
A Scalable Method for Access Control in

Location-Based Broadcast Services

Mudhakar Srivatsa†, Arun Iyengar†, Jian Yin‡ and Ling Liu‡

IBM T.J. Watson Research Center† College of Computing, Georgia Tech†

{msrivats, aruni, jianyin}@us.ibm.com, lingliu@cc.gatech.edu

Abstract. One important problem for such public broad-

cast LBS is to enforce access control on a large number of

subscribers. In such a system a user typically subscribes to

a LBS for a time interval (a, b) and a spatial region (xbl,

ybl, xtr, ytr) according to a 3-dimensional spatial-temporal

authorization model. In this paper, we argue that current

approaches to access control using group key management

protocols are not scalable. Our proposal STauth minimizes

the number of keys which needs to be distributed and is

thus scalable to a much higher number of subscribers and

the dimensionality of the authorization model. We analyti-

cally and experimentally demonstrate the performance and

scalability benefits of our approach against other group key

management protocols.

1 Introduction

The ubiquitous nature of the Internet has resulted in
wide-spread growth and deployment of location based
services (LBS) [1, 2, 3]. LBS (as the name indicates)
provide information with spatial-temporal validity to
potentially resource constrained wireless and mobile sub-
scribers. Example services include: (i) list all Italian
restaurants in midtown Atlanta, (ii) current traffic con-
ditions at the junction of peach tree parkway and peach

tree circle, (iii) cheapest gas station in downtown At-
lanta today. Secure LBS over an open channel such
as the Internet or a wireless broadcast medium poses
unique security challenges. LBS typically use a payment
based subscription model using 3-dimensional spatial-
temporal authorization as follows: A paying user u sub-
scribes for a spatial bounding box (xbl, ybl, xtr, ytr) and
a time interval (a, b); the subscription fee may be an ar-
bitrary function, say fee ∝ (xtr−xbl)×(ytr−ybl)×(b−a).
A user u is allowed to read a broadcast from the LBS
about a spatial coordinate (x, y) at time t if and only if
xbl ≤ x ≤ xtr and ybl ≤ y ≤ ytr and a ≤ t ≤ b.

A common solution for controlling access in such ser-
vices is to encrypt the data and distribute the secret de-
cryption key (group key) only to the legitimate receivers.
The general approach is to use a key distribution center
(KDC) for group key management. A group is defined

as a set of users that hold equivalent authorizations. A
user may be a part of zero (unauthorized user) or more
groups. Group key management is complicated due to
two reasons: (i) Group dynamics (a well studied prob-
lem in literature) because of users joining and leaving a
group at any time. The KDC needs to update the group
key on member join and leave (subscription termination)
events to ensure that a user is able to decrypt the data
only when it is a member of the group of authorized
users. Scalable algorithm to manage one group is well
studied in literature: GKMP [13], LKH [23, 12], ELK
[19]. (ii) Large number of groups (new problem specific
to LBS-like services). Using a spatial-temporal autho-
rization model, each unit of data broadcast by a LBS
may be destined to a potentially different set of sub-
scribers. Hence, the number of such sets of subscribers
(groups) may in the worst case be exponential (power
set) in the number of subscribers. This largely limits the
scalability of traditional group key management proto-
cols in the context of LBS.

In this paper we propose STauth a secure, scalable
and efficient key management protocol for LBS-like ser-
vices. STauth minimizes the number of keys which needs
to be distributed and is thus scalable to a much higher
number of subscribers and the dimensionality of the au-
thorization model. We use N to denote the number of
active users in the system and d to denote the dimen-
sionality of an authorization model (for instance, the
spatial-temporal authorization model discussed above
is 3-dimensional 〈x, y, t〉). We briefly summarize the
drawbacks of existing key management protocols.

1. In the worst case, KDC manages O(2dN) groups.

2. User join and leave requires the KDC has to broad-
cast O(22d ∗ N) key update message.

3. The ELK protocol tolerates a certain level of packet
losses during key updates; however, none of the
protocols can tolerate arbitrary large packet losses.

4. Updates to the state maintained by the KDC (key
hierarchy in LKH and ELK) have to be serialized,
thereby, making it hard to replicate the KDC on

1

multiple servers. This makes it difficult to handle
bursty loads on the KDC.

5. These protocols are vulnerable to purported future

group keys based denial of service (DoS) attacks
from unauthorized users. Typically, these proto-
cols use a counter to identify the group keys. Each
time the group key is updated (say, due to a user
join/leave), the counter is incremented. When
an authorized user has a group key identified by
counter c, and it receives a broadcast packet that
is encrypted with a future group key identified by
counter c′ > c, the user buffers the packet until
it receives the key update messages corresponding
to the future group key. The unauthorized users
can launch a DoS attack on this buffer by flood-
ing the broadcast channel with packets that are
purportedly encrypted with future group keys.

6. As described above, an authorized user buffers
packets until it receives future group keys. This
may cause large delays and jitters in actually de-
crypting and delivering the plain-text broadcast
data to the client, thereby making this approach
unsuitable for low-latency real-time broadcast ser-
vices (like, live audio/video teleconference). Packet
losses during key updates and the DoS attack de-
scribed above further complicate this problem.

Under the multi-dimensional authorization model, we
use a simple and yet powerful key management protocol
using hierarchical key graphs [5, 6] with several features:

1. Number of groups managed by KDC is O(1).

2. User join and leave cost is independent of N .

3. Requires no key update messages and is thus triv-
ially resilient to arbitrary packet losses in key up-
dates.

4. Allows the KDC to have a small, constant and
stateless storage that is independent of N and d.

5. Allows dynamic and on-demand replication of KDC
servers without requiring any interaction between
the replicas (no concurrency control for serializing
updates on KDC state).

6. Resilient to purported future group key based DoS
attacks from unauthorized users.

7. Incurs only a small and constant (no jitter) com-
putational overhead and is thus suitable even for
low latency real-time broadcast services.

2 One-Dimensional Authorization

2.1 Overview

In this section, we present techniques for handling tem-
poral authorizations (one-dimensional) in broadcast ser-
vices. In this scenario we assume that a user needs to

subscribe (by paying a fee) to access the broadcast ser-
vice. Each subscription has a lifetime indicated by a
time interval (a, b); note that (a, b) could be different
and highly fine grained for different user subscriptions.
When a user subscribes for a broadcast service S from
time (a, b) the service provider issues an authorization
key Ka,b to the user u. This ensures that:

• Given Ka,b a user u can efficiently derive Kt,t if a

≤ t ≤ b.

• Given Ka,b it is computationally infeasible for a
user u to guess Kt,t if t < a or t > b.

The primitive described above helps us to construct a
very simple and efficient protocol for temporal access
control on broadcast services. At any given time instant
t, the service provider broadcasts a packet P (of say,
audio/video data) as follows:

• Get current time instant t and compute Kt,t.

• Broadcast 〈t, EKt,t(P), MACKt,t(P)〉.

EK(x) and MACK(x) denote an encryption and a mes-
sage authentication code of a string x respectively. Note
that all users can potentially receive the broadcast mes-
sage. An authorized subscriber decrypts the payload P

as follows:

• Receive the broadcast message 〈t, EKt,t(P), MACKt,t(P)〉.
Note that the time instant t is in plain-text.

• A subscriber is authorized if it has a temporal au-
thorization for some time period (a, b) such that
a ≤ t ≤ b. An authorized subscriber can compute
the decryption key Kt,t from Ka,b, decrypts the
broadcast message to obtain the payload P and
checks its integrity.

The property of the authorization key Ka,b ensures that
one can efficiently compute Kt,t from Ka,b if and only
if a ≤ t ≤ b. In the following section, we present an
algorithm to efficiently and securely construct such keys
using hierarchical key graphs.

2.2 Key Management Algorithm

In this section, we describe techniques to construct keys
using hierarchical key graphs [6, 23, 5] that satisfy the
primitive described in Section 2.1. We first introduce
some notation and parameters used in our algorithm.
Let (0, Tmax) denote the time horizon of interest. Let
δt seconds denote the smallest time granularity of inter-
est. Let time equal to t denote the tth time unit, where
one unit time = δt seconds. Our algorithms efficiently
support temporal authorization at very low granulari-
ties (δt ∼ 10−3 or 10−6). We associate a key Ka,b(S) as
the authorization key that permits a user u to access a
broadcast service S in the time interval (a, b).

2

We now construct a key tree that satisfies the prop-
erty that a user u can efficiently guess Kt,t from Ka,b

if and only if a ≤ t ≤ b. Each element in the key
tree is labeled with a time interval starting with the
root (0, Tmax). Each element (a, b) in the key tree has
two children labeled with time intervals (a, a+b

2) and

(a+b
2 + 1, b). We associate a key Ka,b(S) with every

element (a, b) in the key tree. The keys associated with
the elements of the key tree are derived recursively as
follows:

Ka, a+b
2 (S) = H(Ka,b(S), 0) (1)

K
a+b
2

+1,b(S) = H(Ka,b(S), 1)

where H(K,x) denotes output of a pseudo-random func-
tion (PRF) keyed by K for which the range is sufficiently
large that the probability of collision is negligible. The
root of the key tree has a key computed using the KDC’s
secret master key MK and S is the name of the broad-
cast service K0,Tmax(S) = H(MK,S). Observe, that
given Ka,b(S) one can derive all keys {Kt,t(S): a ≤ t

≤ b}. Also, deriving the key Kt,t(S) for any a ≤ t ≤
b from Ka,b(S) requires no more than log2

b−a
δt

appli-
cations of H. Figure 1 illustrates the construction of
our key tree assuming Tmax = 31 time units. We derive
K0,31(S) = H(MK,S). Then, we compute K0,15(S) =
H(K0,31(S), 0) and K16,31(S) = H(K0,31(S), 1). One
can recursively extend this definition to any arbitrarily
small time granularity at the expense of additional key
derivation cost.

Having described the construction of our key tree, we
pick an authorization key for any arbitrary time interval
(a, b) as follows. One can show that any time interval
(a, b) can be partitioned into no more than 2 log2

Tmax

δt
−2

elements in the key tree. For example, given a time in-
terval (8, 19), we partition the time interval into two
subintervals (8, 15) and (16, 19) (see Figure 1). We pro-
vide temporal authorization for a time interval (8, 19) by
issuing two authorization keys K8,15(S) and K16,19(S).
One can use proofs similar to that in [5] to show that
our algorithm for constructing authorization keys indeed
satifies the required security property.

Cost Analysis. In general, if one uses a r-ary key tree
(r ≥ 2), any range can always be subdivided into no
more than r(logr(

Tmax

δt
)− 1) subinterval. One can show

that this is a monotonically increasing function in r (for
r ≥ 2) and thus has a minimum value when r = 2. One
can also show that if the time interval (a, b) where chosen
uniformly and randomly from (0, Tmax) then on an aver-
age (a, b) can be subdivided into (r − 1) logr

b−a
δt

subin-
tervals. This is also a monotonically increasing func-
tion in r (for r ≥ 2) and thus has a minimum value at
r = 2. However, as r increases the height of the key tree
(logr(

Tmax

δt
)) decreases, that is, the cost of key deriva-

tion decreases monotonically with r. However, since the
PRF H is computationally inexpensive (< 1µs on a typi-
cal 900 MHz Pentium III processor), we focus our efforts
on minimizing the size of the authorization key rather
than the key derivation cost. Tables 2 and 3 show the
maximum and the average number of keys and compu-
tation time required for different values of δt for a time
interval of one year using a binary authorization key tree
(r = 2) respectively.

2.3 Comparison with Other Approaches

In this section, we present an analytical comparison of
our approach against other group key management pro-
tocols. Simple uses a key K(u) for a user u. When
the group key needs to be updated (because of some
user joining or leaving the system), the KDC chooses
a new random group key. The KDC sends one mes-
sage per group member u that includes the new group
key encrypted with K(u). LKH [23] builds a logical key
hierarchy on the set of authorized users to enhance the
efficiency of the key update protocol. ELK [19] introduces
the concepts of hints to enhance the efficiency of LKH
protocol and improve its resilience to arbitrary packet
loss of key update messages.

The FB Chain approach follows our protocol outline as
described in Section 2.1. Unlike our approach that uses
an authorization key tree, the FB Chain approach uses
two one-way hash chains: Kfwd and Kbwd. These chains
are built on the temporal domain with the property that:
Kt+1

fwd = F (Kt
fwd) and Kt

bwd = F (Kt+1
bwd), where F is a

collision resistant one-way hash function. When a user
subscribes for a time interval (a, b) the KDC distributes
two keys Ka

fwd and Kb
bwd to the user. At any time in-

stant t, the broadcast service uses Kt
fwd ⊕ Kt

bwd as the
encryption key for the payload P . If a user were to have
subscribed for some interval (a, b) such that a ≤ t ≤
b, then the user can compute Kt

fwd = F t−a(Ka
fwd) and

Kt
bwd = F b−t(Kb

bwd), where Fn(x) denotes n successive
applications of F on input x. However, the FB Chain ap-
proach does not preserve forward/backward secrecy due
to the following attack. A user u can subscribe to two
time intervals: (a, a) and (b, b). Using Ka

fwd and Kb
bwd,

the user u can now construct all keys Kt
fwd and Kt

bwd

such that a < t < b, thereby violating the secrecy prop-
erty. Similarly, two users u1 and u2 may collude with
one another and decrypt broadcast packets that neither
of them is authorized to read.

Security Properties. Table 5 compares the proper-
ties of different group key management approaches. As
illustrated above FB Chain approach is vulnerable to col-
lusions and does not guarantee forward/backward se-
crecy. The LKH and ELK approach has a centralized key
graph data structure that is non-trivial to be distributed

3

Figure 1: Authorization Key Tree

N number of users
H PRF
X xor operation
E encryption function
D decryption function
K key size in bits

n1, n2 ELK parameters
Tmax total time period
rate message broadcast rate
δt time granularity

Table 1: Notation

δt Num Keys Time (µs)
one month 6 12.74
one week 10 20.02
one day 16 30.94
one hour 26 49.14

one minute 38 70.98
one second 48 89.18
one millisec 68 125.58

Table 2: Maximum Number of Keys and
Computation Time

b − a Num Keys Time (µs)
one month 21 40.04
one week 19 38.22
one day 16 35.49
one hour 11 30.94

one minute 5 25.48
one second 1 21.84

Table 3: Average Number of Keys and
Computation Time with δt = 1 second

KDC user
Simple N ∗ K K

LKH (2N − 1)K (log2 N + 1)K
ELK (2N − 1)K (log2 N + 1)K

FB Chain 2K 2K

STauth (max) K (2 log2
Tmax

δt
− 2)K

STauth (avg) K log2
b−a
δt

∗ K

Table 4: Storage Cost

amongst multiple KDCs. On the other hand, our ap-
proach can use multiple KDC servers by just sharing
the read-only master key MK amongst them. Note that
since all temporal authorization keys are derivable from
the master key MK we do not require the KDC servers
to share and update a common data structure. This al-
lows on-demand creation of KDC server replicas to han-
dle bursty KDC traffic. Our approach does not require
a key update protocol, thereby making it trivially toler-
ant to arbitrary packet losses in key update messages.
Finally, our approach does not require a multicast chan-
nel between the KDC and the user, since the KDC does
not have to broadcast any key update messages to the
users.

Storage Cost. Table 4 compares the storage cost at
the KDC and the users for different approaches. Our
approach requires the KDC to only store the master
key MK (rest of the keys can be computed on the fly).
On the other hand, in the LKH and the ELK approach
the storage cost at the KDC grows linearly with the
number of users N . In our approach, the storage cost
at a user is on an average logarithmic in the length of
the subscription time interval.

Communication Cost. Table 6 compares the com-
munication cost at the KDC and the users for different
key management protocols. The key advantage of our
approach is that the keys needs not be updated once it
is given to the user. A join operation requires only an
interaction between the KDC and the new user; a sub-
scription terminate operation is cost free. One should

note that the temporal authorization model simplifies
the user leave operation by a priori determining the time
interval (a, b). On the other hand, LKH join, LKH leave

and ELK leave sends O(log2 N) size message to all the
users O(N); and ELK join sends O(log2 N) size message
only to the new user while compromising backward se-
crecy for at most one time interval. Further, the KDC
has to maintain the set of active users in order to update
the logical key hierarchy data structure.

Computation Cost. Table 7 compares the compu-
tation cost at the KDC and the users for different ap-
proaches. Our approach requires only simple PRF com-
putations at the KDC to handle a new user join. The LKH
join, LKH leave and ELK leave needs to encrypt and up-
date at least O(log2 N) keys in the key graph and broad-
cast a key update message to all the users. As described
earlier our approach has zero cost for key update and
user leaves. However, our approach incurs a small com-
putation cost for processing broadcast packets. Given
the time instant t in the packet header, the user has to
compute the key Kt,t from an authorization key Ka,b

(a ≤ t ≤ b). This may require log2
b−a
δt

applications
of H. Using a standard cryptographic algorithms (say,
HMAC-SHA [14, 10] for H and AES-CBC-128 [18] for
E), the cost of key derivation will be about two orders of
magnitude smaller than that of encryption/decryption,
thereby making this approach suitable for low latency
real-time applications (like audio and video broadcast
for a teleconference). On the other hand, low latency
real-time applications that use LKH and ELK may experi-

4

Forward/Backward Secrecy Collusion Resistance Distributed KDC KDC-User Channel Reliable Key Update
Simple Yes Yes Yes unicast No
LKH Yes Yes No multicast No
ELK Yes Yes No multicast Yes

FB Chain No No Yes unicast Yes
STauth Yes Yes Yes unicast Yes

Table 5: Security Properties

Join (KDC) Join (users) Terminate (KDC) Terminate (users)
Simple N ∗ K N ∗ K N ∗ K N ∗ K

LKH (log2 N + 1)K (log2 N + 1) ∗ N ∗ K 2 log2 N ∗ K 2 log2 N ∗ N ∗ K

ELK (log2 N + 1)K (log2 N + 1) ∗ K (log2 N − 1)(n1 + n2) (log2 N − 1) ∗ (n1 + n2) ∗ N

FB Chain 2K 2K - -

STauth (max) (2 log2
Tmax

δt
− 2)K (2 log2

Tmax
δt

− 2)K - -

STauth (avg) log2
b−a
δt

∗ K log2
b−a
δt

∗ K - -

Table 6: Communication Cost

ence large delays and unexpected jitters due to key up-
dates and packet losses during key updates (application
packets need to be buffered until the user receives an
updated key). Indeed an unauthorized subscriber (ad-
versary) may exploit this vulnerability to launch a denial
of service attack (DoS) by flooding subscribers with ap-
plications packets that are purportedly encrypted with
future group keys. We can easily mitigate such an attack
in our approach by appending a MAC (message authen-
tication code) MACKt,t(P) to the broadcast message.

Key Caching. One can additionally use a caching
mechanism described below to decrease the key deriva-
tion cost. Let us suppose that a user received a broad-
cast packet P at time t. In the process of computing
Kt,t from its authorization key Ka,b (a ≤ t ≤ b), the
user computes several intermediate keys Ka′,b′ (a ≤ a′

≤ t ≤ b′ ≤ b). The user can cache these intermediate
keys for future use. Say, the user were to receive its
next broadcast packet P ′ at time t′, then the user could
potentially compute Kt′,t′ from some Ka′,b′ such that a

≤ a′ ≤ t ≤ t′ ≤ b′ ≤ b. Indeed, this would require only
log2

b′−a′

δt
applications of H (b′ − a′ ≤ b − a). One can

show that if the mean inter-packet arrival time is 1
rate

then, the mean per-packet key derivation cost drops to
−H log2(rate∗δt) (assuming, δt < 1

rate
). An interesting

observation is that the per-packet key derivation cost is
independent of the length of the subscription interval
b − a (for reasonably large intervals (a, b)). Also, note
that as rate increases the per-packet key derivation cost
decreases.

3 Multi-Dimensional Authorization

3.1 Overview

In this Section, we extend our key management algo-
rithms to operate on multi-dimensional authorization
models. We use location based services (LBS) as a mo-
tivating example. Location based services broadcast
information with spatial-temporal validity, say, traffic
information at the junction (x, y) at time t. An LBS
service uses a spatial-temporal authorization model as
follows: A user u subscribes for a spatial bounding box

(xbl, ybl, xtr, ytr) and a time interval (a, b). A user u

is allowed to read a broadcast from the LBS about a
spatial coordinate (x, y) at time t if and only if xbl ≤
x ≤ xtr and ybl ≤ y ≤ ytr and a ≤ t ≤ b. Similar to
the temporal authorization model, we associate a key
Kxbl,ybl,a,xtr,ytr,b with a spatial-temporal bounding box
(xbl, ybl, a, xtr, ytr, b). We use a broadcast protocol that
is very similar to that used in temporal authorization
model in Section 2. Each broadcast message includes 〈
x, y, t, EKx,y,t,x,y,t(P), MACKx,y,t,x,y,t(P) 〉. Only an
authorized subscriber can compute the encryption key
Kx,y,t,x,y,t and thus decrypt the broadcast packet P .
We construct the keys such that:

• Given Kxbl,ybl,a,xtr,ytr,b a user u can efficiently de-
rive Kx,y,t,x,y,t for all xbl ≤ x ≤ xtr and ybl ≤ y

≤ ytr and a ≤ t ≤ b.

• Given Kxbl,ybl,a,xtr,ytr,b it is computationally in-
feasible for a user u to guess Kx,y,t,x,y,t if x < xbl

or x > xtr or y < ybl or y > ytr or t < a or t > b.

3.2 Key Management Algorithm

Let us suppose that X1, X2, · · · Xd denote the d or-
thogonal dimensions. Without loss of generality we as-
sume that the minimum and maximum values for a di-
mension i is 0 and Xi

max respectively. We construct a
key tree starting from the root element (0, 0, · · · , 0,
X1

max, X2
max, · · · Xd

max). We divide each element (X1
a ,

X2
a , · · · Xd

a , X1
b , X2

b , · · · Xd
b) into 2d elements as fol-

lows. The bottom left corner of these 2d bounding boxes
can be compactly represented as a Cartesian product as:

{X1
a ,

X1
a+X1

b

2 } × {X2
a ,

X2
a+X2

b

2 } × · · · × {Xd
a ,

Xd
a+Xd

b

2 }.

Each bounding box is for size (
X1

b−X1
a

2 ,
X2

b−X2
a

2 , · · · ,
Xd

b −Xd
a

2). Given the lower left corner and the size of
each bounding box, one can easily determine the top
right corner. For each of these 2d bounding boxes we

derive keys as follows: KX′1
a ,X′2

a ,··· ,X′d
a ,X′1

b ,X′2
b ,··· ,X′d

b =

H(KX1
a,X2

a,··· ,Xd
a ,X1

b ,X2
b ,··· ,Xd

b , ξ1ξ2 · · · ξd), where ξi = 0
if X ′i

a = Xi
a and ξi = 1 otherwise.

Tables 10, 9 and 8 show the computation, communi-
cation and storage cost incurred by our approach. Note

5

Join (KDC) Join (users) Terminate (KDC) Terminate (users) Message Processing
Simple N ∗ E N ∗ D N ∗ E N ∗ D D

LKH log2 N(H + 3E) (log2 N + 1) ∗ N ∗ D 2 log2 N ∗ E log2 N ∗ D D

ELK 2(2N − 1)H + 2E + (log2 N + 1)E - 8 log2 N ∗ E log2 N ∗ D + 5 log2 N ∗ E D

FB Chain Tmax ∗ H - - - (b − a) ∗ H + D

STauth (max) (4 log2
Tmax

δt
− 2)H - - - H log2

b−a
δt

+ D

STauth (avg) (log2
Tmax

δt
+ log2

b−a
δt

− 1)H - - - −H log2(rate ∗ δt) + D

Table 7: Computation Cost
KDC User

STauth (max) K 2d(2 ∗

∑d
i=1

log2 Xi
max

d
− 1) ∗ K

STauth (avg) K 2d−1(
∑d

i=1
log2 xi

d
) ∗ K

Table 8: Storage Cost

Join (KDC/User) Terminate (KDC/User)

(max) 2d(2 ∗

∑d
i=1

log2 Xi
max

d
− 1) ∗ K -

(avg) 2d−1(
∑d

i=1
log2 xi

d
) ∗ K -

Table 9: Communication Cost

that the costs tend to grow exponentially in the num-
ber of dimensions d. For typical spatial-temporal based
LBS applications, d = 3 and thus the cost of our key
management algorithms would be acceptably small. In
the next section, we show the scalability and efficiency
of our protocol over the group key management proto-
col. Note that xi denotes the extent of an authorization
on the ith domain and (x1

cache, x2
cache, · · · , xd

cache) de-
notes the size of the smallest cached bounding box that
includes the d-dimensional coordinate in the broadcast
message.

3.3 Comparison with Group Key Man-

agement Approaches

Qualitative Comparison. In this section we compare
our approach with that of a group key management al-
gorithm. In a group key management based approach,
one would define the set of users within a d-dimensional
bounding box as a group. For example, let us consider
a d=1 spatial domain. Suppose a user u1 subscribes for
a spatial range (20, 30) then, we have one group G =
{u1}. Let us suppose that a new user u2 subscribes for
a range (25, 40), then we have three groups: G1 = {u1}
(for the range (20, 25)), G2 = {u1, u2} (for the range
(25, 30)), and G3 = {u2} (for the range (30, 40)). Ob-
serve that the KDC has to maintain more groups and
group keys (computing and storage cost) as the number
of subscribers N increases. The KDC also needs to up-
date active subscribers (like u1) with new groups and
group keys (communication cost) as new users (like u2)
join the system. Additionally, the KDC has to maintain
all subscriptions made by all active subscribers in order
to define groups and compute the key updates. Our ap-
proach allows the KDC to be stateless and ensures that
the cost of a subscription is small and independent of the
number of subscribers N . As highlighted in Section 2,
the stateless nature of our authorization service allows
us to distribute and replicate it on demand to handle
bursty loads.

Analytical Comparison. In this section, we ana-
lytically compare the communication cost incurred by
the key management server using our approach and the

group key management approach. Let us suppose that
there are N active subscribers in the system. When
a new user u joins the system, the key management
server needs to update the group keys of all those users
whose bounding box overlaps with that of user u. Let
us suppose that (x1, x2, · · · , xd) denote the size of a
subscription range along the d-dimensions.

Let us suppose that fi(s) denotes an identical and
independently distributed probability density function
that a subscriber subscribes for a range (s, s + xi) in
the ith-dimension. Noting the fact two subscriptions
(s, s + xi) and (r, r + xi) overlap if s − xi ≤ r ≤ s +
xi, the probability of overlap in the ith dimension is
given by op =

∑

s(fi(s)∗
∑s+xi

r=s−xi
fi(r)). For the sake of

simplicity let us suppose xi � Xi
max such that fi(s) can

be approximated to linear function over the small range
(s − xi, s + xi). In this case, the probability of overlap
could be approximated to op = 2xi ∗

∑

s fi(s)
2. Given

that
∑

s fi(s) = 1, one can show that op is minimal
when fi(s) = 1

Xi
max

for all s, that is, if fi(s) follows a

uniform and random distribution. Observe that smaller
the overlap lower is the cost for group key management
protocols.

In the following portion of this section, we assume
a uniform and random subscription range distribution,
namely, best case scenario for group key management
protocols. In this case, the probability of overlap is ap-

proximated to 2xi

Xi
max

(if, xi � Xi
max). Note that if xi ≥

Xi
max

2 then the probability of overlap is one. The bound-
ing boxes for a user u and a user u′ overlap if their
subscriptions overlap on all the d-dimensions. Hence,
the probability that the bounding box of a new user u

overlaps with some active user u′ is given by equation
2. Therefore, the average number of active users whose
group keys need to be updated is N*Proverlap.

Proverlap =

∏d
i=1(2x

i)
∏d

i=1(X
i
max)

= 2d

d
∏

i=1

xi

Xi
max

(2)

For every user u′ whose subscription range overlaps with
user u, the key server has to break up the bounding box
into an average of 2d sub-boxes. Figure 2 illustrates the

6

Join (KDC) Join (User) Terminate (KDC) Terminate (User) Msg (User)

(max) 2d(2 ∗

∑d
i=1

log2 Xi
max

d
− 1) ∗ H - - - 2d(2 ∗

∑d
i=1

log2 xi

d
− 1) ∗ H + D

(avg) 2d−1(
∑d

i=1
log2 Xi

max
d

+
∑d

i=1
log xi

d
− 1) ∗ H - - - 2d(2 ∗

∑d
i=1

log2 xi
cache

d
− 1) ∗ H + D

Table 10: Computation Cost

Figure 2: User Join: Group Key Management

N x

10 1.12

102 3.03

103 216

104 2160

105 21600

Table 11: d=3, x

Xmax

= 0.1

x
Xmax

x

0.01 1
0.05 4

0.1 216

0.15 254

0.20 2128

Table 12: d=3, N =
103

creation of new sub-boxes are new users join the system
for a d=2 dimensional domain. The size of the average
key update message for every overlapping user u′ is 2d

keys. Therefore, the total cost of a new user join using
the group key management is given by Equation 3.

costgkm = 2d ∗ N ∗ 2d

d
∏

i=1

xi

Xi
max

(3)

The cost of a new user join in our key management

protocol is coststauth = 2d−1 ∗
∑ d

i=1
log xi

d
. The ratio of

the costs is given by Equation 4.

costgkm : coststauth =
2d+1 ∗ N ∗ d
∑d

i=1 log xi
∗

d
∏

i=1

xi

Xi
max

(4)

Let us for the sake of simplicity suppose that the sub-
scription range along each dimension xi = x and the
maximum subscription range along each dimension Xi

max

= Xmax. Then the ratio becomes 2d+1
∗N

log x
*
(

x
Xmax

)d

.

Now, setting N = 104, d = 3 and x
Xmax

= 0.1, we ob-
serve that costgkm:coststauth is smaller than one only if
x ≥ 2160. Tables 11 and 12 shows the maximum value
of x for d = 3-dimensional domain such that coststauth

≤ costgkm for different values of N and x
Xmax

.

Recall that the uniform and random distribution of
the subscription range presents the best case scenario for
the group key management approach. However, a realis-
tic scenario wherein a large collection of users share com-
mon interests is typically modeled using heavy tailed
distributions. Table 13 shows the largest subscription
range such that coststauth ≤ costgkm for three distribu-
tions: exponential, Gaussian and Zipf distributions with
various parameter values. Note that these distributions
are truncated and renormalized to the range (0,Xmax).
Observe that as the standard deviation increases, the
probability of overlap between two subscription ranges
decreases, thereby reducing the cost of the group key
management algorithms. On the other hand, our ap-
proach is agnostic to the distribution of user interests.
Table 13 demonstrates the ability of our approach to

Figure 4: Siena Broadcast Network: subscriber(S) and
network node(n)

handle large and fine grained domains and yet achieve
significantly lower costs than the group key management
approach.

4 Experimental Evaluation

We have implemented our key management algorithms
on Siena publish-subscribe network [9]. Siena is a wide-
area publish-subscribe network that allows events to be
disseminated from a LBS server (publisher) to a geo-
graphically scattered group of subscribers. We used
GT-ITM [26] topology generator to generate an Internet
topology consisting of 63 nodes. The round trip times on
these links varied from 24ms to 184ms with mean 74ms
and standard deviation 50ms. We constructed a com-
plete binary tree topology using 63 nodes. The tree’s
root node acts as the LBS server, 32 leaf nodes act as
subscribers and 30 nodes operate as routing nodes. We
ran our implementation of STauth on eight 8-processor
servers (64 CPUs) (550 MHz Intel Pentium III Xeon
processors running RedHat Linux 9.0) connected via a
high speed LAN. We simulated the wide-area network
delays obtained from the GT-ITM topology generator
(see figure 4).

All experimental results presented in this section were
averaged over 5 independent runs. We simulated a spatial-
temporal space of volume 1024 × 1024 × 1024. The size

7

Distribution Parameter x

Exponential 1
λ

= 0.01Xmax 2800

Exponential 1
λ

= 0.1Xmax 2320

Exponential 1
λ

= 0.5Xmax 272

Gaussian µ = 0.5Xmax, σ = 0.01Xmax 2768

Gaussian µ = 0.5Xmax, σ = 0.1Xmax 2477

Gaussian µ = 0.5Xmax, σ = 0.5Xmax 2111

Zipf γ = 0.01 238

Zipf γ = 0.1 288

Zipf γ = 0.5 2192

Table 13: d=3, N = 102, x

Xmax
= 0.1

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 5 10 15 20 25 30 35

N
um

be
r

of
 K

D
C

 M
an

ag
ed

 G
ro

up
s

Number of Subscribers

’d=1’
’d=2’
’d=3’

Figure 3: Scalability Issue with Group Key Management
Protocols

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

LB
S

 b
ro

ad
ca

st
s

pe
r

se
c)

Number of Subscribers

’siena’
’stauth-d=1’
’stauth-d=3’

’gkm-d=1’
’gkm-d=3’

Figure 5: Throughput Vs Number of
Subscribers

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 0 5 10 15 20 25 30

La
te

nc
y

(m
ill

is
ec

)

Number of Subscribers

’siena’
’stauth-d=1’
’stauth-d=3’

’gkm-d=1’
’gkm-d=3’

Figure 6: Latency Vs Number of
Subscribers

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 0 5 10 15 20 25 30

Ji
tte

r
(m

ill
is

ec
)

Number of Subscribers

’siena’
’stauth-nodos’

’stauth-dos’
’gkm-nodos’

’gkm-dos’

Figure 7: Resilience to DoS Attacks

of a subscription range (along each dimension) was cho-
sen using a Gaussian distribution with mean 256 and
a standard deviation 64. The subscription boxes (left
bottom corner) for the spatial coordinates were chosen
using two dimensional Gaussian distribution centered at
coordinate (512, 512); while that for the temporal co-
ordinate was chosen uniformly and randomly over (0,
1024). Each LBS broadcast message was assumed to be
of size 1 KB.

In this section we show three experimental results.
We first demonstrate the scalability problems in group
key management protocols by measuring the number of
groups that need to be managed by the KDC. Second,
we measure the overhead of our algorithms over the inse-
cure LBS system in terms of its throughput and latency.
Third, we demonstrate the low jitter and purported fu-
ture keys based DoS attack resilience properties of our
protocols in comparison with the group key management
protocols.

Scalability. Figure 3 demonstrates the lack of scala-
bility in traditional group key management protocols.
The figure shows the number of groups that need to be
managed by the KDC versus the number of subscribers
N for different values of dimensionality d. Even for 32
subscribers, the number of managed groups may be of
the order of 104 with d = 3. Our simulation results in-
dicate that even for a modest set of 1000 subscribers the
number of managed groups could be about 2112.

Throughput and Latency. Figures 5 and 6 show the
throughput and latency of LBS broadcasts respectively.
We observe that the throughput loss due to our key

management algorithm is very small when compared to
the insecure Siena network. The increase in latency due
to our key management algorithm can be attributed al-
most entirely to the encryption and decryption costs; the
key management costs account to less than 12% of the
overhead. Traditional group key management protocols
on the other hand incur significant drop in throughput
(62.5% for N = 32) and increase in latency as the num-
ber of subscribers increase (52% for N = 32). Our simu-
lation results indicate that for N = 1000 subscribers, the
throughput could drop is about 99.96% and the increase
in latency is about 140 times.

DoS Attack. Figure 7 shows the jitter (standard devi-
ation in inter-packet arrival times) in LBS broadcasts.
The jitter added by our key management protocol even
when under a DoS attack (purported future key based
DoS attack) is only a few tens of millisecond, which
is lesser than 3% of the mean latency. On the other
hand, the jitter incurred by traditional group key man-
agement protocols even in the absence of DoS attacks
is about 22% and that under a DoS attack is about
200%. This clearly demonstrates the vulnerability of
traditional group key management protocols to the pur-
ported future key based DoS attack.

5 Related Work

Group key management protocols using a centralized
server approach that distributes group keys using uni-
cast was proposed in [13]. Iolus improves the scalabil-
ity of this approach using distributed hierarchical key

8

servers [16]. Several authors have attempted to use mul-
ticast routers to improve the performance of key distri-
bution algorithms [17]. Since then, significant amount
of work has been done in this field using the concept of
a logical key hierarchy [12]. Several papers [4, 21, 22,
24, 15, 7, 8, 19] have developed interesting optimization
techniques to enhance the performance and scalability
of group key management protocols on multicast net-
works. Some extensions to operate on unreliable multi-
cast channels are proposed in [19, 25]. A detailed sur-
vey along with comparisons amongst various group key
management protocols is described in [20].

In this paper we have demonstrated the scalability
and performance issues when using group key manage-
ment protocols with flexible spatial-temporal authoriza-
tion models and proposed key management algorithms
to handle them. Our key management algorithms falls
under the category of hierarchical key derivation algo-
rithms [15]. Such algorithms have been commonly used
in the field of file systems to support access control
graphs [11, 5]. Our approach builds on the hash tree
based approach suggested in the MARKS protocol [6]
and thus incurs no leave cost when a user’s authorization
expires and the join cost is independent of the number
of users in the system.

6 Conclusion

In this paper we have presented STauth, a scalable key
management algorithm for enforcing spatial-temporal
access control on public broadcast services. Unlike tra-
ditional group key management approaches, we exploit
the spatial-temporal authorization model to construct
authorization keys using efficient and secure hierarchi-
cal key graphs. We have shown that our approach solves
several drawbacks in traditional group key management
approaches including poor scalability, vulnerability to
packet losses, failures in the presence of packet losses,
vulnerability to certain DoS attacks, and susceptibility
to jitters and delays. We have described a prototype im-
plementation and experimental evaluation that demon-
strates our performance and scalability benefits, while
preserving the security guarantees.

References

[1] Garmin. http://www.garmin.com.
[2] Loc aid. http://www.loc-aid.net.
[3] Veripath navigator. http://veripath.us.
[4] K. Aguilera and R. Strom. Efficient atomic broadcast

using deterministic merge. In 19th ACM PODC, 2000.
[5] M. Atallah, K. Frikken, and M. Blanton. Dynamic and

efficient key management for access hierarchies. In Pro-
ceedings of 12th ACM CCS, 2005.

[6] B. Briscoe. Marks: Zero side-effect multicast key man-

agement using arbitrarily revealed key sequences. In 1st
Workshop on Networked Group Comm, 1999.

[7] R. Canetti, J. Garay, G. Itkis, and D. Micciancio. Multi-
cast security: A taxonomy and some efficient construc-
tions. In IEEE INFOCOM, Vol. 2, 708-716, 1999.

[8] R. Canetti, T. Malkin, and K. Nissim. Efficient
communication-storage tradeoffs for multicast encryp-
tion. In EUROCRYPT, LNCS, vol. 1599, Springer Ver-
lag, pp: 459-474, 1999.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
In ACM TOCS, 19(3):332-383, 2001.

[10] E. Eastlake. US secure hash algorithm I.
http://www.ietf.org/rfc/rfc3174.txt, 2001.

[11] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and
secure distributed read-only file system. In Proceedings
of the 4th OSDI, pp: 181-196, 2000.

[12] H. Harney and E. Harder. Logical key hierarchy proto-
col. http://www.rfc-archive.org/getrfc.php?rfc=2093.

[13] H. Harney and C. Muckenhirn. Group key manage-
ment protocol (gkmp) architecture. http://www.rfc-
archive.org/getrfc.php?rfc=2094.

[14] H. Krawczyk, M. Bellare, and R. Canetti.
HMAC: Keyed-hashing for message authentication.
http://www.faqs.org/rfcs/rfc2104.html.

[15] D. A. McGrew and A. T. Sherman. Key establishment
in large dynamic groups using one-way function trees.
In Tech. Rep. No. 0755 (May), TIS Labs at Network
Associates, Inc., Glenwood, MD.

[16] S. Mittra. Iolus: A framework for scalable secure mul-
ticasting. In Proceedings of ACM SIGCOMM, 1997.

[17] R. Molva and A. Pannetrat. Scalable multicast security
in dynamic groups. In 6th ACM CCS, 1999.

[18] NIST. AES: Advanced encryption standard.
http://csrc.nist.gov/CryptoToolkit/aes/.

[19] A. Perrig, D. Song, and J. D. Tygar. ELK: A new
protocol for efficient large group key distribution. In
Proceedings of IEEE Security and Privacy, 2001.

[20] S. Rafaeli and D. Hutchison. A survey of key manage-
ment for secure group communication. In Journal of the
ACM Computing Surveys, Vol 35, Issue 3, 2003.

[21] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and
B. Plattner. The versakey framework: Versatile group
key management. In IEEE Journal on Selected Areas
in Communications (Special Issue on MiddleWare) 17,
9(Aug), 1614-1631, 1999.

[22] D. Wallner, E. Harder, and R. Agee. Key management
for multicast: Issues and architectures. In RFC 2627,
1999.

[23] C. Wong, M. Gouda, and S. Lam. Secure group commu-
nications using key graphs. In ACM SIGCOMM, 1998.

[24] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure
group communications using key graphs. In IEEE/ACM
Transactions on Networking: 8, 1(Feb), 16-30, 2000.

[25] C. K. Wong and S. S. Lam. Keystone: A group key
management service. In ICT, 2000.

[26] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Proceedings of IEEE Infocom,
1996.

9

