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Abstract. Spatial alarms can be modeled as location-based triggers
which are fired whenever the subscriber enters the spatial region around
the location of interest associated with the alarm. Alarm processing re-
quires meeting two demanding objectives: high accuracy, which ensures
zero or very low alarm misses, and system scalability, which requires
highly efficient processing of spatial alarms. Existing techniques like pe-
riodic evaluation or continuous query-based approach, when applied to
the spatial alarm processing problem, lead to unpredictable inaccuracy
in alarm processing or unnecessarily high computational costs or both.
In order to deal with these weaknesses, we introduce the concept of
safe period to minimize the number of unnecessary spatial alarm evalu-
ations, increasing the throughput and scalability of the server. Further,
we develop alarm grouping techniques based on locality of the alarms
and motion behavior of the mobile users, which reduce safe period com-
putation costs at the server side. An evaluation of the scalability and
accuracy of our approach using a road network simulator shows that the
proposed approach offers significant performance enhancements for the
alarm processing server.

1 Introduction

Time-based alarms are effective reminders of future events that have a definite
time of occurrence associated with them. Just as time-based alarms are set to
remind us of the arrival of a future reference time point, spatial alarms are set to
remind us of the arrival of a spatial location of interest. Thus, spatial alarms can
be modeled as location-based triggers which are fired whenever a mobile user
enters the spatial region of the alarms. Spatial alarms provide critical capabilities
for many location-based applications ranging from real time personal assistants,
inventory tracking, to industrial safety warning systems.

A mobile user can define and install many spatial alarms; each alarm is
typically shared by one or many other users. Alarms can be classified into three
categories based on the publish-subscribe scope of the alarm as private, shared
or public alarms. Private alarms are installed and subscribed to exclusively by
the alarm owner. Shared alarms are installed by the alarm owner with a list
of k (k > 1) authorized subscribers and the alarm owner is typically one of
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the subscribers. Mobile users may subscribe to public alarms by topic categories
or keywords, such as “traffic information on highway 85North”, “Top ranked
local restaurants”, to name a few. Each alarm is associated with an alarm target
which specifies the location of interest to the user; a region surrounding the
alarm target is defined as the spatial alarm region. The alarm trigger condition
requires that subscribers of the alarm be notified as soon as they enter the spatial
alarm region.

Processing of spatial alarms requires meeting two demanding objectives: high
accuracy, which ensures no alarms are missed, and high scalability, which guar-
antees that alarm processing is efficient and scales to large number of spatial
alarms and growing base of mobile users. The conventional approach to similar
problems involves periodic evaluations at a high frequency. Each spatial alarm
evaluation can be conducted by testing whether the user is entering the spatial
region of the alarm. Though periodic evaluation is simple, it can be extremely
inefficient due to frequent alarm evaluation and the high rate of irrelevant evalu-
ations. This is especially true when the mobile user is traveling in a location that
is distant from all her location triggers, or when all her alarms are set on spatial
regions that are far apart from one another. Further, even a very high frequency
of alarm evaluations may not guarantee that all alarms will be successfully trig-
gered. The spatial continuous query approach would process a spatial alarm by
transforming the alarm into a user-centric continuous spatial query. Given the
alarm region of radius r around the alarm target and the mobile user’s current
location, the transformed spatial query is defined by the query range r with the
mobile alarm subscriber as the focal object of the query. The query processor
checks if the obtained query results contain the alarm target object. This pro-
cess repeats periodically until the alarm target is included in the query results at
some future time instant. The obvious drawback of this approach is the amount
of unnecessary processing performed in terms of both the number of evaluations
and the irrelevant query result computation at each evaluation. A more detailed
discussion of the weaknesses can be found in our technical report [6].

Spatial alarms can be processed using server-based infrastructure or client-
based architecture. A server-based approach must allow optimizations for pro-
cessing spatial alarms installed by multiple mobile clients, whereas a client-based
approach focuses more on energy-efficient solutions for evaluating a set of spa-
tial alarms installed on a single client. Bearing in mind the problems inherent
with the continuous spatial query evaluation approach and drawbacks of the
periodic alarm evaluation approach, we develop a safe period-based alarm eval-
uation approach. The goal of applying safe period optimization is to minimize
the amount of unnecessary alarm evaluations while ensuring zero or very low
alarm miss rate. The other technical challenge behind safe period optimization
is to minimize the amount of safe period computation, further improving system
scalability and achieving higher throughput. We describe our basic approach for
safe period computation in the next section and address the challenge of reducing
the amount of safe period computations in Section 3. We evaluate the scalability
and accuracy of our approach using a road network simulator and show that our
proposed framework offers significant performance enhancements for the alarm
processing server while maintaining high accuracy of spatial alarms.



2 Safe Period Computation

Safe period is defined as the duration of time for which the probability of an
alarm being triggered for a subscriber is zero. Consider a subscriber Si (1 ≤
i ≤ N) and a spatial alarm Aj (1 ≤ j ≤ M), where N is the total number of
mobile users and M is the total number of alarms installed in the system. The
safe period of alarm Aj with respect to subscriber Si, denoted by sp(Si, Aj) can
be computed based on the distance between the current position of Si and the
alarm region Rj , taking into account the motion characteristics of Si and alarm
target of Aj . Concretely, for alarms with mobile subscribers and static targets,
the two factors that influence the computation of safe period sp(Si, Aj) are (i)
the velocity-based motion characteristic of the subscriber Si, denoted by f(VSi

)
and (ii) the distance from the current position of subscriber Si to the spatial
region Rj of alarm Aj , denoted by d(Si, Rj). Thus the safe period sp(Si, Aj) can
be computed as follows:

sp(Si, Aj) =
d(Si, Rj)

f(VSi
)

(1)

2.1 Distance Measurements

We use Euclidean distance as the basic distance measure for safe period com-
putation. It measures the minimum distance from the current position of the
mobile user, denoted as Pm = (xm, ym), to the spatial alarm region R. Consider
a spatial alarm region R covering the rectangular region represented by four
vertices of a rectangle (P1, P2, P3, P4), as shown in Figure 1(a). The minimum
Euclidean distance from Pm to the spatial alarm region R, denoted by dm,R,
can be computed by considering the following four scenarios: 1© when the mo-
bile subscriber lies inside the spatial alarm region the distance dm,R is zero; 2©
when the mobile subscriber is within the y scope of the spatial alarm region, the
minimum euclidean distance is the distance from the mobile subscriber to the
nearer of the two spatial alarm edges parallel to the x-axis; 3© when the mobile
subscriber is within the x scope of the spatial alarm region, minimum euclidean
distance is the distance from the mobile subscriber to the nearer of the two
spatial alarm edges parallel to the y-axis; and 4© when the mobile subscriber is
outside both the x and y scope then the distance is the minimum of the euclidean
distance to the four vertexes. Formally, dm,R, the minimum Euclidean distance
from mobile position Pm to the spatial alarm region R, is computed using the
following formula:

dm,R =



















0, x1 ≤ xm ≤ x2

and y1 ≤ ym ≤ y2

min(|xm − x1|, |xm − x2|), y1 ≤ ym ≤ y2 only
min(|ym − y1|, |ym − y2|), x1 ≤ xm ≤ x2 only
min(dm,1, dm,2, dm,3, dm,4), otherwise

dm,k, k ∈ {1, 2, 3, 4} denotes the Euclidean distance from Pm to rectangle vertex

Pk. The distance function di,j =
√

(xi − xj)2 + (yi − yj)2 is used to compute
the Euclidean distance between two points Pi and Pj .
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Fig. 1. Basic Safe Period Computation

The safe period formula in equation 1 assumes that the subscriber heads
towards the alarm region in a straight line along the direction of the minimum
Euclidean distance, an assumption that rarely holds true. One way to relax this
stringent condition is to use the steady motion assumption: If the subscriber is
heading towards the alarm region R, then the deviation in her motion direction
is not likely to be extreme. Figure 1(b) shows a scenario where the bounded
deviation in subscriber motion is taken into account for calculating average safe
period for subscriber S approaching alarm region R. In order for the subscriber
S to enter the alarm region R at some future time instant, the average angle
of motion for the subscriber S over the safe period must lie between −θL and
+θR (as shown in the figure), which we refer to as alarm trigger angular range.
Assume that the mobile subscriber heads towards the alarm region R in a di-
rection at an angle θ to the minimum Euclidean distance vector; we refer to
the distance from the subscriber position to the alarm region as the steady mo-
tion distance, denoted as smdist(θ). The steady motion-based safe period can
be determined by smdist(θ)/f(VS). Using the average steady motion distance
obtained by computing smdist(θ) over all θ values ranging from −θL to +θR,
the steady motion-based safe period over the alarm trigger angular range can be
calculated as,

sp =

∫ +θR

−θL

smdist(θ)dθ

f(VS)
∫ +θR

−θL

dθ
=

l + h

f(VS)(θR + θL)
, (2)

where l, h denote the length and height of the spatial alarm region. The
steady motion assumption provides a more realistic and optimistic measure for
safe period computations compared to the minimum Euclidean distance ap-
proach.

2.2 Velocity Measurements

The use of maximum travel speed of the mobile client for the velocity function
f(VS) carries both advantages and disadvantages. On one hand, the ‘maximum
travel speed’ can be set by pre-configuration based on a number of factors, such
as the nature of the mobile client (car on the move or a pedestrian walking
on the street), or the type of road used. On the other hand, maximum speed-
based estimation is often pessimistic, especially in the following two scenarios:
(i) when the mobile client stops for an extended period of time, or (ii) when
the mobile client suddenly turns onto a road with very low speed limit. Another
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Fig. 2. Alarm Locality-based Grouping

issue related to the use of maximum speed of a mobile client for the velocity
function f(VS) is related to alarm misses. The maximum velocity-based approach
may fail to trigger alarms in cases where the maximum speed for the mobile
subscriber increases suddenly. For example, a vehicle moving from a street onto
a state highway would experience a sudden increase in its velocity, which may
invalidate safe period computations. One way to address such sudden increase
in velocity is to use dead reckoning techniques which require the mobile user
to report to the server when her velocity increases over a certain threshold, as
shown in Figure 1(c). The use of dead reckoning or similar techniques will allow
the server to recompute the safe period for mobile client upon any significant
velocity change. In Figure 1(c), the mobile client keeps track of its predicted
positions based on its maximum speed and its actual positions. As soon as the
difference between the predicted position and the actual position exceeds a given
threshold value (say δ), the client provides its current speed to the server.

2.3 Safe Period-based Alarm Evaluation

The safe period-based approach processes a spatial alarm in three stages. First,
upon the installation of a spatial alarm, the safe period of the alarm with respect
to each authorized subscriber is calculated. Second, for each alarm-subscriber
pair, the alarm is processed upon the expiration of the associated safe period and
a new safe period is computed. In the third stage, a decision is made regarding
whether the alarm should be fired or wait for the new safe period to expire.

When compared to periodic alarm evaluation, the safe period approach for
spatial alarm processing reduces the amount of unnecessary alarm evaluation
steps, especially when the subscriber is far away from all her alarms. On the
other hand, the main cost of the basic safe period approach described in this
section is due to the excessive amount of unnecessary safe period computations,
as the basic safe period approach performs safe period computation for each
alarm-subscriber pair. One obvious idea to reduce the amount of unnecessary safe
period computations is to group spatial alarms based on geographical proximity
and calculate safe period for each subscriber and alarm group pair instead of
each alarm-subscriber pair.

3 Alarm Grouping Techniques

The basic premise behind alarm grouping is to reduce the number of safe pe-
riod computations while ensuring no alarm misses. In this section, we present



three alternative grouping techniques, each of which offers different degree of
improvement for safe period computations. First, we group all alarms based on
their spatial locality. Alternatively, we apply spatial locality based-grouping to
alarms of each individual subscriber. Our experimental study shows that this
approach is more effective. The third locality-based alternative is to employ the
nearest alarms-based grouping, which is effective but costly when there are fre-
quent alarm additions and removals.

3.1 Spatial Locality-based Grouping

Spatial locality-based (SL) grouping considers the set of alarms from all users
and groups together the nearby alarms. This approach outperforms basic safe
period alarm evaluation if each group has a large number of alarms belonging to
the same subscriber. Figure 2(a) displays the alarm regions for a set of installed
alarms. The alarms for user 1 are marked by shaded regions. Basic safe period
evaluation computes the distance from each of the six alarms {Ai | 1 ≤ i ≤ 6}. In
comparison, Figure 2(b) shows three groups derived from spatial locality-based
grouping technique. We use a simple R-tree implementation in order to group
alarms and identify the minimum bounding rectangles (MBRs) for alarm groups
which are also referred to as alarm monitoring regions. Instead of computing
distance for each alarm-subscriber pair, spatial locality-based grouping calculates
the distance for each subscriber and alarm group pair. However, on entering a
monitoring region the distance to all relevant alarms within the alarm group
also needs to be computed. Despite this additional evaluation step, the number
of safe period computations may be considerably reduced by grouping alarms
according to spatial locality. Instead of six computations required by the basic
safe period technique, only three computations need to be performed as all three
alarm groups, {AGi | 1 ≤ i ≤ 3}, contain alarms relevant to user 1. Further
computations are dependent on the number of relevant alarms within the users’
current alarm monitoring region. Even though this approach reduces the number
of computations it requires considerable additional processing to determine the
set of relevant alarm groups for each subscriber and the set of relevant alarms
for each subscriber within an alarm group. The lack of subscriber-specificity
in the underlying data structure, R-Tree, leads to retrieval of large number of
unnecessary alarms. This technique proves to be efficient in presence of large
number of public alarms as the effect of subscriber-specificity is reduced in this
situation.

3.2 Subscriber-Specific Spatial Locality-based Grouping

In contrast to spatial locality-based grouping, subscriber-specific spatial locality-
based (SSSL) grouping performs a two level grouping: the first level grouping is
on all subscribers and the second level grouping is on spatial alarms relevant to
each subscriber. We use a B-tree based implementation to speed up search on
subscribers and an R-Tree implementation to capture spatial locality of alarms
for each subscriber. The underlying data structure is a hybrid structure which
uses a B-tree for subscriber search at the first level and an R-tree for subscriber
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specific spatial alarm search at the second level. Figure 2(c) shows an example
of this grouping. Alarms installed by user 1 are grouped together in AG1 and
AG4 and may be fired only when the user is entering the MBRs of AG1 or AG4.
Subscriber specific spatial locality-based grouping has two advantages over the
previous approaches. First, the number of safe period computations is signifi-
cantly reduced. Second, each alarm group contains alarms relevant to a single
user, thus no irrelevant processing is performed. Our experimental results show
that this approach is efficient in the presence of large number of subscribers and
for large number of private and shared alarms.

3.3 Nearest Alarms-based Grouping

Nearest alarms-based grouping allows the system to perform one or only a few
alarm checks dependent on the current subscriber position. The idea is to have
each location on the map associated with the nearest spatial alarm region(s). In
order to perform nearest alarms-based grouping we use an extension of the well
known Voronoi diagram geometric structure [5]. The Voronoi diagram for a given
set of points P in d -dimensional space R

d partitions the space into regions where
each region includes all points with a common closest point ε P. The Voronoi
region VR(p) corresponding to any point p ε P contains all points pi ε R

d such
that,

∀p′εP, p′ 6= p, dist(pi, p) ≤ dist(pi, p
′) (3)

Figure 3(a) shows the Voronoi diagram for a set of points in two-dimensional
space R

2 with euclidean distance metric. The shaded area marks out the Voronoi
region VR(p) for the point p.

In order to create a Voronoi diagram for spatial alarms we first represent
each spatial alarm region R by its center point (xcr, ycr) and l, h representing the
length and height of the alarm region. We consider the center point of each alarm
region as a Voronoi site and create the Voronoi diagram as shown in Figure 3(b).
But alarm regions may overlap with adjacent Voronoi regions as for alarm A3 in
the figure. Also, consider the subscriber S in the figure residing in the Voronoi
region of alarm A1. S is at a minimum Euclidean distance d1 from the alarm
region of A1 and at a minimum Euclidean distance d2 to the alarm region of A2.
Even though d2 < d1, A1 is incorrectly identified as the nearest alarm on the basis
of the underlying Voronoi diagram. In order to rectify this problem, we introduce
an extension to the original Voronoi diagram by extending the boundary of each
Voronoi region by the extension radius r associated with each point p where r =



√

( l
2
)2 + (h

2
)2. l, h denote the length and height of the alarm region associated

with center point p. The extended Voronoi regions for alarms A1, A2, A3 and
A4 are shown in Figure 3(c). Extending the Voronoi region boundaries leads
to overlaps among neighboring Voronoi regions; subscribers inside overlapping
regions (probabilistic nearest alarm region) may have more than one possible
nearest alarm whereas subscribers inside non-overlapping regions (deterministic
nearest alarm region) can have only one nearest alarm.

Nearest alarm grouping is efficient for systems that have infrequent addi-
tion or removal of alarms and have no hotspots. However, it fails when there is
frequent addition/removal of spatial alarms, since Voronoi diagrams need to be
reconstructed each time an alarm is added or removed. In addition, high density
of alarms in some areas may also lead to large overlaps among Voronoi regions,
reducing the efficiency of this technique.

4 Experimental Evaluation

In this section, we report our experimental evaluation results. We show that
our safe period-based framework and optimization techniques for spatial alarm
processing are scalable while maintaining high accuracy.

4.1 Experimental Setup

Our simulator generates a trace of vehicles moving on a real-world road network
using maps available from the National Mapping Division of the U.S. Geological
Survey (USGS [4]) in Spatial Data Transfer Format (SDTS [3]). Vehicles are
randomly placed on the road network according to traffic densities determined
from the traffic volume data in [9]. We use a map from Atlanta and surrounding
regions of Georgia, which covers an area larger than 1000 km2, to generate the
trace. Our experiments use traces generated by simulating vehicle movement for
a period of fifteen minutes, results are averaged over a number of such traces.
Default traffic volume values allow us to simulate the movement of a set of 20,000
vehicles. The default spatial alarm information consists of a set of 10,000 alarms
installed uniformly over the entire map region; around 65% of the alarms are
private, 33% shared and the rest are public alarms.

4.2 Experimental Results

The first set of experiments measures the performance of periodic alarm evalu-
ation by varying the time period of updates and shows that this approach does
not scale. The second set of experiments compares the basic safe period approach
against periodic evaluation and shows that safe period-based alarm processing
offers higher success rate with lower evaluation time. The last set of experi-
ments compares the performance of the various grouping-based optimizations
against the basic safe period approach exhibiting the scalability of our grouping
optimizations.
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Scalability Problems of Periodic Alarm Evaluation Technique: In this
first set of experiments, we measure the scalability of the periodic alarm evalu-
ation technique with varying number of users. Figure 4 displays the results as
we vary the number of users from 2K to 20K. The time period tp for periodic
alarm evaluation is varied from 1 second to 50 seconds. As can be seen from
Figure 4(a), the success rate for alarm evaluation is 100% only if tp= 1 second;
for higher tp success rate starts falling, even with tp= 2 seconds the success rate
does fall to 99.9% which may not be acceptable from QoS viewpoint as this
translates to a significant number of alarm misses. The sequence of alarms to
be triggered for 100% success rate are determined from a trace generated with
highly frequent location updates for each user. The alarm processing time is
plotted in Figure 4(b). Our traces are of fifteen minutes duration; considering
that the system has around 80% of this time for processing spatial alarms we
set the maximum processing time available to the system at t=12 minutes as
indicated by the horizontal dotted line in Figure 4(b). For 10K users the system
is unable to process alarms at tp=1 seconds, thus failing to attain 100% success
rate. For 20K users, this scalability problem becomes worse and the system is
able to evaluate alarms only at tp=5 seconds. Thus, we conclude that periodic
evaluation approach does not scale.

Performance Comparison with Basic Safe Period Approach: In this sec-
tion, we compare the performance of basic safe period approach against periodic
evaluation. We display the results for periodic approach with tp=2 seconds, tp=
5 seconds, tp=10 seconds and the basic safe period optimization as discussed in
Section 2 (P2, P5, P10 and SP in Figure 5(b)). Figure 5 displays the success rate
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and processing time as we increase the number of alarms from 10K to 40K. Fig-
ure 5(a) displays that the success rate is 100% for basic safe period approach and
all periodic approaches miss at least a few alarm triggers. Figure 5(b) displays
the alarm processing time for P2, P5, P10 and SP with varying number of alarms.
The alarm processing time, as shown in Figure 5(b), displays the inability of our
basic safe period approach to scale to large number of alarms. In presence of even
20K installed alarms, the approach has excessive safe period computation time
which pushes the overall processing time beyond the 12 minute limit determined
earlier. Our alarm grouping and subscriber mobility-based techniques provide
optimizations to overcome this problem.

Scalability of Safe Period Evaluation Techniques: We now discuss the per-
formance of the safe period optimization techniques to test the scalability of our
framework. Figure 6 shows the number of alarm evaluation steps, number of safe
period computations and the alarm processing time required by each approach:
Basic Safe Period Optimization (BS), Subscriber-Specific Spatial Locality (SS),
Voronoi Grid-Based (VG) and a Range-based Subscriber-Specific Grouping Op-
timization (RB). VG and RB approaches consider alarms only in the vicinity of
the current subscriber position for safe period computation. Results for Spatial
Locality-based grouping show expected trends but this approach has high overall
processing time as the system needs to perform significant amount of computa-
tion to determine relevance of alarms/alarm groups for each subscriber. Hence,
we exclude this approach from the results.

Figure 6(a) displays the number of alarm evaluation steps required by each
approach. Basic safe period measures the safe period to each relevant alarm and
uses this safe period to avoid further evaluations. As a result, this approach has
to perform a low number of alarm evaluations but each evaluation step involves
a very large number of safe period computations. Hence the number of safe
period computations for this approach is extremely large (Figure 6(b)) which
makes this approach overall computationally expensive as can be seen from the
total alarm processing times in Figure 6(c). Subscriber-specific spatial locality
grouping incurs a large number of alarm evaluation steps as can be seen from
Figure 6(a). This approach first evaluates safe period for each alarm group; once
the user enters an alarm monitoring region another evaluation step is required
to determine the safe period to all alarms lying within the alarm monitoring
region. Further, this approach needs to keep a check on subscriber position inside
the alarm monitoring region and switch to per alarm group-based safe period



computations once the subscriber moves outside the current alarm monitoring
region. These additional evaluation steps imply that this approach will incur a
larger number of alarm evaluation steps with each evaluation step requiring a
small number of safe period computations: either for each alarm group or for all
alarms lying within the current alarm monitoring region. Thus the number of
safe period computations required by this approach is much lower than the basic
approach despite the larger number of alarm evaluation steps. Consequently, the
overall processing time for SS is lower than the BS approach as can be seen from
Figure 6(c). The VG and RB approaches lower the number of alarm evaluation
steps by considering only alarms or alarm groups in the vicinity of the client.
In this set of experiments, the RB approach considers alarms within a radius
of 1000m from the client position. VG approach overlays a grid with cell size
1000m × 1000m on top of the Voronoi extension and considers alarms only
within the current subscriber grid cell. The number of evaluation steps for these
approaches is still larger than the number of evaluation steps used by the basic
approach as the safe periods computed by this approach may be lower than the
safe period computed by the basic approach, in case no relevant alarms/alarm
groups lie within the radius range or the current grid cell of the subscriber.
However, each alarm evaluation step involves a very small number of safe period
calculations leading to an extremely small number of safe period computations
(in Figure 6(b) results for VG and RB are overlapping and values are much
smaller than other two approaches). Consequently, the overall processing times
for these two approaches are significantly lower than other approaches. From
these results we can conclude that our safe period optimizations significantly aid
the scalability of the system.

5 Related Work

An event-based location reminder system has been advocated by many human
computer interaction projects [12, 14, 8, 13, 10]. Understandably, the primary
focus of the work is from the point of view of the usability of such systems.
None of these approaches deal with the system oriented issues which need to
be resolved to make such systems feasible. In the realm of information monitor-
ing, event-based systems have been developed to deliver relevant information to
users on demand [11, 7]. In addition to monitoring continuously evolving user
information needs, spatial alarm processing systems also have to deal with the
complexity of monitoring user location data in order to trigger relevant alerts in
a non-intrusive manner. Applications like Geominder [1] and Naggie [2] already
exist which provide useful location reminder services using cell tower ID and
GPS technology, respectively. Client-based solutions for spatial alarm process-
ing should focus on efficiently evaluating spatial alarms while preserving client
energy. Our server-centric architecture makes it possible for users to share alarms
and make use of external location information monitoring services which pro-
vide relevant location-based alerts. A server-centric approach is also essential for
extending the technology to clients using cheap location detection devices which
may not possess significant computational power.



6 Conclusion

The paper makes two important contributions towards supporting spatial alarm-
based mobile applications. First, we introduce the concept of safe period to min-
imize the number of unnecessary alarm evaluations, increasing the throughput
and scalability of the system. Second, we develop a suite of spatial alarm group-
ing techniques based on spatial locality of the alarms and motion behavior of
the mobile users, which reduces the safe period computation cost for spatial
alarm evaluation at the server side. We evaluate the scalability and accuracy
of our approach using a road network simulator and show that the proposed
safe period-based approach to spatial alarm processing offers significant perfor-
mance enhancements for alarm processing on server side while maintaining high
accuracy of spatial alarms.
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