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Abstract The major challenge of data perturbation is to achieve the desired balance be-
tween the level of privacy guarantee and the level of data utility. Data privacy
and data utility are commonly considered as a pair of conflicting requirements in
privacy-preserving data mining systems and applications. Multiplicative pertur-
bation algorithms aim at improving data privacy while maintaining the desired
level of data utility by selectively preserving the mining task and model spe-
cific information during the data perturbation process. By preserving the task
and model specific information, a set of “transformation-invariant data mining
models” can be applied to the perturbed data directly, achieving the required
model accuracy. Often a multiplicative perturbation algorithm may find multiple
data transformations that preserve the required data utility. Thus the next major
challenge is to find a good transformation that provides a satisfactory level of
privacy guarantee. In this chapter, we review three representative multiplicative
perturbation methods: rotation perturbation, projection perturbation, and geo-
metric perturbation, and discuss the technical issues and research challenges.
We first describe the mining task and model specific information for a class of
data mining models, and the transformations that can (approximately) preserve
the information. Then we discuss the design of appropriate privacy evaluation
models for multiplicative perturbations, and give an overview of how we use the
privacy evaluation model to measure the level of privacy guarantee in the context
of different types of attacks.
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1. Introduction
Data perturbation refers to a data transformation process typically performed

by the data owners before publishing their data. The goal of performing such
data transformation is two-fold. On one hand, the data owners want to change
the data in a certain way in order to disguise the sensitive information con-
tained in the published datasets, and on the other hand, the data owners want
the transformation to best preserve those domain-specific data properties that
are critical for building meaningful data mining models, thus maintaining min-
ing task specific data utility of the published datasets.

Data perturbation techniques are one of the most popular models for pri-
vacy preserving data mining. It is especially useful for applications where
data owners want to participate in cooperative mining but at the same time
want to prevent the leakage of privacy-sensitive information in their published
datasets. Typical examples include publishing micro data for research purpose
or outsourcing the data to the third party data mining service providers. Sev-
eral perturbation techniques have been proposed to date [4–1, 8, 3, 13, 14, 26,
35], among which the most popular one is the randomization approach that fo-
cuses on single-dimensional perturbation and assumes independency between
data columns [4, 13]. Only recently, the data management community has
shown some development on multi-dimensional data perturbation techniques,
such as the condensation approach using k-nearest neighbor (kNN) method [1],
the multi-dimensional K-anonymization using kd-tree [24], and the multiplica-
tive data perturbation techniques [31, 8, 28, 9]. Compared to single-column-
based data perturbation techniques that assume data columns to be independent
and focus on developing single-dimensional perturbation techniques, multi-
dimensional data perturbation aims at perturbing the data while preserving the
multi-dimensional information with respect to inter-column dependency and
distribution.

In this chapter, we will discuss multiplicative data perturbations. This cate-
gory includes three types of particular perturbation techniques: Rotation Per-
turbation, Projection Perturbation, and Geometric Perturbation. Comparing to
other multi-dimensional data perturbation methods, these perturbations exhibit
unique properties for privacy preserving data classification and data cluster-
ing. They all preserve (or approximately preserve) distance or inner product,
which are important to many classification and clustering models. As a result,
the classification and clustering mining models based on the perturbed data
through multiplicative data perturbation show similar accuracy to those based
on the original data. The main challenge for multiplicative data perturbations
thus is how to maximize the desired data privacy. In contrast, many other data
perturbation techniques focus on seeking for the better trade-off between the
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level of data utility and accuracy preserved and the level of data privacy guar-
anteed.

1.1 Data Privacy vs. Data Utility
Perturbation techniques are often evaluated with two basic metrics: level of

privacy guarantee and level of model-specific data utility preserved, which is
often measured by the loss of accuracy for data classification and data cluster-
ing. An ultimate goal for all data perturbation algorithms is to optimize the
data transformation process by maximizing both data privacy and data utility
achieved. However, the two metrics are typically representing two conflicting
goals in many existing perturbation techniques [4, 3, 12–1].

Data privacy is commonly measured by the difficulty level in estimating the
original data from the perturbed data. Given a data perturbation technique, the
higher level of difficulty in which the original values can be estimated from
the perturbed data, the higher level of data privacy this technique supports. In
[4], the variance of the added random noise is used as the level of difficulty for
estimating the original values as traditionally used in statistical data distortion
[23]. However, recent research [12, 3] reveals that variance of the noise is not
an effective indicator for random noise addition. In addition, [22] shows that
the level of data privacy guaranteed is also bounded to the types of special
attacks that can reconstruct the original data from the perturbed data and noise
distribution. k-Anonymization is another popular way of measuring the level
of privacy, originally proposed for relational databases [34], by enabling the
effective estimation of the original data record to a k-record group, assuming
that each record in the k-record group is equally protected. However, recent
study [29] shows that the privacy evaluation of k-Anonymized records is far
more complicated than this simple k-anonymization assumption.

Data utility typically refers to the amount of mining-task/model specific crit-
ical information preserved about the dataset after perturbation. Different data
mining tasks, such as classification mining task vs. association rule mining, or
different models for the same task, such as decision tree model vs. k-Nearest-
Neighbor (kNN) classifier for classification, typically utilize different sets of
data properties about the dataset. For example, the task of building decision
trees primarily concerns the column distribution. Hence, the quality of pre-
serving column distribution should be the key data utility to be maintained in
perturbation techniques for decision tree model, as shown in the randomization
approach [4]. In comparison, the kNN model relies heavily on the distance re-
lationship, which is quite different from the column distribution. Furthermore,
such task/model-specific information is often multidimensional. Many classifi-
cation models typically concern the multidimensional information rather than
single column distribution. Multi-dimensional perturbation techniques with
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the focus on preserving the model-specific multidimensional information will
be more effective for these models.

It is also interesting to note that the data privacy metric and the data utility
metric are often contradictory rather than complimentary in many existing data
perturbation techniques [4, 3, 12–1]. Typically data perturbation algorithms
that aim at maximizing the level of data privacy often have to bear with higher
information loss. The intrinsic correlation between the data privacy and the
data utility raises a number of important issues regarding how to find a right
balance between the two measures.

In summary, we identify three important design principles for multiplicative
data perturbations. First, preserving the mining task and model-specific data
properties is critical for providing better quality guarantee on both privacy and
model accuracy. Second, it is beneficial if data perturbation can effectively pre-
serve the task/model-specific data utility information, and avoid the need for
developing special mining algorithms that can use the perturbed data as ran-
dom noise addition requires. Third and most importantly, if one can develop a
data perturbation technique that does not induce any lost of mining-task/model
specific data utility, this will enable us to focus on optimizing perturbation
algorithms by maximizing the level of data privacy against attacks, which ulti-
mately leads to better overall quality of both data privacy and data utility.

1.2 Outline
In the remaining of the chapter we will first give the definition of multi-

plicative perturbation in Section 2. Specifically, we categorize multiplicative
perturbations into three categories: rotation perturbation, projection perturba-
tion, and geometric perturbation. Rotation perturbation is often criticized not
resilient to attacks, while geometric perturbation is a direct enhancement to
rotation perturbation by adding more components, such as translation pertur-
bation and noise addition, to the original rotation perturbation. Both rotation
perturbation and geometric Perturbation keep the dimensionality of dataset un-
changed, while projection perturbation reduces the dimensionality, and thus
incurs more errors in distance or inner product calculation.

One of the unique features that distinguish multiplicative perturbations from
other perturbations is that it provides high guarantee on data utility in terms of
data classification and clustering. Since many data mining models utilize dis-
tance or inner product, as long as such information is preserved, models trained
on perturbed data will have similar accuracy to those trained on the original
data. In Section 3, we define transformation-invariant classifiers and cluster-
ing models, the representative models to which multiplicative perturbations are
applied.
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Evaluation of privacy guarantee for perturbations is an important component
in the analysis of multiplicative perturbation. In Section 4, we review a set
of privacy metrics specifically designed for multiplicative perturbations. We
argue that in multidimensional perturbation, the values of multiple columns
should be perturbed together and the evaluation metrics should be unified for
all columns. We also describe a general framework for privacy evaluation of
multiplicative data perturbation by incorporating attack analysis.

We argue that attack analysis is a necessary step in order to accurately eval-
uate the privacy guarantee of any particular perturbation. In Section 5, we
review a selection of known attacks to multiplicative perturbations based on
different levels of attack’s knowledge about the original dataset. By incorpo-
rating attack analysis under the general framework of privacy evaluation, a ran-
domized perturbation optimization is developed and described in Section 5.5.

2. Definition of Multiplicative Perturbation
We will first describe the notations used in this chapter, and then describe

three categories of multiplicative perturbations and their basic characteristics.

2.1 Notations
In privacy-preserving data mining, either a portion of or the entire data set will
be perturbed and then exported. For example, in classification, the training data
is exported and the testing data might be exported, too, while in clustering, the
entire data for clustering is exported. Suppose that X is the exported dataset
consisting of N data rows (records) and d columns (attributes, or dimensions).
For presentation convenience, we use Xd×N , X = [x1 . . .xN ], to denote the
dataset, where a column xi (1 ≤ i ≤ N ) is a data tuple, representing a vector
in the real space Rd. In classification, each of such data tuples xi also belongs
to a predefined class, which is indicated by the class label attribute yi. The
class label can be nominal (or continuous for regression), and is public, i.e.,
privacy-insensitive.

For clear presentation, we can also consider X is a sample dataset from the
d-dimension random vector X = [X1,X2, . . . ,Xd]T . As a convention, we
use bold lower case to represent vectors, bold upper case to represent random
variables, and upper case to represent matrices or datasets.

2.2 Rotation Perturbation
This category does not cover traditional “rotations” only, but literally, it in-
cludes all orthonormal perturbations. A rotation perturbation is defined as fol-
lowing G(X):

G(X) = RX
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The matrix Rd×d is an orthonormal matrix [32], which has following proper-
ties. Let RT represent the transpose of R, rij represent the (i, j) element of
R, and I be the identity matrix. The rows and columns of R are orthonormal,
i.e., for any column j,

∑d
i=1 r2

ij = 1, and for any two columns j and k, j 6= k,∑d
i=1 rijrik = 0. A similar property is held for rows. This definition infers

that
RT R = RRT = I

It also implies that by changing the order of the rows or columns of an orthog-
onal matrix, the resulting matrix is still orthogonal. A random orthonormal
matrix can be efficiently generated following the Haar distribution [33].

A key feature of rotation transformation is that it preserve the Euclidean dis-
tance of multi-dimensional points during the transformation. Let xT represent
the transpose of vector x, and ‖x‖ = xTx represent the length of a vector x.
By the definition of rotation matrix, we have

‖Rx‖ = ‖x‖
Similarly, inner product is also invariant to rotation. Let 〈x,y〉 = xTy repre-
sent the inner product of x and y. We have

〈Rx, Ry〉 = xT RT Ry = 〈x,y〉
In general, rotation also preserves the geometric shapes such as hyperplane

and hyper curved surface in the multidimensional space [7]. We observed that
since many classifiers look for geometric decision boundary, such as hyper-
plane and hyper surface, rotation transformation will preserve the most critical
information for many classification models.

There are two ways to apply rotation perturbation. We can either apply it to
the whole dataset X [8], or group columns to pairs and apply different rotation
perturbations to different pairs of columns [31].

2.3 Projection Perturbation
Projection perturbation refers to the technique of projecting a set of data points
from a high-dimensional space to a randomly chosen lower-dimensional sub-
space. Let Pk×d be a projection matrix.

G(X) = PX

Why can it also be used for perturbation? The rationale is based on the
Johnson-Lindenstrauss Lemma [21].

Theorem 1. For any 0 < ε < 1 and any integer n, let k be a positive integer
such that k ≥ 4 ln n

ε2/2−ε3/3
. Then, for any set S of n data points in d dimensional
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space Rd, there is a map f : Rd → Rk such that, for all x ∈ S,

(1− ε)‖x− x‖2 ≤ ‖f(x)− f(x)‖2 ≤ (1 + ε)‖x− x‖2

where ‖ · ‖ denotes the vector 2-norm.

This lemma shows that any set of n points in d-dimensional Euclidean space
could be embedded into a O( log n

ε2
) -dimensional space, such that the pair-wise

distance of any two points are maintained with small error. With large n (large
dataset) and small ε (high accuracy in distance preservation), the ideal dimen-
sionality might be large and may not be practical for the perturbation purpose.
Furthermore, although this lemma implies that we can always find one good
projection that approximately preserves distances for a particular dataset, the
geometric decision boundary might still be distorted and thus the model ac-
curacy is reduced. Due to the different distributions of dataset and particular
properties of data mining models, it is challenging to develop an algorithm that
can find random projections that preserves model accuracy well for any given
dataset.

In paper [28] a method is used to generate random projection matrix. The
process can be briefly described as follows. Let P be the projection matrix.
Each entry ri,j of P is independent and identically chosen from some distribu-
tion with mean zero and variance σ2. A row-wise projection is defined as

G(X) =
1√
kσ

PX

Let x and y be two points in the original space, and u and v be their projec-
tions. The statistical properties of inner product under projection perturbation
can be shown as follows.

E[utv − xty] = 0

and
V ar[utv − xty] =

1
k
(
∑

i

x2
i

∑

i

y2
i + (

∑

i

xiyi)2)

Since x and y are not normalized by rows, but by columns in practice, with
large dimensionality d and relatively small k, the variance is substantial. Sim-
ilarly, the conclusion can be extended to the distance relationship. There-
fore, projection perturbation does not strictly guarantee the preservation of
distance/inner product as rotation or geometric perturbation does, which may
significantly downgrade the model accuracy.

2.4 Sketch-based Approach
Sketch-based approach is primarily proposed to perturb high-dimensional sparse
data [2], such as the datasets in text mining and market basket mining. A sketch
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of the original record x = (x1, . . . , xd) is defined by a r dimensional vector
s = (s1, . . . , sr), r ¿ d, where

sj =
d∑

i=1

xirij

The random variable rij is drawn from {-1,+1} with a mean of 0, and is gen-
erated from a pseudo-random number generator [5], which produces 4-wise
independent values for the variable rij .

Note that the sketch based approach defers from projection perturbation
with the following two features. First, the number of components for each
sketch, i.e., r, can vary across different records, and is carefully controlled so
as to provide a uniform measure of privacy guarantee across different records.
Second, for each record, rij is different − there is no fixed projection matrix
across records.

The sketch based approach has a few statistical properties that enable ap-
proximate calculation of dot product of the original data records with their
sketches. Let s and t with the same number of components r, be the sketches
of the original records x and y, respectively. The expected dot product x and
y is given by the following.

E[〈x,y〉] = 〈s, t〉/r

and the variance of the above estimation is determined by the few non-zeros
entries in the sparse original vectors

V ar(〈s, t〉/r) = (
d∑

i=1

d∑

l=1

x2
i y

2
l − (

d∑

i=1

xiyi)2)/r (1.1)

On the other side, the original value xk in the vector x can also be esti-
mated by privacy attackers, the precision of which is determined by its vari-
ance (

∑d
i=1 x2

i − x2
k)/r, k = 1 . . . d. The larger the variance is, the better

the original value is protected. Therefore, by decreasing r the level of privacy
guarantee is possibly increased. However, the precision of dot-product estima-
tion (Eq. 1.1) is decreased. This typical tradeoff has to be carefully controlled
in practice [2].

2.5 Geometric Perturbation
Geometric perturbation is an enhancement to rotation perturbation by incor-
porating additional components such as random translation perturbation and
noise addition to the basic form of multiplicative perturbation Y = R × X .
We show that by adding random translation perturbation and noise addition,
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Geometric perturbation exhibits more robustness in countering attacks than
simple rotation based perturbation [9]. Let td×1 represent a random vector.
We define a translation matrix as follows.

Definition 1. Ψ is a translation matrix if Ψ = [t, t, . . . , t]d×n, i.e., Ψd×n =
td×11T

N×1.

where 1N×1 is the vector of N ’1’s. Let ∆d×N be a random noise matrix,
where each element is Independently and Identically Distributed (iid) variable
εij , e.g., a Gaussian noise N(0, σ2).

The definition of geometric perturbation is given by a function G(X),

G(X) = RX + Ψ + ∆

Clearly, translation perturbation does not change distance, as for any pair
of points x and y, ‖(x + t) − (y + t)‖ = ‖x − y‖. Comparing with rotation
perturbation, it protects the rotation center from attacks and adds additional
difficulty to ICA-based attacks. However, translation perturbation does not
preserve inner product.

In [9], it shows that by adding an appropriate level of noise ∆, one can
effectively prevent knowledgeable attackers from distance-based data recon-
struction, since noise addition perturbs distances, which protects perturbation
from distance-inference attacks. For example, the experiments in [9] shows
that a Gaussian noise N(0, σ2) is effective to counter the distance-inference
attacks. Although noise addition prevents from fully preserving distance infor-
mation, a low intensity noise will not change class boundary or cluster mem-
bership much.

In addition, the noise component is optional− if the data owner makes sure
that the original data records are secure and no people except the data owner
knows any record in the original dataset, the noise component can be removed
from geometric perturbation.

3. Transformation Invariant Data Mining
Models

By using multiplicative perturbation algorithms, we can mine the the perturbed
data directly with a set of existing “transformation-invariant data mining mod-
els”, instead of developing new data mining algorithms to mine the perturbed
data [4]. In this section, we will define the concept of transformation-invariant
mining models with the example of “transformation-invariant classifiers”, and
then we extend our discussion to the transformation-invariant models in data
classification and data clustering.
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3.1 Definition of Transformation Invariant
Models

Generally speaking, a transformation invariant model, if trained or mined on
the transformed data, performs as good as the model based on the original data.
We take the classification problem as an example. A classification problem is
also a function approximation problem − classifiers are the functions learned
from the training data [16]. In the following discussion, we use functions to
represent classifiers. Let f̂X represent a classifier f̂ trained with dataset X
and f̂X(Y ) be the classification result on the dataset Y . Let T (X) be any
transformation function, which transforms the dataset X to another dataset
XT . We use Err(f̂X(Y )) to denote the error rate of classifier f̂X on testing
data Y and let ε be some small real number, |ε| < 1.

Definition 2. A classifier f̂ is invariant to a transformation T if and only if
Err(f̂X(Y )) = Err(f̂T (X)(T (Y )))+ε for any training dataset X and testing
dataset Y .

With the strict condition f̂X(Y ) ≡ f̂T (X)(T (Y )), we get the Proposition 2.

Proposition 2. In particular, if f̂X(Y ) ≡ f̂T (X)(T (Y )) is satisfied for any
training dataset X and testing dataset Y , the classifier is invariant to the trans-
formation T (X).

For instance, if a classifier f̂ is invariant to rotation transformation, we call it
rotation-invariant classifier. Similar definition applies to translation-invariant
classifier.

In subsequent sections, we will list some examples of transformation invari-
ant models for classification and clustering. Some detailed proofs can be found
in [7].

3.2 Transformation-Invariant Classification
Models

kNN Classifiers and Kernel Methods
A k-Nearest-Neighbor (kNN) classifier determines the class label of a point
by looking at the labels of its k nearest neighbors in the training dataset and
classifies the point to the class that most of its neighbors belong to. Since
the distances between any points are not changed with rotation and translation
transformation, the k nearest neighbors are not changed and thus the classifi-
cation result is not changed either.

Since kNN classifier is a special case of kernel methods, we can also ex-
tend our conclusion to kernel methods. Here, we refer kernel methods to the
traditional local methods [16]. In general, since the kernels are dependent on
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the local points, the locality of which is evaluated by distance, transformations
that preserve distance will make kernel methods invariant.
Support Vector Machines
Support Vector Machine (SVM) classifier also utilizes kernel functions in train-
ing and classification. However, it has an explicit training procedure, which
differentiates itself from the traditional kernel methods we just discussed. We
can use a two-step procedure to prove that a SVM classifier is invariant to a
transformation. 1) Training with the transformed dataset generates the same
set of model parameters; 2) the classification function with the model parame-
ters is also invariant to the transformation. The detailed proof will involve the
quadratic optimization procedure for SVM. We have demonstrated that SVM
classifiers with typical kernels are invariant to rotation transformation [7]. It
turns out that if a transformation makes the kernel invariant, then the SVM
classifier is also invariant to the transformation.

There are the three popular choices for the kernels discussed in the SVM
literature [10, 16].

d-th degree polynomial: K(x,x′) = (1 + 〈x,x′〉)d,

radial basis: K(x,x′) = exp(−‖x− x′‖/c),
neural network: K(x,x′) = tanh(κ1〈x,x′〉+ κ2)

Apparently, all of the three are invariant to rotation transformation. Since trans-
lation does not preserve inner product, it is not straightforward to prove that
SVMs with polynomial and neural network kernels are invariant to translation
perturbation. However, experiments [9] showed that these classifiers are also
invariant to translation perturbation.
Linear Classifiers
Linear classification models are popular methods due to their simplicity. In
linear classification models, the classification boundary is modeled as a hy-
perplane, which is clearly a geometric concept. It is easy to understand that
distance-preserving transformations, such as rotation and translation, will still
make the classes separated if they are originally separated. There is also a de-
tailed proof showing that a typical linear classifier, perceptron, is invariant to
rotation transformation [7].

3.3 Transformation-Invariant Clustering Models
Most clustering models are based on Euclidean distance such as the popular

k-means algorithm [16]. Many are focused on the density property, which
is derived from Euclidean distance, such as DBSCAN [11], DENCLUE [17]
and OPTICS [6]. All of these clustering models are invariant to Euclidean-
distance-preserving transformations, such as rotation and translation.
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There are other clustering models, which employ different distance metrics
[19], such as linkage based clustering and cosine-distance based clustering. As
long as we can find a transformation preserving the particular distance metric,
the corresponding clustering model will be invariant to this transformation.

4. Privacy Evaluation for Multiplicative
Perturbation

The goal of data perturbation is twofold: preserving the accuracy of spe-
cific data mining models (data utility), and preserving the privacy of original
data (data privacy). The discussion about transformation-invariant data mining
models has shown that multiplicative perturbations can theoretically guarantee
zero-loss of accuracy for a number of data mining models. The challenge is to
find one that maximizes the privacy guarantee in terms of potential attacks.

We dedicate this section to discuss how good a multiplicative perturbation
is in terms of preserving privacy under a set of privacy attacks. We first de-
fine a multi-column (or multidimensional) privacy measure for evaluating the
privacy quality of a multiplicative perturbation over a given dataset. Then, we
introduce a framework of privacy evaluation, which can incorporate different
attack analysis into the evaluation of privacy guarantee. We show that using
this framework, we can employ certain optimization methods (Section 5.5) to
find a good perturbation among a bunch of randomly generated perturbations,
which is locally optimal for the given dataset.

4.1 A Conceptual Multidimensional Privacy
Evaluation Model

In practice, different columns (or dimensions, or attributes) may have differ-
ent privacy concern. Therefore, we advocate that the general-purpose privacy
metric Φ defined for an entire dataset should be based on column privacy
metric, rather than point-based privacy metrics, such distance-based metrics.
A conceptual privacy model is defined as Φ = Φ(p,w), where p denotes the
column privacy metric vector p = [p1, p2, . . . , pd] of a given dataset X , and
w = (w1, w2, . . . , wd) denote privacy weights associated to the d columns
respectively. The column privacy pi itself is defined by a function, which we
will discuss later. In summary, the model suggests that the column-wise pri-
vacy metric should be calculated first and then use Φ to generate a composite
metric. We will first describe some basic designs to the components in function
Φ. Then, we dedicate another subsection to the concrete design of the function
for generating p.

The first design idea is to take the column importance into unification of dif-
ferent column privacy. Intuitively, the more important the column is, the higher
level of privacy guarantee will be required for the perturbed data column. Since
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w is used to denote the importance of columns in terms of preserving privacy,
we use pi/wi to represent the weighted column privacy of column i.

The second concept is the minimum privacy guarantee and the average pri-
vacy guarantee among all columns. Normally, when we measure the privacy
guarantee of a multidimensional perturbation, we need to pay more attention
to the column that has the lowest weighted column privacy, because such a
column could become the weakest link of privacy protection. Hence, the first
composition function is the minimum privacy guarantee.

Φ1 =
d

min
i=1

{pi/wi}

Similarly, the average privacy guarantee of the multi-column perturbation is
defined by Φ2 = 1

d

∑d
i=1 pi/wi, which could be another interesting measure.

Note that these two functions assume that pi should be comparable crossing
columns, which is one of the important requirement in the following discus-
sion.

4.2 Variance of Difference as Column Privacy
Metric

After defining the conceptual privacy model, we move to the design of
column-wise privacy metric. Intuitively, for a data perturbation approach, the
quality of preserved privacy can be understood as the difficulty level of esti-
mating the original data from the perturbed data. Therefore, how statistically
different the estimated data is from the original data could be an intuitive mea-
sure. We use a variance-of-difference (VoD) based approach, which has a sim-
ilar form to the naive variance-based evaluation [4], but with very different
semantics.

Let the difference between the original column data and the estimated data
be a random variable Di. Without any knowledge about the original data,
the mean and variance of the difference present the quality of the estimation.
The perfect estimation will have zero mean and variance. Since the mean of
difference, i.e., the bias of estimation, can be easily removed if the attacker
knows the original distribution of column, we use only the variance of the
difference (VoD) as the primary metric to determine the level of difficulty in
estimating the original data.

V oD is formally defined as follows. Let Xi be a random variable represent-
ing the column i, X′

i be the estimated result1 of Xi, and Di be Di = X′
i−Xi.

Let E[Di] and V ar(Di) denote the mean and the variance of D respectively.

1It would not be appropriate to use only the perturbed data for privacy estimation, if we consider the poten-
tial attacks.
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Then V oD for column i is V ar(Di). Let an estimate of certain value, say xi,
be x′i, σ =

√
V ar(Di), and c denote confidence parameter depending on both

the distribution of Di and the corresponding confidence level. The correspond-
ing original value xi in Xi is located in the range defined below:

[x′i − E[Di]− cσ, x′i −E[Di] + cσ]

By removing the effect of E[Di], the width of the estimation range, 2cσ,
presents the quality of estimating the original value, which proportionally re-
flects the level of privacy guarantee. The smaller range means better estima-
tion, i.e., a lower level of privacy guarantee. For simplicity, we often use σ to
represent the privacy level.

V oD only defines the privacy guarantee for a single column. However, we
usually need to evaluate the privacy level of all perturbed columns together
if a multiplicative perturbation is applied. The single-column V oD does not
work across different columns since different column value ranges may result
in very different V oDs. For example, the V oD of age may be much smaller
than V oD of salary. Therefore, a same amount of V oD is not equally effective
for columns with different value ranges. One straightforward method to unify
the different value ranges is via normalization over the original dataset and
the perturbed dataset. Normalization can be done with various ways, such as
max/min normalization or standardized normalization [30]. After normaliza-
tion, the level of privacy guarantee for each column should be approximately
comparable. Note that normalization after V oD calculation, such as relative
variance V oDi/V ar(Xi) is not appropriate, since small V ar(Xi) will inap-
propriately increase the value.

4.3 Incorporating Attack Evaluation
Privacy evaluation has to consider the resilience to attacks as well. The

V oD evaluation has a unique advantage in incorporating attack analysis in pri-
vacy evaluation. In general, let X be the normalized original dataset, P be
the perturbed dataset, and O be the estimated/observed dataset through “at-
tack simulation”. We can calculate V oD(Xi,Oi) for the column i in terms
of different attacks. For example, the attacks to rotation perturbation can be
evaluated by following steps. Details will be discussed shortly.

1 Naive Estimation: O ≡ P ;

2 ICA-based Reconstruction: Independent Component Analysis (ICA) is
used to estimate R. Let R̂ be the estimate of R, and the estimated data
R̂−1P aligned with the known column statistics to get the dataset O;
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3 Distance-based Inference: knowing a set of special points in X that can
be mapped to certain set of points in P , so that the mapping helps to get
the estimated rotation R̂, and then O = R̂−1P .

4.4 Other Metrics
Other metrics include distance-based risk of privacy breach, which was used

to evaluate the level of privacy breach when a few pairs of original data points
and their maps in perturbed data are known [27]. Assume x̂ is the estimate of
an original point x. An ε-privacy breach occurs if

‖x̂− x‖ ≤ ε‖x‖
This roughly represents that, if the estimate is within an arbitrarily small local
area around the original point, then the risk of privacy breach is high. How-
ever, even though the estimated point is distant from the original point, the
estimation can still be effective − large distance may only be determined by
the difference between a few columns, while other columns may be very simi-
lar. That is the reason why we should consider column-wise privacy metrics.

5. Attack Resilient Multiplicative Perturbations
Attack analysis is the essential component in privacy evaluation of multi-

plicative perturbation. The previous section has set up an evaluation model
that can conveniently incorporate attack analysis through “attack simulation”.
Namely, privacy attacks to multiplicative perturbations are the methods for es-
timating original points (or values of particular columns) from the perturbed
data, with certain level of additional knowledge about the original data. As
the perturbed data goes public, the level of effectiveness is solely determined
by the additional knowledge the attacker may have. In the following sections,
we describe some potential inference attacks to multiplicative perturbations,
primarily focused on rotation perturbation.

These attacks are organized according to the different levels of knowledge
that an attacker may have. We hope that, from this section the interested readers
will have more ideas about the attacks to general multiplicative perturbations
and are able to apply appropriate tools to counter attacks. Most content of this
section can be found in the paper [9], and we will just present the basic ideas
here.

5.1 Naive Estimation to Rotation Perturbation
When the attacker knows no additional information, we call attacks under

such circumstance as naive estimation, which simply estimates the original
data from perturbed data. In this case, an appropriate rotation perturbation is
enough to achieve high level of privacy guarantee. With the V oD metric over
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the normalized data, we can formally analyze the privacy guarantee provided
by the rotation perturbed data. Let X be the normalized dataset, X ′ be the
rotation of X , and Id be the d-dimensional identity matrix. VoD of column i
can be evaluated by

Cov(X′ −X)(i,i) = Cov(RX−X)(i,i) (1.2)

= ((R− Id)Cov(X)(R− Id)T )(i,i)

Let rij represent the element (i, j) in the matrix R, and cij be the element
(i, j) in the covariance matrix of X. The VoD for ith column is computed as
follows.

Cov(X′ −X)(i,i) =
d∑

j=1

d∑

k=1

rijrikckj − 2
d∑

j=1

rijcij + cii (1.3)

When the random rotation matrix is generated following the Haar distribu-
tion, a considerable number of matrix entries are approximately independent
normal distribution N(0, 1/d) [20]. For simplicity and easy understanding, we
assume that all entries in random rotation matrix approximately follow inde-
pendent normal distribution N(0, 1/d). Therefore, random rotations will make
V oDi changing around the mean value cii as shown in the following equation.

E[V oDi] ∼
d∑

j=1

d∑

k=1

E[rij ]E[rik]ckj − 2
d∑

j=1

E[rij ]cij + cii = cii

It means that the original column variance could substantially influence the
result of random rotation. However, the expectation of VoDs is not the only
factor determining the final privacy guarantee. We should also look at the vari-
ance of VoDs. If the variance of V oDs is considerably large, we still get great
chance to find a rotation with high VoDs in a set of sample random rotations,
and the larger the V ar(V oDi) is, the more likely the randomly generated ro-
tation matrices can provide a high privacy level. With the approximately inde-
pendency assumption, we have

V ar(V oDi) ∼
d∑

i=1

d∑

j=1

V ar(rij)V ar(rik)c2
ij

+4
d∑

j=1

V ar(rij)c2
ij

∼ O(1/d2
d∑

i=1

d∑

j=1

c2
ij + 4/d

d∑

j=1

c2
ij).
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The above result shows that V ar(V oDi) seems approximately related to the
average of the squared covariance entries, with more influence from the row
i of covariance matrix. Therefore, by looking at the covariance matrix of the
original dataset and estimate the V ar(V oDi), we can estimate the chance of
finding a random rotation that can give high privacy guarantee.

Rotation Center. The basic rotation perturbation uses the origin as the ro-
tation center. Therefore, the points around the origin will be still close to the
origin after the perturbation, which leads to weaker privacy protection over
these points. The attack to rotation center can be regarded as another kind of
naive estimation. This problem is addressed by random translation perturba-
tion, which hides the rotation center. More sophisticated attacks to the combi-
nation of rotation and translation would have to utilize the ICA technique with
sufficient additional knowledge, which will be described shortly.

5.2 ICA-Based Attacks
In this section, we introduce a high-level attack based on data reconstruc-

tion. The basic method for reconstructing X from the perturbed data RX
would be Independent Component Analysis (ICA) technique, derived from the
research of signal processing [18].

The ICA technique can be applied to estimate the independent components
(the row vectors in our definition) of the original dataset X from the perturbed
data, if the following conditions are satisfied:

1 The source row vectors are independent;

2 All source row vectors should be non-Gaussian with possible exception
of one row;

3 The number of observed row vectors must be at least as large as the
independent source row vectors.

4 The transformation matrix R must be of full column rank.

For rotation matrices, the 3rd and 4th conditions are always satisfied. How-
ever, the first two conditions although practical for signal processing, are of-
ten not satisfied in data classification or clustering. Furthermore, there are a
few more difficulties in applying direct ICA-based attack. First of all, even
ICA can be done successfully, the order of the original independent compo-
nents cannot be preserved or determined through only ICA [18]. Formally, any
permutation matrix P and its inverse P−1 can be substituted in the model to
give X ′ = RP−1PX . ICA could possibly give the estimate for some permu-
tated source PX . Thus, we cannot identify the particular column without more
knowledge about the original data. Second, even if the ordering of columns can
be identified, ICA reconstruction does not guarantee to preserve the variance
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of the original signal − the estimated signal is often scaled up but we do not
know how much the scaling is unless we know the original value range of the
column. Therefore, without knowing the basic statistics of original columns,
ICA-attack is not effective.

However, such basic column statistics are not impossible to get in some
cases. Now, we assume that attackers know the basic statistics, including the
column max/min values and the probability density function (PDF), or empir-
ical PDF of each column. An enhanced ICA-based attack can be described as
follows.

1 Run ICA algorithm to get a reconstructed dataset;

2 For each pair of (Oi, Xj), where Oi is a reconstructed column and Xi

is an original column, scale Oi with the max/min values of Xj ;

3 Compare the PDFs of the scaled Oi and Xj to find the closest match
among all possible combinations.

Note the the PDFs should be aligned before comparison. [9] gives one
method to align it.

The above procedure describes how to use ICA and additional knowledge
about the original dataset to precisely reconstruct the original dataset. Note if
the four conditions for effective ICA are exactly satisfied and the basic statis-
tics and PDFs are all known distinct from each other, the basic rotation pertur-
bation will be totally broken by the enhanced ICA-based attack. In practice,
we can test if the first two conditions for effective ICA are satisfied to decide
whether we can safely use rotation perturbation, when the column distribu-
tional information is released. If ICA-based attacks can be effectively done, it
is also trivial to reveal an additional translation perturbation, which is used to
protect the rotation center.

If the first and second conditions are not satisfied, as for most datasets in data
classification and clustering, precise ICA reconstruction cannot be achieved.
Under this circumstance, different rotation perturbations may result in differ-
ent levels of privacy guarantee and the goal is to find one perturbation that is
resilient to the enhanced ICA-based attacks.

For projection perturbation [28], the third condition of effective ICA is not
satisfied either. Although overcomplete ICA is available for this particular
case [25], it is generally ineffective to break projection perturbation with ICA-
based attacks. The major concern of projection perturbation is to find one that
preserves the utility of perturbed data.

5.3 Distance-Inference Attacks
In the previous sections, we have discussed naive estimation and ICA-based

attacks. In the following discussion, we assume that, besides the informa-
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tion necessary to perform the discussed attacks, the attacker manages to get
more knowledge about the original dataset. We assume two scenarios: 1) s/he
also knows at least d + 1 linearly independent original data records, X =
{x1,x2, . . . ,xd+1}; or 2) s/he can only get less then d linearly independent
points. S/he then tries to find the mapping between these points and their im-
ages in the perturbed dataset, denoted by O = {o1,o2, . . . ,od+1}, to break
rotation perturbation and possible also translation perturbation.

For both scenarios, it is possible to find the images of the known points in
the perturbed data. Particularly, if a few original points are highly distinguish-
able, such as “outliers”, their images in the perturbed data can be correctly
identified with high probability for low-dimensional small datasets (< 4 di-
mensions). With considerable cost, it is not impossible for higher dimensional
and larger datasets by simple exhaustive search, although the probability to get
the exact images is relatively low. For scenario 1), with the known mapping,
the rotation R and translation t can be precisely calculated if the incomplete
geometric perturbation G(X) = RX +Ψ is applied. Therefore, the threat will
be substantial to any other data point in the original dataset.

rotation

*
*

* *
**

*

*

*
*

* ***
* *

mapping

Figure 1.1. Using known points and distance relationship to in-
fer the rotation matrix.

For scenario 2), if we assume the exact images of the known original points
are identified, there is a comprehensive discussion about the potential privacy
breach to rotation perturbation [27]. For rotation perturbation, i.e., O = RX
between the known points X and their images O, if X consists of less than d
points, there are numerous estimates of R, denoted by R̂, satisfying the rela-
tionship between X and O. The weakest points, except the known points X ,
are those around X . Paper [27] gives some estimation to the risk of privacy
breach for certain point x if a set of points X and their image O are known.
The definition is based on ε-privacy breach (Section 4.1). The probability of ε
-privacy breach, ρ(x, ε), for any x in the original dataset can be estimated as
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follows. Let d(x, X) be the distance between x and X .

ρ(x, ε) =
2
π

arcsin(
ε‖x‖

2d(x, X)
), if ε‖x‖ < 2d(x, X); 1 otherwise.

Note that ε-privacy breach is not sufficient to column-wise privacy evaluation.
Thus, the above definition may not be sufficient as well.

In order to protect from distance-inference attack for both scenarios, an ad-
ditional noise component ∆ is introduced to form the complete version of ge-
ometric perturbation G(X) = RX + Ψ + ∆, where ∆ = [δ1, δ2, . . . , δN ], and
δi is a d-dimensional Gaussian random vector. The ∆ component reduces the
probability of getting exact images and the precision of estimation to R and Ψ,
which significantly increases the resilience to distance-inference attacks.

Assume the attacker still knows enough pairs of independent (point, image).
Now, with the additional noise component, the most effective way to estimate
the rotation/translation component is linear regression. The steps include 1)
filtering out the translation component first; 2) applying linear regression to
estimate R; 3) plugging the estimate R̂ back to estimate the translation com-
ponent; 4) estimating the original data with R̂ and Ψ̂. There is a detailed
procedure in [9]. We can simulate the procedure to estimate the resilience of a
perturbation.

Note that the additional noise component also implies that we have to sac-
rifice some model accuracy for gaining the stronger privacy protection. An
empirical study has been performed on a bunch of datasets to evaluate the rela-
tionship between noise intensity, resilience to attacks and model accuracy [9].
In general, a low-intense noise component will be enough to reduce the risk
of being attacked, while still preserving model accuracy. However, the noise
component is required only when the data owner is sure that a small part of the
original data is released.

5.4 Attacks with More Prior Knowledge
There are also extreme cases that may not happen in practice, which assume

the attacker knows a considerable amount of original data points and these
points form a sample set that the higher-order statistical properties of the orig-
inal dataset, like the covariance matrix, are approximately estimated from the
sample set. By using the sample statistics and the sample points, the attacker
can have more effective attacks.

Note that, in general, if the attacker has known so much information about
the original data, its privacy may already be breached. It should not be advised
to publish more original data. Further discussion about perturbations will make
less sense. However, the techniques developed in these attacks, such as PCA-
based attack [27] and AK-ICA attack [15] might be eventually utilized in other
aspects to enhance multiplicative perturbations in the future. We will not give
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detailed description about these attacks due to the space limitation. Instead,
they will be covered by another dedicated chapter.

5.5 Finding Attack-Resilient Perturbations
We have discussed the unified privacy metric for evaluating the quality of a

random geometric perturbation. Some known inference attacks have been an-
alyzed under the framework of multi-column privacy evaluation, which allows
us to design an algorithm to choose a good geometric perturbation in terms of
these attacks − if the attacker knows considerable amount of original data, it
is advised not to release the perturbed dataset, however. A deterministic al-
gorithm in optimizing the perturbation may also provide extra clue to privacy
attackers. Therefore, it is also expected to have certain level of randomization
in the perturbation optimization.

A randomized perturbation-optimization algorithm for geometric perturba-
tion was proposed in [9]. We briefly describe it as follows. Algorithm 1 is
a hill-climbing method, which runs in a given number of iterations to find a
geometric perturbation that maximizes the minimum privacy guarantee as pos-
sible. Initially, a random translation is selected, which needs not optimization
at all. In each iteration, the algorithm randomly generates a rotation matrix.
Local maximization of VoD [9] is applied to find a better rotation matrix in
terms of naive estimation, which is then tested by the ICA reconstruction with
the algorithm described in section 5.2. The rotation matrix is accepted as the
currently best perturbation if it provides higher minimum privacy guarantee
than the previous perturbations. After the iterations, if necessary, a noise com-
ponent is appended to the perturbation, so that the distance-inference attack
cannot reduce the privacy guarantee to a safety level φ, e.g., φ = 0.2. Algo-
rithm 1 outputs the rotation matrix Rt, the random translation matrix Ψ, the
noise level σ2, and the corresponding privacy guarantee (we use minimum pri-
vacy guarantee in the following algorithm) in terms of the known attacks. If
the final privacy guarantee is lower than the expected threshold, the data owner
can select not to release the data. This algorithm provides a framework, in
which any discovered attacks can be simulated and evaluated.

6. Conclusion
We have reviewed the multiplicative perturbation method as an alternative

method to privacy preserving data mining. The design of this category of per-
turbation algorithms is based on an important principle: by developing pertur-
bation algorithms that can always preserve the mining task and model specific
data utility, one can focus on finding a perturbation that can provide higher
level of privacy guarantee. We described three representative multiplicative
perturbation methods − rotation perturbation, projection perturbation, and ge-
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Algorithm 1 Finding a resilient perturbation (Xd×N , w, m)
Input: Xd×N :the original dataset, w: weights for attributes in privacy evaluation, m: the number of
iterations.
Output: Rt: the selected rotation matrix, Ψ: the random translation, σ2: the noise level, p: privacy
quality
calculate the covariance matrix C of X;
p = 0, and randomly generate the translation Ψ;
for Each iteration do

randomly generate a rotation matrix R;
swapping the rows of R to get R′, which maximizes min1≤i≤d{ 1

wi
(Cov(R′X −X)(i,i)};

p0 = the privacy guarantee of R′, p1 = 0;
if p0 > p then

generate X̂ with ICA;
{(1), (2), . . . , (d)} = argmin{(1),(2),...,(d)}

∑d
i=1 ∆PDF (Xi, O(i))

p1 = min1≤k≤d
1

wk
V oD(Xk, O(k))

end if
if p < min(p0, p1) then

p = min(p0, p1), Rt = R′;
end if

end for
p2 = the privacy guarantee to the distance-inference attack with the perturbation G(X) = RtX+Ψ+∆.
Tune the noise level σ2, so that p2 ≥ p if p < φ or p2 > φ if p < φ .

ometric perturbation. All aim at preserving the distance relationship in the
original data, thus achieving good data utility for a set of classification and
clustering models. Another important advantage of using these multiplicative
perturbation methods is the fact that we are not required to re-design the exist-
ing data mining algorithms in order to perform data mining over the perturbed
data.

Privacy evaluation and attack analysis are the major challenging issues for
multiplicative perturbations. We reviewed the multi-column variance of dif-
ference (VoD) based evaluation method and the distance-based method. Since
column distribution information has high probability to be released publicly,
in principle it is necessary to evaluate privacy guarantee based on columns.
Although this chapter does not intend to enumerate all possible attacks, as we
know, attack analysis to multiplicative perturbation is still a very active area,
we describe several types of attacks and organize the discussion according to
the level of knowledge that the attacker may have about the original data. We
also outlined some techniques developed to date for addressing these attacks.
Based on attack analysis and the VoD-based evaluation method, we show how
to find the perturbations that locally optimize the level of privacy guarantee in
terms of various attacks.
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