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Abstract

Data perturbation is a popular technique for privacy-
preserving data mining. The major challenge of data
perturbation is balancing privacy protection and data
quality, which are normally considered as a pair of con-
tradictive factors. We propose that selectively preserv-
ing only the task/model specific information in per-
turbation would improve the balance. Geometric data
perturbation, consisting of random rotation perturba-
tion, random translation perturbation, and noise addi-
tion, aims at preserving the important geometric prop-
erties of a multidimensional dataset, while providing
better privacy guarantee for data classification mod-
eling. The preliminary study has shown that random
geometric perturbation can well preserve model accu-
racy for several popular classification models, including
kernel methods, linear classifiers, and SVM classifiers,
while it also revealed some security concerns to ran-
dom geometric perturbation. In this paper, we address
some potential attacks to random geometric perturba-
tion and design several methods to reduce the threat
of these attacks. Experimental study shows that the
enhanced geometric perturbation can provide satisfac-
tory privacy guarantee while still well preserving model
accuracy for the discussed data classification models.

1 Introduction

Data perturbation is one of the most popular ap-
proaches to privacy preserving data mining [3, 6, 21].
It is especially useful for data owners to publish data
while preserving privacy-sensitive information. Typi-
cal examples include publishing micro data for research
purpose or outsourcing the data to the third party that
provides data mining services. A data perturbation
procedure can be simply described as follows. Before
the data owner publishes the data, they change the
data in certain way to disguise the sensitive informa-
tion while preserving the particular data property that
is critical for building meaningful data mining models.
Several perturbation techniques have been proposed
for mining purpose recently, among which the most
popular one is randomization approach [3, 6] and K-

∗College of Computing, Georgia Institute of Technology,
kekechen@cc.gatech.edu, Yahoo!, kchen@yahoo-inc.com

†Yahoo! gzsun@yahoo-inc.com
‡College of Computing, Georgia Institute of Technology

lingliu@cc.gatech.edu

anonymization [21]. Different from the randomization
approach that focuses on single-dimensional perturba-
tion and assumes independency between data columns,
random rotation perturbation approach [4] and con-
densation approach [1] try to perturb data while pre-
serving multidimensional information.

Perturbation techniques are often evaluated with two
basic metrics, the loss of privacy and the loss of in-
formation. An ideal data perturbation algorithm aims
at minimizing both privacy loss and information loss.
However, the two factors are not well-balanced in most
existing perturbation techniques [3, 2, 5, 1, 17]. Per-
turbing data has to lose part of the original infor-
mation, and there is no perturbation technique that
can preserve all information contained in the origi-
nal dataset. We realized that in order to better bal-
ance the two factors we need to focus on preserving
the task/model-specific information, e.g., the specific
information for data classification models. Bearing
this principle in mind, we developed the random ro-
tation perturbation technique [4] aiming at preserv-
ing the multidimensional information, such as distance
and maniford-based geometric classification boundary.
Geometric perturbation, including random rotation
perturbation, extends privacy-preserving classification
to three important categories of classification models,
namely, kernel methods, linear classifiers, and SVM
with the popular kernels. These classifiers, if trained
with geometrically perturbed data, have similar model
accuracy to those trained with the original data.

Effective data perturbation should also consider the
potential attacks to the perturbation. The research on
randomization technique shows that it is not sufficient
to study the naive estimation solely based on the
intensity of perturbation, i.e., the difference between
the perturbed data and the original. There exist
attacks that can utilize the published information of
perturbation and the perturbed data to approximately
reconstruct the original dataset [16, 10]. In the initial
study, we have noticed some potential attacks to
random rotation perturbation [4]. It is thus critical
to thoroughly study the potential attacks, develop the
evaluation methods, and enhance the basic rotation
perturbation with additional components, in order to
provide better privacy guarantee in terms of attacks.

In this paper, we revisit the basic random rotation per-
turbation technique, analyze some discovered attacks,



and propose a general framework for evaluating the
threats and optimizing perturbation in terms of the
addressed attacks. Concretely, this paper has three
major contributions.

First, we extend the single-column variance-based pri-
vacy metric to multidimensional privacy evaluation and
develop a generic privacy evaluation model, with which
the resilience of perturbation to most potential attacks
can be quantitatively evaluated.

Second, some attacks to random rotation perturbation
are addressed and analyzed. To systematically study
the potential attacks, we categorize the attacks accord-
ing to three different levels of knowledge the attacker
may have about the original dataset. Concretely,
naive estimation addresses the attacks that use no in-
formation about the original dataset, reconstruction-
based attack assumes the attacker knows sufficient in-
formation about column distributions, and distance-
inference attack is based on a few known original
data points and their possible images in the perturbed
dataset.

Third, components, such as random translation and
noise, are added to the basic rotation perturbation to
address the attacks. The generic privacy evaluation
model is used to optimize the enhanced geometric
perturbation.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly review the basic random rotation
perturbation and its related issues. In section 3, the
generic multidimensional privacy evaluation model is
defined, which works as the major tool for quantita-
tively studying the threat of most attacks to a given
perturbation. In section 4, some attacks to rotation
perturbation are addressed and analyzed in detail, and
the additional components are appended to improve
the privacy guarantee, which forms an enhanced geo-
metric data perturbation. In section 5, we present the
experimental results, showing how effective geometric
data perturbation can be in preserving both privacy
and model accuracy for several data classifiers.

2 Preliminary

Before discussing the attacks to geometric perturba-
tion, we would like to briefly review the previous work
on rotation perturbation [4]. The basic perturbation
can be defined as follows. Let the original dataset
with d columns and N records represented as Xd×N

for mathematical convenience. A rotation perturba-
tion is defined by G(X) = RX, where Rd×d is a ran-
domly generated d×d orthogonal matrix [7], for which
we use the intuitive name “rotation perturbation” in-
stead. We also use Xi to denote the column i of dataset
X. Rotation perturbation preserves some important
geometric properties of dataset, such as distance, in-

ner product, and any multidimensional geometric sur-
face or manifolds. In the following discussion, we use
capitals to represent matrices, lower case characters to
represent scalar variables, and bold lower cases to rep-
resent vectors.

Why is random rotation perturbation so useful to
privacy-preserving data classification? There are two
important features of random rotation perturbation.
First of all, if we want to preserve the task/model-
specific information in data perturbation in order to
achieve better balance between data quality and pri-
vacy guarantee, random rotation will be a good can-
didate for preserving the important geometric proper-
ties that are critical to many popular classifiers. We
proved that three categories of classifiers, namely, ker-
nel methods, linear classifiers, and SVM classifiers with
the popular kernels, are “invariant” to rotation pertur-
bation − a rotation-invariant classifier, if trained and
tested with rotation perturbed data, will have similar
model accuracy to that trained and tested with the
original data.

Second, rotation perturbation is safe enough if no in-
formation about the original dataset is known. With
rotation perturbation, the attacker cannot estimate the
original data solely from the perturbed data without
any additional knowledge about the original dataset.
This makes rotation perturbation perfect for outsourc-
ing secure data sources for privacy-preserving data
classification modeling, where no information about
the original data source can possibly be obtained by
attackers.

However, data sources involved in privacy-preserving
data mining often have some (or all) data columns with
well-known statistical properties. For example, a col-
umn “Age” could have Gaussian distribution with ap-
proximately predictable maximum and minimum val-
ues, and some of its values might also have strong
correlation with some disease symptoms. Such in-
formation could be obtained from other similar data
sources, such as k-anonymized version of the original
data [21]. Furthermore, some particular points, e.g.,
outliers, could be distinguished in the original dataset
[5], and their mapping images can be detected in the
perturbed dataset with high probability, which can
help to infer the perturbation matrix R. We have
addressed some potential attacks including the ICA-
based data reconstruction [4]. However, without a clear
categorization of attackers’ knowledge about the origi-
nal data, it would be inefficient in discussing the meth-
ods countering the various attacks. In the following
sections, we will discuss the potential attacks to rota-
tion perturbation in detail, in terms of different levels of
knowledge attackers may have. Then, with certain se-
curity assumption the data owner can get for the pub-
lished data, s/he can decide to employ certain level of
perturbation optimization or be advised not to use ge-



ometric perturbation. We start with multidimensional
privacy evaluation, which will be the basic tool in the
following analysis.

3 Multidimensional Privacy Evaluation

Before the concrete analysis of the potential attacks,
we should define an evaluation model to quantitatively
evaluate the effectiveness of the attacks. Since attack-
ers try to reduce the privacy guarantee of a specific
perturbation, it would be ideal to design a privacy eval-
uation model that can conveniently incorporate any at-
tack evaluation. We aim at designing such a model in
this section.

Unlike the popular randomization methods, where
multiple columns are perturbed separately, random ge-
ometric perturbation needs to perturb all columns to-
gether. Therefore, the privacy quality of all columns
is correlated under one single perturbation and should
be evaluated under a unified metric. Our approach to
evaluating the privacy quality of random rotation per-
turbation consists of two steps: first, we define a unified
general-purpose privacy metric that is effective for any
multidimensional perturbation technique. Second, we
present the methodology of using the privacy evalua-
tion model to evaluate potential attacks for geometric
data perturbation.

Conceptual Multidimensional Privacy
Evaluation Model Since in practice different
columns(attributes) may have different privacy con-
cern, we consider that the general-purpose privacy
metric Φ for entire dataset is based on column pri-
vacy metric. An abstract privacy model is defined
as follows. Let p be the column privacy metric vector
p = [p1, p2, . . . , pd], and there are privacy weights
associated to the d columns, respectively, denoted
as w = (w1, w2, . . . , wd). Φ = Φ(p,w) uses the two
vectors to define the privacy guarantee. In summary,
the design of specific privacy model should determine
the three factors p, w, and the function Φ.

We will leave the discussion about one concrete design
of p later, and define the other two factors first. The
first design idea is to take the column importance into
unification of different column privacy. Intuitively,
the more important the column is, the higher level of
privacy guarantee will be required for the perturbed
data column. Since w is used to denote the importance
of columns in terms of preserving privacy, we use pi/wi

to represent the weighted column privacy of column i.

The second intuition is the concept of minimum pri-
vacy guarantee and average privacy guarantee among
all columns. Normally, when we measure the privacy
quality of a multidimensional perturbation, we need to
pay more attention to the column that has the lowest
weighted column privacy, because such a column could

become the breaking point of privacy. Hence, we design
the first composition function Φ1 = mind

i=1{pi/wi} and
call it the minimum privacy guarantee. Similarly, the
average privacy guarantee of the multi-column pertur-
bation, defined by Φ2 = 1

d

∑d
i=1 pi/wi, could be an-

other interesting measure.

Variance-based Unified Column Privacy Metric
Intuitively, for a data perturbation approach, the
quality of preserved privacy can be understood as the
difficulty level of estimating the original data from the
perturbed data. Therefore, how different the estimated
data is from the original data could be an intuitive
measure. We use a variance-of-difference (VoD) based
approach, which is derived from the naive variance-
based evaluation [3] with more general setting.

Let the difference between the original column data
and the estimated data be a random variable Di.
Without any knowledge about the original data, the
mean and variance of the difference present the quality
of the estimation. Since the mean of difference can be
easily removed if the attacker can estimate the original
distribution of column, we use only the variance of the
difference (VoD) as the primary metric to determine
the level of difficulty in estimating the original data.

V oD is formally defined as follows. Let Xi be a
random variable representing the column i, X′

i be the
estimated result of Xi, and Di be Di = X′ − X.
Let E[Di] and V ar(Di) denote the mean and the
variance of D respectively. Then V oD for column i
is V ar(Di). Let an estimation of certain value, say xi,
be x′i in X′

i, σ =
√

V ar(Di), and c denote confidence
parameter depending on the distribution of Di and
the corresponding confidence level. The corresponding
original value xi in Xi is located in the range defined
below:

[x′i − E[Di]− cσ, x′i − E[Di] + cσ]

Without considering E[Di], the width of the estimation
range, 2cσ, presents the difficulty of guessing the
original value, which proportionally reflects the level
of privacy guarantee. For simplicity, we often use only
V oD or σ to represent the privacy level.

V oD only defines the privacy guarantee for single col-
umn. As we have discussed, we need to evaluate the
privacy of all perturbed columns together. The single-
column V oD does not work across different columns
since different column value ranges may result in very
different V oDs. Therefore, the same amount of VoD
is not equally effective for columns with different value
ranges. One straightforward method to unify the differ-
ent value ranges is via normalization over the original
dataset and the perturbed dataset. Normalization can
be done with max/min normalization or standardized
normalization [20]. We use max/min normalization in
this paper.



Incorporating Attack Evaluation: Since the
variance-based model evaluates the accuracy of “esti-
mated” values, it is convenient to incorporate attack
evaluation into privacy evaluation. In general, let X
be the normalized original dataset, P be the perturbed
dataset, and O be the estimated/observed dataset. We
calculate V oD(Xi,Oi) for the column i in terms of dif-
ferent attacks. Here, we summarize the evaluation of
the inference attacks to rotation perturbation [4] that
will be further described in detail in the later sections.

1. Naive Estimation: O = P ;

2. ICA-based Reconstruction: Independent Compo-
nent Analysis (ICA) is used to estimate R. Let
R̂ be the estimate of R, and align the estimated
data R̂−1P with the known column distributions
and statistics to get the dataset O;

3. Distance-based Inference: knowing a set of special
points in X that can be mapped to certain set of
points in P , so that the mapping helps to get the
estimated rotation R̂, and then O = R̂−1P .

4 Analysis of Some Attacks and Optimization
of Geometric Perturbation

The higher the inference level is, the more knowledge
about the original dataset the attacker needs and thus
the more complicated the attack might be. In the
following sections, we analyze each inference attack,
quantify the effectiveness of the attack with the generic
privacy evaluation model, and extend the relatively
weak rotation perturbation to the full version of ge-
ometric perturbation that is more resilient to the dis-
cussed attacks.

The complete version of geometric perturbation to the
normalized dataset X is defined as G(X) = RX +Ψ +
∆, where Ψ is a random translation matrix and ∆ is a
noise matrix.

Definition 1. Let t be a random vector t =
[t1, t2, . . . , td]t, 0 ≤ ti ≤ 1, and 1 = [1, 1, . . . , 1]t. A
translation matrix Ψ is defined by Ψ = [t, t, . . . , t], i.e.,
Ψ = t1t.

∆ = [δ1, δ2, . . . , δN ], where δi is d-dimensional Gaus-
sian random vector, each element of which follows the
same distribution but is generated independently (i.e.,
the i.i.d. noise). In this paper, we use Gaussian noise
N(0, σ2).

The additional components Ψ and ∆ are used to ad-
dress the weakness of rotation perturbation, while still
preserving the data quality for classification modeling.
Concretely, the random translation matrix addresses
the attack to rotation center, and the noise addition ad-
dresses the distance-inference attack. We also design

an iterative randomized method to maximize the re-
silience to naive estimation and ICA-based reconstruc-
tion. Below we analyze the attacks to the components
of geometric perturbation and also discuss the trade-
offs between privacy guarantee and data quality (model
accuracy).

4.1 Naive Estimation to Rotation Perturba-
tion With the V oD metric over the normalized data,
we can formally analyze the privacy guarantee provided
by the rotation perturbed data, if no additional infor-
mation is known by the attacker. Let X be the nor-
malized dataset, X ′ be the rotation of X, and Id be the
d-dimensional identity matrix. Thus, VoD of column i
can be evaluated by

Cov(X′ −X)(i,i) = Cov(RX−X)(i,i) (4.1)

= ((R− Id)Cov(X)(R− Id)T )(i,i)

Let rij represent the element (i, j) in the matrix R,
and cij be the element (i, j) in the covariance matrix
of X. The VoD for ith column is computed as follows.

Cov(X′ −X)(i,i) =
d∑

j=1

d∑

k=1

rijrikckj − 2
d∑

j=1

rijcij + cii

(4.2)

When the random rotation matrix is generated follow-
ing the Haar distribution, a considerable number of
matrix entries are approximately independent normal
distribution N(0, 1/d) [14]. The full discussion about
the numerical characteristics of random rotation ma-
trix will be out of the scope of this work. For simplicity
and easy understanding, we assume that all entries in
random rotation matrix approximately follow indepen-
dent normal distribution N(0, 1/d). Therefore, random
rotations will make V oDi changing around the mean
value cii as shown in the following equation.

E[V oDi] ∼
d∑

j=1

d∑

k=1

E[rij ]E[rik]ckj−2
d∑

j=1

E[rij ]cij+cii = cii

It means that the original column variance could
substantially influence the result of random rotation.
However, the expectation of VoDs is not the only
factor determining the final privacy guarantee. We
should also look at the variance of VoDs. If the
variance of V oDs is considerably large, we still get
great chance to find a rotation with high VoDs in a
set of sample random rotations, and the larger the
V ar(V oDi) is, the more likely the randomly generated
rotation matrices can provide a high privacy level.
With the approximately independency assumption, we
have

V ar(V oDi) ∼
d∑

i=1

d∑

j=1

V ar(rij)V ar(rik)c2
ij



+4
d∑

j=1

V ar(rij)c2
ij

∼ O(1/d2
d∑

i=1

d∑

j=1

c2
ij + 4/d

d∑

j=1

c2
ij).

The above result shows that V ar(V oDi) seems approx-
imately related to the average of the squared covari-
ance entries, with more influence from the row i of
covariance matrix. Therefore, by looking at the covari-
ance matrix of the original dataset and estimate the
V ar(V oDi), we can estimate the chance of finding a
random rotation that can give high privacy guarantee.

In Equation 4.2, we also notice that the i-th row
vector of rotation matrix, i.e., the values ri∗, plays a
dominating role in calculating V oDi. Since swapping
rows of a rotation matrix will result in another rotation
matrix, it is possible to simply swap the rows of
R to locally improve the privacy guarantee. This
drives us to propose the row-swapping based local
optimization method for finding a better rotation from
a given rotation matrix, which greatly reduces the
computational cost in randomized search. We define
the method as follows. Let {(1), (2), . . . , (d)} be a
permutation of the sequence {1, 2, . . . , d}. The goal
is to find a permutation of rows that maximizes the
minimum (or average) privacy guarantee.

argmax{(1),(2),...,(d)}{min1≤i≤d{

(
d∑

j=1

d∑

k=1

r(i)jr(i)kckj − 2
d∑

j=1

r(i)jcij + cii)/wi}} (4.3)

4.2 ICA-based Attack Naive estimation is the ba-
sic attack trying to find the original value directly from
the perturbed data, which will be ineffective to care-
fully perturbed data. In this section, we introduce a
high-level attack based on data reconstruction. The
basic method trying to reconstruct X from the per-
turbed data RX would be Independent Component
Analysis (ICA) technique derived from signal process-
ing [12].

The ICA model can be applied to estimate the inde-
pendent components (the row vectors) of the original
dataset X, from the perturbed data, if the following
conditions are satisfied:

1. The source row vectors are independent;

2. All source row vectors should be non-Gaussian
with possible exception of one row;

3. The number of observed row vectors must be
at least as large as the independent source row
vectors.

4. The transformation matrix R must be of full
column rank.

For rotation matrices, the 3rd and 4th conditions are
always satisfied. However, the first two conditions al-
though practical for signal processing, are often not
satisfied in data classification. Furthermore, there are
a few more difficulties in applying the above ICA-
based attack. First of all, even ICA can be done suc-
cessfully, the order of the original independent com-
ponents cannot be preserved or determined through
ICA [12]. Formally, any permutation matrix P and its
inverse P−1 can be substituted in the model to give
X ′ = RP−1PX. ICA could possibly give the esti-
mate for some permutated source PX. Thus, we can-
not identify the particular column if the original col-
umn distributions are unknown. Second, even if the
ordering of columns can be identified, ICA reconstruc-
tion does not guarantee to preserve the variance of the
original signal − the estimated signal is often scaled up
but we do not know how much the scaling is unless we
know the original value range of the column. There-
fore, without knowing the basic statistics of original
columns, ICA-attack is not effective.

However, as we have mentioned earlier, such column
statistics are not impossible to get in similar datasets
provided for privacy-preserving data mining. We as-
sume the attackers know the basic statistics, including
the max/min values and the probability density func-
tion (PDF), or empirical PDF of each column. The
enhanced ICA-based attack can be described as fol-
lows.

1. Run ICA algorithm to get a reconstructed dataset;

2. For each reconstructed column Oi and each orig-
inal column Xj , we scale Oi with the max/min
values of Xj , and compare the PDFs of the scaled
Oi and Xj to find the closest match;

The important step is “PDF Alignment” to find the
match between original columns and the perturbed
columns. A straightforward method is to calculate the
difference between the two PDF functions. Let f(x)
and g(x) be the original PDF and the PDF of the
reconstructed column, respectively. A typical method
to define the difference of PDFs employs the following
function.

∆PDF =
∫
|f(x)− g(x)|dx (4.4)

In practice, for easy manipulation we discretize the
PDF function into bins. It is then equivalent to use
the discretized version:

∑n
i=1 |f(bi) − g(bi)|, where

bi is the discretized bin i. However, the evaluation
is not accurate if the values in the two columns
are not in the same range as shown in Figure 1.
Hence, the reconstructed PDF needs to be translated
and scaled to match the range, which requires the
maximum/minimum values of the original column to
be known, too.
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Figure 1: Comparing PDFs in different ranges results in large error. (The
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default rotation center.

The above procedure describes how to use ICA and
additional knowledge about the original dataset to
precisely reconstruct the original dataset. Note if the
four conditions for effective ICA are exactly satisfied
and the basic statistics and PDFs are all known,
the basic rotation perturbation will be broken by
the enhanced ICA-based attack. In practice, we can
test if the first two conditions for effective ICA are
satisfied to decide whether we can safely use rotation
perturbation. Since the first and second conditions are
not satisfied for most datasets in data classification,
precise ICA reconstruction cannot be achieved. Under
this circumstance, we observed that different rotation
perturbations may result in different privacy guarantee
and the goal is to find one rotation that is satisfactorily
resilient to the enhanced ICA-based attacks. We use
the following method to evaluate the resilience against
the enhanced ICA-based attacks.

Without loss of generality, we suppose that the level
of confidence for an attack is primarily based on the
PDF similarity between the two matched columns.
Let O be the reconstruction of the original dataset
X. ∆PDF (Oi,Xj) represents the PDF difference
of the column i in O and the column j in X. Let
{(1), (2), . . . , (d)} be a permutation of the sequence
{1, 2, . . . , d}, which means a match from the original
column i to (i). An optimal match minimizes the sum
of PDF differences of all pair of matched columns. We
define the minimum privacy guarantee based on the
optimal match as follows.

pmin = min{ 1
wk

V oD(Xk,O(k)), 1 ≤ k ≤ d} (4.5)

where {(1), (2), . . . , (d)} =
argmin{(1),(2),...,(d)}

∑d
i=1 ∆PDF (Xi,O(i)) Simi-

larly, we can define the average privacy guarantee pavg

based on an optimal match between all columns as
well.

With the above measures, we are able to estimate how
resilient a rotation perturbation is to the ICA-based
attacks that incorporate the knowledge of column
statistics. We observed in experiments that, although

the ICA method may effectively reduce the privacy
guarantee for certain rotation perturbations, we can
always find some rotation matrices so that they can
provide satisfactory privacy guarantee to ICA-based
attacks.

4.3 Attacks to Rotation Center The basic rota-
tion perturbation uses the origin as the rotation cen-
ter. Therefore, the points around the origin will be still
close to the origin after the perturbation, which leads
to weaker privacy protection over these points. The
attack to rotation center is another kind of naive esti-
mation. We address this problem with random transla-
tion perturbation. The sophisticated attack to the en-
hanced perturbation would utilize the ICA technique.
Therefore, we discuss this problem after we presented
the ICA-based attack.

A random translation vector (matrix) has been de-
fined earlier, in Section 4. Concretely, each dimensional
value of the random translation vector t is uniformly
drawn from the range [0, 1], so that the center hides
in the normalized data space, resilient to estimation.
There are two candidates for the extended perturba-
tion.

Transformation(1) : G(X) = R(X + Ψ) (4.6)

or

Transformation(2) : G(X) = RX+Ψ = R(X+R−1Ψ)
(4.7)

It is easy to verify that R−1Ψ is also a translation
matrix. Thus, the two are equivalent. We will
use Transformation (2) in the complete version of
geometric perturbation.

The effectiveness of random translation to protecting
the rotation center is evaluated by how easy it is to
estimate Ψ (or R−1Ψ). One approach is again via ICA
reconstruction. We assume that attackers know the
basic column statistics for effective ICA-based attacks.
Since translation just moves the mean of PDF function
but preserves the shape of PDF, we can still find the



matches by “PDF Alignment” and get the estimated
R: R̂. Then, an estimation to t can be done by the
following steps.

Take Transformation (1) as example. Let P be the per-
turbed data. The estimate given by ICA is ̂X + Ψ =
R̂−1P . Suppose the original column i has the max-
imum and minimum values maxi and mini, respec-
tively, and R̂−1P has max′i and min′i, respectively.
As the process of ICA shows [12], the reconstruction
may scale the original data column with some factor s,
which can be estimated by s ≈ max′i−min′i

maxi−mini
. Then, the

attackers are able to estimate the translation matrix Ψ
based on R̂−1P . First, the column i of R̂−1P is scaled
down to the same span of X by the factor s. Then, the
translation ti for column i is estimated by

t̂i ≈ min′i × s−mini

Apparently, the quality of the estimated Ψ is depen-
dent on the quality of ICA reconstruction. By opti-
mizing the resilience to ICA-based attacks, Ψ will be
well protected as well.

4.3.1 Effect to Model Accuracy We have shown
that random translation can effectively protect the
rotation center from attacks. On the other hand, we
also need to prove that this additional component will
not seriously affect the model accuracy of the three
categories of classifiers. Since translation does not
change the distance relationship and hyperplane-based
class boundary, it is easy to prove that kernel methods,
linear classifiers, and SVM classifiers with radial basis
function [9] will be invariant to translation.

However, translation does not preserve inner product.
Therefore, it would be more complicated to directly
prove the classifiers based on inner product, such as the
SVM classifiers with polynomial kernels and sigmoid
kernels. We will ignore the formal proofs here and show
some results in experiments.

4.4 Distance-inference Attack In the previous
section, we have discussed naive estimation, ICA-based
attacks, and attacks to rotation center. In the follow-
ing discussion, we assume that, besides the informa-
tion necessary to perform the discussed attacks, the at-
tacker manages to get more knowledge about the origi-
nal dataset: s/he also knows at least d+1 original data
records, {x1,x2, . . . ,xd+1}. S/he then tries to find the
mapping between these points and their images in the
perturbed dataset, denoted by {o1,o2, . . . ,od+1}, to
break the rotation and translation perturbation.

With the known points, it is possible to find their
images in the perturbed data. Particularly, if a few
(≥ d + 1) original points, such as the “outliers”,
are known, their images in the perturbed data can

be found with high probability for low-dimensional
small datasets (< 4 dimensions). With considerable
cost, it is not impossible for higher dimensional larger
datasets by simple exhaustive search. With the known
mapping, the rotation R and translation t can be
precisely calculated if only the geometric perturbation
G(X) = RX + Ψ is applied. Therefore, the threat is
substantial to the basic geometric perturbation.

rotation

*
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* *
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*

* ***
* *

mapping

Figure 3: Using known points and distance rela-
tionship to infer the rotation matrix.

In order to protect from the distance-inference attack,
we introduce an additional noise component ∆ =
[δ1, δ2, . . . , δN ], δi is d-dimensional Gaussian random
vector, to form the complete version of geometric
perturbation, G(X) = RX + Ψ + ∆. Under this
perturbation, we analyze how the attacker can estimate
the original data with the known points and mappings
to decide how intense the noise δi should be.

There are two possible scenarios. In the first scenario,
the attacker does not know the exact matching between
the known original data records and their images in
the perturbed data. The attacker has to figure out
the accurate matches with the distance information.
However, because the distance relationship has been
disturbed, there is low confidence guarantee with plau-
sible matches.

In the second scenario, we assume that the attacker
can get (or guess) the right mapping between the
original points and their images in the perturbed data:
{x1,x2, . . . ,xd+1} → {o1,o2, . . . ,od+1}, where oi is
perturbed by the noise component, i.e., oi = Rxi + t+
δi, and the images are linearly independent. Suppose
δi are independently drawn from Gaussian distribution
N(0, σ2). We analyze a linear-regression-based attack
method for estimating R and deriving t from the
estimated R.

Step 1. R is estimated as follows. The translation
vector t can be canceled from the perturbation and we
get d equations: oi− od+1 = R(xi−xd+1) + δi− δd+1,
1 ≤ i ≤ d. Let Ō = [o1−od+1,o2−od+1, . . . ,od−od+1],
X̄ = [x1 − xd+1,x2 − xd+1, . . . ,xd − xd+1], and ∆̄ =
[δ1 − δd+1, δ2 − δd+1, . . . , δd − δd+1]. The equations are
unified to Ō = RX̄ + ∆̄, and estimating R becomes a
linear regression problem. Let X̄t be the transpose of



X̄. It follows that the best estimator − the minimum
variance unbiased estimator [20, 18] for R is

R̂ = ŌX̄t(X̄tX̄)−1 (4.8)

.

Step 2. With R̂, the translation vector t can also be
estimated. Since oi − Rxi − δi = t and δi has mean
value 0, with R̂ we have the estimate of t as

t̂ =
1

d + 1
{

d+1∑

i=1

(oi − R̂xi)−
d+1∑

i=1

δi}

≈ 1
d + 1

d+1∑

i=1

(oi − R̂xi)

. However, t̂ will have considerable variance brought
by the components R̂ and δi.

Step 3. With R̂ and t̂, the original data X can be
estimated. As O = RX + Ψ + ∆, using the estimators
R̂ and Ψ̂ = [t̂, . . . , t̂], we get X̂ = R̂−1(O− Ψ̂). Due to
the variance introduced by R̂, Ψ̂, and ∆, in practice the
attacker may actually need more samples to perform
several runs to get several estimated X̂i , and then
uses the mean of X̂i as the final estimate.

The effective estimation with the above procedure
would depend on multiple factors, such as the noise
component, and there are strong dependency between
R̂, Ψ̂ and X̂i. Any error in the previous steps can be
propagated to the late steps, which makes the noise
addition powerful for preventing effective estimation.
Furthermore, with the above estimation (attacking)
process, we are able to simulate the attack and estimate
the actual privacy guarantee to the attack− the unified
privacy metric for column i can be calculated with
V ar{X̂i −Xi}.
However, the additional noise component also implies
that we have to sacrifice some model accuracy for
gaining the stronger privacy protection. We will
further study the relationship between the noise level,
the privacy guarantee, and the model accuracy in
experiments.

4.5 Other Addressed Attacks We have studied
four kinds of attacks, according to the different lev-
els of knowledge that an attacker may have. The
distance-inference attack presents an extreme case that
the attacker can know some specific points in the orig-
inal dataset and their images in the perturbed dataset.
AK ICA [8] investigates a scenario that may also rarely
happen in practice. It assumes the attacker can know a
significant amount (À d+1) of the original data points,
although the amount is still relatively small compared
to the total number of records. These known points
might contain significant information, such as the dis-
tribution, the covariance matrix of the original dataset.

Therefore, theoretically this information can be used
to model the original data. Typical methods, such as
Principle Component Analysis (PCA) and ICA, can
then be used to reconstruct the original dataset with
the approximate information from both the known
points and the perturbed data. However, unless the
known points can approximately describe the distribu-
tion of original dataset, these methods will be not so
effective. Furthermore, with the random translation
and the additional noise component, the information
from the perturbed dataset might be inconsistent with
that from the original dataset. As a result, such meth-
ods would be ineffective on the full version of geomet-
ric perturbation, even though a considerable amount
of original points are known. Further studies will be
performed on such kind of attacks.

5 Randomized Algorithm for Finding
Resilient Perturbations

We have analyzed the related inference attacks with
the help of multidimensional privacy evaluation model,
which allows us to design an algorithm to choose
a geometric perturbation resilient to these inference
attacks. Considering that a determined algorithm in
perturbation optimization may provide extra clue to
privacy attackers, we try to randomly optimize the
perturbation so that the attacker cannot inference any
additional information from the algorithm itself.

Algorithm 1 runs in a given number of iterations,
aiming at locally maximizing the minimum privacy
guarantee. Initially, a random translation is selected.
In each iteration, the algorithm randomly generates a
rotation matrix. Local swapping-based optimization of
rotation is then applied to find a better rotation matrix
against naive estimation, which is then tested by the
ICA reconstruction method by the methods defined in
Section 4.2. The rotation matrix is accepted as the
currently best rotation if it provides higher minimum
privacy guarantee than the previous rotations. After
the limited number of iterations, finally, the noise
component is appended to the perturbation, so that
the distance-inference attack cannot reduce the privacy
guarantee to a safety level φ, e.g., φ = 0.2. Algorithm 1
outputs the rotation matrix Rt, the random translation
vector t, the noise level σ2, and the minimum privacy
guarantee. If the privacy guarantee is lower than an
anticipated threshold, the data owner can select not to
release the data.

Note that the distance-inference attack is optimized
separately. The additional noise component will fur-
ther reduce the effectiveness of naive estimation and
ICA-based attack. Therefore, the actual privacy guar-
antee will be higher than the evaluated result.
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Figure 4: Minimum privacy guarantee generated
by local optimization, combined optimization, and
the performance of ICA-based attack.
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Figure 5: Average privacy guarantee generated
by local optimization, combined optimization, and
the performance of ICA-based attack.

Algorithm 1 Finding a resilient perturbation (Xd×N ,
w, φ, m)

Input: Xd×N :the original dataset, w: weights of attributes in
privacy evaluation, φ: the expected privacy guarantee in terms
of distance-inference attack, m: the number of iterations.
Output: Rt: the selected rotation matrix, Ψ: the random
translation, σ2: the noise level, p: privacy quality
calculate the covariance matrix C of X;
p = 0, and randomly generate the translation Ψ;
for Each iteration do

randomly generate a rotation matrix R;
swapping the rows of R to get R1, which maximizes
min1≤i≤d{ 1

wi
(Cov(R1X −X)(i,i)};

p0 = the privacy guarantee of R1, p1 = 0;
if p0 > p then

generate O with ICA;
scale the columns in O with the maximum/minimum
values of original columns;
{(1), (2), . . . , (d)} =

argmin{(1),(2),...,(d)}
∑d

i=1
∆PDF (Xi, O(i))

p1 = min1≤k≤d
1

wk
V oD(Xk, O(k))

end if
if p < min(p0, p1) then

p = min(p0, p1), Rt = R1;
end if

end for
p2 = the privacy guarantee to the distance-inference attack
with the perturbation G(X) = RtX + Ψ + ∆.
Tune the noise level σ2, so that p2 ≥ φ

6 Experiments

We design three sets of experiments to evaluate the
geometric perturbation approach. The first set shows
the optimization of the privacy guarantee in the ba-
sic geometric perturbation (without noise addition) in
terms of naive estimation and ICA-based attack. In the
second set of experiments, we study the effectiveness of
translation perturbation to protecting the rotation cen-
ter, and show that the two kinds of classifiers: SVM
with polynomial kernel and sigmoid kernel are also in-
variant to translation perturbation. The third set of

experiments studies the threat of distance-inference at-
tack and the relationship between the additional noise
component of the geometric perturbation, the privacy
guarantee, and the model accuracy. All datasets used
in the experiments can be found in UCI machine learn-
ing database 1. We also use FastICA package [11] in
evaluating the effectiveness of ICA-based attacks.

6.1 Perturbation Optimization against Naive
Estimation and ICA-based Attack We run the
randomized optimization algorithm and show how ef-
fective it can generate resilient perturbations. Each
column in the experimental dataset is considered
equally important in privacy evaluation, thus, the
weights are not included in evaluation.

Figure 4 and 5 summarize the evaluation of privacy
quality on experimental datasets. The results are ob-
tained in 50 iterations with the optimization algorithm
described in Section 5. The “Local Optimal” repre-
sents the locally optimized minimum privacy guaran-
tee addressing naive estimation. “Best ICA attack” is
the worst perturbation that gives the best ICA attack
performance, i.e., getting the lowest privacy guarantee
among the 50 perturbations. “Combined Optimal”is
the combined optimization result given by Algorithm
1 at the end of 50 iterations. The above values are
all standard deviation of the difference between the
perturbed dataset (or the estimated dataset) and the
original dataset. The “Local Optimal” values can often
reach a high level after 50 iterations, which means that
the swapping method is very efficient in locally opti-
mizing the privacy quality. The best ICA attacks often
result very low privacy guarantee, which means some
rotation perturbations are weak to ICA-based attacks.
“Combined Optimal” values are much higher than the
corresponding ICA-based attacks, which supports our
conjecture that we can always find one perturbation

1http://www.ics.uci.edu/∼mlearn/Machine-Learning.html



that is sufficiently resilient to ICA-based attacks if the
four conditions for perfect ICA reconstruction are not
satisfied.

We also show the detail in the course of optimization
for two datasets “Diabetes” and “Votes” in Figure 6
and 7, respectively. For both datasets, since the lowest
privacy guarantees reduced by ICA-based attacks are
lower than the result of swapping-based optimization,
the combined optimal result is located in between the
curves of best ICA-attacks and the best local optimiza-
tion result. In the case that ICA-based attacks are not
effective, i.e., the “best ICA attack” is higher than lo-
cal optimization curve, we take the local optimization
curve as the combined optimal result.

6.2 Effectiveness of Translation Perturbation
In this set of experiments, firstly, we show that it
is ineffective to estimate the rotation center if the
translation perturbation is appended. As we have
mentioned, if the translation vector could be precisely
estimated, the rotation center would be exposed. We
applied the ICA-based attack to rotation center that is
described in Section 4.3. The data in Figure 8 shows
stdev(t̂ − t) which is equivalent to the VoD used in
multidimensional privacy evaluation model. Compared
to the range of the elements in t − [0, 1], the standard
deviations are quite large, so we can conclude that
random translation will also be safe to attacks, if we
have optimized the resilience of rotation perturbation
in terms of ICA-based attacks.

Secondly, we show that the two classifiers, SVM with
polynomial kernel, and SVM with sigmoid kernel, are
also invariant to translation transformation. Table
1 lists the experimental result on the 12 datasets.
We randomly translate each dataset for ten times.
The result is the average of the ten runs. For most
datasets, the result shows zero or tiny deviation from
the standard model accuracy.

Table 1: Experimental result on random translation
Dataset SVM(polynomial) SVM(sigmoid)

orig Tr orig Tr

breast-w 96.6 0± 0 65.5 0± 0

credit-a 88.7 0± 0 55.5 0± 0

credit-g 87.3 −0.4± 0.4 70 0± 0

diabetes 78.5 0± 0.3 65.1 0± 0

ecoli 89.9 −0.1± 0.5 42.6 0± 0

heart 91.1 −0.2± 0.2 55.6 0± 0

hepatitis 96.7 −0.4± 0.3 79.4 0± 0

ionosphere 98 +0.3± 0 63.5 +0.6± 0

iris 97.3 0± 0 29.3 −1.8± 0.4

tic-tac-toe 100 0± 0 65.3 0± 0

votes 99.2 +0.2± 0.1 65.5 −4.7± 0.6

wine 100 0± 0 39.9 0± 0

6.3 Tradeoffs in Terms of Distance-inference
Attack We use the geometric perturbation with ran-
dom noise component : G(X) = RX + Ψ + ∆, to ad-
dress the potential distance-inference attacks. From
the formal analysis, we know that the noise compo-
nent ∆ can significantly affect the accuracy of distance-
inference attack, thus provide certain privacy guaran-
tee. Intuitively, the higher the noise level is, the bet-
ter the privacy guarantee. However, with the increas-
ing noise level, the model accuracy could be affected,
too. In this set of experiments, we first study the re-
lationship between the noise level, represented by the
variance σ2, and the privacy guarantee, as well as be-
tween the noise level and the model accuracy, with
three datasets “Diabetes”, “Iris”, and “Votes”. Then,
we compare the privacy guarantee and the model ac-
curacy for all of the experimental datasets at certain
noise level (σ = 0.1).

Figure 9 shows, if the attack described in Section 4.4
is addressed with the noise component, the privacy
guarantee increases with the increase of noise level.
At the noise level σ = 0.1, the privacy guarantee is
almost above 0.2. However, Figure 10 and 11 show
the decreasing trend of accuracy for KNN classifier
and SVM (RBF kernel) classifier, respectively. With
the noise level lower than 0.1, the accuracy of both
classifiers is only reduced less than 6%, which is quite
acceptable.

We summarize the privacy guarantees at the noise level
0.1 for all experimental datasets 2 in Figure 12, and also
the change of model accuracy for KNN, SVM(RBF),
and Perceptron in Figure 13. The positive accuracy
differences indicate that the perturbation increases the
accuracy in some cases. Except the boolean datasets
“Votes” and “Tic-tac-toe” are quite sensitive to the
noise component, most of the results show that, with
small noise addition, we can get satisfactory privacy
guarantee with small sacrifice of model accuracy.

7 Related Work

Data perturbation changes the data in such a way that
it is difficult to estimate the original values from the
perturbed data, while information critical to data min-
ing are still preserved. Recently data perturbation
techniques have become popular for privacy-preserving
data mining [3, 6, 1, 21, 4], due to the relatively low
cost to deploy them compared to the cryptographic
techniques [19, 22, 23, 15, 13]. However, there are a
few challenges in the data-perturbation based privacy-
preserving data mining. First, it is commonly recog-
nized that it is critical but difficult to balance the data

2“Ionosphere” is not included because any combination of
known d records results in a singular matrix. Therefore, the
attack described in Section 4.4 does not work.
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Figure 6: Optimization of perturba-
tion for Diabetes data.
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Figure 7: Optimization of perturba-
tion for Votes data.
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random translation

0

0.1

0.2

0.3

0.4

0.5

0.05 0.06 0.07 0.08 0.09 0.1

Noise level (sigma)

M
in

 P
ri

va
cy

 G
u

ar
an

te
e

Diabetes Iris Votes

Figure 9: The change of minimum
privacy guarantee vs. the increase
of noise level for the three datasets.
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Figure 10: The change of accuracy
of KNN classifier vs. the increase of
noise level.
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Figure 11: The change of accuracy
of SVM(RBF) classifier vs. the
increase of noise level.

quality (affecting the model accuracy) and the data
privacy. Second, the potential attacks to the data per-
turbation methods are not sufficiently investigated. A
few works have started to address the privacy breaches
to randomization approaches, by applying data recon-
struction techniques [10, 16] or the domain knowledge
[5]. Third, some approaches, such as randomization
approach [3], require to develop new data mining algo-
rithms to mine the perturbed data, which raises extra
difficulty in applying the technique. To address these
challenges, it is critical to understand the intrinsic re-
lationship between data mining models and the pertur-
bation techniques.

In paper [4], we propose to investigate the perturba-
tion techniques from the perspective of the specific data
mining models. We noticed that different data mining
tasks/models actually care about different properties
of the dataset, which could be statistical information,
such as the column distribution and the covariance ma-
trix, geometric properties, such as distance, and so on.
Clearly, it is almost impossible to preserve all of the
information in the original dataset in data perturba-
tion. Thus, we have to focus on preserving only the
task-specific information in the dataset that is criti-
cal to the specific data mining task/model, in order to
bring better flexibility in optimizing data privacy guar-
antee. Our initial study on the geometric perturba-
tion approach to data classification [4] has shown that
the task/model-specific data perturbation can provide

better privacy guarantee and better model accuracy.
Furthermore, compared to existing randomization ap-
proaches, geometric perturbation does not require to
develop new classification algorithms that can utilize
the perturbed data to build classification models. We
also compared geometric perturbation with condensa-
tion approach [1]. The result shows that geometric
perturbation can provide much higher privacy guaran-
tee.

8 Conclusion

Task/model-oriented perturbation can improve the
balance between model accuracy and privacy guaran-
tee. Geometric data perturbation is specifically de-
signed for a bunch of popular data classification mod-
els. These classifiers, if trained and tested with the
perturbed dataset, can have similar model accuracy
compared to those trained and tested with the original
dataset. This paper analyzes some potential attacks to
geometric perturbation and provides a framework for
investigating more attacks and optimizing the pertur-
bation in terms of the attacks. Experimental results
show that with a random optimization method, geo-
metric perturbation can provide satisfactory privacy
guarantee with little sacrifice of model accuracy, in
terms of the discussed attacks.

Certainly, there are more potential attacks to be
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noise level σ = 0.1
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Figure 13: The change of model accuracy at the
noise level σ = 0.1

discovered. We hope that the methodology developed
in this paper can be extended to analyze more attacks
and to optimize the geometric perturbation as well.
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