, λ2 = 100, λ3 = 150, join window sizes w1 =

w2 = w3 = 10, basic window size b = 2, and throttle fraction

z = 0.5. The topmost graph on the left in Figure 4 shows the

selectivities, whereas the two graphs next to it show the time

correlation pdfs, f2,1 and f3,1. By looking at f2,1, we can see

that there is a time lag between the streams S1 and S2, since most

of the matching tuples from these two streams have a timestamp

difference of about 4 seconds, S2 tuple being lagged. Moreover,

the probability that two tuples from S1 and S2 match decreases

as the difference in their timestamps deviates from the 4 second

time lag. By looking at f3,1, we can say that the streams S1

and S3 are also nonaligned, with S3 lagging behind by around

5 seconds. In other words, most of the S3 tuples match with S1

tuples that are around 5 seconds older. By comparing f2,1 and

f3,1, we can also deduce that S3 is slightly lagging behind S2,

by around 1 second. As a result, our intuition tells us that the

third join direction is more valuable than the others, since the

tuples from other streams that are expected to match with an S3

tuple are already within the join windows when an S3 tuple is

fetched. In this example, the join orders are configured as follows:

R1 = {2, 3}, R2 = {3, 1}, R3 = {2, 1}. This decision is based on

the low selectivity first heuristic [15], as it will be discussed in

the next section. The resulting window harvesting configuration,

obtained by solving the optimal window harvesting problem by

using the brute-force approach, is shown in the lower row of

Figure 4. The logical basic windows selected for processing are

marked with dark circles and the selections are shown for each

join direction. We observe that in the resulting configuration we

have z3,1 = z3,2 = 1, since all the logical basic windows are

selected for processing in R3. This is inline with our intuition that

the third direction of the join is more valuable than the others.3

V. GRUBJOIN

GrubJoin is a multi-way, windowed stream join operator with

built-in window-harvesting. It uses two main methods to make

window harvesting work in practice. First, it employs a heuristic

method to set the harvest fractions, and second it uses approxima-

tion techniques to learn the time correlations among the streams

and to set the logical basic window scores based on that. We now

describe these methods.

A. Heuristic Setting of Harvest Fractions

The heuristic method we use for setting the harvest fractions is

greedy in nature. It starts by setting zi,j = 0, ∀i, j. At each greedy

step it considers a set of settings for the harvest fractions, called

the candidate set, and picks the one with the highest evaluation

metric as the new setting of the harvest fractions. Any setting in

the candidate set must be a forward step in increasing the zi,j

values, i.e., we must have ∀i, j, zi,j ≥ zold
i,j , where {zold

i,j } is the

setting of the harvest fractions that was picked at the end of the

previous step. The process terminates once a step with an empty

candidate set is reached. We introduce three different evaluation

metrics for deciding on the best configuration within the candidate

set. In what follows, we first describe the candidate set generation

and then introduce three alternative evaluation metrics.

1) Candidate Set Generation: The candidate set is generated

as follows. For the ith direction of the join and the jth window

within the join order Ri, we add a new setting into the candidate

set by increasing zi,j by di,j . In the rest of the paper we take

di,j as 1/nri,j . This corresponds to increasing the number of

logical basic windows selected for processing by one. This results

in m · (m − 1) different settings, which is also the maximum

size of the candidate set. The candidate set is then filtered to

remove the settings which are infeasible, i.e., do not satisfy the

processing constraint of the optimal window harvesting problem

dictated by the throttle fraction z. Once a setting in which zu,v

is incremented is found to be infeasible, then the harvest fraction

3See a demo at http://www-static.cc.gatech.edu/projects/disl/SensorCQ/optimizer.html
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zu,v is frozen and no further settings in which zu,v is incremented

are considered in the future steps.

There is one small complication to the above described way of

generating candidate sets. Concretely, when we have ∀j, zi,j =

0 for the ith join direction at the start of a greedy step, then

it makes no sense to create a candidate setting in which only

one harvest fraction is non-zero for the ith join direction. This

is because no join output can be produced from a join direction

if there is one or more windows in the join order for which the

harvest fraction is set to zero. As a result, we say that a join

direction i is not initialized if and only if there is a j such that

zi,j = 0. If at the start of a greedy step, we have a join direction

that is not initialized, say ith direction, then instead of creating

m − 1 candidate settings for the ith direction, we generate only

one setting in which all the harvest fractions for the ith direction

are incremented, i.e., ∀j, zi,j = di,j .

Computational Complexity: In the worst case, the greedy

algorithm will have (m − 1) ·
Pm

i=1 ni steps, since at the end

of each step at least one harvest fraction is incremented for a

selected join direction and window within that direction. Taking

into account that the candidate set can have a maximum size

of m · (m − 1) for each step, the total number of settings

considered during the execution of the greedy heuristic is bounded

by m · (m − 1)2 ·
Pm

i=1 ni. If we have ∀i ∈ [1..m], ni = n,

then we can simplify this as O(n ·m4). This is much better than

the O(nm2

) complexity of the exhaustive algorithm, and as we

will show in the next section it has satisfactory running time

performance.

2) Evaluation Metrics: The evaluation metric used for picking

the best setting among the candidate settings significantly impacts

the optimality of the heuristic. We introduce three alternative

evaluation metrics and experimentally compare their optimality

in the next section. These evaluation metrics are:

• Best Output: The best output metric picks the candidate setting

that results in the highest join output, i.e., O({zi,j}).

• Best Output Per Cost: The best output per cost metric picks

the candidate setting that results in the highest join output to join

cost ratio, i.e., O({zi,j})/C({zi,j}).

• Best Delta Output Per Delta Cost: Let {zold
i,j } denote the

setting of the harvest fractions from the last step. Then the best

delta output per delta cost metric picks the setting that results

in the highest additional output to additional cost ratio, i.e.,
O({zi,j})−O({zold

i,j })

C({zi,j})−C({zold
i,j })

.

Figure 6 gives the pseudo code for the heuristic setting of the

harvest fractions. In the pseudo code the candidate sets are not

explicitly maintained. Instead, they are iterated over on-the-fly

and the candidate setting that results in the best evaluation metric

is used as the new setting of the harvest fractions.

3) Illustration of the Greedy Heuristic: Figure 5 depicts an

example illustrating the inner workings of the greedy heuristic for

a 3-way join. The example starts with a setting in which zi,j =

0.2, ∀i, j and shows the following greedy steps of the heuristic.

The harvest fraction settings are shown as 3-by-2 matrices in the

figure. Similarly, 3-by-2 matrices are used (on the right side of

the figure) to show the frozen harvest fractions. Initially none

of the harvest fractions are frozen. In the first step a candidate

set with six settings is created. In each setting one of the six

harvest fractions is incremented by 0.1. As shown in the figure,

out of these six settings the last two are found to be infeasible,
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Fig. 5. Illustration of the greedy heuristic

and are marked with a cross. These two settings are the ones in

which z3,1 and z3,2 were incremented, and thus these two harvest

fractions are frozen at their last values. Among the remaining

four settings, the one in which z2,1 is increased is found to give

the highest evaluation metric score. This setting is marked with

an arrow in the figure, and forms the base setting for the next

greedy step. The remaining three settings, marked with a line in

the figure, are simply discarded. In the second step only four new

settings are created, since two of the harvest fractions were frozen.

As shown in the figure, among these four new settings two are

found to be infeasible and thus two more harvest fractions are

frozen. The setting marked with the arrow is found to have the

best evaluation metric score and forms the basis setting for the

next step. However, both of the two settings created for the next

step are found to be infeasible and thus the last setting from the

second step is determined as the final setting. It is marked with

a frame in the figure.

B. Learning Time Correlations

The time correlations among the streams can be learned by

monitoring the output of the join operator. Recall that the time

correlations are captured by the pdfs fi,j , where i, j ∈ [1..m].

fi,j is defined as the pdf of the difference T (t(i))−T (t(j)) in the

timestamps of the tuples t(i) ∈ Si and t(j) ∈ Sj encompassed in

an output tuple of the join. We can approximate fi,j by building

a histogram on the difference T (t(i)) − T (t(j)) by analyzing the

output tuples produced by the join algorithm.

This straightforward method of approximating the time cor-

relations has two important shortcomings. First and foremost,

since window harvesting uses only certain portions of the join

windows, changing time correlations cannot be captured. Second,

for each output tuple of the join we have to update O(m2)

number of histograms to approximate all pdfs, which hinders

the performance. We tackle the first problem by using window

shredding, and the second one through the use of sampling and

per stream histograms. The rest of this section describes these

two techniques.

1) Window Shredding: For a randomly sampled subset of

the incoming tuples, we do not perform the join using window

harvesting, but instead we use window shredding. We denote our

sampling parameter by ω. On the average, for only ω fraction of
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GREEDYPICK(z)

(1) cO ← cC ← 0 {current cost and output}
(2) ∀ 1≤i≤m , Ii ← false {initialization indicators}

(3) ∀ 1≤i≤m

1≤j≤m−1 , Fi,j ← false {frozen fraction indicators}

(4) ∀ 1≤i≤m

1≤j≤m−1 , zi,j ← 0 {fraction parameters}
(5) while true

(6) bS ← 0 {best score for this step}
(7) u← v ← −1 {direction and window indices}
(8) for i← 1 to m {for each direction}
(9) if Ii = true {if already initialized}
(10) for j ← 1 to m− 1 {for each window in join order}
(11) if zi,j = 1 or Fi,j = true {zi,j is maxed or frozen}
(12) continue{move to next setting}
(13) z′ ← zi,j {store old value}
(14) zi,j ← MIN(1, zi,j + di,j) {increment}
(15) S ← EVAL(z, {zi,j}, cO, cC)

(16) zi,j ← z′ {reset to old value}
(17) if S > bS {update best solution}
(18) bS ← S; u← i; v ← j
(19) else if S < 0 {infeasible setting}
(20) Fi,j ← true {froze zi,j}
(21) else {if not initialized}
(22) ∀ 1≤j≤m−1 , zi,j ← di,j {increment all}
(23) S ← EVAL(z, {zi,j}, cO, cC)

(24) ∀ 1≤j≤m−1 , zi,j ← 0 {reset all}
(25) if S > bS {update best solution}
(26) bS ← S; u← i
(27) if u = −1 {no feasible configurations found}
(28) break{further increment not possible}
(29) if Iu = false {if not initialized}
(30) Iu ← true {update initialization indicator}
(31) ∀ 1≤j≤m−1 , zu,j ← di,j {increment all}
(32) else zu,v = zu,v + di,j {increment}
(33) cC = C({zi,j}) {update current cost}
(34) cO = O({zi,j}) {update current output}
(35) return {zi,j} {Final result}

EVAL(z, {zi,j}, cO, cC)

(1) S ← −1 {metric score of the solution}
(2) if C({zi,j}) > r · C(1) {if not feasible}
(3) return S {return negative metric score}
(4) switch(heuristic type)

(5) case BestOutput:

(6) S ← O({zi,j}); break

(7) case BestOutputPerCost:

(8) S ←
O({zi,j})

C({zi,j})
; break

(9) case BestDeltaOutputPerDeltaCost:

(10) S ←
O({zi,j})−cO

C({zi,j})−cC
; break

(11) return S {return the metric score}

Fig. 6. Greedy Heuristic for setting the harvest fractions.

the incoming tuples we perform window shredding. ω is usually

small (< 0.1). Window shredding is performed by executing the

join fully, except that the first window in the join order of a

join direction is processed only partially based on the throttle

fraction z. The tuples to be used from such windows are selected

so that they are roughly evenly distributed within the window’s

time range. This way, we get rid of the bias introduced in the

output due to window harvesting, and can safely use the output

generated from window shredding for building histograms to

capture the time correlations. Moreover, since window shredding

only processes z fraction of the first windows in the join orders,

it respects the processing constraint of the optimal window

harvesting problem dictated by the throttle fraction. Note that

the aim of window shredding is to capture a random sample of

the join output in terms of the timestamps of the matching tuples,

not in terms of the attribute values in the join result [20].

2) Per Stream Histograms: Although the histograms used for

approximating the time correlation pdfs are updated only for

the output tuples generated from window shredding, the need

for maintaining m · (m − 1) histograms is still excessive and

unnecessary. We propose to maintain only m histograms, one

for each stream. The histogram associated with Wi is denoted

by Li and it is an approximation to the pdf fi,1, i.e., the

probability distribution for the random variable Ai,1 (introduced

in Section IV-B.1).

Maintaining only m histograms that are updated only for

the output tuples generated from window shredding introduces

very little overhead, but necessitates developing a new method

to calculate logical basic window scores (pk
i,j’s) from these m

histograms. Recall that we had pk
i,j =

R b·k
b·(k−1) fi,ri,j

(x)dx.

Since we do not maintain histograms for all pdfs (fi,j’s), this

formulation should be updated. We now describe the new method

we use for calculating logical basic window scores.

From the definition of pk
i,j , we have:

pk
i,j = P{Ai,l ∈ b · [k − 1, k]}, where ri,j = l.

For the case of i = 1, nothing that Ai,j = −Aj,i, we have:

pk
1,j = P{Al,1 ∈ b · [−k,−k + 1]}

=

Z −b·(k−1)

x=−b·k
fl,1(x) dx. (1)

Using Li(I) to denote the frequency for the time range I in

histogram Li, we can approximate Equation 1 as follows:

pk
1,j ≈ Ll(b · [−k,−k + 1]). (2)

For the case of i 6= 1, we use the trick Ai,l = Ai,1 − Al,1:

pk
i,j = P{(Ai,1 − Al,1) ∈ b · [k − 1, k]}

= P{Ai,1 ∈ b · [k − 1, k] + Al,1}.

Making the simplifying assumption that Al,1 and Ai,1 are

independent, we get:

pk
i,j =

Z w1

x=−wl

fl,1(x) · P{Ai,1 ∈ b · [k − 1, k] + x} dx

=

Z w1

x=−wl

fl,1(x) ·

Z b·k+x

y=b·(k−1)+x
fi,1(y) dy dx. (3)

At this point, we will assume that the histograms are equi-width

histograms, although extension to other types are possible. The

valid time range of Li, which is [−wi, w1] (the input domain of

fi,1), is divided into |Li| number of histogram buckets. We use

Li[k] to denote the frequency for the kth bucket in Li. We use

Li[k
∗] and Li[k∗] to denote the higher and lower points of the

kth bucket’s time range, respectively. Finally, we can approximate

Equation 3 as follows:

pk
i,j ≈

|Ll|
X

v=1

„

Ll[v] · Li(b · [k − 1, k] +
Ll[v

∗] + Ll[v∗]

2
)

«

. (4)

Equations (2) and (4) are used together to calculate the logical

basic window scores by only using the m histograms we maintain.

In summary, we only need to capture the pdfs fi,1, ∀i ∈ [1..m],

to calculate pk
i,j values. This is achieved by maintaining Li

for approximating fi,1. Li’s are updated only for output tuples

generated from window shredding. Moreover, window shredding

is performed only for a sampled subset of input tuples defined by

the sampling parameter ω. The logical basic window scores are

calculated from Li’s during the adaptation step (every ∆ seconds).

This whole process results in very little overhead during majority

of the time frame of the join execution. Most of the computations

are performed during the adaptation step.
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C. Join Orders and Selectivities

The problem of optimal join ordering is NP-complete [21].

As a result, GrubJoin uses the MJoin [15] approach for setting

the join orders. This setting is based on the low selectivity first

heuristic. For brevity, we assumed that all possible join orderings

are possible, as it is in a star shaped join graph. In practice, the

possible join orders should be pruned based on the join graph and

then the heuristic should be applied.

Although the low selectivity first heuristic has been shown to

be effective, there is no guarantee of optimality. In this work,

we choose to exclude join order selection from our optimal

window harvesting configuration problem, and treat it as an

independent issue. We require that the join orders are set before

the window harvesting parameters are to be determined. This

helps cutting down the search space of the problem significantly.

Using a well established heuristic for order selection and solving

the window harvesting configuration problem separately is an

effective technique that makes it possible to execute adaptation

step much faster. This enables more frequent adaptation.

VI. EXPERIMENTAL RESULTS

The GrubJoin algorithm has been implemented within our

operator throttling-based load shedding framework and has been

successfully demonstrated as part of a System S [5] reference

application, namely DAC [6]. Here, we report two sets of exper-

imental results to demonstrate the effectiveness of our approach.

We also briefly describe the use of GrubJoin in the context of

DAC. The first set of experiments evaluate the optimality and the

runtime performance of the proposed heuristic algorithms used

to set the harvest fractions. The second set of experiments use

synthetically generated streams to demonstrate the superiority of

window harvesting to tuple dropping, and to show the scalability

of our approach with respect to various parameters. All experi-

ments presented in this paper, except the DAC related ones, are

performed on an IBM PC with 512MB main memory and 2.4Ghz

Intel P4 processor, using Java with Sun JDK 1.5. The GrubJoins

employed in DAC are written in C++ and run on 3.4Ghz Intel

Xeons.

A. Setting of Harvest Fractions

An important measure for judging the effectiveness of the three

alternative metrics used in the candidate set evaluation phase of

the greedy heuristic is the optimality of the resulting setting of

the harvest fractions with respect to the output rate of the join,

compared to the best achievable obtained by setting the harvest

fractions using the exhaustive search algorithm. The graphs in

Figure 7 show optimality as a function of throttle fraction z

for the three evaluation metrics, namely Best Output (BO), Best

Output Per Cost (BOpC), and Best Delta Output Per Delta

Cost (BDOpDC). An optimality value of φ ∈ [0, 1] means that

the setting of the harvest fractions obtained from the heuristic

yields a join output rate of φ times the best achievable, i.e.,

O({zi,j}) = φ·O({z∗i,j}) where {z∗i,j} is the optimal setting of the

harvest fractions obtained from the exhaustive search algorithm

and {zi,j} is the setting obtained from the heuristic. For this

experiment we have m = 3, w1 = w2 = w3 = 10, and b = 1.

All results are averages of 500 runs. For each run, a random

stream rate is assigned to each of the three streams using a

uniform distribution with range [100, 500]. Similarly, selectivities

are randomly assigned. We observe from Figure 7 that BOpC

performs well only for very small z values (< 0.2), whereas BO

performs well only for large z values (z ≥ 0.4). BDOpDC is

superior to other two alternatives and performs optimally for z ≥
0.4 and within 0.98 of the optimal elsewhere. We conclude that

BDOpDC provides a good approximation to the optimal setting

of harvest fractions. We next study the advantage of heuristic

methods in terms of running time performance, compared to the

exhaustive algorithm.

The graphs in Figure 8 plot the time taken to set the harvest

fractions (in milliseconds) as a function of the number of logical

basic windows per join window (n), for exhaustive and greedy

approaches. The results are shown for 3-way, 4-way, and 5-

way joins with the greedy approach and for 3-way join with

the exhaustive approach. The throttle fraction z is set to 0.25.

Note that the y-axis is in logarithmic scale. As expected, the

exhaustive approach takes several orders of magnitude more time

than the greedy one. Moreover, the time taken for the greedy

approach increases with increasing n and m, in compliance with

its complexity of O(n·m4). However, what is important to observe

here is the absolute values. For instance, for a 3-way join the

exhaustive algorithm takes around 3 seconds for n = 10 and

around 30 seconds for n = 20. Both of these values are simply

unacceptable for performing fine grained adaptation. On the other

hand, for n ≤ 20 the greedy approach performs the setting of

harvest fractions within 10 milliseconds for m = 5 and much

faster for m ≤ 4.
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Fig. 10. Running time of greedy algorithms w.r.t. z.

The graphs in Figure 9 plot the time taken to set the harvest

fractions as a function of throttle fraction z, for greedy approach

with m = 3, 4, and 5. Note that z affects the total number of

greedy steps, thus the running time. The best case is when we

have z ≈ 0 and the search terminates after the first step. The

worst case occurs when we have z = 1, resulting in ≈ n · m ·
(m− 1) steps. We can see this effect from Figure 9 by observing

that the running time performance worsens as z gets closer to 1.

Although the degradation in performance for large z is expected

due to increased number of greedy steps, it can be avoided by

reversing the working logic of the greedy heuristic. Concretely,

instead of starting from zi,j = 0, ∀i, j, and increasing the harvest

fractions gradually, we can start from zi,j = 1, ∀i, j, and decrease

the harvest fractions gradually. We call this version of the greedy

algorithm greedy reverse. Note that greedy reverse is expected to

run fast when z is large, but its performance will degrade when

z is small. The solution is to switch between the two algorithms

based on the value of z. We call this version of the algorithm

greedy double-sided. It uses the original greedy algorithm when
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and throttle fraction z.

z ≤ 0.5(m−1)/2 and greedy reverse otherwise.

The graphs in Figure 10 plot the time taken to set the harvest

fractions as a function of throttle fraction z, for m = 3 with

three variations of the greedy algorithm. It is clear from the figure

that greedy double-sided makes the switch from greedy to greedy

reverse when z goes beyond 0.5 and gets best of the both worlds:

it performs good for both small and large values of the throttle

fraction z.

B. Results on Join Output Rate

In this section, we report results on the effectiveness of Grub-

Join with respect to join output rate, under heavy system load due

to high rates of the incoming input streams. We compare GrubJoin

with a stream throttling-based approach called RandomDrop. In

RandomDrop, excessive load is shed by placing drop operators

in front of input stream buffers, where the parameters of the drop

operators are set based on the input stream rates using the static

optimization framework of [9]. We report results on 3-way, 4-

way, and 5-way joins. When not explicitly stated, the join refers

to a 3-way join. The window size is set to wi = 20, ∀i, and b is

set to 2, resulting in 10 logical basic windows per join window.

The sampling parameter ω is set to 0.1 for all experiments. The

results reported in this section are from averages of several runs.

Unless stated otherwise, each run is 1 minutes, and the initial 20

seconds are used for warm-up. The default value of the adaptation

period ∆ is 5 seconds for the GrubJoin algorithm, although we

study the impact of ∆ on the performance of the join.

The join type in the experiments reported in this subsection

is ǫ-join. A set of tuples are considered to be matching iff their

values (assuming single-valued numerical attributes) are within ǫ

distance of each other. ǫ is taken as 1 in the experiments. We

model stream Si as a stochastic process Xi = {Xi(ϕ)}. Xi(ϕ)

is the random variable representing the value of the tuple t ∈ Si

with timestamp T (t) = ϕ. A tuple simply consists of a single

numerical attribute with the domain D = [0, D] and an associated

timestamp. We define Xi(t) as follows:

Xi(ϕ) = (D/η) · (ϕ + τi) + κi · N (0, 1) mod D.

In other words, Xi is a linearly increasing process (with wrap-

around period η) that has a random Gaussian component. There

are two important parameters that make this model useful for

studying GrubJoin. First, the parameter κi, named as deviation

parameter, enables us to adjust the amount of time correlations

among the streams. If we have κi = 0, ∀i, then the values for the

time-aligned portions of the streams will be exactly the same, i.e.,

the streams are identical with possible lags between them based

on the setting of τi’s. If κi values are large, then the streams

are mostly random, so we do not have any time correlation left.

Second, the parameter τ (named as lag parameter) enables us to

introduce lags between the streams. We can set τi = 0, ∀i, to have

aligned streams. Alternatively, we can set τi to any value within

the range (0, η] to create nonaligned streams. We set D = 1000,

η = 50, and vary the time lag parameters (τi’s) and the deviation

parameters (κi’s) to generate a rich set of scenarios. Note that

GrubJoin is expected to provide additional benefits when the time

correlations among the streams are strong and the streams are

nonaligned.

1) Varying λ, Input Rates: The graphs in Figure 11 show the

output rate of the join as a function of the input stream rates,

for GrubJoin and RandomDrop. For each approach, we report

results for both aligned and nonaligned scenarios. In the aligned

case, we have τi = 0, ∀i, and in the nonaligned case we have

τ1 = 0, τ2 = 5, and τ3 = 15. The deviation parameters are set

as κ1 = κ2 = 2 and κ3 = 50. As a result, there is strong time

correlation between S1 and S2, whereas S3 is more random. We

make three major observation from Figure 11. First, we see that

GrubJoin and RandomDrop perform the same for small values of

the input rates, since there is no need for load shedding until the

rates reach 100 tuples/seconds. Second, we see that GrubJoin is

vastly superior to RandomDrop when the input stream rates are

high4. Moreover, the improvement in the output rate becomes

more prominent for increasing input rates, i.e., when there is

a greater need for load shedding. Third, GrubJoin provides up

to 65% better output rate for the aligned case and up to 150%

improvement for the nonaligned case. This is because the lag-

awareness nature of GrubJoin gives it an additional upper hand

for sustaining a high output rate when the streams are nonaligned.

2) Varying Time Correlations: The graphs in Figure 12 study

the effect of varying the amount of time correlations among

the streams on the output rate of the join, with GrubJoin and

RandomDrop for the nonaligned case. Recall that the deviation

parameter κ is used to alter the strength of time correlations. It can

be increased to remove the time correlations. In this experiment

κ3 is altered to study the change in output rate. The other settings

are the same as the previous experiment, except that the input

4The slight decrease in the output rates of the GrubJoins, observed from
the right hand side of the figure, is due to the simulation setup, wherein the
workload generation takes increasingly more processing time with increasing
input rates, and the GrubJoin backs off due to its load adaptive nature.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2007 12

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
5

input rate (tuples/sec)

o
u

tp
u

t 
ra

te
 (

tu
p

le
s/

se
c)

Grub Join (non−aligned)
Random Drop (non−aligned)
Grub Join (aligned)
Random Drop (aligned)

Fig. 11. Effect of varying the input rates on
the output rate w/wo time-lags.

10 20 30 40 50 60 70 80 90 100

2

3

4

5

6

7

8

9

x 10
4

κ, deviation parameter

o
u

tp
u

t 
ra

te
 (

tu
p

le
s/

se
c)

Grub Join
Random Drop

Fig. 12. Effect of varying the amount of
time correlations on the output rate.

3 4 5 
0 

2 

4 

6 

8 

10 

12 

14 

16 

18 
x 10 

4 

m, number of input streams 

o
u

tp
u

t 
ra

te
 (

tu
p

le
s

/s
e

c
) 

im
p

ro
v

e
m

e
n

t 
%

  

0 

100 

200 

300 

400 

500 

600 

700 

non−aligned
aligned 

Grub Join,
            non−aligned
Random Drop, 
            non−aligned

Grub Join, aligned

Random Drop, aligned

1

2

3

4

1
2

3

4

Fig. 13. Effect of the # of input streams on
the improvement provided by GrubJoin.

rates are fixed at 200 tuples/second. We plot the output rate as

a function of κ3 in Figure 12. We observe that the join output

rate for GrubJoin and Random Drop are very close when the

time correlations are almost totally removed. This is observed

by looking at the right end of the x-axis. However, for the

majority of the deviation parameter’s range, GrubJoin outperforms

RandomDrop. The improvement provided by GrubJoin is 250%

when κ3 = 25, 150% when κ3 = 50, and 25% when κ3 = 75.

Note that, as κ gets larger, RandomDrop starts to suffer less from

its inability to exploit time correlations. On the other hand, when

κ gets smaller, the selectivity of the join increases as a side effect

and in general the output rate increases. These contrasting factors

result in a bimodal graph for RandomDrop.

3) Varying m, # of Input Streams: We study the effect of

m (number of input streams) on the improvement provided by

GrubJoin, in Figure 13. The m values are listed on the x-axis,

whereas the corresponding output rates are shown in bars using

the left y-axis. The improvement in the output rate (in terms of

percentage) is shown using the right y-axis. Results are shown

for both aligned and nonaligned scenarios. The input rates are

set to 100 tuples/second for this experiment. We observe that,

compared to RandomDrop, GrubJoin provides an improvement

in output rate that is linearly increasing with the number of

input streams. Moreover, this improvement is more prominent for

nonaligned scenarios and reaches up to 700% when we have a

5-way join. This shows the importance of performing intelligent

load shedding for multi-way, windowed stream joins. Naturally,

joins with more input streams are costlier to evaluate. For such

joins, effective load shedding techniques play an even more

crucial role in keeping the output rate high.
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4) Varying b, Basic Window Size: As we have mentioned

earlier, small basic windows are preferable when the time corre-

lations are strong, in which cases it is advantageous to precisely

locate the profitable sections of the join windows for processing.

However, small basic windows increase the total number of basic

windows within a join window and thus make configuration

of window harvesting costly. In order to study this effect, in

Figure 14 we plot the output rate of the join as a function of the

basic window size for different levels of time correlations among

the streams for a 3-way join. We can see from the figure that

decreasing the basic window size improves the output rate only

to a certain extent and further decreasing the basic window size

hurts the performance. The interesting observation here is that,

the basic window value for which the best output rate is achieved

varies based on the strength of the time correlations, and this

optimal value increases with decreasing time correlations. This

is intuitive, since with decreasing time correlations there is not

much gain from small basic windows and the overhead starts to

dominate. The good news is that the impact of basic window size

on the output rate of the join significantly lessens when the time

correlations are weakening (see the line for κ3 = 75, which is

flatter than others). As a result, it is still preferable to pick small

basic window sizes. However, since the cost of setting the harvest

fractions is dependent on the number of basic windows, rather

than their size, it is advisable not to exceed 20 basic windows per

join window based on our results in Section VI-A. The default

setting of b = 2 used for most of the experiments in this section

is a conservative choice, resulting in 10 basic windows.
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5) Overhead of Adaptation: In order to adapt to the changes in

the input stream rates, GrubJoin re-adjusts the window rankings
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and harvest fractions every ∆ seconds. We now experiment with a

scenario where input stream rates change as a function of time. We

study the effect of using different ∆ values on the output rate of

the join. Recall that the default value for ∆ was 5 seconds. In this

scenario the stream rates start from 100 tuples/second, change to

150tuples/second after 8 seconds, and change to 50tuples/second

after another 8 seconds.

The graphs in Figure 15 plot the output rate of GrubJoin as a

function of ∆, for different m values. Remember that larger values

of m increases the running time of the heuristic used for setting

the harvest fractions, thus is expected to have a profound effect

on how frequent we can perform the adaptation. The ∆ range

used in this experiment is [0.5, 8]. We observe from Figure 15

that the best output rate is achieved with the smallest ∆ value

0.5 for m = 3. This is because for m = 3, adaptation step is

very cheap in terms of computational cost. We see that the best

output rate is achieved for ∆ = 1 for m = 4 and for ∆ = 3 for

m = 5. The O(n·m4) complexity of the adaptation step is a major

factor for this change in the ideal setting of the adaptation period

for larger m. In general, a default value of ∆ = 5 seems to be

too conservative for stream rates that show frequent fluctuations.

In order to get better performance, the adaptation period can be

shortened. The exact value of ∆ to use depends on the number

of input streams, m.

6) Cost of Join Conditions: One of the motivating scenarios

for CPU load shedding is the costly join conditions. We expect

that the need for load shedding will become more salient with the

increasing cost of the join conditions and thus GrubJoin will result

in more profound improvement over tuple dropping schemes. To

study the effect of join condition cost on the relative performance

of GrubJoin over RandomDrop, we took the highest input stream

rate at which the GrubJoin and RandomDrop perform around the

same for the non-aligned scenario depicted in Figure 11 and used

this rate (which is 75 tuples/sec) with different join condition costs

to find out the relative improvement in output rate. We achieve

different join condition costs by using a cost multiplier. A value of

x for the cost multiplier means that the join condition is evaluated

x times for each comparison made during join processing to

emulate the costlier join condition. The results are presented in

Table II.

cost multiplier 1 2 4 6 8 10

improvement 6% 10% 15% 22% 27% 35%

TABLE II

IMPACT OF THE JOIN CONDITION COST ON THE PERFORMANCE OF

GRUBJOIN COMPARED TO RANDOMDROP

As expected, the relative improvement provided by GrubJoin

increases with increasing cost multiplier. An increase of 35% is

observed for a cost multiplier of 10. It is interesting to note that

the increase in stream rates, as it can be observed from Figure 11,

has a more pronounced impact compared to the cost of the join

condition. This can be attributed to the fact that increasing stream

rates not only increases the number of tuples to be processed

per time unit, but it also increases the number of tuples stored

within time based join windows, further increasing the cost of

join processing and strain the CPU resources.

7) Tuple Dropping Behavior: In Section III-B, we have men-

tioned that the operator throttling framework can lead to dropping

tuples during times of transition, when the throttle fraction is not
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Fig. 16. Tuple dropping behavior of operator throttling

yet set to its ideal value. This is especially true when the input

buffers are small. In the experiments reported in this section we

have used very small buffers with size 10 tuples. However, as

stated before, the tuple drops can be avoided by increasing the

buffer size, at the cost of introducing delay.

The graph in Figure 16 plots the average tuple drop rates of

input buffers as a function of buffer size and input stream rates.

The throttle fraction z is set to 1, 20 seconds before the average

drop rates are measured. The adaptation interval is set to its

default value, i.e., ∆ = 5. As seen from the figure, 1 second

buffers can cut the drop rate around 30% and 2 seconds buffers

around 50% for input stream rates of around 200 tuples/second.

However, in the experiments reported in this paper we chose not

to use such large buffers, as they will introduce delays in the

output tuples.

Fig. 17. GrubJoin performance in DAC

C. GrubJoin and DAC

We employ GrubJoin in DAC − a disaster assistance claim

monitoring application that serves as a reference application for

System S [5]. There are two join operations in DAC that use large

windows, close to an hour in size. The semantics of these joins

and the details of the DAC workload generation can be found

in [6]. In summary, the first join correlates an unfairly processed-

claims stream to a problematic-agents stream, whereas the second

join correlates a suspicious-claims stream to a problematic-agents

stream. We intentionally specify a larger window size for the first

join, whose results are more critical for the DAC application. Both

joins exhibit strong time correlations.

Here we present a partial account of the GrubJoin performance

in DAC. In particular, we compare the output rates of the two

GrubJoins to the output rates of the corresponding full joins. To be
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able to run the full joins without any drops, we have sufficiently

reduced the input stream rates of all joins. To assess GrubJoin

performance under heavy load, we have imposed artificial load

shedding to the GrubJoins and kept the full-joins intact. The

results are reported in Figure 17, which is a snapshot taken from

the DAC GUI. The small graph on the right shows the percentage

of load shedding applied to the GrubJoins. Observe that, when the

load shedding percentage is below 35, the GrubJoin output rates

are almost exactly the same as those of the corresponding full

joins. When the load shedding percentage reaches 35, then second

GrubJoin’s output rate drops below that of the corresponding

full join. However, the same percentage of load shedding does

not reduce the first GrubJoin’s output rate below that of the

corresponding full join. This is because the first joins use larger

window sizes, yet exhibit similar time correlations as the second

joins. It is clear from these results that GrubJoin can maintain high

output rates under overload conditions, and as a result the appli-

cation designers can specify conservative (i.e., large) windows to

safely accommodate time correlations that are unpredictable at

the application design time.

VII. DISCUSSIONS AND ONGOING WORK

Memory Load Shedding: This paper focuses on CPU load

shedding for multi-way, windowed stream joins. However, mem-

ory is also an important resource that may become a limiting

factor when the join windows can not hold all the unexpired

tuples due to limited memory capacity. The only way to handle

limited memory scenarios is to develop tuple admission policies

for join windows. Tuple admission policies decide which tuples

should be inserted into join windows and which tuples should

be removed from the join windows when there is no more space

left to accommodate a newly admitted tuple. A straightforward

memory conserving tuple admission policy for GrubJoin is to

allow every tuple into join windows and to remove tuples from

the logical basic windows that are not selected for processing

such that there are no selected logical basic windows with larger

indicies within the same join windows. More formally, the tuples

within the logical basic windows listed in the following list can

be dropped:
n

Bi,j : ¬∃u, v, k s.t.
“

ru,v = i ∧ k ∈ [1..zu,v · ni] ∧ sk
u,v ≥ j

”o

Indexed Join Processing: We have so far assumed that the join

is performed in a NLJ fashion. However, special types of joins

can be accelerated by appropriate index structures. For instance,

ǫ-joins can be accelerated through sorted trees and equi-joins

can be accelerated through hash tables. As long as the cost of

finding matching tuples within a join window is proportional

(not necessarily linearly) to the fraction of the window used, our

solution can be extended to work with indexed joins by pluging

in the appropriate cost model. Note that these indexes are to be

built on top of basic windows. Since tuple insertion and deletion

costs are significant for indexed joins, it is more advantageous to

maintain indexes on individual basic windows, which are much

smaller in size compared with the entire join window. However,

there is one case where the benefit of load shedding may be

less compelling: equi-join. In an equi-join, the time taken to find

matching tuples within a join window is constant with hashtables

and is independent of the window size. Most of the execution time

is spent on generating output tuples. As a result, the design space

for intelligent CPU load shedding techniques is not as large.

Video Joins: We are continuing to study the impact of GrubJoin

for load shedding on the quality of the join output based on real-

life streams. One such study involves using GrubJoin to perform

join operations on two annotated video streams: one from CNN

and the other from ABC News. Each tuple in these video streams

is a vector of 512 attributes produced by a high-level feature

extraction algorithm. We performed a cosine similarity join on

these streams to detect correlated events, using aligned streams

with 1 hour join windows. The detected events were compared

against those contained in the ground truth identified beforehand.

The initial results show that the output of the GrubJoin has never

missed any of the correlated events, whereas the output of a

random-tuple-dropping-based join on average missed about 15%

of the correlated events. We plan to continue with more studies

using different kinds of real-life streams.

VIII. RELATED WORK

The related work in the literature on load shedding in stream

join operators can be classified along four major dimensions.

The first dimension is the metric to be optimized when shedding

load. Our work aims at maximizing the output rate of the join,

also known as the MAX-subset metric [22]. Although output rate

has been the predominantly used metric for join load shedding

optimization [9], [8], [22], [12], [23], other metrics have also been

introduced in the literature, such as the Archive-metric proposed

in [22], and the sampled output rate metric in [12].

The second dimension is the constrained resource that necessi-

tates load shedding. CPU and memory are the two major limiting

resources in join processing. Thus, in the context of stream joins,

works on memory load shedding [12], [22], [23] and CPU load

shedding [9], [8] have received significant interest. In the case

of user-defined join windows, the memory is expected to be less

of an issue. Our experience shows that for multi-way joins, CPU

becomes a limiting factor before the memory does. As a result, our

work focuses on CPU load shedding. However, our framework can

also be used to save memory (see Section VII for more details).

The third dimension is the stream characteristic that is exploited

for optimizing the load shedding process. Stream rates, window

sizes, and selectivities among the streams are the commonly used

characteristics that are used for load shedding optimization [9],

[19]. However, these works do not incorporate tuple semantics

into the decision process. In semantic load shedding, the load

shedding decisions are influenced by the values of the tuples.

In frequency-based semantic load shedding, tuples whose values

frequently appear in the join windows are considered as more

important [22], [23]. However, this only works for equi-joins.

In time correlation-based semantic load shedding, also called

age-based load shedding [12], a tuple’s profitability in terms

of producing join output depends on the difference between its

timestamp and the timestamp of the tuple it is matched against [8],

[12]. We take this latter approach.

The fourth dimension is the fundamental technique that is

employed for shedding load. In the limited memory scenar-

ios the problem is a caching one [9] and thus tuple admis-

sion/replacement is the most commonly used technique for shed-

ding memory load [12], [22], [23]. On the other hand, CPU load

shedding can be achieved by either dropping tuples from the input

streams (i.e., stream throttling) [9] or by only processing a subset

of join windows [8]. As we show in this paper, our window
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harvesting technique is superior to tuple dropping. It performs the

join partially, as dictated by our operator throttling framework.

To the best of our knowledge, this is the first work to address

the adaptive CPU load shedding problem for multi-way stream

joins. The most relevant works in the literature are the tuple-

dropping-based optimization framework of [9], which supports

multiple streams but is not adaptive, and the partial-processing-

based load shedding framework of [8], which is adaptive but

only works for two-way joins. The age-based load shedding

framework of [12] is also relevant, as our work and [12] share the

time correlation assumption. However, the memory load shedding

techniques used in [12] are not applicable to the CPU load

shedding problem, and like [8], [12] is designed for two-way

joins. Finally, [24] deals with the CPU load shedding problem in

the context of stream joins, however the focus is on the special

case in which one of the relations resides on the disk and the

other one is streamed in.

IX. CONCLUSION

We presented GrubJoin, an adaptive, multi-way, windowed

stream join which performs time correlation-aware CPU load

shedding. We developed the concept of window harvesting as

an in-operator load shedding technique for GrubJoin. Window

harvesting keeps the stream tuples within the join windows

until they expire and sheds excessive CPU load by processing

only the most profitable segments of the join windows, while

ignoring the less valuable ones. Window harvesting exploits the

time correlations to prioritize the segments of the join windows

and maximize the output rate of the join. We developed several

heuristic and approximation-based techniques to make window

harvesting effective in practice for GrubJoin, which has built-

in load shedding capability based on window harvesting that is

integrated with an operator throttling framework. In contrast to

stream throttling where load shedding is achieved by dropping

tuples from the input streams, operator throttling adjusts the

amount of load shedding to be performed by setting a throttle

fraction and leaves the load shedding decisions to the in-operator

load shedder. Our experimental studies show that GrubJoin is

vastly superior to tuple dropping when time correlations exist

among the input streams, and is equally effective in the absence

of such correlations.
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