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Abstract: In this paper, we analyse the data sharing mechanisms of *nix 
systems and identify an immediate need for better privacy support. For 
example, using a simple insider attack we were able to access over 84 GB of 
private data at one organisation of 825 users, including 300 000 e-mails and 
579 passwords to financial and other private services websites, without 
exploiting any technical vulnerability. 

We present two solutions to address this problem: 

1 an administrative auditing tool which can alert administrators and users 
when their private data is at risk 

2 a new View Based Access Control (VBAC) mechanism which provides 
stronger and yet convenient privacy support. 

We also describe a proof-of-concept filesystem-based implementation and 
performance analysis of VBAC. Our evaluations with three well-known 
filesystem benchmarks show little overhead of using VBAC. 
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1 Introduction 

Unix, Linux and its various other open-source flavours (together called *nix) are steadily 
growing in mainstream popularity and many enterprises now opt to set up their intranets 
using such *nix systems. One of the important features of these *nix systems is  
their ingrained multi-user support. In contrast to common single-user PC systems,  
these systems allow simultaneous multiple users and provide seamless mechanisms to 
share data between different users. For example, a user alice can set appropriate access 
‘permissions’ on the data she wants to share with her group students by executing a 
simple chmod command (Linux Manual pages, 2008). 

In this paper, we critically analyse the data sharing mechanisms of *nix systems. 
Access to shared data in these systems is dictated by the *nix access control model, 
which typically follows the original UNIX access model (Ritchie and Thompson, 1974). 
We aim to analyse the privacy support in its data sharing mechanisms. For example, how 
does the system assist a user to share data only with desired users and prevent private 
information from being leaked to unauthorised users? As part of the analysis, we also 
need to look at the convenience of using these data sharing mechanisms. This is 
important since lack of convenience typically compels users to compromise, intentionally 
or not, their security requirements to conveniently fit the specifications of the underlying 
access control model. Please note that we use the phrase ‘private sharing’ to indicate the 
desire of sharing data only with a select set of authorised users. 

As part of our study, we analysed how users use access control for their data sharing 
needs in practice. We conducted experiments at two *nix organisations of many hundred 
computer-literate users each. Surprisingly, we found that large amount of private data 
was accessible to unauthorised users. In many cases, the user’s definition of an 
‘authorised user’ does not match the underlying system’s definition, that leads to such a 
breach. This observation is best exemplified in the following scenario. Many users 
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attempt to privately share data by using execute-only permissions for their home 
directories (complete *nix access permissions are discussed later in Section 2). This 
prevents other users from listing the contents of the directory, but they can cd into it and 
any user who knows the name of a subfile/directory can access it with appropriate 
permissions. The data owner authorises some users by explicitly giving them the names 
of the subfile/directory through out-of-band mechanisms like personal communication  
or e-mail. However, this authorisation is not the same as the system’s authorisation. From 
the underlying system perspective, it is assumed that any user who issues the command 
with the right file/directory name is authorised. Thus, users who simply guess the 
subfile/directory name can also access the data. Along with that, setting execute-only 
permissions on the home directory to share one subdirectory, puts all other subdirectories 
(sibling to the shared directory) also at risk, which if not protected appropriately, can  
be accessed. 

We were able to effectively exploit these shortcomings in our studies. At one 
organisation of 825 users, over 84 GB of data was accessible, including more than  
300 000 e-mails and 579 passwords to financial websites like bankofamerica.com and 
other private websites like medical insurance records. Importantly, the attack does not 
always need to guess directory names, but can find actual names from unprotected 
command history files (.history, .bash history) or standard application directory names 
(mozilla). The reason for this surprisingly large privacy breach without exploiting 
technical vulnerabilities like buffer overflows or gaining elevated privileges, is the 
combination of lack of system support and user or even applications’ privacy-indifferent 
behaviour either mistakenly or for lack of anything better. Also, as we discuss later in 
Section 2, even for an extremely privacy-conscious user with all available tools, it is 
tough to protect private data in many situations. 

The attack described in this paper is a form of an insider attack, in which the attacker 
is inside the organisation. The attacker could be a disgruntled employee, contractor or 
simply a curious employee trying to access the salaries chart in the boss’s home 
directory. According to a recent study by the US Secret Service and CERT (Carnegie 
Mellon Software Engineering Institute, 2008), such attacks are on a rise with 29%  
of the surveyed companies reporting having experienced an insider attack in the past  
year (Cappelli and Keeney, 2008) (it is usually believed that such attacks are much 
under-reported for lack of concrete evidence or fear of negative publicity (United States 
Secret Service and CERT Coordination Center, 2008)). Also, in complete congruence to 
our attack, the report finds that: 

“Most incidents were not technically sophisticated or complex – that is they 
typically involve exploitation of non-technical vulnerabilities.” 

We propose two solutions to address this problem: 

1 A Privacy Auditing Tool that analyses the ‘privacy health’ of an enterprise. Such 
auditing can be combined with the periodic virus scans and other security audits 
regularly employed by enterprises. 

2 A new access control model which provides stronger privacy protection and yet 
convenient data sharing mechanisms. The View-Based Access Control (VBAC) 
model allows data owners’ to define views of their data that can be seen by other 
users, while protecting other data from unauthorised users. We provide a file system 
implementation of VBAC and show that the overheads incurred by it are minimal. 
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An interesting feature of our VBAC implementation is our highly data oriented focus. 
There has been a significant amount of work on *nix security which has been primarily 
focused on preventing processes from gaining elevated privileges or sandboxing 
processes from accessing certain data (Wagner, 1999; Jaeger and Prakash, 1994; 
Goldberg et al., 1992; Linux Manual pages, 2008). In contrast, our approach focuses on 
private data that needs to be protected. Our implementation allows administrators to use 
our approach only for data that is considered private – for example, user home directories 
and thus, does not incur any overheads for other data in the system. To summarise, this 
paper makes four unique contributions: 

1 Privacy analysis of *nix systems: To the best of our knowledge, this is the first work 
that evaluates the privacy characteristics of real multiuser *nix installations. We 
analyse the *nix access control from a privacy perspective and present results on 
how users share their data and how much private information can be accessed by 
unauthorised users in real *nix installations. 

2 Data sharing principles: We identify a number of useful design principles that allow 
for private and convenient data sharing in multi-user environments. We also analyse 
existing access control tools like *nix permissions model, POSIX Access Control 
Lists (ACLs) (Grunbacher and Nuremberg, 2008), umask (Linux Manual pages, 
2008) on these principles. 

3 Privacy enhancements: We present two approaches that can enhance the privacy 
characteristics of *nix systems. The first approach is a conservative approach that 
only measures the privacy health of the system and alerts users of potential threats. 
The second approach is more proactive and utilises VBAC to provide safer data 
sharing. We also describe an implementation of VBAC and its performance analysis. 

4 User education: The privacy analysis and data sharing principles presented in  
this paper help us in devising various privacy enhancement approaches. More 
importantly they bring into light a massive threat to user privacy in current  
systems, which can be exploited overnight by a few hundred lines of code.  
This work thus contributes directly to increasing user awareness and education  
in protecting private data. 

The rest of the paper is organised as follows. In Section 2, we discuss various issues  
that lead to privacy breaches. We also present case studies at two *nix installations which 
demonstrate these breaches. In Section 3, we describe a number of useful privacy 
principles and analyse existing tools. Section 4 gives an overview of the two privacy 
enhancement approaches. Section 5 presents a detailed discussion of the VBAC access 
control model including its design goals, implementation and performance evaluation. 
We describe related work in Section 6 and conclude in Section 7. 

2 Data privacy: vulnerability analysis 

In this section, we discuss various scenarios that lead to privacy breaches and present the 
results of our case studies. This analysis will provide us insights into desirable privacy 
and convenience characteristics. We start off with a description of *nix access control, to 
establish a common reference model for subsequent discussions. 
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2.1 *nix access control 

The *nix access control primarily follows from the original UNIX access control model 
(Ritchie and Thompson, 1974; Ritchie, 1978). In this discretionary access model, each 
file system object (file, directory, links) has an associated owner who controls the access 
to that object. This access can be granted to three kinds of users: 

1 owner 

2 group 

3 others. 

The owner is the object owner, the group is a set of users to which the owner belongs (for 
example, a user group for students, faculty) and others are all other users (all users except 
the owner and the group). Also, note that the owner permissions take precedence over 
group, that is, the owner will have access as dictated by the owner permission bits, even 
though he/she also belongs to the group. Further, the granted access is of three types: 

1 Read 

For a file, this means that a user can read a file. For a directory, this means  
that a user can list its contents using ls (Linux Manual pages, 2008). For links,  
the permissions are for the object that are pointed-to by the link and the link’s 
permissions itself are not used. The read permission is represented by a ‘r’ or a 
numeric value of 4. 

2 Write 

For a file, the write permission allows a user to write to it. For a directory, it allows a 
user to create, remove or rename directory contents. For links, permissions are again 
for the pointed-to object. The write permission is represented by a ‘w’ or a numeric 
value of 2. 

3 eXecute 

For a file, the execute permissions allows running the file as a program (for example, 
a shell script or a compiled C program). For directories, it allows users to traverse 
that directory and if the directory contents have appropriate permissions, the user can 
then access those contents. For example, to access directory grand-child with 
path dir/child/grand-child, both dir and child need to have execute 
permissions. The execute permission is represented by a ‘x’ or a numeric value of 1. 

The permissions bits are listed in the ‘owner, group, others’ order. Table 1 shows  
an example directory with its 3 × 3 access control matrix. It will be listed as rwx r-x  
– —x or in numeric terms 751 (7 = r (4) + w (2) + x (1) and so on). For that directory, 
the owner can list its contents, create, remove, or rename its children and can traverse 
into that directory. The users belonging to the group of the owner can list its contents and 
traverse into the directory but not modify its contents. The other users can only traverse 
into the directory and not list or modify its contents. 
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Table 1 Example directory permissions 

Permission Owner Group Others 

Read X X  

Write X   

eXecute X X X 

To improve the granularity of user permissions, lately POSIX ACLs (Grunbacher and 
Nuremberg, 2008) have been introduced into many *nix variants. They allow setting 
permissions at individual user levels as opposed to group or others. However, the 
{owner, group, others} is still the most dominant paradigm and many *nix installations 
do not even have ACLs enabled. We will analyse the ACLs later in Section 3. 

Additionally, a user-specific umask (Linux Manual pages, 2008) setting is used to 
decide permissions for a newly created file. The command specifies a mask for 
permissions to be disallowed for the owner, group or other users. For example, to always 
create a new file with rwx permissions for owner and no permissions for group or others 
(that is, permission 700), the command ‘umask 077’ can be stored in the user 
initialisation file (like .profile). 

It is possible to override the *nix access control at a file system level. For example, 
the distributed Andrew File System (AFS) (Satyanarayanan, 1990) has a different set of 
permissions settings and thus data residing on that file system can use its settings. In fact 
our privacy enhancing VBAC approach also modifies the access control at that layer. We 
discuss this later in Section 5. 

2.2 Privacy breaches 

In this section, we discuss various privacy breaches that occur in *nix systems. We also 
present results of our study at two *nix installations that demonstrate the insufficiency of 
current access control mechanisms. The discussion below primarily explores the popular 
{owner, group, others} *nix paradigm. The advanced mechanisms like ACLs enhance 
privacy in only a few cases and we will demonstrate a clear need of a new, more 
complete solution. 

2.2.1 Selective data sharing 

The first kind of privacy breach occurs due to the need to ‘selectively’ share data. The 
selectivity can be of two kinds: 

1 Data selectivity 

Data selectivity is when a user wants to share only a few (say one) of the 
subdirectories in the home directory. So, an authorised user is allowed to access  
only the shared subdirectory, but not any of the sibling directories. In order to do  
this correctly, the owner needs to follow two steps: 

Step 1 set appropriate permissions to the shared subdirectory (at least execute 
permissions on the entire path to the subdirectory and the sharing 
permissions on the subdirectory) 
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Step 2 remove permissions from the sibling subdirectories. 

The second step is unintuitive, since the user needs to act on secondary objects  
that are not the focus of the transaction. Also, any new file being created needs to  
be protected. 

2 User selectivity 

In many situations, users need to share data with an ad hoc set of users that do  
not belong to a single user group or are only a subset of a user group, and are not  
the entire others set. In this situation, the permissions for group or others are not 
sufficient. Also, creating a new user group requires administrative assistance which 
is not feasible in all cases. 

In order to do selective data sharing, currently owners mostly use execute-only 
permissions on the home directories. The perception is that since users cannot list  
the contents of the directory, they cannot go any further than traversing into the home 
directory unless they know the exact name of the subdirectory. Now, the owner can 
authorise desired users by giving them the names of the appropriate subdirectories. Those 
authorised users can traverse into the home directory and then use the subdirectory name 
to cd into it (without having to list the contents of the home directory). From data 
selectivity perspective, it is assumed that they cannot access the rest of the contents and 
from user selectivity perspective, unauthorised users cannot access any contents. 

However, the underlying system cannot distinguish between such authorised or 
unauthorised users. Any user who can guess the subdirectory name can actually access 
the data. For an attacker inside the organisation, this is not a Herculean task. For 
example, for a computer science graduate school, it is highly likely that users will have 
directories named research, classes or thesis. An easy way of creating such a list of 
names is by collecting names from users that actually have read permissions on the home 
directories. Within the context of a single organisation, or in general human psychology, 
it is likely that many users have similar directory names. This is essentially a form of 
social engineering (Mitnick et al., 2002) in which users and not systems are manipulated 
to reveal confidential information (a well-know hacker, Kevin Mitnick said “… social 
engineering was extremely effective in reaching my goals without resorting to using a 
technical exploit …” (Slashdot, 2008)). Of course, one simple solution is to use cryptic 
directory names unlikely to be guessed (security-by-obfuscation). The problem then 
becomes similar to the fundamental problem with passwords. Keeping commonly used 
passwords means that they can be guessed and cryptic passwords are tough to remember. 
However, the problem is more severe, since while a single password is enough to access 
thousands of files, a user cannot be expected to keep cryptic names for tens or hundreds 
of files and directories. 

Secondly, many times directory names do not need to be guessed at all. The names 
can be extracted from history files (like .history or .bash history), that contain the 
commands last executed by the owner, like c d, which will include real directory names. 
In fact, in our experiments we found around 20%–30% of all users had readable history 
files and around 40% of the total leaked data was obtained from the directory names 
extracted from these history files. 

Thirdly, it is not always user created directories that leak information. Many 
applications use standard directory names and fail to protect critical information. For 
example, the famous Mozilla web browser (Mozilla, 2008) stores the profile directory in 
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~/.mozilla and had that directory world-readable (Mozilla Bug Report, 2008) in 
many cases, till as late as 2003 (the Mozilla project was initiated in 1994). Many *nix 
installations with the browser installed before that have this vulnerability and we were 
able to obtain around 575 password to financial and private websites (because users 
saved passwords without encrypting them). In addition, their browser caches, bookmarks, 
cookies and histories were also available. The browser Opera (2008) also has a similar 
vulnerability, though to a lesser extent. While it can be argued that it is the responsibility 
of application developers to ensure that this does not happen, we believe that the 
underlying system can assist users and applications in a more proactive manner. 

The POSIX ACLs (Grunbacher and Nuremberg, 2008), if used help in achieving only 
user selectivity. They do not address the data selectivity requirements or prevent leaking 
of application data. 

2.2.2 Metadata privacy 

So far, we have only talked about the privacy breach for file data. However, there  
are many situations in which users are interested in protecting even the metadata of  
the files. The metadata contains information like ownership, access time, updation time, 
creation time and file sizes. There are scenarios where a user might obtain confidential 
information by just looking at the metadata. For example, an employee might be 
interested in knowing how big is his annual review letter or did the boss update it after 
the argument he had with her? 

The *nix access control does not provide good metadata privacy. Even if users only 
have execute permissions on a directory, as long as they can guess the name of the 
contained file, its metadata can be accessed even if the file itself does not have any read, 
write or execute permissions on it. Thus, if a user has to share even a single file/directory 
within the home directory (thus, requiring at least execute permissions), all other files 
contained in the home directory have lost their metadata privacy. 

Of course, a solution is to put such files in a separate directory and protect them. 
However, in many cases these files might be accessed by standardised applications 
making it infeasible to move (for example, how to protect metadata privacy of shell 
initialisation files (.profile), or history files, which are always created in the home 
directory). Also, from our experience, many users like to keep their active files in the 
home directory itself and find it inconvenient to have a deep directory structure. 

Again, lack of convenient support from the system leads to privacy breaches, in this 
case leaking file metadata. 

2.2.3 Data sharing convenience 

User convenience is an important feature of an access control implementation. If users 
find it tough to implement their security requirements, they are likely to compromise the 
security requirements to easily fit the underlying access control model. This can be seen 
as one of the reasons why encryption file systems are not in widespread use, even though 
they guarantee maximum security. 

From our analysis of the *nix access control, along with some of the issues discussed 
earlier, we found the following two data sharing scenarios in which there is no 
convenient support for privacy: 
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1 Sharing a deep-rooted directory 

For a user to share a directory that is multiple levels in depth from the home 
directory, there needs to be at least execute permissions on all directories in the path. 
This in itself: 

• leaks the path information 

• puts sibling directories at risk 

• leaks metadata information for sibling directories. 

In order to prevent this, since most operating systems do not allow hard links to 
directories anymore, a user would have to create a new copy of the data. And since 
users are more careless with permissions for deep rooted directories (they protect a 
higher level directory and that automatically protects children directories), a copy of 
such a directory could have privacy-compromising permissions. 

2 Representation of shared data 

In many circumstances the way one user represents data might not be the most 
suitable way for another user. For example, while an employee might keep his 
resume in a directory named job-search, it is clearly not the most apt name to 
share with his boss. The employee might want her to see the directory simply as  
CV. Changing the name to meet the needs of other users is not an ideal solution.  
This again shows the lack of adequate system support for private and convenient  
data sharing. 

It is important to recognise that even an extremely privacy-conscious user cannot protect 
data at all times. Exhaustive user efforts to maintain appropriate permissions on all user 
and application created data will still be insufficient to protect metadata privacy or allow 
private sharing of deep rooted directories with user-specific representation. 

2.6 Case studies 

As part of our study, we conducted experiments at two geographically and 
organisationally distinct *nix installations. Users at both installations (CS graduate 
schools) are highly computer literate and can be expected to be familiar with all available 
access control tools. 

For our analysis, we consider the following data to be private: 

• All user e-mails are considered private. 

• All data under an execute-only home directory is considered private. 

• Browser profile data (including saved passwords, caches, browsing history, cookies) 
is considered private. 

The second assumption above merits further justification. It can be argued that not  
every subdirectory under an execute-only home directory is meant to be private (for 
example, a directory named public). However, we believe our definition to be a practical 
one. The ideal measurement would require active user participation in the study who, by 
anecdotal experience, once told of the threat immediately removed all permissions from 
their home directories. Also, the semantics of the execute-only permission set dictate  

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Privacy analysis and enhancements for data sharing in *nix systems 385    
 

that any user other than the owner cannot list the contents of the directory and since the 
owner never broadcasts the names of the shared directories, an unauthorised user should 
not be able to access that data. And since we do not include in our measurements  
any obviously-private data from home directories of users with read permissions (for 
example, world-readable directories named personal, or private), we believe the 
two effects to approximately cancel out. 

2.7 Modus operandi 

Next, we describe the design of our attack that scans user directories and measures the 
amount of private data accessible to unauthorised users. This discussion is also important 
since the design is eventually used to develop an auditing tool discussed later. The attack 
works in multiple phases. The first step is to obtain directory name lists which can be 
tried against users with execute-only home directories. Three strategies are used to obtain 
these lists: 

1 Static lists: These are manually entered names of directories likely to be found  
in the context of the organisations – CS graduate schools. For example, ‘research’, 
‘classes’, ‘papers’, ‘private’ and their variants in case (‘Research’) or  
abbreviations (‘pvt’). 

2 Global lists: These lists are generated by obtaining the directory names from home 
directories of users that have read permissions. 

3 History lists: These are user specific lists generated by parsing users’ history files, if 
readable. We used a simple mechanism, parsing only cd commands with directory 
names. It is possible to do more by parsing text editor commands (like vim) or 
copy/move commands. 

In the next step the tool starts a multi-threaded scanning operation that attempts to  
scan each user directory. For users with no permissions, no scanning is possible. For 
users with read permissions, as discussed earlier, since there is no precise way of 
guessing which data would be private, we only measure e-mail and browser profile 
statistics. Finally, for users with execute-only permissions, along with e-mail and browser 
profile statistics, we also attempt to extract as much data as possible using the directory 
name lists prepared in the first step. 

2.7.1 Evaluating e-mail statistics 

This is done by attempting to read data from standard mailbox names – ‘mail’, ‘Mail’, 
‘mbox’ in the home directory and the mail inboxes in /var/mail/userName. A grep 
(Linux Manual pages, 2008) like tool is used to measure: 

• number of readable e-mails 

• number of times the word ‘password’ or its variants appeared in the e-mails. 
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2.7.2 Evaluating execute-only data statistics 

For users with execute-only permissions on the home directory, the scanner uses the 
combination of static, global and the user’s history lists to access possible subdirectories. 
Double counting is avoided by ensuring that a name appearing in more than one list is 
accounted for only once and by not traversing any symbolic links. While scanning the 
files, counts are obtained for the total number of files and the total size of the data that 
could be accessed. 

2.7.3 Evaluating browser statistics 

The mozilla browser (Mozilla, 2008) stores user profiles in the ~/.mozilla directory. 
This directory used to be world-readable till as late as 2003 when the bug was corrected 
(Mozilla Bug Report, 2008). Within that profile directory, there are subdirectories  
for each profile that has been used by that user. The default profile is usually named 
‘default’ or ‘Default User’. So even in case the .mozilla directory had execute-only 
permissions, it is possible to access default profile directories (unless a user specifically 
removed permissions). Within the profile directory, there is another directory with a 
randomised name ending in ‘.sit’. Since the parent directories had read permissions, the 
randomisation provides no security and the name is visible. Within this directory, the 
following files exist and (with this bug) were readable: 

• Password database 

A file with the name of type ‘12345678.s’. This contains user logins and passwords 
saved by mozilla when the user chooses to save them. Ideally, users should use a 
cryptographic master key to encrypt these passwords, but as our results will show 
many users do not encrypt their passwords. For such cases, mozilla stores the 
passwords in a base-64 encoding (indicated by the line starting with a ~ in the 
passwords file), which can be trivially decoded to get plaintext passwords. 

• Cookies 

The cookies.txt file contains all browser cookies. Many websites including 
popular e-mail services like Gmail (Google Mail, 2008), Hotmail (Microsoft 
Hotmail, 2008) allow users to automatically login by keeping their usernames  
and passwords (encrypted) in the cookies file. Hijacking this cookie can allow a 
malicious user to login into these accounts. For many other cookies related attacks 
(see Sit and Fu, 2001). 

• Cache 

This is a subdirectory that contains the cached web pages visited by the user. 

• History database 

Web surfing history, which many sophisticated viruses and spyware invest resources 
to collect, are also readable. 

• Forms database 

Mozilla allows users to save their form data, stored in a file of type ‘23456789.w’, 
that can be automatically filled. This could include credit card numbers, social 
security numbers and other potentially sensitive information. Here again, users 
should use a master key to encrypt this information. 
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It is important to emphasise the reasoning behind illustrating this privacy breach. We 
recognise that this specific vulnerability has been patched now. Our intention is to point 
out that relying on application developers to provide privacy is not a perfect solution  
for two reasons – (1) bugs like the one exploited in this case occur many times, and (2) 
often application developers cannot account for all privacy implications of their design 
decisions, for example, the SUN Java compiler does not ensure that the compiled  
byte code has the same permissions as the source Java file and as byte code can be 
decompiled back into original source (Jad: JAva Decompiler, 2008) this clearly has a 
privacy implication. Instead we contend that as an alternative, the underlying system can 
contribute to provide better privacy support. For example, even with this vulnerability, 
our viewfs based approach described later would have prevented such a breach. 

2.8 Results 

The complete characteristics of the two organisations are shown in Table 2. Both 
organisations are computer science graduate schools at two different geographical 
locations within the United States. At both the organisations, a significant number of 
users (69% and 77%) used execute-only permissions on their home directories. 

Table 2 Case study organisation characteristics 

Org. # Users # ReadX # NoPerms # X-only 

Org-1 825 198 54 573 

Org-2 768 136 39 593 

Notes: # ReadX is the number of users with read and execute permissions to their  
  home directories. 

  # NoPerms are users with no permissions. 

  # X-only are the users with only execute permissions. 

Table 3 lists the amount of data extracted from execute-only home directories at  
Org-1 and 2. 

Table 3 Data extracted from X-only home directory permissions 

Org. # Hit users # Hits # Files Data size 

Org-1 462 2409 983 086 82 GB 

Org-2 380  911 364 932 25 GB 

Notes: # Hit users is the number of users that leaked private information. 
  # Hits is the total number of directory name hits against all X-only users. 
  # Files is the number of leaked files. 
  Data-size is the total size of those files. 

As can be seen, a large fraction of users indeed leaked private information – 56% and 
49% of total users respectively. Recall that we do not extract any data from users  
with read permissions on their home directories; so a more useful number is the fraction 
of X-only users that revealed private information. That number is 80% and 64% 
respectively. Also, on an average, 2127 files and 177 MB of data is leaked in the first 
organisation for each X-only user and 960 files and 65 MB of data is leaked in the second 
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organisation. A partial reason for the lower numbers in the second organisation could be 
the fewer number of users with read permissions, which would have impacted the global 
name lists creation. Overall, we believe this to be a very significant privacy breach. 

As mentioned earlier, many times the names of the subdirectories do not need to be 
guessed and can be obtained from the history files in the user home directories. Table 4 
lists the success rate of the attack in exploiting history files. As it shows, around 40% of 
X-only users had readable history files which led to 40%–50% of total leaked data  
in size. 

Table 4 Exploiting history files 

Org. # History hits # Files Data size 

Org-1 253 561 254 35 GB 

Org-2 237 155 826 14 GB 

Notes: # History hits is the number of users with readable history files. 

 # Files is the number of private files leaked due to directory names obtained  
  from history files. 

 Data-size is the size of the leaked data. 

2.8.1 E-mail statistics 

Table 5 presents the results of the e-mail data extracted from users in both organisations. 
Recall that this data is obtained for both X-only users and the users with read permissions 
on their home directories. 

Table 5 E-mail statistics 

Org. # Folders # E-mails Size # Password 

Org-1 2509 315 919 4.2 GB 6352 

Org-2  505  38 206 120 MB  237 

Notes: # Folders is the number of leaked e-mail folders. 

  # E-mails is the total number of leaked e-mails. 

  Size is the size of leaked data. 

 # Password is the number of times the word ‘password’ or its variants  
  appeared in the e-mails. 

As can be seen, a large number of e-mails are accessible to unauthorised users (especially 
at Org-1). Also, the number of times the word ‘password’ or its variants appear in these 
e-mails is alarming. Even though we understand that some of these occurrences might not 
be accompanied by actual passwords, by personal experience, distributing passwords via 
e-mails is by no means an uncommon event. 

2.8.2 Browser statistics 

The second organisation did not have the mozilla vulnerability since they had a  
more recent version of the browser installed, by which time the bug had been corrected. 
So the results shown in Table 6 have been obtained only from the first organisation. 
Looking at the results, the amount of accessible private information is enormous.  
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Figure 1 contains a sample of the websites that had their passwords extractable and 
clearly most of these websites are extremely sensitive and a privacy breach of this sort is 
completely unacceptable. As an interesting side statistic, out of the 579 passwords, only 
308 were unique passwords, that is, 36% of passwords were repeated. This indicates that 
users repeat their passwords, a common habit by anecdotal experience. Also as seen from 
Figure 1, some obtained passwords were for accounts in other institutions and a few of 
them are likely to be *nix systems. Thus, it is conceivable that this password extraction 
can be used to expand to other *nix installations and thus be much more severe in scope 
than a single installation. 

Table 6 Browser statistics at Org-1 

# Users with accessible .mozilla     311 

# Users with readable password DB     149 

# Passwords retrievable     579 

# Users with readable cookies DB     207 

# Cookies retrievable  19 456 

# Users with accessible caches     233 

# Cached entries  20 907 

# Users with readable browsing histories     256 

# URLs in history 130 503 

Figure 1 Sample accounts with retrievable passwords 

Financial websites 

www.paypal.com 
www.ameritrade.com 

www.bankofamerica.com 

Personal websites 

adultfriendfinder.com 
www.hthstudents.com 

www.icers911.org 

E-mail accounts 

mail.lycos.com 
my.screenname.aol.com 

webmail.bellsouth.net 

Other institutions 

cvpr.cs.toronto.edu 
e8.cvl.iis.u-tokyo.ac.jp 

systems.cs.colorado.edu 

2.8.3 Miscellaneous statistics 

Among few other applications at Org-1, 17 users had their Opera (2008) browser’s 
cookies file readable and 497 users had their e-mail address books, used by the Pine  
e-mail client (Pine, 2008) and stored in ~/.addressbook readable. 18 308 e-mail 
addresses could be obtained from these address books which can be potentially used for 
highly targeted spam. 

2.8.4 Precautions for the privacy study 

A study that evaluates data and user privacy characteristics in real systems can  
potentially raise certain ethical issues on whether such experiments should be conducted 
and potential threats reported to a public forum. We appreciate any user concern in  
this regard. 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   390 A. Singh, L. Liu and M. Ahamad    
 

First, we carefully crafted our experiments to prevent any privacy violation from the 
study itself. Our scanning tool does not store any user-specific information on disk. When 
the tool runs, it obtains the list of users from /etc/passwd, anonymises the users and 
randomises the order of scanning. This order is never written out to disk or printed on 
screen and is purged off the memory once the tool terminates. In case of measuring the 
number of emails that are readable, a grep like tool is used to only measure the number of 
times the word ‘Subject’: appears at the start of a line. Also, for measuring the number of 
passwords that can be extracted (since Mozilla stores them in base-64 encoding) only the 
number of such encoded passwords is calculated without decoding the base-64 encoding. 
This way, we ensure that we do not violate any user privacy, though such an attack is 
very feasible and a malicious user can obtain user specific private data. The US Secret 
Service and CERT study proves that such malicious users exist on the inside and trusting 
internal users to be ethical is incorrect. 

Secondly, we believe that this study was essential to create user awareness on this 
very important issue and expose existing threats to user privacy that can be exploited 
without significant technical sophistication. Also, our proposed defences can solve or at 
least mitigate these privacy protection problems immediately. 

2.9 Attack severity 

It is important to highlight the severity of this attack: 

• Low technical sophistication 

The attack is extremely low-tech; the commands used in a manual attack would be 
cd, ls and such. This aspect makes the threat significantly more dangerous than 
most other vulnerabilities. 

• Low detection possibility 

A version of the attack that targets only a few users a day and thus keeps overall disk 
activity normal has a very low probability of detection. Typical *nix installations do 
not keep extensive user activity logs and it is highly likely that such an attack will go 
unnoticed. Even if an individual user notices an unusual last-access time on one of 
the files, without extensive logging, it is impossible to pin point the perpetrator. 

• No quick fix 

Unlike other security vulnerabilities like buffer overflows, this at tack uses a design 
shortcoming combined with user/application carelessness and no patches would 
correct this problem overnight. 

• High success rate 

It is important to notice that the attack had a high success rate at installations where 
most users are computer literate. With increasing mainstream penetration of *nix 
systems, most users in the future would be ordinary users who cannot be expected to 
fully understand the vulnerabilities. This makes this attack a very potent threat. 
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3 Private-sharing principles 

The results presented in the previous section clearly establish the fact that there needs  
to be much better privacy protection in *nix installations. The possible solutions might  
lie in user education, use of new access control tools like ACLs (Grunbacher and 
Nuremberg, 2008), a new access control mechanism or possibly a combination of all 
three. In this section, we will concretely describe important features required for good 
privacy protection and try to identify possible solutions. 

Principle 1 Do not risk more than you need to 

This principle implies that sharing one directory should not endanger the privacy of data 
in other unrelated directories. A majority of privacy breaches occurred due to users 
needing to have execute permissions on their home directory to share one subdirectory, 
but failing to adequately protect the sibling subdirectories. We believe that while sharing 
some data, a user should not be expected to remember if there is any private data already 
existing in some sibling subdirectory. Similarly, while creating new data, the user should 
not be expected to remember what is being shared and how that could effect the new 
data. It is unintuitive and likely to fail. 

Principle 2 Do not trust applications completely 

The second principle dictates that protecting privacy of application created data should 
not be left entirely on the application developer. Even for a popular project like Mozilla, 
it took many years to notice and correct its data leak. Secondly, many applications might 
simply fail to foresee a privacy impact. For example, knowing that Java byte code can be 
decompiled back into source (Jad: JAva Decompiler, 2008), the Java compiler should 
ensure that its generated .class file has at least the same permissions as the source (for 
example, the Sun javac compiler does not ensure this). Such seemingly unrelated design 
goals can be easily missed by application developers. 

Principle 3 Increase granularity of protection 

The third principle advises to increase the granularity of data as well as users in private 
sharing. From users perspective, it should be possible to share data with a few users 
without requiring them to be a part of a certain user group (or be the complete others set). 
The new ACLs (Grunbacher and Nuremberg, 2008) do provide this facility; however, 
they are under-used in actual installations primarily due to lack of user education. 
Secondly, from the data perspective it should be possible to protect even the metadata of 
files, if desired. 

Principle 4 Convenience, convenience, convenience 

The fourth principle emphasises the need for user convenience in private data sharing. 
Lack of convenience, for example, while sharing a deep rooted directory or inability to 
represent the shared data differently for the user, will inevitably lead to improper 
permissions on certain data and risking privacy compromise. The *nix access control 
model, while admittedly not inconvenient in ordinary situations, fails to facilitate slightly 
involved situations like the ones described above. 
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Principle 5 Monitor and remind users 

Finally, due to the unavoidable and error-prone human element, there should be 
mechanisms that can monitor the system and get a measure of the privacy health. We 
believe that this should be as ingrained into auditing tools as virus scans and boot-up 
password enforcement, as done by many enterprise security applications (Symantec 
Security Manager, 2008). 

3.1 Evaluating existing mechanisms 

Before we present our proposed solutions in the next section, let us analyse existing 
access control tools on the principles described above. For the purpose of this discussion, 
we consider the following *nix access control mechanisms. Note that we restrict our 
analysis to only discretionary access control models, as are most popular in multi-user 
*nix installations: 

• Baseline *nix (BASE): The baseline *nix access control (owner, group, others) 
model as described in Section 2.1. 

• ACLs (ACL): ACLs (Grunbacher and Nuremberg, 2008) allow users to specify 
permissions at the granularity of an individual user. However, the types of 
permissions are the same read, write, execute as the baseline *nix model. 

• umask 077 (UMASK): The umask 077 (Linux Manual pages, 2008) will ensure that 
any new file created by a user or an application will have no permissions for users 
other than the owner. This can be seen as a potential way of preventing inadvertent 
leaking of private information. 

• Richer Access Control Semantics like AFS (RACS): The AFS (Satyanarayanan, 1990) 
has additional privileges like looking up a directory, deleting files, creating new files. 
Using it as an example, we intend to evaluate if making the access control richer 
could be the solution. 

Table 7 contains our analysis of these four access control mechanisms for the private 
sharing principles described above with X indicating lack of support, ↑ indicating partial 
support and ↑↑ indicating good support. 

Table 7 Analysing tools for principles 

Principle # BASE ACL UMASK RACS 

1 X X ↑ X 

2 X X ↑ X 

3 X ↑ X ↑↑ 

4 X X X X 

5 X X X X 

As described earlier, the baseline *nix model fails on all these principles. The ACLs 
provide a higher level of granularity as far as users are concerned, but they do not provide 
data level granularity like metadata privacy. They also fail on other principles like 
protecting application data, or convenient means of sharing deep-rooted directories. The 
umask 077 provides partial support in preventing against inadvertent exposure of user 
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or application files by ensuring that when the files are created, they have no readable 
permissions for non-owners. However, in case the user ever modifies the permissions to 
share anything (even temporarily), it provides no further assistance. Also, umask 077 
is inconvenient to use since it is a global setting per user. For example, if working on a 
shared project with this setting, the user will have to specifically correct permissions 
every time a new file is created (a better mechanism would be using a user and directory 
specific umask). Using richer access control semantics of having separate permissions 
for listing directories, creating/removing files only helps in improving the granularity of 
protection. Without a concrete mechanism of directly and selectively sharing deep rooted 
data or protecting application data, this mode fails on the rest of the principles. None of 
the existing *nix tools provide any auditing facilities for data privacy, thus failing on the 
fifth design principle. 

Note that even with a combination of all four mechanisms, there is still inadequate 
support for privacy protection. 

3.2 Comparison with windows access control 

While we focus primarily on the *nix access control model, it is interesting to briefly 
analyse the windows access control model. Windows is most commonly used in a 
Personal Computer (PC) environment, so data sharing for users on the same system is not 
very common. However, the Windows NT line of operating systems (NT, Windows 
2000, XP) does have multi-user support. 

Windows access control is richer than *nix and includes additional permissions for 
listing contents of a directory (distinct from the read permissions), creating files in a 
directory (distinct from the write permission) and more. Also, permissions can be granted 
at the granularity of individual users. A major difference for our analysis is the fact  
that in Windows NT/2000/XP Pro, it is possible to share a directory with other users 
without giving permissions for the complete path to that directory. For example, to share 
grand-child with the path dir/child/grand-child, there is no requirement 
for execute permissions on dir or child. However, in Windows XP operating system, 
the recommended way (for XP Home, it is the only way) of sharing a folder with other 
users on the same computer is to move it to the ‘Shared Documents’ folder. This is an 
undesirable property since it forces the owner to change the directory structure. 

For applications, Windows recommends creating private files in the hidden 
‘Documents and Settings/userName/Application Data’ directory, thus creating a single 
location which can be more easily protected. However, there is no certain way to ensure 
that applications follow this principle. 

Overall, this access control (except in XP Home) provides good support for 
preventing inadvertent exposure, only partial support for protecting application data and 
improves the granularity of protection. In regards to convenience, Windows allows a 
deep rooted directory to be shared easily (no need to set parent permissions). However, it 
does not let owners represent their data differently for sharing it with other users. 

As an additional contrast, we use two design goals in our privacy enhancements. 
First, we attempt to maintain similar semantics to the basic UNIX model, thus requiring 
minimal re-education and greater ease of use than the fine grained Windows model which 
is complex to use. Secondly, our approach gives users the option of selectively using our 
privacy enhancements with the ability to switching off our proposed enhancements. Thus, 
it gives a way to slowly introduce VBAC to the user base. 
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4 Privacy enhancements 

The analysis presented in the previous section indicates a need for better access control 
and monitoring mechanisms. In this section, we present our two solutions that can be 
used independently or together to facilitate stronger privacy protection in *nix systems. 
The first solution is a Privacy Auditing Tool that monitors the privacy health of an 
organisation and can alert users/administrators of potential threats (the fifth principle). 
The second solution is a new access control model, VBAC, that modifies the data sharing 
mechanisms of *nix systems and succeeds on the remaining private-sharing principles. 
Using the two solutions together provides an excellent data sharing environment. 

4.1 Privacy auditing tool 

The aim of the privacy auditing tool is to periodically monitor user home directories  
and identify potential private data exposures. A similar approach is used by most 
enterprise security applications like (Symantec Security Manager, 2008) that audit  
user systems and enforce compliance to security policies, for example, requiring  
laptop owners to keep a boot-up password, or system administrators to enforce stricter 
password rules and so on. In a similar vein, the privacy auditing tool will scan user  
home directories and alert administrator or the users directly if their private data can be 
accessed by unauthorised users. 

The design of such a tool is very similar to the design of the attack described in 
Section 2.7. A number of test accounts are created on the monitored system with different 
group memberships, since it is possible that some user group might have access to  
more private data than others. The tool is then run from these test accounts to identify 
exposed private data. The auditing tool can be used either to obtain only higher level 
statistics, as described in the attack or more user-specific information which can alert 
users directly of their private directories that can be accessed by unauthorised users. A 
variant would be allowing users to themselves invoke an audit of their home directory. 
Yet another variant would be to allow the tool to automatically correct some of the 
obvious mis-configurations like e-mails. 

Even though this solution does not solve the underlying access control problem, it has 
the following advantages: 

• The privacy auditing tool does not require operating system or file system changes 
and so can be easily incorporated into enterprise infrastructures. The auditing 
solution is the quickest way of mitigating this vulnerability. 

• Since existing security auditing tools operate in a similar mode, this tool can be 
easily added on as a privacy protection module to such tools. 

• Even with a better access control model, the unavoidable and error-prone human 
involvement in protecting private data makes such a tool an important component  
of a secure enterprise. 

Next, we discuss a more proactive solution to address the *nix privacy shortcomings. 
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4.2 View-based access control 

Our second solution is the design of a new access control mechanism called the VBAC. 
Similar to the *nix access control, VBAC is also a discretionary access control model, 
thus keeping security within the control of the data owner. VBAC is motivated by  
the private-sharing principles described in Section 3 and is based on the following  
design goals: 

• Act only on primary objects 

Private sharing in *nix in its current form requires a two step approach of: 

1 sharing desired data 

2 protecting other unrelated data. 

The second step, adequately protecting sibling directories or newly created 
directories, is unintuitive and should be removed. This design feature will help us 
adhere to the first principle. 

• Keep application data only in the owner’s view 

A severe privacy breach occurred due to improper handling of application  
profile data. Such data should be viewed only by the owner and unless specifically 
allowed, should not be visible to other users. This design feature adheres to the 
second principle. 

• Allow hiding of sibling directories from other users 

The POSIX ACLs increase granularity of protection for users, allowing data to be 
shared with individual users. Combining this with an approach that can completely 
hide sibling data from other users, thus protecting file metadata will comply with the 
third principle. 

• Allow extracting deep rooted directories 

In order to share deep rooted directories, it should be possible to simply pluck  
them from the file system tree and put them in the view of desired users. Also, it 
should be possible to share a different representation of the data without impacting 
the owners’ view of the file system. This will provide the convenience desired by  
the fourth principle. 

Based on these design goals, the VBAC access control model creates a new file system 
primitive called a ‘view’. Informally speaking, a data owner can define a view of her 
home directory, dictating what another user gets to see when he attempts to access it. By 
adding only the data she wants to share into this view, other data remains protected. Also, 
it is possible to add a deep rooted directory directly to this view and it can be represented 
differently. Using such a mechanism, unless the owner explicitly adds her application 
data into a shared view, it will be always hidden from other users. More details follow in 
the next section. 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   396 A. Singh, L. Liu and M. Ahamad    
 

5 VBAC: design and implementation 

VBAC extends the *nix access control model by adding a view primitive, that presents a 
different file system structure to different users. For every user, there is one owner-view 
of the home directory which is the same as the standard home directory in current 
systems. In addition, the owner can define new views of the home directory for other 
individual users, user groups or the others set. For example, a user bob can create a view 
of his home directory for a user alice and another view for his user group faculty and  
yet another view for all other users. He can then add desired data to appropriate views 
depending on what he wants to share. The added data could be a deep rooted directory 
and can be shared using a different name. Other users can access their view of bob’s 
home directory using the same ~bob. The underlying system automatically routes them 
to their appropriate view and users continue to see the view directory as ~bob. This 
ensures that no current scripts or access habits are disturbed. 

The VBAC model uses the same permission types as baseline *nix – read, write and 
execute and they have the same semantics. VBAC only adds another layer of access 
control by making a higher level decision of what a user gets to see or not. After that 
decision, whatever a particular user has in his/her view, it is access controlled using  
the baseline *nix permissions. We believe that this feature makes VBAC an elegant 
extension of the *nix model. 

Also, a user can decide to switch off the additional VBAC layer providing other  
users with the same view as the owner-view (of course, access to data is controlled by  
the lower layer of *nix access control). This implies that VBAC can be incrementally 
introduced into a system without forcing all users to migrate to it immediately. 

Separating the owner view from the views of other users offers us great advantages: 

• No sibling directories are put at risk, since only the directories added to user  
views (that is, the directories that were to be shared) are visible to other users  
(the first principle). 

• No user application files are visible to other users. Only the owner-view contains 
files like .history, .mozilla, which were responsible for significant privacy breaches 
(the second principle). 

• File metadata can be protected simply by not adding them to another user’s view. If a 
file is solely in the owner’s view, other users cannot access metadata or data or even 
find out existence of a file. In addition, VBAC uses POSIX ACLs for fine-grained 
user access control (the third principle). 

• As mentioned above, VBAC allows sharing a deep rooted directory without giving 
permissions throughout the entire path. Also the shared directory can be represented 
differently in different views (the fourth principle). 

To avoid managing views at the granularity of individual users, we provide two 
mechanisms for doing selective sharing of data by using the group views. 

This first mechanism uses Security-by-Obfuscation (SBO). Recall that we mentioned 
that in order to do selective sharing under an execute-only directory, a simple solution 
was to use tough-to-guess directory names. However, it was deemed infeasible since  
the owner would have to keep tens or hundreds of cryptic names. With the separation of 
views, an owner can now share a particular directory with a tough-to-guess name in the 
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view, while keeping the original name in the home directory (owner-view). To achieve 
this, the other users’ view is set to execute-only permissions and while adding a directory 
to the view, the owner also gives a passphrase which is used to encrypt the name of  
the directory being added. The encrypted cipher text is appended to the directory  
name and the resulting string is used as the target name in the view. Now, the owner 
authorises a user to access this directory by giving that user the original directory  
name and the passphrase. Notice the similarity with the authorisation mechanism in 
original execute-only *nix – only one extra piece of information, the passphrase, is 
delivered using the same out-of-band channels like e-mail. By using cryptographically  
tough-to-guess names, we are able to bring this user authorisation definition much closer 
to the underlying system’s definition, a shortcoming in the original *nix model. 

In order to prevent users having to remember the passphrase every time they need to 
access another user’s shared directory, we provide another mechanism to do selective 
data sharing using a group view. This second method uses POSIX ACLs. In this case, 
when an owner adds a directory to a view, it is shared with the desired name, but with  
no permissions for any users other than the owner. Along with that, the directory is 
flagged and the passphrase is stored in a secure location only accessible by the superuser 
(it is stored as a trusted extended attribute (Linux Manual pages, 2008)). The owner still 
authorises the users in the same manner – by informing them of the directory name and 
the passphrase. However, before accessing the shared directory users have to perform an 
additional step. They first obtain access by executing a new trusted command (see 
Section 5.5) that, provided the passphrase was correct, updates the ACL associated with 
that directory allowing access to that user. All accesses after this step can proceed 
without having to enter the passphrase. An added advantage of this method is that all 
users that access the directory have their names included in the ACL, which can be 
viewed by the owner, thus serving as an excellent auditing tool. 

5.1 Implementation 

In this section, we describe our proof-of-concept implementation of the VBAC access 
control model. 

There are different options using which new access control techniques can be 
introduced into a system. For example, using a per-process filesystem namespace 
included in Linux kernels from 2.4.19+ (similar in design to man jails (Linux Manual 
pages, 2008)) or introducing access control through a Linux Security Module (Wright  
et al., 2002). We opted for a localised approach that causes minimal impact to the rest of 
the system. We implemented VBAC through a filesystem based design that allows users 
to selectively use VBAC on pieces of data that they are most interested to protect. This 
has an added advantage of allowing to evaluate VBAC independently of the overheads of 
other security mechanisms. 

This new file system is called viewfs and is based on the linux ext2 filesystem  
(Card et al., 1995). Most of ext2 functions like disk placement of data blocks are reused, 
viewfs is developed as a loadable kernel module and can be loaded into the kernel 
without kernel recompilation. viewfs was implemented on a Linux 2.6 kernel. Next, we 
explain the implementation of important VBAC features. Please note that for some of the 
details, little familiarity with the Linux Virtual File System (VFS) is helpful. Linux VFS 
is a file system interface that sits over all underlying filesystems. It provides a default  
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implementation of most filesystem functions like lookup, mkdir and also provides an 
implementation of *nix access control checks. Individual filesystems can choose to 
override these functions by implementing them in the filesystem. 

5.2 View 

The foremost VBAC concept is that of a view. From an implementation perspective, a 
view is a regular directory within the directory containing the owner’s home directory 
(like/home). In other words it is a sibling directory to the owner home directory. 

However, the view directory has a special name of the form: ‘.owner.uview. 
username’ or ‘.owner.gview.groupname’ or ‘.owner,oview’. This name is restricted, that 
is, users cannot use this name for naming other directories. This restriction helps to 
identify a directory being a view of another directory and is used to do automatic routing 
of users to their views. The restriction is enforced in the file system mkdir function 
implementation. The first type of name ‘.owner.uview.username’ is used to create a view 
for an individual user. For example, if bob creates a view for alice, the  
view will be called ‘.bob.uview.alice’. The second type is for a user group and the third is 
for other users. Access is controlled to these views, for example, to prevent user cathy 
from accessing a view for alice, by ACLs set at view creation. The period (‘.’) before the 
view names keeps them hidden from plain view. It is important to note that the view 
directory is the parent directory which will contain the data to be shared with other users. 
As described in Section 5, shared data can be added to this view directory using the 
security-by-obfuscation or the POSIX ACLs based method. 

While it would appear that a more elegant way is to create the view directories within 
the owner’s home directory (no clutter in /home), it is not feasible for two reasons: 

1 First, since we use the same *nix permission types rwx, in order to provide access  
to a view directory within owner’s home directory, we would be required to give 
execute permissions on the home directory, which was the original cause of the 
privacy breach! 

2 Secondly, it is easier to implement the view directory as a sibling to home directory 
due to the VFS implementation of path lookups. VFS looks up a path name 
dir/child/grand-child in a loop by first looking up child in the directory 
dir and then looking up grand-child in child. For routing alice to her view of 
bob’s directory, the lookup seeking bob in the directory /home just returns the 
entry for .bob.uview.alice instead. 

Next, we concretely describe the automatic routing to views. A VFS directory lookup 
ocurrs in the following manner. Given a name to look up, the directory entry (or dentry) 
cache (or dcache) is looked up for the desired directory name. The dcache indexes cached 
dentries by hashes of their names. If there is a cache miss, the call passes onto the 
underlying filesystem for looking up that name. That is followed by the inode number 
lookup to find the inode number corresponding to the name and if it exists, the inode 
lookup that gets the object metadata. 

We modify this filesystem lookup procedure by first checking if there exists an 
appropriate view directory. For example, if alice is looking for a directory bob, we check 
for the existence of a directory called ‘.bob.uview.alice’. At this stage, we have the  
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complete state necessary for completing this lookup (since view is the sibling to the home 
directory). If the view exists then the dentry associated with the view directory is returned 
and is cached in the dentry cache on return. In order to work with different user views in 
the cache, we modify the hash of the dentry by hashing the view name as opposed to the 
original directory name. This is feasible since the VFS hash function can be overridden 
by the underlying filesystem. 

An important point to note is that this implementation does not interfere with the I/O 
paths at all, that is when file data is being read or written back to disk. One potential 
performance impact of the implementation is that a single directory name lookup can 
cause multiple view name lookups. However, as our initial experiments with benchmarks 
show, the total overheads are still minimal. Secondly, we foresee *nix installation using 
viewfs only for user home directories. Therefore the vast majority of system lookups that 
are to standard OS and other infrastructure files contained in /usr,/etc,/bin are not 
affected at all. 

As mentioned before, an individual owner can choose to switch off the VBAC model 
for users accessing her home directory. This is accomplished by keeping an extended 
attribute (Linux Manual pages, 2008) with the user home directory. The lookup described 
above first checks for this extended attribute and in case the user chooses to switch off 
VBAC, the normal ext2 file system lookup is performed providing the basic *nix model. 

5.3 Sharing data 

The next important viewfs implementation is its mechanisms for adding data to views. It 
allows adding deep rooted directories directly to user views and possibly with a different 
name. Also, changes made to the directory in one view should be immediately reflected 
in all other views. The first idea that comes to mind to facilitate this is directory hard 
links. A directory hard link is the same inode as the original directory but can have a 
different name and can be created at any location within the filesystem without worrying 
about the access along the path to the original directory (unlike a symbolic link). In fact 
there is no way to distinguish a hard link from the original directory. 

However, directory hard links are not allowed by most operating systems including 
Linux even though it is not mandated by the POSIX standard. The reason is that many 
OS mechanisms like reference counting and locking consider the file system to be an 
acyclical tree and hard links can cause cycles. For example, for a/b/c, commands ‘link 
e a/b’ and ‘link e/c a’ cause a cycle. This will also break many existing applications that 
traverse the file system assuming it to be a tree. Symbolic links can also cause a cycle but 
they are easily identifiable since the link is a different inode that stores the complete path 
to the original pointed-to location. Hard links, as mentioned before, are unidentifiable and 
cycle detection for hard links can be expensive. 

In the context of viewfs however, we can very easily prevent any cycle formation.  
We can do this by only allowing users to create a link from inside the view pointing 
outside and never in the other direction. This can be checked while adding data to a view 
(creating the hard link) and since views have restricted name, such a check would not  
be expensive. Even though we had a working implementation of this approach, there is an 
additional issue specific to the linux operating system and its implementation of the VFS 
dentry cache. This view implementation can break in certain situations, for example,  
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when a directory and its hard link are both cached and one is deleted. Interested readers 
can follow Linus Torvald’s explanation debating Reiser4 filesystem’s directory aliasing  
at http://kerneltrap.org/node/3749 (Reiser4 Aliasing Debate, 2008). It is 
unclear if the same holds for other variants like FreeBSD. However, we preferred linux 
and opted to take an alternate path. 

Similar objectives can be achieved in linux using a bind mount (Linux Manual 
pages, 2008). A bind-mount mounts one portion of the filesystem tree at another location. 
Since it is a separate file system mount, the linux implementation issue discussed earlier 
does not apply (Reiser4 Aliasing Debate, 2008). This provides both sharing the deep 
rooted directory and sharing it with a different name. For viewfs, an additional 
requirement is to first create the mount point which will be the desired directory name in 
the view and is done while adding data to the view. Section 5.5 describes new commands 
created for facilitating this viewfs implementation and an example viewfs session 
demonstrating its usage. 

5.4 VBAC usability 

The following characteristics make VBAC and the viewfs implementation superior in 
design in regards to usability and integration with existing *nix systems: 

• VBAC elegantly complements the *nix access control by only adding a higher level 
can-see/cannot-see decision. Also since the view concept is regularly practiced as an 
access control tool in databases (Sheth and Larson, 1990; Wang and Spooner, 1987). 
We believe it will not be tough for users to transition to it. 

• Individual users can choose to switch on/off the VBAC access control model, thus 
allowing incremental introduction of VBAC. In addition, only directories mounted 
on viewfs are impacted, thus isolating its influence. 

• In viewfs, users only need to perform operations on data which they want to share. 
All other data, including application data, is automatically protected without any 
explicit user commands. 

• VBAC requires only data owners to perform explicit operations. Users accessing 
shared data continue to do so in normal *nix fashion (like cd ~bob), except when 
using the SBO or ACL private-sharing methods. 

5.5 Viewfs example and commands 

This section provides a complete list of new viewfs commands and an example usage of 
the viewfs to share and access data. Following new commands have been implemented 
for viewfs: 

• createview -[u | g| o] [user | group] 

This commands creates a user/group/others view for the invoker’s home directory. It 
also sets appropriate ACLs to control access to the view. For example, bob executing 
‘createview -u alice’ or ‘createview -o’. 
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• add2view -[u | g| o] [user | group] [-b | -a] [src] [target] 

This command adds the src directory to the appropriate view and sets its name to  
be target. Also if -b option is used, a passphrase is obtained from the user and the 
directory is shared using the SBO method described in Section 5. If -a option is  
used, the ACL method is used. For example adding jobsearch directory to an  
others view as CV using SBO – ‘addview -o -b jobsearch CV’. This  
will prompt the user to enter a passphrase (pp) and the directory is shared with the 
name ‘CV-{CV}pp’ where {} indicates encryption. To allow ordinary users to 
perform a mount, this script is setuid root, though root privileges are dropped at 
initialisation and gained only for the mount operation using seteuid (Linux 
Manual pages, 2008). 

• getacc [target] 

This setuid command prompts for a passphrase that protects access to the target 
directory, when using the ACL method. If the passphrase is correct, the ACL of 
target is modified to give access to the invoking user. 

• vcd [target] 

This command is to cd into a directory protected by the SBO method. It prompts  
for a passphrase and encrypts the target name with it to obtain the actual directory 
name. There are also other functions to remove a view, unshare a directory from a 
view, etc. 

Figure 2 contains an example viewfs session, in which bob has created a view for others 
and alice is accessing that view. 

Lines 2–8 show the contents of bob’s home directory. In lines 9, 10 bob adds his 
personal directory to others view using the ACL method. In lines 11, 12 he adds his 
CS6210 directory using the SBO method. Finally he adds his research and web directory 
in lines 13, 15. Lines 18–25 show the contents of the view directory. Notice the name of 
the shared CS6210 directory, the permissions of the shared personal directory, as done in 
the ACL method (see Section 5) and execute-only permissions of the view directory (line 
20) for SBO protection. 

Alice accesses bob’s home directory ~bob, but cannot list its contents (line 4). She 
can access the public_html and research directories, since they have not been protected 
by SBO or ACL methods. In order to access the personal directory, she executes the 
getacc command (line 11) and enters the passphrase, which bob would have given  
her out-of-band. After the command she can access the directory. And listing the ACL  
of personal directory shows the modification allowing access to alice. Finally, in lines 
25–28, she accesses the CS6210 directory, protected by the SBO method, using vcd. 
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Figure 2 Example viewfs session 

# BOB ALICE 

0 [bob@local bob] $ pwd [alice@local alice] $ cd ~bob 

1 /mnt/vw/homes/bob [alice@local bob]$ pwd 

2 [bob@localbob]$ ls -l /mnt/vw/homes/bob 

3 total 7 [alice@local bob]$ ls -l 

4 drwxr-xr-x 2 bob bob 1024 Apr 23 01:19 courses ls: .: Permission denied 

5 drwxr-xr-x 2 bob bob 1024 Mar 26 05:14 mail [alice@local bob]$ ls public_html 

6 drwxr-xr-x 2 bob bob 1024 Apr 23 20:59 personal index.html 

7 drwxr-xr-x 4 bob bob 1024 Apr 8 17:06 research [alice@local bob]$ ls research 

8 drwxr-xr-x 2 bob bob 1024 Mar 26 05:16 www linux-2.6 paper 

9 [bob@local bob]$ add2view -o -a personal personal [alice@local bob]$ ls personal 

10 Enter Passphrase: ***** (bob12) ls: personal: Permission denied 

11 [bob@local bob]$ add2view -o -b courses CS6210 [alice@local bob]$ getacc personal 

12 Enter Passphrase: ****** (group4) Enter Passphrase: ***** (bob12) 

13 [bob@local bob]$ add2view -o research research [alice@local bob]$ ls personal 

14  passwords 

15 [bob@local bob]$ add2view -o www public_html [alice@local bob]$ getfacl personal 

16  # file: personal 

17 [bob@local bob]$ cd ../.bob.oview/ # owner: bob 

18 [bob@local .bob.oview]$ ls -al # group: bob 

19 total 10 user::rwx 

20 drwx- -x- -x 6 bob bob 1024 Apr 23 20:59 . user:alice:r-x 

21 drwx- -x- -x 8 bob bob 1024 Mar 20 21:56 .. group:: – – – 

22 drwxr-xr-x 2 bob bob 1024 Apr 23 01:19 CS6210 
-CSYrzy3dw1uIs 

mask::r-x 

23 drwx- - - - -2 bob bob 1024 Apr 23 20:59 personal other: – – – 

24 drwxr-xr-x 2 bob bob 1024 Mar 26 05:16 public_html  

25 drwxr-xr-x 4 bob bob 1024 Apr 8 17:06 research [alice@local bob]$ vcd CS6210 

26  Enter Passphrase: ****** (group4) 

27  [alice@local CS6210 
-CSYrzy3dw1uIs]$ ls 

28  intro.6210 

5.6 Performance evaluation 

We evaluated our viewfs implementation against three popular filesystem benchmarks 
and compared it with the baseline ext2 performance, the file system viewfs is based upon. 
The experiments were conducted on a P4 1.6 GHz Dell Inspiron 8200 with 512 MB 
RAM running RedHat Linux with kernel 2.6.11.3. All results were averaged over 
multiple runs. It is important to note that the number of users that access a particular view 
does not have an additional impact on our performance since each user independently 
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accesses the view directory. The performance will be impacted only due to additional 
inode lookups required to identify appropriate view directories. To evaluate this, we used 
two viewfs scenarios: 

1 viewfs-owner: when an owner is accessing her data 

2 viewfs-other: when a user is accessing the data from an others view. 

Note that additional view name lookups occur only in the latter scenario, so the  
former scenario is an indication of any other viewfs overheads, for example, of  
using bind mounts and would also be an estimate of impact on users with switched off 
VBAC model. 

5.7 Andrew benchmark 

Andrew benchmark (Howard et al., 1988) is a popular filesystem benchmark. It emulates 
a software development workload and has five phases: 

1 creates subdirectories recursively 

2 copies a source tree 

3 examines the status of all the files in the tree without examining their data 

4 examines every byte of data in all the files 

5 compiles and links the files. 

For our experiments, it compiled an OpenSSH-2 client. In the viewfs-other 
implementation the benchmark was run by an other user in the owner’s view directory. 
Figure 3 plots the times (in ms) on log scale for each of the phases. 

Figure 3 Andrew benchmark results 
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Table 8 show the overheads of the viewfs-other implementation over ext2. TOTAL is  
the cumulative time taken to execute all five phases of the Andrew benchmark. The 
cumulative of these phases is considered to be a representation of a typical software 
development workload and the difference of 3% on the cumulative Andrew benchmark 
performance between viewfs and ext2 indicates that for a software development 
environment, users will have to pay only 3% additional overheads over ext2 while getting 
the additional privacy features of viewfs. The overheads in the earlier phases are greater 
since the missed inode lookups to check for view directories form a measurable portion 
of the total cost (less than 100 ms). However, it is to be noted that the current viewfs 
implementation is a proof-of-concept prototype and greater optimisations may be 
possible in future to reduce these overheads. A special area of focus could be use of a 
cache that can quickly map the user to the right inode for the requested file. This will 
reduce the number of missed inode lookups. For the later phases, other costs (read/write) 
are more dominant and additional inode lookups form a very small overhead. As 
discussed earlier, viewfs does not incur costs for data I/O (read/write). The next set of 
experiments using the Bonnie benchmark further demonstrate this fact. 

Table 8 Andrew benchmark overheads of viewfs-other over ext2 

Phase Overheads (%) 

1 36 

2 41 

3 11 

4  9 

5  2 

Total  3 

5.8 Bonnie 

In order to test our thesis that viewfs should not impact I/O performance, we evaluated 
viewfs against ext2 on the Bonnie Benchmark (2008). Bonnie tests the speed of file I/O 
using standard C library calls. It does reads and writes of blocks in random or sequential 
order and also evaluates updates to a file. The tests were run for a 400 MB file. Figure 4 
shows the results for the three implementation for various I/O modes. The X-axis lists the 
I/O modes and the Y-axis plots the speeds for those operations. As can be seen, for all 
read/write modes, there is practically no difference between ext2 and viewfs. This proves 
that viewfs does not have I/O overheads. 
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Figure 4 Bonnie benchmark results 
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5.9 Am-utils 

The final benchmark used was the Berkeley Automounter (2008) am-utils. It is a 
filesystem performance benchmark that configures and compiles the am-utils software 
package inside a given directory. Overall, this benchmark contains a large number of 
reads, writes, and file lookups, as well as a fair mix of most other file system operations 
such as unlink, mkdir, symlink. It is believed to be a good representation of a usual 
system workload. 

Figure 5 shows the results of timing the viewfs-other and viewfs-owner 
implementations with ext2 using the time (Linux Manual pages, 2008) utility. The 
graph shows that there is only a slight overhead introduced by viewfs (8% in elapsed real 
time, time between invocation and termination, for viewfs-other). This shows that for 
typical system usage, viewfs will perform close to the existing filesystems. 
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Figure 5 Am-utils benchmark results 
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5.10 Summary of results 

These benchmark results show that viewfs performs very well on an average workload. It 
does have high relative performance overheads for small time operations (for example, 
metadata intensive operations in Phase 1 and Phase 2 of Andrew benchmark). This is 
expected since in such cases, the missed inode lookups to check for view directories 
forms a measurable portion of the total cost. 

However, it is important to recognise that these performance costs are paid only  
for selective pieces of data that require stronger privacy protection. Most storage 
accessed in systems occur to directories like /bin, /usr/bin which we neither expect nor 
recommend to be mounted on viewfs. This is where our data focused perspective on 
applying privacy enhancements becomes extremely useful. Secondly, these overheads 
occur only for metadata and viewfs does not impact the I/O paths, as demonstrated using 
the Bonnie benchmark results above. We firmly believe that these two features make 
viewfs a reasonable technique from its performance perspective for the enhanced privacy 
protection that it provides. 

6 Related work 

We compare our work to three pieces of related work – (1) *nix access control models, 
(2) alternate technologies like cryptographic file systems, and (3) use of views as access 
control in other domains. 
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6.1 *nix access control models 

The *nix access control model follows primarily from the original UNIX access control 
(Ritchie and Thompson, 1974; Ritchie, 1978). It is a Discretionary Access Control 
(DAC) model and access is granted based on the identity of the subject (user or user 
group). It is discretionary since access to an object is controlled by the object owners. 
Most of the research in *nix access control model aims to either improve the granularity 
of protection (for example, POSIX ACLs (Grunbacher and Nuremberg, 2008)) or counter 
the threat of malicious programs exploiting the root (superuser) privileges. There has 
been a significant amount of work in developing sandboxing the other similar techniques 
aimed at allowing only certain filesystem namespace to be visible to an untrusted process 
(Wagner, 1999; Jaeger and Prakash, 1994; Goldberg et al., 1992; Linux Manual pages, 
2008). In contrast, we approach the problem from the underlying data perspective. 
Sandboxing techniques are applied to processes irrespective of the data that they are 
trying to access (even /usr/bin, /bin, etc.). In contrast, the core unit of protection in our 
approach is data and enhancements are applied to only the accesses to such private data. 
We believe this data perspective to be novel and useful as all processes do not have to 
comply with privacy enhancements (and pay overheads associated with it). 

There also has been significant work at developing new access control models  
for *nix systems. One variant of Linux developed by National Security Agency (2008), 
called the Security-Enhanced Linux (SELinux) (2008) supports a mandatory access 
control model, in which an administrator sets a security policy which is used to determine 
the access granted to an object and users have limited control on their data. Another 
access control model is the Role-Based Access Control (RBAC) model (Ferraiolo and 
Kuhn, 1992; Sandhu et al., 1996), supported by Sun Solaris operating system, in which 
security attributes can be assigned to user roles (a process or task). This helps reduce  
the threat of malicious programs exploiting the root privileges. In a similar vein, the 
Rule-Set Based Access Control (RSBAC) model (Ott and Fischer-Hubner, 2001) aims to 
protect against root vulnerabilities and improve granularity of protection. There has 
also been work on a privacy model (Fischer-Hubner, 1994; 1995; Fischer-Hubner and 
Ott, 1998) in access control. However, that work is aimed at guiding organisations on 
how to control their information flow to ensure privacy of collected user-data (for 
example, healthcare records). To the best of our knowledge this work is the first critical 
look at the privacy support for data sharing in a multi-user *nix operating system. Our 
proposed VBAC model is a specialised access control model that focuses on data and 
aims at providing stronger privacy protection in such environments. Additionally, we 
have made a deliberate effort at maintaining the usage of the basic *nix model as much as 
possible as we believe that it is critical for greater user acceptability. 

6.2 Alternate technologies 

A common argument against privacy protection mechanisms is that users who care  
about their privacy would use a stronger security mechanism like encryption. However, 
sharing encrypted data with many users is a challenging problem. Cryptographic file 
systems like CFS (Blaze, 1993), CryptFS (Zadok et al., 1998) provide transparent 
mechanisms of ensuring data confidentiality using cryptographic primitives. Data is 
stored in an encrypted format on disk and is decrypted (or re-encrypted) on-the-fly while 
reading from (or writing to) the disk. Another related work is that of Self-Certifying File 
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Systems (SFS) (Mazières et al., 1999; Mazires, 2000). SFS is used for inter-organisation 
wide area file sharing aimed at providing a global filesystem image in which users of one 
organisation can share data with users from another organisation. It uses specialised  
path names for shared data that allow self-certification by deriving them using 
cryptographic techniques. In practice, cryptographic filesystems have traditionally had 
poor acceptance in multiuser environments. This is due to the I/O performance effects 
and also importantly, lack of user education in encryption technologies. In fact a user 
study reported that even experienced computer users could not use PGP 5.0 in less than 
90 minutes and that one-quarter of the test subjects accidentally revealed the secret they 
were supposed to protect (Whitten and Tygar, 1999). A recent cryptographic file system 
NCryptFS (Wright et al., 2003) while providing better convenience features, modifies 
various kernel components like process management, dentry cache and inode cache. This 
will limit its widespread adoption. Secondly, users have to specifically attach to a shared 
directory, as opposed to continuing to use ‘~bob’ in viewfs. Thus, for its convenience in 
use and easier integration with existing systems, we believe viewfs to be a better suited 
tool for privacy protection. 

6.3 Access control using views 

The use of views as an access control tool has been primarily researched in the area  
of databases (Sheth and Larson, 1990; Wang and Spooner, 1987). Using database  
views, users are only shown the relevant data that they have access to. This is similar  
in concept to VBAC in which only data that needs to be shared is added to a user’s view. 
A view-based access control model has also been used in networking to control access  
to management information in the Simple Network Management Protocol (SNMP) 
(Wijnen et al., 1998). There is also an attempt of creating a new operating system called 
View-OS (2008) that presents a different view of the system resources including the 
filesystem, to an OS process. Also, man (Linux Manual pages, 2008) can be used to 
present a different root (/) directory to a process. In contrast, our view based mechanism 
is a comprehensive privacy protection mechanism preventing many kinds of privacy 
breaches and works with existing *nix systems. 

7 Conclusions and future work 

In this paper, we critically analysed the *nix access control model for privacy support  
in its data sharing mechanisms. We identified design inadequacies that, combined with 
user and even application’s privacy-indifferent behaviour, lead to privacy breaches. We 
evaluated two *nix installations of many hundred users and found that a large amount of 
private data is inadequately protected including e-mails, browsing history data and actual 
passwords to financial and other sensitive websites. Based on our analysis, we promoted 
five data sharing principles that should be followed for best privacy protection. Then, we 
proposed two solutions which when used jointly adhere to all the principles and provide 
strong privacy protection. As part of the second solution, we propose a new VBAC model 
which separates the owner’s view of the home directory from other users. We also 
presented a new VBAC-enabled file system, called viewfs. Our experiments with  
three popular filesystem benchmarks prove that viewfs has acceptable performance, with 
little overheads. 
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As part of our future work, we are attempting to deploy viewfs at a real  
*nix installation and conduct a systematic usability study. We are also investigating  
the integration of our proposed privacy auditing tool with existing enterprise  
storage products. 
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