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ABSTRACT
With continued growth of music content available on the Inter-
net, music information retrieval has attracted increasing attention.
An important challenge for music searching is its ability to sup-
port both keyword and content based queries efficiently and with
high precision. In this paper, we present a music query system
− QueST to support both keyword and content based retrieval in
large music databases.QueST stands forQuery by acouStic and
Textual features. TheQueST approach has two distinct features.
First, it provides new index schemes that can efficiently handle var-
ious queries within a uniform architecture. Concretely, we propose
a hybrid structure consisting of Inverted file and Signature file to
support keyword search. For content based query, we introduce the
notion of similarity to capture various music semantics like melody
and genre. We extract acoustic features from a music object, and
map it into multiple high-dimension spaces with respect to the sim-
ilarity notion using PCA andRBF neural network. Second, we de-
sign a result fusion scheme, called the Quick Threshold Algorithm,
to speed up the processing of complex queries involving both tex-
tual and multiple acoustic features. Our experimental results show
thatQueST offers higher accuracy and efficiency compared to ex-
isting algorithms.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Search and Retrieval; J.5
[Arts and Humanities]: Music

General Terms
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1. INTRODUCTION
The availability of music in digital form continues to grow at an

astonishing speed. There are also growing efforts in various organi-
zations to build digital libraries with large collections of music for
education, entertainment and research purposes. The rapid growth
and continued availability of music data has created a number of
new challenges for managing, exploring and retrieving music data
with rich query expressions, high accuracy and efficiency. Music
databases typically have significantly different and in many ways
more complex data structures compared to traditional library sys-
tems. Music data can be organized and queried by different tex-
tual and acoustic features. For example, one way to organize and
search music data is to use auxiliary text information, such as the
song title, the artist’s name, etc. In addition, music data can also
be represented by the semantic information of music objects, i.e.,
acoustic content, such as timbre, rhythm and pitch.

A music database stores all the music collections and provides a
rich set of querying capability to allow users with levels of musical
and information retrieval expertise to retrieve music objects of in-
terest in various formats and by various mechanisms. For example,
some users may conduct text-based search by specifying meaning-
ful keywords such as the singer’s name and the song title. Other
users may search the music database by its semantic content. For
example, a musicologist may use a few bars of a music score to
find similar music pieces in the database or to determine whether
a composition is original; a layperson may just hum a tune and let
the system identify the songs with similar melody.

According to the music information retrieval literature, there are
two widely accepted and yet independent approaches to accessing
music objects in music databases:

• Query-by-text: Many of the existing music search engines
use text description to label music object. In these applica-
tions, short annotations or text labels are used for interpreting
or indexing the music objects in the databases. The effective-
ness of such query does not only depend on the success of
text searching capabilities, but also the accuracy and preci-
sion of the text labelling. However, manually text-labelling
large music collections is an expensive and time-consuming
process.

• Query-by-content: These kinds of queries are essential in
a situation where users cannot describe the queries of inter-
est by keywords but rather would like to query the music
databases by, for example, playing a piece of music or hum-
ming. The query-by-content approaches to date suffer from
at least two main problems. First, users might not always
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have a sample piece of music at hand to issue a query. Sec-
ond, a user may prefer to query the music database via certain
high level semantic concepts, such as find all music objects
with similar genre or instrument configuration as the query
music object.

To support both keyword and content based retrieval in large mu-
sic databases, we present a music query system− QueST . All in-
coming music objects first pass through the musical feature extrac-
tion module. Various sets of features are extracted through analysis
of the music content, such as text descriptions and acoustic content.
Second, an independent index for each musical representation is
constructed, i.e. a hybrid index structure for keyword-based music
queries, and high-dimensional indexes for content based queries.
Third, upon receiving a user query, the system first identifies the
query type based on the query condition specified, and decide which
index should be used for query processing.

In this work, we focus on providing a general solution for query-
ing large music databases by both textual and acoustic features, and
contribute to its advancements with the following:

• We design an index for keyword queries that use only textual
features. We treat each text descriptor as an index term, and
build a hybrid structure that integrates an Inverted file [6, 16]
and a Signature file [5] to index the text features to support
single and multiple keywords search.

• For content based query, we introduce the notion of similar-
ity in terms of acoustic features of music objects to precisely
capture the music semantics. Thus the system can answer
the query effectively according to the user preference, like
melody, genre, etc. Radial Basis Function (RBF) neural net-
work is used to generate similarity oriented musical features
for different notions based on the original semantic features.
To improve the computational efficiency, we adopt PCA to
reduce the acoustic feature dimensionality before index con-
struction. Furthermore, a learning algorithm has been pro-
posed to train the system.

• A novel result fusion scheme, called Quick Threshold Algo-
rithm (QTA), is designed for efficient processing of complex
hybrid queries involving both textual and acoustic features.

The remainder of this paper is organized as follows. In sec-
tion 2, we review some background and related work. Section 3
presents the detailed algorithms of the proposed scheme. Section
4 describes a performance study and gives a detailed analysis of
results. Finally, we draw some conclusions for this work.

2. PRELIMINARIES
In this section, we first describe different query types in a gen-

eral music query system, followed by the acoustic representation of
music data, and the basic indexing algorithms used as the basis for
theQueST indexing schemes.

2.1 Query Type Definition
In a general music query system, we need to support querying

the music database by acoustic and textual features through multi-
ple types of queries. Query classification has been widely investi-
gated in the community of information retrieval and query answer-
ing [11, 24]. Various schemes have been proposed to categorize
free/regular-form factual queries. However, such approaches can-
not achieve high accuracy for query categorization, which makes
them impractical for real-life applications. Therefore, inQueST , a
checkbox style interface is constructed to allow user to select query

type and input different keywords and/or music sample for further
processing. Generally, music queries are typically classified into
three categories:

• Keyword query (K − query): Queries for finding a mu-
sic item with certain keywords. e.g. “Find music item of
Beatles" and “Find music clip performed by Beatles and pro-
duction year is 1966.".

• Content query with certain similarity ( C−query): Given
query example, queries for a certain type of similarity notion,
such as “Find similar music item to the humming input (sim-
ilar melody)" or “Find music item with similar genre to the
query example" are such queries.

• Hybrid query ( H − query): In this paradigm, returning
music items are similar to query example based on single or
multiple similarity notions and labelled with same keywords
given by users. For example, “Find music item with similar
melody to the query sample and production year is 2000.".
In some cases, the user only provides a sample to find the
music under multiple similarity notions, which is also treated
as hybrid query for the clarity of the presentation.

For the content based query, we define multiple similarity no-
tions, e.g. melody, genre and instrument. For example, musical
genres [21] are categorical labels created by humans to character-
ize pieces of music. A musical genre is characterized by the com-
mon characteristics shared by its members. These characteristics
typically are related to the instrumentation, rhythmic structure, and
harmonic content of the music. The humming query is one kind
of content based query, which requires the system to return the
answer with similar melody. We note that the query classes we
have introduced above may not be applicable for arbitrary music
retrieval systems. As an example, music archives may not have
many humming queries in some cases, but they may instead have
more keyword queries. And the systems might have different and
even more query classes. But the idea of query type and similarity
notion is generally feasible, and our system can be easily extended
to support more query classes and similarity notions.

2.2 Music Representation
The most classic descriptor for music representation is the tex-

tual features, such as the title, artist, album, composer, genre, etc.
In addition to the metadata of music files, we can also extract the
content feature information from the music files. Content-based
music retrieval systems has attracted much research interest re-
cently [12, 14, 19, 20, 21, 18].

In music retrieval, melody is the key content of music informa-
tion, and is also a very important cue. Generally, the melodies
of music pieces are stored in the database in the form of music
score or music notes. A user can produce a query by keying in
a sequence of music notes, playing a few notes on an instrument,
or singing/humming through a microphone. The query melody is
usually incomplete, inexact and corresponding to anywhere of the
targeting melody. The query tune can be converted into a note-like
representation by use of signal processing techniques, and hence
string matching can be applied to music retrieval. A number of
approaches have been proposed for content-based symbolic music
retrieval. Ghias et al [7] reported effective retrieval using query
melodies that have been quantized to three levels, depending on
whether each note was higher, lower, or similar pitch as the previ-
ous one. Besides simplifying the pitch extraction, this allowed for
less-than-expert singing ability on the part of the user. In [2], mu-
sic melody was represented by four types of segments according
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to the shape of the melody contour, the associated segment dura-
tion and segment pitch. Song retrieval was conducted by matching
segments of melody contour. Generally, these approaches require
precise detection of individual notes (onset and offset) out of the
query. However, it is not uncommon for people to provide query
with wrong or incomplete notes. The string matching result would
suffer drastically when the error in note detection is not minor. To
deal with above-mentioned issue, the query processing can be done
based on beats instead of notes. The statistical feature, such as
tone distribution, is thus robust against erroneous query. However,
this requires users to hum by following a metronome [9]. Such re-
quirement could be difficult for users sometimes. When a tune is
hummed from memory, the user may not be able to keep in cor-
rect tempo. Different notes (e.g. duple, triple, quadruple meters) of
the music can also contribute to the difficulty. Additionally, most
existing algorithms [15, 22, 27, 17] are computationally expensive
(and hence impractical) for large music databases as the entirety of
a database has to be scanned to find matching sequences for each
query.

On the other hand, accurate pitch contour or melody informa-
tion extraction from music files and input queries is a non-trivial
task. Especially, it is extremely hard to extract melody from poly-
phonic music due to multiple notes occurring simultaneously in
polyphonic music. Some existing work converts music data into
indexable items, typically points in a high-dimensional space that
represents acoustic features, such as timbral texture, rhythmic con-
tent and pitch-based signal content [21, 25, 13, 18]. This kind
of approaches have two advantages: first, it can capture more se-
mantic information besides the melody; second, the features can
be easily indexed using high-dimensional structures, thus we can
support query in large music databases efficiently. Therefore, we
focus acoustic retrieval in this paper. Based on [21, 13], we extract
multiple intrinsic acoustic features and these are briefly discussed
below:

• Timbral textural features: Timbral texture is a global sta-
tistical music property used to differentiate a mixture of sounds.
Different components for this feature are calculated using the
Short Time Fourier Transform, including spectral centroid,
spectral flux, time domain zero crossings, low energy, spec-
tral roll-off and Mel-frequency cesptral coefficients(MFCCs).
The 33-dimensional feature vector produced contains: means
and variance of spectral centroid, spectral flux, time domain
zero crossings and 13 MFCC coefficients (32) plus low en-
ergy(1).

• Rhythmic content features:Rhythmic content indicates re-
iteration of musical signal over time. It can be represented
as beat strength and temporal pattern. We use the beat his-
togram (BH) proposed by Tzanetakis et al. [?] to represent
rhythmic content features. The main idea behind the calcu-
lation of BH is to collect statistics about the amplitude enve-
lope periodicities of multiple frequency bands. The specific
method for their calculation is based on a Discrete Wavelet
Transform (DWT) and analysis of periodicity for the ampli-
tude envelope in different octave frequency bands. In this
study, the 18-dimensional feature vector is used to represent
rhythmic information of music signal. It contains: relative
amplitude of the first six histogram peaks (divided by the
sum of amplitudes), ratio of the amplitude of five histogram
peaks (from second to sixth) divided by the amplitude of the
first one, period of the first six histogram peaks, and overall
sum of the histogram.

• Pitch-based signal features: Pitch is used to characterize

melody and harmony information in music and can be ex-
tracted via the multi-pitch detection techniques. We use al-
gorithm proposed by Tolonen et al. [?] to extract pitch based
signal features. In this approach, the signal is first divided
into two frequency bands. After that, amplitude envelopes
are extracted for each frequency and summed to construct a
pitch histogram. A 18-dimensional pitch feature vector in-
corporates: the amplitude and periods of the maximum six
peaks in the histogram, pitch interval between the six most
prominent peaks, and the overall sums of the histograms.

• DWCHs: Daubechies Wavelet Coefficient Histograms (DWCHs)
represent both local and global information by computing
histograms on Daubechies wavelet coefficients at different
frequency subbands. The distinguishing characteristics are
contained in the amplitude variation, and in consequence,
identifying the amplitude variation would be essential for
music retrieval. The DWCHs feature set contains four fea-
tures for each of seven frequency subbands along with nine-
teen traditional timbral features.

2.3 Basic Index Structures
A practical and useful music retrieval system should allow users

to query by textual or/and acoustic features. To efficiently support
such queries, we need various structures to index different musi-
cal features, e.g. text descriptions and acoustic features. Here we
introduce some techniques for feature transformation and indexing.

The musical features we extracted from the music database are
basically high-dimensional acoustic features and textual features.
Many emerging database applications such as image, time series
and scientific databases, manipulate high-dimensional data. There
is a long stream of research on solving the similarity search prob-
lem in high-dimensional space, and many indexes have been pro-
posed [1], such as M-tree [3], VA-file [23] and iDistance [26].
These structures are usually designed for generic metric space, where
object proximity is defined by a distance function, such as Eu-
clidean distance. However, these methods can not support retrieval
of non-numerical data efficiently, such as text strings. There are
two principal indexing methods for text databases: Inverted file [6,
16, 28] and Signature file [5]. An Inverted file builds an index entry
for each term that appears anywhere in the database, and this index
entry is represented by a list of the documents containing that term.
To process a query, a vocabulary is used to map each query term
to the address of its inverted list; the inverted lists are read from
disk and are merged to return the answers. In Signature file in-
dexes, each record is allocated a fixed-width signature, or bitstring
of w bits. Each word that appears in the record is hashed a num-
ber of times to determine the bits in the signature that should be
set. The queries are similarly hashed, then evaluated by compar-
ing the query signature to each record signature. Each candidate
record must be fetched and checked directly against the query to
determine whether it is a false match or a true match.

3. MUSIC QUERY PROCESSING
In this section, we describe theQueST music query system ar-

chitecture, related indexes and query algorithms.

3.1 System Architecture
From our experience with music data repositories and music in-

formation retrieval, we observe two interesting phenomena. First, a
music query is typically based on a subset of features, which could
be either textual or content features. Second, the feature subsets
used by a single query are typically not intermixed. Concretely, we
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mean that the subset of textual features used in a query is usually in-
dependent of the subset of content features used in the same query,
and each feature typically has different characteristics, although we
need to integrate the results for complex queries that involve both
textual and content features. Therefore, theQueST Music Query
System is designed with two objectives in mind. First, we want to
provide efficient processing of complex queries to a music database
system by indexing acoustic and textual features of music objects.
Second, our music indexing techniques should not only speed up
the processing efficiency of complex queries but also offer high
accuracy compared to those offered by existing music retrieval sys-
tems. Figure 1 shows the overall structure ofQueST system.

Genre
Index for .......

Melody
Index for

Text
Index for

Music DB

(H− query)(K− query) (C− query)
Keyword query Hybrid query Content query

Index for
Instrument

Multi−modal Query

Various Similarity Notions
Index Structures for 

Result List 

for Result Combination
Quick TA Alogrithm 

Figure 1: Overview of QueST Music Query System

The system consists of the following components for keyword
or content-based queries without resorting to any user feedback
and manual query expansion. First, all music objects will pass
through the musical feature extraction module before entering into
the music databases. Various sets of features are extracted through
analysis of the music contents, such as text descriptions and acous-
tic content. The text descriptions for a music object includes the
title, artist, album, genre, year, etc. Inspired by work on music
analysis [21, 13], we use multiple musical content features which
can capture the acoustic characteristics of raw signal effectively.
This high-dimensional feature represents timbral texture, rhythmic
content, pitch-based signal feature and Wavelet Coefficient His-
tograms.

Second, we construct independent index for each musical rep-
resentation. We propose a hybrid keyword index structure, which
integrates an Inverted file [6, 16] and Signature files [5] to keyword
search. For content features, we introduce a concept of similar-
ity notion to define more precisely the similarity between music
objects, such as melody and genre. We apply a RBF neural net-
work [8] to generate similarity oriented musical features. To further
improve the computational efficiency, we use PCA [10] to reduce
the acoustic feature dimensionality while retaining majority of the
music information. Thus each similarity notion has its own sepa-
rate high-dimensional index structure [26, 1].

Third, upon receiving a user query, the system first identifies
whether it is a keyword based query or an acoustic content query
or a hybrid query based on the query condition specified. Then the
query is passed to the feature extraction module. We determine the
set of features we can obtain from the query input and decide which
index should be used for processing the query. For content based
query with music sample input, we extract the acoustic content fea-
tures and apply RBF neural network to tune the feature weights. If
the query type is hybrid (comprising both textual and content fea-
tures), we get the query answers via various indexes, and fuse the

answer with a specially designed result fusion scheme QTA.

3.2 Index for Keyword Query
In keyword based music search, users generally search the database

by different kinds of textual features, such as artist name, album
name and genre. The typical query could be “find allJazz mu-
sic performed byMichael Jackson". Therefore, the input query
could be matched against multiple text attributes in the file, which
could be title, artist or other information. Although classical in-
dexing schemes, such as Inverted file [6, 16, 28] and Signature file
[5], can be applied to handle multiple attributes, they are either in-
efficient or ineffective (in terms of query false matches). In the
Inverted file approach, each list of addresses to records having the
a certain key needs to be maintained. Solving a partial match query
in such a system involves scanning the lists associated with multiple
keys and then determining which records appear in all of the lists.
The technique works well in situations where the number of keys
specified in the query is small, and where the query retrieves rela-
tively small number of records. However, it can be expensive for
multi-key query or for queries which are not very selective. When
the query has several key values we have to perform several list-
intersection operations. For example, if the inverted lists for the two
keywords are“Michael Jackson” = {5, 8, 12, 28, 40, 55, 80}
and“1990” = {1, 8, 16, 23, 28, 36, 62, 70, 90, ...}. If we want to
find the songs ofMichael Jackson in 1990, clearly the answers
are their conjunction, i.e. music 8 and 28.

On the other hand, in the Signature file approach, the values of
all the key fields are “squeezed" into a small bit-pattern which is
stored in a separate file containing one signature for each record
in the data file. The signature file includes one associated de-
scriptor - a bit-string formed by superimposing (bitwise OR-ing)
the codewords for all keywords of each data item. A codeword
is a bit-string which is derived from the hashing value of a key-
word. For a keywordki, we denote its corresponding codeword
by cw(ki), wherecw() is a hash function. For an objectm with
10 keywords, the superimposed descriptorsuper(m) is given by:
super(m) = cw(k1) OR cw(k2) OR ..... OR cw(k10).

The example shown in Figure 2 illustrates the procedure to OR
the codewords (hashing value) for keywords to form the signature
for a music object.

Keyword Type

Peter

Jazz

Jack

Deep Blue

Freedom

Value
Freedom

0001111101

0001011101

0001000001

1001000101

0001000101

Codeword

4 min

Year

Length

Title

4 min

OR

1101111101

1001110101

0101000101

1001110101

0101000101

0001110101

1101000101

0001011101

0001000001

1001000101
0001000101

Signature

Composer

Gerne

Album

Artist

Publisher

Jazz

Deep Blue

Jack

PeterInstrument

Lyrics Writer

Keyword Type

2003

BMG

Drum

Lee Dik

Value

1001110101

0101000101

0001110101

0111000101

1101000101

Codeword

2003

BMG

Drum

Lee Dik

Figure 2: An Example of Signature Generation

The descriptor for a partial or full match queryQ can also be
formed by OR-ing the codewords for all thespecified keywords,
super(Q) = OR cw(ki), where ki ∈ Q.

If the keywords specified in a queryQ is denoted byk1, k2,
. . . , kn, we can define setSpec(Q) of specified keyword numbers
for a queryQ asSpec(Q) = {i|ki ∈ Q}.

It should be clear from the above two definitions that the bits in
the query descriptor for a queryQ will be subset of the bits in the
keyword descriptor of any matching objectM . Thus, in order to
determine which records satisfy a query, we scan the whole super-
imposed descriptor file, testing each descriptor against the query
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descriptor to determine whether the subset property holds or not.
To answer a query with this approach, the files of signature are first
searched to select candidate records. The set of candidate records
comprises all the records which satisfy the query but may also con-
tain records which match at the signature level but do not satisfy
the query (false matches). False matches is the main weakness for
the Signature file.

15

Superimposed Codes  Music ID

3

6

5

34

2

91

1100  0001 ..... 1010

B+−tree

...
...

...
...

...
...

...
...

...

Number of Music with Key

Keyword Key

Pointer to Signature File

Leaf Record (Key, No_Key, Pointer)

for All Keywords

Signature File

0100  1001 ..... 0010

.....................................

0101  1011 ..... 0101

0101  1101 ..... 0011

0101  1111 ..... 1100

0110  1011 ..... 1110

0101  1101 ..... 0010

Figure 3: The Index Structure for Keyword Search

To remedy the weaknesses for both structures, we design a hy-
brid indexing scheme to provide speedy and accurate keyword based
search. Figure 3 illustrates this hybrid indexing structure. In the
first layer, a B+-tree is built to index keys which are text strings.
Note that the text descriptions are used to label music object in the
music databases. Basically, the music can have multiple and var-
ious music descriptions. For ease of presentation, we assume the
text information of the music is shown as follows:

MusicID : < title, artist, album, genre, composer, lyric
writer, publisher, instrument, length, year >

We note that there are other text descriptions that we could have
used, such as CD track number, rating, file format, etc. Our rep-
resentation can be easily extended to include these and other in-
formation and such extensions will not affect the usability of the
system. We convert theyear andlength to text as well. Each leaf
node of the B+-tree contains< key > and one pointer referring to
an inverted list which is a contiguous list of the music containing
the textkey. Since this list could be very long, we use signature
file to organize these music objects using bit-strings for all key-
words of each music item. The advantage of our scheme is that we
only need to search the B+-tree once compared with the Inverted
file. Additionally, via the B+-tree, we can prune away majority of
the irrelevant music objects, and signature file in the leaf level is
sufficiently efficient to return the answers.

Input: Hybrid indexing scheme, Query keyword list
Output: Answer list
1 Pick the keywordki with largest cardinality
2 Search the B+-tree to find signature file referred

by ki

3 Construct superimposed codewordcw with query
keyword list

4 Return music ID whose descriptor satisfies subset
property

Figure 4: Algorithm for Keyword Search

With the above scheme, the basic search algorithm, shown in
Figure 4, is quite straightforward. From the keyword input, the
user can pick up keywordki which is in the field with the largest

cardinality in line 1. In an Inverted file index, each distinct text
feature in the database is held in a textualkey list and eachkey
refers to the music list containing the certain keyword. Clearly the
cardinality of feature fieldartist is much larger thangenre which
is typically only 30, while there could be thousands of artists in the
music database. For a query withartist andgenre as input, we
first selectartist to find a shorter candidate list, and hence has bet-
ter pruning efficiency. In Line 2, we find the appropriate signature
file sf with the B+-tree in the first layer. The query descriptor is
constructed withsuper() and then used to determine final answer
list.

3.3 Index for Content Query
In this section, we discuss how to support content based query

by music sample. In other words, the query input can be a song,
a piece of music, or just a music piece hummed by a user, and the
user wants to find similar music from the database. After analyzing
the content of the input music object, we can extract the intrinsic
semantic features of the music, such as rhythmic and pitch-based
signal content. We can search the music database with those acous-
tic characteristics of the given a query sample. By extracting the
acoustic features of the query and data, and mapping them to a
high-dimensional space, we can find similar music using a single
high-dimensional index structure.

However, a user may want to find the music under different sim-
ilarity such as same genre or similar melody. Using the original
acoustic feature space, the music system only returns the same an-
swer set for various similarity demands, and such answers may not
be optimal in many cases. Therefore, we introduce a novel scheme
to map original acoustic features into different space according to
the respective similarity requirement.

3.3.1 Similarity Notion Oriented Signature Genera-
tion

Our similarity notion oriented signature generation is based on
Radial Basis Function (RBF) neural network processing. RBF neu-
ral networks derive their strengths from a “model-free" processing
of data and a high degree of freedom associated with their archi-
tecture [8]. It has been widely applied for function approximation,
pattern classification, data compression and so on. The goal of the
method is to obtain different NN parameters respectively using dif-
ferent training sets for various similarity notions, and thus we can
map the raw musical signal into different acoustic feature spaces
nonlinearly.

In our framework, an RBF classifier is served as the mechanism
to conduct complex nonlinear feature mapping from the original
high dimensional feature space to a new feature space. This has
several advantages: (1) Adaptiveness - it can represent different
similarity notions via learning processes with various training sets;
(2) Compactness - it is lower dimensional, as we can set fewer num-
ber of neurons in the hidden layer, which is applied for indexing,
and (3) Efficiency - In contrast to multilayer perceptron neural net-
work, linear least square based method is used to determine weights
between the hidden and output layer. This can make the network
faster and free of local minimal. In our implementation, the RBF
neural network contains three layers, including the input layer, the
hidden layer and the output layer. The output layer contains class
label and used for training. The neuron values in hidden layer are
extracted as music descriptor for content based query. The num-
ber of neurons in the hidden layer is configured to be smaller than
the one in input layer which is equal to dimensionality of acoustic
features.

In the RBF training stage, training samples are selected with
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random sampling to cover each subclass for particular similarity
notion. Based on the current setting, we use 20% of the whole
datasize as learning example and it covers all subcategories of data.
After the network training is completed, feature extraction can be
achieved by feeding the musical feature vectors into the network
and taking the vectors computed in the hidden units as the lower
dimension representations. These lower dimension vectors can be
used for effective similarity-based search with certain similarity no-
tion, e.g. search music by genre or melody similar to the input
music.

3.3.2 Preprocessing with PCA
RBF neural network can effectively convert the original acoustic

features into lower dimensional subspaces with respect to different
similarity notions. However, the high dimensionality of acoustic
features may degrade the efficiency of neural network. First, it in-
curs high training cost as the computational cost is proportional
to the feature dimensionality. Second, it may reduce the accuracy
of the training effect, as the points in high-dimensional space are
sparse and hardly distinguishable. Third, it requires larger topolog-
ical structure for neural network.

To alleviate the above problems, we try to reduce the dimension-
ality of the acoustic features before they are feed into the RBF neu-
ral network. In our work, we adopt PCA as a “pre-processing” step
for RBF neural network based musical feature generation scheme
where it provides optimally reduced dimensional inputs for neural
network, and thus speeds up the training and processing time. Prin-
cipal Component Analysis (PCA) [10] is a widely used method to
reduce the dimensionality of high-dimensional data. Using PCA,
most of the information in the original space is condensed into
fewer dimensions along which the variances of data distribution
are the largest.

To generate the new features, we first reduce the dimensional-
ity of the input raw feature vector with PCA, which is applied to
all music in the database rather than only to the training samples.
This has an advantage in that the covariance matrix for each type of
single feature vectors contains the global variance of music in the
database. The number of principal components to be used is deter-
mined by the cut-off valueψ. There is no formal method to define
this cut-off value. In this study, the cut-off valueψ is set to 99 so
the minimum variance that is retained after the PCA dimensions
reduction is at least 99%.

3.3.3 Indexing the Semantic Oriented Feature Spaces
Once the similarity notion oriented feature sets have been ex-

tracted, we can simply adopt a high-dimensional index structure
for each similarity notion, as music objects are feature-transformed
into points of a vector space with a fixed dimensiond. There is
a stream of research on solving the similarity problem in high-
dimensional space, and many indexes have been proposed for this
purpose [1, 3, 23, 26]. In this study, the iDistance is employed due
to its simplicity and superior performance as reported in [26]. How-
ever, any other high-dimensional index structure can be adopted,
and it will not affect the efficiency of our scheme.

3.4 Hybrid Query
As introduced previously, the user may provide a music sam-

ple and some keywords as a query. In some cases, the user may
give one sample but require multiple similarity notions, e.g. sim-
ilar genre and instrument. For simplicity, we also treat this as a
hybrid query. We do not provide specific index structure for such
queries, but refer to the keyword and acoustic feature indexes sep-
arately and then merge the answers.

Input: d result lists ford different features
Output: Object for top K query
Initiation: rset⇐ ∅, tr ⇐ 0
1 next_list⇐ opt_List()
2 objnext ⇐ get object innext_list with sorted access
3 If objnext has not been accessed
4 calculate aggregated score ofobjnext

5 insertobjnext into rset
6 If rset 6= ∅
7 objmax ⇐ object with max. aggregated score
8 If tr < objmax’s aggregated score
9 returnobjmax and delete it from rset
10 If all lists received at least one sorted access
11 tr ⇐ add up all partial scores from each list
12 with sorted access

Figure 5: Threshold Algorithm (TA) for Combining Score Lists

To achieve efficient combination of scores from different result
lists from indexes representing various similarity notions, a new
cost-aware algorithm, called QTA (Quick Threshold Algorithm) is
introduced. Note that since all objects in the result list from key-
word index has the same score, the QTA is only used to merge
score lists from different index trees constructed with musical con-
tent features. The QTA is based on the well known TA (Threshold
Algorithm) algorithm [4]. To facilitate the understanding of QTA,
Figure 5 gives the pseudo code of the TA algorithm, which returns
the top-k objects when it runs k times. The main difference be-
tween our QTA algorithm and the original TA lies in the scheme
to select the next partial score list to make sorted access. Rather
than picking up the score list using round-robin style, QTA selects
the next list to evaluate by optimizing access costs with the same
termination condition.
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Figure 6: Execution Path for TA and QTA

Before we introduce the detailed procedure for QTA, we show
how the TA algorithm performs in Figure 6(a). We can see that
associated query execution path is like a staircase (feature score list
is selected in round-robin style) and KNN objects will be returned
when the threshold boundary is hit by the "walk". Note that for TA,
the highest partial score accessed most recently in feature listi is
the score value in dimensioni of Figure 8(a). A sorted access to
score listi leads to increasing of the partial score. In general, this
process can be seen as position change in a multidimensional space
and will be terminated when the aggregated score of K objects (K
is predefined) is larger than or equal to certain threshold boundary.
Note that, in TA, it is equal to summation of partial score for all
the lists and is a diagonal line graphically in 2 D plate. The whole
procedure is inefficient in terms of sorted access cost. To achieve
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this, the upper bounding cost to estimate the access cost is first
introduced below:

UC(l1, ..., lk) =

k∑
i=1

(ACli(Cli(l1, ..., llk )) +

d∑

p=1,p6=ii

RCp)

(1)
wherel1, ..., lk andli represent the execution path and the score

list with sorted access in thei-th iteration. AClk (w) denotes the
sorted access cost to obtain thew-th biggest partial score from list
k andRCp.
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Figure 7: Example of Query Path

The basic goal for QTA algorithm is to reach the threshold bound-
ary with minimal access and computational cost. To achieve this
target, the first step is to estimate the threshold boundary and then
determine in which direction to forward to reach the boundary with
the minimum cost. As an example shown in Figure 7, the query
step is 3 for QTA which is much less that TA whose step is 7. Note
that,“2, 2” in QTA can be treated as one step.

Input: Current positionp in d dimensional space
Output: Path directiondi to hit threshold boundary

with minimum cost
Initiation: d_set⇐ ∅
1 tre = max. aggregated score in current rset
2 d_set = candidate path direction generation
3 For eachdirectiondi in d_set
4 Estimate the position in threshold boundary

with thresholdtre

5 Estimate cost with equation 6 to hit the target
position

6 Return thedi with minimal cost

Figure 8: Execution Direction Estimation

The algorithm for direction estimation is shown in Figure 8. In
this study, we use the maximum aggregated score of all objects in
rset as an estimated value oftr, denoted bytre(line 1). After that,
M uniformly distributed vectors are generated. A graphic view is
shown in Figure 6(b). In order to make the boundary position es-
timation, we simply use binary search to discover the point along
the position, where the aggregated score becomestre(line 4). Once
the position in the threshold boundary is fixed, the upper cost for
reaching this position needs to be estimated using equation 1. The
estimator is polynomial extrapolation forAC andRC. The direc-
tion with the lowest upper bounding cost will be picked at the end.
Once the direction is determined, the optimal sort-access sequence
can be easily generated - the basic idea is to select one path combi-
nations as close as possible to path.

3.5 Conducting Music Query
We have discussed each component of the proposedQueST sys-

tem. Now we are ready to describe the overall procedure for music
query processing. Figure 9 shows the algorithm of a general search.
We first analyse the query input, and determine the type of the
query the user wants. In lines 3-4, we determine the keyword with
highest preference and conduct the search on our hybrid Inverted-
and-Signature file structure. If the query is a content query, we first
extract acoustic features from the music sample, then we use PCA
to reduce the dimensionality, and we use RBF neural network to
tune the weights for a certain similarity notion. After the music
sample is mapped into a point in the high-dimensional space, we
use the traditional similarity search to get the similar music objects
in the database (lines 6-8). For the hybrid query as shown in lines
10-12, we conduct keyword search and content search separately,
and merge the answers using the proposed QTA before they are
returned to the user.

Input: System architecture, query input
Output: Answer list
1 Process query input
2 If Query is keyword query
3 Determine the keyword
4 Search via text index
5 Elseif Query is the content query
6 Extract acoustic features
7 Convert to a certain similarity space via RBF NN
8 Access the index w.r.t. the similarity notion
9 Else
10 Get answer from keyword index
11 Extract and transform acoustic features, access

multiple indexes
12 Merge the answer by QTA

Figure 9: Search Algorithm of Music System

4. PERFORMANCE EVALUATION
In this section, we present an experimental study to evaluate the

proposed music systemQueST . Given a music query, either key-
word or content or hybrid query, we find the matching music ob-
jects in the database using the proposed indexing methods. We have
implemented our music retrieval systemQueST , and demonstrate
the effectiveness of our methodQueST by comparing it with some
traditional approaches. As performance metrics, we use response
time, and precision which is the ratio of the number of relevant
records retrieved to the total number of records retrieved. The rele-
vance of music is determined by human for a certain query, because
the indexes try to find the most similar objects in terms of Euclidean
distance. On the other hand, recall and precision are typical perfor-
mance metrics for information retrieval system. However, manu-
ally identifying all the similar music objects for each music in a
large music database is very time consuming, and almost infeasible
in reality. As a result, we only show the performance on precision,
and with the various numbers of similar music objects returned,
our results are enough to compare the effectiveness of different
schemes. For each experiment, we run 100 different queries, and
report their average performance for system evaluation. The exper-
iments have been conducted on a computer with P4 CPU (2.5GHz),
1GB RAM, and running Microsoft Windows XP Professional Op-
erating System.

The real dataset used in the experimental study is constructed
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from the compact disks and MP3 compressed audio files. The ma-
jor parameters are shown in Table 1. For example, the genre can
have thirty different types including Classical, Country, R&B, Hip-
hop, Jazz, Rock, Metal, Blue, Dance, Caribinal and Pop etc.

Dataset Parameters Details

Number of music 3000
Number of Artists 400
Number of Albums 500
Number of Genres 30
Publishers 20
Years 1970 - 2003

Table 1: Some Parameters of the Dataset

4.1 Performance of Keyword Query
In the first set of experiments, we study the performance ofQueST

on keyword search. Note that, only key words are only involved in
this experiment. We first use the real dataset and a mixture of oper-
ations with different numbers of keywords to evaluate the efficiency
of the keyword search structure inQueST . In this study, we de-
fine four types of queries with respect to the numbers of keyword
input, i.e. Type I to IV. For example, a type III query can be “find-
ing Michael Jackson’s songs in1990 with genreRock" (three
keywords).
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Figure 10: Performance on Keyword Search

We compareQueST against Inverted file and Signature file ap-
proaches under various query types. Figure 10 shows the response
time for different keyword searches. The Signature file is signifi-
cantly worse than the other two methods. This is because it has to
scan the whole signature file to get the candidates and then filter
out the false matches. It can imply the more expensive computa-
tional cost of processing. In our implementation, we set 128 bits
for each music object. Contrast to the other two methods, the per-
formance of Signature file is improved when the query has more
keywords, although it still performs worse than two competitors.
This is due to fact that Signature file contains more information
about keywords. Also we use “OR" function to generate the sig-
nature and it introduces more false matches when fewer keywords
are provided. For the Type I query, the Inverted file is a bit faster
thanQueST . This is because basically both approaches adopt the
same structure in the first tier, i.e. B+-tree for text string. How-
ever,QueST stores more information in the leaf level, e.g. the
signatures for the keywords. In such case,QueST may introduce
more disk I/O. However, when the query has more keywords input,
QueST clearly shows better performance, about 100% better than
Inverted file for Type IV query. In the Inverted file, the B+-tree has

to be accessed for multiple times to get the individual list for each
keyword, and then merge the lists to get the final answers. There-
fore, the more keywords there are, more step is needed to complete
result set generation and thus the longer the response time. How-
ever, the performance of ourQueST structure is not affected by
the query type significantly. Main reason is that performance of
keyword based query plays important role to determine final per-
formance. We always select the keyword with highest cardinality,
which means the certain answer list is shortest. Additionally, we
use the signature file in the leaf level to prune the answers with
respect to the rest of the keywords, and the processing of the signa-
ture file is very efficient. ThusQueST only needs to traverse the
B+-tree in all the cases, and hence resulting in faster response.

4.2 Performance of Content Query
In this section, we present the results of experiments to verify

the effectiveness ofQueST for content based music retrieval. Mu-
sic retrieval can be informally defined as: the user submits a query
music clip and the system retrieves a list of music objects from
the database that are most similar; the list of “matching” music is
displayed in order starting from the most similar. However, the
meaning of music similarity can be defined over a board range.
To efficiently meet the user demands, we carefully define various
similarity notions, which is most commonly used in real life ap-
plications. Each notion of similarity corresponds to one kind of
content query and music descriptor. As we described previously,
we first extract all the acoustic features from the dataset and use
the trainedRBF neural network to map the features to multiple
high-dimensional space with respect to a certain similarity notion.
In this study, four popular types of similarity are used for testing:

• Type V: find music that has similar genre from the database.

• Type VI: find music performed by the same artist from the
database.

• Type VII: find music with the same instrument from the
database.

• Type VIII: find music that has similar melody from the database.

In this experiment, we randomly pick 100 music objects as query
examples, and return up to 50 objects in term of similarity measure-
ment. We compare ourQueST with three methods, i.e.MARSYAS
which represents 69 dimensional feature sets including timbral, rhythm
and pitch features [21],DWCHswhich represents 47 dimensional
Daubechies Wavelet Coefficient Histograms[13], andInMAF [18]
which linearly concatenates the reduced dimensionality ofMARSYAS
andDWCHsfeature sets.

One of our conjectures is that it is possible to obtain effective
retrieval from low-dimensional feature space if these vectors are
carefully constructed. In our framework, we build indexing vec-
tors from high-dimensional “raw” feature vectors via a hybrid ar-
chitecture consisting of PCA and neural network, which can effec-
tively reduce the size of the final music descriptors. Furthermore,
by incorporating human musical perception, more discriminating
information could be squeezed into a smaller size of feature vec-
tor which leads to superior performance for similarity search for
various similarity notions.

The experimental study confirms our claim. Figure 11 sum-
maries the query effectiveness ofMARSYAS, DWCHs, InMAF and
our proposedQueST for the four different query types. As shown,
MARSYASand DWCHsare the worst in terms of precision rate.
TheDWCHstechnique achieves marginal better performance than
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Figure 11: Precision Comparison of Content Query. Dimen-
sionality of DWCHs and MARSYAS are 47 and 69 respectively.

MARSYAS, because theDWCHscaptures both local and global phys-
ical characteristic of music signal. TheInMAF performs better by
concatenatingMARSYASand DWCHs feature sets, as it captures
more detailed acoustic features of the music objects. However, the
linearly cumulative information ofInMAF cannot discriminate ob-
jects due to the dimensionality curse. The increase of precision is
not proportional to the information included. Although, the raw
features adopted inQueST is same asInMAF, the experimental
results clearly demonstrate thatQueST significantly outperforms
the other three methods. For example, Figure 11 shows that, com-
paring to InMAF, QueST improves the retrieval precision from
60% to 85% averagely. Overall, around 40% improvement can
be observed against the competitors for all kinds of query types.
Our proposedQueST has three advantages. First, it adopts both
MARSYASandDWCHsfeature sets, and hence captures the major-
ity of the acoustic features of the music objects. Second, we alle-
viate the dimensionality curse of the acoustic features. After PCA
processing, we can reduce around 25% of the dimensions while re-
taining 99% of the information in the raw data. In RBF neural net-
work, we set the number of neurons in the hidden layer 20, which is
used to index the acoustic features. Note that, we can use any num-
ber of neurons in the hidden layer with different neural network
configurations. However, we found 20 is almost optimal in our ex-
periments, because it is not very high in terms of dimensionality,
furthermore it does not introduce much information loss compared
with lower neuron numbers. Third, we use NN to tune the weight
of each dimension for different similarity notions. Therefore, the
generated multiple sets of features can incorporate human percep-
tion more precisely, and yield satisfactory results for all types of
similarity.

Large database size and high-dimensional feature vector can make
query processing based on any access method very inefficient in
terms of searching time. The small but well discriminative feature
vector could provide not only superior retrieval accuracy but also
fast response time. To further illustrate the performance advantage
of using our method, we compute the response time for the various
methods including the time to generate feature set and search over
a high-dimensional index. For fair comparison, we build the same
index, i.e. iDistance [26], for all the methods, however any other
high-dimensional index can be used in our system. Results pre-
sented in Figure 12 indicate the efficiency of our proposed method
based on the evaluation of 4 types of content queries.QueST is
the fastest among four competitor. Although,QueST adopts all
the acoustic features, it reduces the overall dimensions to only 20
via PCA transformation and neural network training, which is orig-
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Figure 12: Response Time for Different Query Types. Dimen-
sionality of DWCHs and MARSYAS are 47 and 69 respectively.

inally 116 dimensions. Although the improvement is not so signifi-
cant, because a major portion of the response time is on the feature
extraction and processing. Overall, our approach is promising for
content query even in terms of response time.

4.3 Performance of Hybrid query
Having evaluated our framework’s performance on keyword query

and content query, we proceed to examine its performance for hy-
brid query. In following study, we proceed to examine its perfor-
mance for hybrid query. Firstly we present the query definitions
based on previously defined similarity notions and possible key-
words as follows. Note that, if the query consists of one keyword
and one similarity notion, we can simply merge the answers as the
answer list of keyword query have the same scores, e.g. all the
songs performed by a certain singer. Therefore, we ignore such
query in this study as the performance is same as content query.

• Type IX: the query consists of one keyword and two simi-
larity notions, e.g. “find music that has similarmelody and
singer to the given example and the genre isJazz".

• Type X: the query consists of one keyword and three sim-
ilarity notions, e.g. “find music that has similarmelody,
instrument andgenre to the given example and produced
in year2000".

The queries are constructed by randomly selecting different sim-
ilarity notions and keywords. The number of objects returned, K, is
set to be 10, 20, 50 and 100. Figure 13 plots the query response time
for both the query types as a function of retrieved object numbers
K. In all cases, QTA always gives the lower cost due to significant
reduction of sorted access. Compared to TA, QTA can significantly
reduce the I/O cost as it makes path estimation after an object re-
turns. When K increases, both algorithms have to access more ob-
jects, which introduces more disk accesses and computation. Addi-
tionally, the computational costs for query path estimation increase
as more objects need to be returned. Furthermore, the type X query
needs longer response time compared with type IX query. The rea-
son is that we have to merge the answers from three candidate lists,
which requires more I/O and computational cost. However, the re-
sponse time for QTA is still substantially lower than that of the TA
algorithm. Overall, the QTA can serve as a highly efficient tech-
nique for merging result lists.

In the last experiment, we select the QTA algorithm as the fusion
scheme inQueST , and compare the precision with the other three
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Figure 13: Performance Comparison of Fusion Algorithm

mechanisms. Note that, for approachesDWCHs, MARSYASandIn-
MAF, we only need to merge the answer lists from the keyword and
content query respectively, as they simply return one answer list re-
gardless of multiple similarity notions. The results are shown in the
Figure 14, and the query is a mixture of type IX and X. Clearly, our
method shows better performance that the other three competitors,
about 40% higher in terms of precision. First, its optimized feature
for various similarity notions can reflect human musical percep-
tion more precisely. Second, the QTA fusion algorithm can com-
bine the optimal answers from multiple answer lists. Therefore,
the proposedQueST is superior for hybrid query againstDWCHs,
MARSYASandInMAF.
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Figure 14: Precision Comparison for Hybrid Query. Dimen-
sionality of DWCHs and MARSYAS are 47 and 69 respectively.

5. CONCLUSIONS
We have presented the design of theQueST music query system

to support various queries to a large music database by acoustic and
textual features.QueST builds multiple index structures for differ-
ent query types. Concretely, we use a hybrid structure of Inverted
file and Signature file for supporting efficient keyword search, and
create separate feature indexes for independent subsets of content
features of music objects with respect to the similarity notion using
PCA and RBF neural network. Our experimental results showed
that our proposed schemes can support various queries efficiently
in a music database system, while offering a high degree of accu-
racy, compared to existing music retrieval algorithms.

The work onQueST continues along several directions. We
plan to extend the current techniques to support music query on
small mobile devices or in P2P environment. We are also inter-
ested in investigating the various performance issues of the current
framework when we apply it to image, video and general audio
data. Developing analytical cost models that can accurately esti-
mate the query costs in terms of space and time complexity is an-
other interesting research direction.
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