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Abstract

Distributed stream query services must simultaneously

process a large number of complex, continuous queries

with stringent performance requirements while utilizing dis-

tributed processing resources. In this paper we present the

design and evaluation of a distributed stream query ser-

vice that achieves massive scalability, a key design principle

for such systems, by taking advantage of the opportunity to

reuse the same distributed operator for multiple and differ-

ent concurrent queries. We present concrete techniques that

utilize the well-defined semantics of CQL-style queries to

reduce the cost of query deployment and duplicate process-

ing thereby increasing system throughput and scalability.

Our system exhibits several unique features, including : (1)

a ‘reuse lattice’ to encode both operator similarity and net-

work locality using a uniform data structure; (2) techniques

to generate an optimized query grouping plan in the form

of ‘relaxed operators’ to capitalize on reuse opportunities

while taking into account multiple run-time variations, such

as network locality, data rates, and operator lifetime; and

(3) techniques to modify operator semantics at runtime to

facilitate reuse. Evaluation of our service-oriented design

and techniques under realistic workloads shows that stream

queries relaxed and grouped using our approach operate ef-

ficiently without a priori knowledge of workload, and offer

an order of magnitude improvement in performance over

existing approaches.

1 Introduction

Modern enterprise applications [16, 2, 3], scientific col-

laborations across wide area networks [4], and large-scale

distributed sensor systems [19, 15] are placing growing de-

mands on distributed streaming systems to provide capabil-

ities beyond basic data transport such as wide area data stor-

age [1] and continuous and opportunistic processing [3]. An

increasing number of streaming services are applying ‘in-

network’ and ‘in-flight’ data manipulation to data stream-

ing systems designed for such applications. One challenge

of ‘in-network’ processing [7, 17, 19] is how to best utilize

these geographically distributed resources to carry out end

user tasks and to reduce the bandwidth usage or delay [5],

especially considering the dynamic and distributed nature

of these applications and the variations in their underlying

execution environments.

In this paper we address this challenge by exploiting

reuse opportunities in large scale distributed stream pro-

cessing systems, focusing on the class of stream data ma-

nipulations described as long-running continuous queries.

It is observed that stream queries are typically processed by

a selection of collaborative nodes and often share similar

stream filters (such as stream selection or stream projection

filters). The ability to reuse existing operators during query

deployment, especially for long running queries, is critical

to the performance and scalability of a distributed stream

query processing service. Concretely, we argue that by tak-

ing advantage of opportunities to reuse the same distributed

operators for multiple and different concurrent queries and

intelligently consolidate operator computation across multi-

ple queries, we can reduce the cost of query deployment and

minimize duplicated in-network processing. The technical

challenges of reuse in streaming systems include dealing

with large and time-varying workloads (service requests),

dynamically exploiting similarities between queries and the

runtime application of network knowledge.

In exploiting reuse opportunities in stream query pro-

cessing, one straightforward approach is to construct dis-

tributed query graphs. However it is known that distributed

query graphs cannot be statically analyzed [5, 11, 13, 19]

or optimized due to dynamic query arrivals and departures,

and due to difficulty in obtaining accurate a priori knowl-

edge of workload. Another naive approach is to devise a

dynamic solution that considers re-planning of all queries

in the system upon the arrival or departure of each single
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query. This approach suffers from inordinately large com-

putational overheads [6].

In this paper we present the design and evaluation of

a reuse-conscious distributed stream query processing ser-

vice, called STREAMREUSE. We develop a suite of reuse-

conscious stream query grouping techniques that dynami-

cally find cost-effective reuse opportunities based on mul-

tiple factors, such as network locality, data rates, and op-

erator lifetime. First, STREAMREUSE not only groups

queries with the same operators but also provides capabili-

ties to take into account containments and overlaps between

queries in order to utilize reuse opportunities in queries

that are partially similar. Second, our system performs

‘reuse refinement’ by combining operator similarity and

network locality information to enhance the effectiveness

of in-network reuse. We aim at locating and evaluating dif-

ferent reuse opportunities possible at different network lo-

cations. A reuse lattice is devised to encode both operator

similarity and network locality using a uniform data struc-

ture and to assist in fast identification of reuse opportuni-

ties from a large space of operators. With the reuse lattice

and our cost model we can efficiently generate an optimized

query grouping plan that capitalizes on those ’relaxed oper-

ators’ satisfying both operator similarity and network lo-

cality requirements. Finally, we develop techniques to per-

form ‘relaxations’ at runtime and to allow modifications and

seamless migration of existing queries to new plans.

A detailed experimental evaluation of the STREAM-

REUSE approach uses both simulations and a prototype.

Results show that the STREAMREUSE approach outper-

forms existing approaches under different workloads by re-

ducing network and computational resource usage, and of-

fers an order of magnitude improvement in stream query

processing throughput.

2 STREAMREUSE System Overview

This section presents some motivating examples and

an overview of the STREAMREUSE system architecture.

Multi-query optimization is important for a wide variety of

systems and applications. Examples include long running

queries in airline computer reservation systems, in enter-

prise operational information systems, queries that perform

pre-caching over distributed data repositories or support sci-

entific collaborations or carry out network monitoring. The

specific motivating example used in our research is derived

from the airline industry based on our collaboration with

Delta Air Lines [16].

2.1 Operational Information Systems

Delta’s operational information system (OIS) provides

continuous support for the organization’s daily operations
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Figure 1. An example network N

and combines three different types of functionality: contin-

uous data capture, for information such as flight and pas-

senger status; continuous status updates, to a range of end-

systems including overhead displays, gate agent PCs and

large enterprise databases; and responses to client requests

which arrive in the form of queries. In order to answer

these queries, data streams from multiple sources need to

be joined based on the flight, location or time attribute, per-

haps using a technique like a symmetric hash join.

Let us assume Delta’s OIS to be operating over the small

network N shown in Figure 1. Let WEATHER, FLIGHTS, CHECK-

INS and BAGGAGE represent sources of data-streams of the

same name and nodes N1-N5 be available for in-network

processing. Each line in the diagram represents a physical

network link. Also assume that we can estimate the ex-

pected data-rates of the stream sources and the selectivities

of their various attributes, perhaps gathered from historical

observations of the stream-data.

Assume that the following CQL-like query Q1 is to be

streamed to a terminal overhead display SINK3 and results

are to be updated every 1 minute.

Q1: SELECT FLIGHTS.NUM, FLIGHTS.GATE,

BAGGAGE.AREA,

CHECK-INS.STATUS, WEATHER.FORECAST

FROM FLIGHTS [RANGE 5 MIN], WEATHER [RANGE 5

MIN], CHECK-INS [RANGE 1 MIN], BAGGAGE [RANGE

1 MIN]

WHERE FLIGHTS.DEST = WEATHER.CITY

AND FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.NUM = BAGGAGE.FLIGHT

AND FLIGHTS.TERMINAL = ‘‘TERMINAL A’’

AND FLIGHTS.CARRIER CODE = ‘‘DL’’;

Q1 is deployed by applying the filter conditions and the

project operators for the various attributes at the source. The

join operator FLIGHTS⊲⊳CHECK-INS is placed at node N1 and join

with WEATHER and BAGGAGE at N3. All join operators are eval-

uated every minute.

Now assume that a new ad-hoc query Q2 is posed by

an airline manager in order to determine whether any low-

capacity flights can be canceled and customers shifted to a

partner airline’s flight. Let us assume that the results need

to be refreshed every 5 minutes.



Q2: SELECT FLIGHTS.NUM, CHECK-INS.STATUS,

CHECK-INS.VACANT SEATS

FROM FLIGHTS [RANGE 5 MIN], CHECK-INS [RANGE

5 MIN]

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE IN (‘‘DL’’,‘‘CO’’);

Firstly, depending upon the sink for Q2, we may decide

to reuse the existing join operator at node N1 or redeploy a

new join operator. For example, if Q2 arrives at SINK4 it may

be beneficial to reuse the operator but if it arrives at SINK1

we may prefer to deploy a new join operator. Secondly,

in order to be able to reuse the join FLIGHTS⊲⊳CHECK-INS, we

would have to completely remove some filter conditions (on

attribute TERMINAL) before the join, relax some conditions

(on attribute CARRIER CODE) and place the original conditions

after the join. Thirdly, this would imply that we would have

to project some additional columns (attribute TERMINAL and

VACANT SEATS in this case). Also, we must now expand the

window size for the CHECK-INS stream at the FLIGHTS⊲⊳CHECK-

INS operator to 5 minutes, but only forward CHECK-INS data

within a one minute window to query Q1. Additionally, we

must filter updates based on timestamp such that results of

query Q2 are streamed only every 5 minutes.

Several attributes of the example presented in this sec-

tion are important to our research. When queries are not

known a priori, reuse opportunities that exploit cross-query

optimization need to be identified and deployed at runtime.

Also, the benefit from reuse depends on network locality.

2.2 STREAMREUSE System Architecture

The STREAMREUSE sub-system is implemented over

IFLOW [14], a distributed data stream processing system.

The IFLOW system utilizes a scalable virtual hierarchical

network partition structure to collect and maintain infor-

mation about the nodes and operators in current use [14].

Briefly, this virtual hierarchy is a structure composed of a

network of nodes grouped into regions based on the notion

of network locality. In each region, one node is designated

as the coordinator or planner node for the region and man-

ages all nodes and links within its region.

The key contribution of this paper is the query planning

process at the planner node. The reuse lattice, the seman-

tic analyzer, and the cost model components of the planner

node provide the functionality required for identifying and

evaluating reuse opportunities. The semantic analyzer uti-

lizes operator semantics to identify existing operators that

can be reused in the computation of the new query request

(see Section 3). The reuse lattice congregates information

from the operator repository and the network hierarchy into

a single structure to allow efficient search and indexing (see

Section 4). Finally, the cost model combines information

from all components to compute a cost-measure for each

candidate reuse opportunity/deployment.

We use the metric of ‘network usage’ [17] to compute

costs of query deployments. The network usage metric

computes the total amount of data in-transit in the network

at a given instant. We define a cost function C(G, Θ(t)) that

estimates the total network usage per unit time for deploy-

ing operators Θ(t) over the system G. Note that the set of

operators Θ(t) remains constant as long as no queries join

or leave the system and may change only at the instant of

deployment or departure of a query. When new queries are

deployed, Θ(t) may change due to the addition of new op-

erators and the modification of existing operators. Then the

total cost of the system is given by
∑

∞

t C(G, Θ(t)). We

consider the minimization of the overall system cost while

taking the long-running nature of the queries into consider-

ation, min(
∑

∞

t C(G, Θ(t))) as an objective function.

3 Identifying Reuse Candidates

The aim of the semantic analyzer is to identify two kinds

of reuse opportunities: (1) Containment or Exact matches

and (2) Overlaps, where even existing operators that can-

not be directly reused to compute a query can be modified

in order to induce reuse. Throughout the paper, continu-

ous queries are specified using the SQL semantics. Each

operator θ is specified using its definition, network location

and lifetime. An operator serves as a source for the stream

computed by its underlying query.

In order to reuse θi in the evaluation of Q, the following

base conditions should be satisfied: both should refer to the

same set of stream sources, specify identical join conditions

and the group-by conditions (for aggregation) used by Q
should be a subset of those used by θi.

3.1 Relaxation and Compensation

Our focus is primarily on relaxing join operators. We

consider four kinds of relaxations of existing operators in

the system: (1) relaxation of selection predicates, (2) re-

laxation of project operators (3) relaxation of operator life-

time, and (4) relaxation of window specification. Depend-

ing upon the query and the existing operator, one or more

of these relaxations may be applied. During relaxation, an

existing operator is modified into a ‘relaxed’ operator and

compensation operators. Compensation operators are intro-

duced to ensure the consistency of results of existing queries

and are also used to rewrite the new and existing queries in

terms of the relaxed operator.

Relaxation and Compensation: Let θ represent an

already deployed operator and Q represent a new query.

Then, θ is called a ‘relaxation’ of θ under Q, if both Q and θ
can be computed from θ by applying only simple selection,

projection and temporal filter operators additionally over θ.

These additional operators are referred to as compensation



operators. A relaxation θ of θ under Q is called a minimal

relaxation if ∀ relaxations θi of θ under Q, θ ⊆ θi.

Given that an operator θ satisfies the base conditions with

a query Q, a minimal relaxation of the operator is computed

using the following steps. These steps are then demon-

strated using an example.

1. Relaxing selection predicates : An operator can be

relaxed by modifying the selection predicates, there by im-

posing a less restrictive filter condition. We relax the op-

erator θ such that the new relaxed operator θ is a minimal

cover of θ and Q. Since selection operators are idempotent,

a simple way to compose compensation operators σQ (or

σθ) is to include all predicates that appear in Q (or θ).

2. Relaxing projections : Relaxing projection condi-

tions involves expanding the list of projected columns to

include those required by both Q and θ. The compensation

projection operators ΠQ and Πθ are simply those columns

in the output list of Q and θ respectively.

3. Relaxing operator lifetimes : The lifetime of the

relaxed operator is set to the maximum of the lifetimes of all

the queries using it. The lifetime of compensation operators

are set to those of the original operator or query respectively.

4. Relaxing windows : Our relaxation techniques are

primarily aimed at sliding-window join operators where

windows are specified using a range i.e., size and slide i.e.,

frequency of computation. Windows are relaxed by using

the larger of the range specifications of θ and Q and by using

a boolean OR condition over the two slide specifications.

5. Cascading relaxations : If relaxing an operator in-

volves the relaxation of conditions that are not local (i.e.

not at the current operator itself) but instead are embedded

into the input streams by some upstream operator, then we

may need to perform cascading relaxations (and the associ-

ated compensations) for those upstream operators as well.

3.2 Example

The following example explains the relaxation and com-

pensation process for the queries Q1 and Q2 described in

Section 2.1. We explain how the FLIGHTS⊲⊳CHECK-INS join op-

erator θj deployed for query Q1 should be relaxed to be

reused in the evaluation of query Q2. Originally,

θj :SELECT FLIGHTS.NUM, FLIGHTS.GATE,

FLIGHTS.DEST, CHECK-INS.STATUS FROM FLIGHTS

[RANGE 5 MIN], CHECK-INS [RANGE 1 MIN]

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE = ‘‘DL’’

AND FLIGHTS.TERMINAL = ‘‘TERMINAL A’’;

Since the base conditions are satisfied by θj under Q2, the

operator can be reused with the query. However, relaxation

is required. We briefly outline the steps to compute the min-

imally relaxed operator θj next.

1. Relaxing selection predicates : The selection conditions

C of θj is given by:

C : FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE IN (‘‘DL’’,‘‘CO’’)

In this case, compensation selection operators are required

only for the existing query, and the conditions Cθ in the

compensation operator σθ are the selection predicates spec-

ified in the original operator θj .

2. Relaxing project operators : The project column list L
in θj is given by:

L : FLIGHTS.NUM, FLIGHTS.GATE, FLIGHTS.DEST,

FLIGHTS.TERMINAL,FLIGHTS.CARRIER CODE,

CHECK-INS.STATUS, CHECK-INS.VACANT SEATS

The compensation projection operators are simply those

columns specified by θj and Q2.

3. Relaxing lifetimes : The lifetime of the new operator

θj will be the maximum of the lifetimes of Q2 and Q1.

4. Relaxing windows : The window range for the CHECK-

INS stream in θj is set to 5 minutes (maximum of range for

Q1 (i.e. 1 minute) and Q2 (i.e. 5 minute)). Similarly,

the slide is specified by the following boolean condition:

((t mod 1 ≡ 0) ∨ (t mod 5 ≡ 0)), which is simplified to

just (t mod 1 ≡ 0). Range compensation operator τθ filters

out tuples whose data items corresponding to the CHECK-INS

stream fall beyond a 1 minute window. Similarly, slide com-

pensation operator ΓQ2 only forwards results that appear at

a 5 minute interval.

5. Cascading relaxations : Since the selection conditions

on the FLIGHTS source are actually performed at the source,

the conditions in the selection operator at the source will

have to be replaced with C. The same applies to the project

operators at the sources FLIGHTS and CHECK-INS.

4 Searching using Reuse Lattice

The ‘Reuse Lattice’ data structure combines information

from the operator repository and the network hierarchy into

a single structure that allows efficient search and identifica-

tion of reuse opportunities.

The reuse lattice uses the operator definition to encode

containment. Since operator definitions are similar to view

definitions in traditional databases, this allows us to lever-

age the large body of existing work in rewriting queries

using materialized views. Particularly, we adapt the filter

tree index structure described in [12] to efficiently maintain

containment relationships between operators. Section 4.1

describes the adaptation of the structure to the context of

continuous queries to create the reuse lattice. Section 4.2

describes techniques that extend the structure to incorporate

network locality.

4.1 Encoding Operator Containment

The reuse lattice adapts a restricted filter tree struc-

ture [12] to the context of a distributed stream processing



system. Given a query, the filter tree structure can be used

to quickly narrow down the list of candidate operators in

the system that will give rise to valid rewrites. The filter

tree is a multiway search tree where all leaves are at the

same level. A single node in this structure represents a col-

lection of operators. Different partitioning conditions are

applied to the nodes at each level to further partition the

operators into multiple smaller disjoint nodes at the next

level. For example, at the top-most level, operators are par-

titioned into disjoint subsets based on source streams (spec-

ified in the FROM clause of the operator definition). Each

disjoint subset is represented at that level by a single node

in the filter tree. A different partitioning condition is ap-

plied at each subsequent level. For example, we partition

nodes into disjoint subsets based on join predicates at the

second level and group-by predicates at the next level. At

this point, all the base conditions have been accounted for.

We further partition each node based on each of the relax-

able conditions, viz. selection predicates, project column

list and window specifications. The last three levels in the

filter tree are only used when searching for reuse opportu-

nities that do not require modifications. The key at each

level is determined by the partitioning condition. For exam-

ple, if the partitioning condition is the set of source streams,

then the list of sources specified in the FROM clause of the

definitions serves as the key. Each node in the filter tree

is a collection of <key,pointer> pairs that may further be

organized into an internal index structure based on contain-

ment of keys (determined by the partitioning condition) to

further speed-up search within a node. At the lowest level

in the lattice, the internal nodes contain pointers to actual

operator definitions.

4.2 Encoding Network Location

In order to allow search based on different granularities

of network locality, network nodes are organized into ‘re-

gions’ based on the notion of “nearness in the network”.

The organization of network nodes into regions can be

based on a clustering algorithm like K-Means that uses

inter-node delay as a clustering parameter or a static group-

ing if the distribution of nodes in the infrastructure is known

before hand. Each region is identified by a unique bit-vector

of length n, where n is the number of regions. We refer to

this bit-vector as a ‘Region ID’ (RID). The RID for the ith

region has the ith bit set to 1 and all other bits set to 0.

The network location indicator (NID) of an operator, is a

bit-vector that represents the region(s) to which the operator

belongs. The ith bit of the NID is set to 1 only if the node

belongs to the ith region. At the lowest level, each internal

node contains pointers to all operators with the same key at

each level of the lattice. Each internal node in the lattice is

again associated with an NID which is the bitwise OR of all
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Figure 2. A single leaf lattice node.

the associated operator NIDs. Note that the same operator

may appear at multiple network locations causing the oper-

ator NID to have more than one bit set to 1. Search by net-

work location is supported by providing the lattice search

algorithm with a bit-vector that specifies network locality

restrictions. If relaxations are allowed, the search algorithm

selects all operators that satisfy the base conditions.

Figure 2 shows an example lattice node. The figure

shows a single leaf level lattice node where the partition-

ing condition is the window specification. As the figure

shows, the lattice node contains a collection of keys, (RANGE,

SLIDE) specifications in this case, such as (5,1), (6,2) etc.,

organized into a containment (see Section 3.1) based struc-

ture. Since this is a leaf node, each internal node contains

a pointer to a set of operators. Each operator is associated

with a NID corresponding to the regions where the operator

resides. For example, the NID of key (5,1) indicates that

such an operator is available in regions 1, 2 and 4.

5 Experimental Evaluation

Experimental evaluation of the STREAMREUSE ap-

proach studies the performance of our techniques with re-

spect to a number of metrics such as resource usage, la-

tency, and planning time. Experiments were performed on

both simulations and a prototype and were conducted using

two very different workloads: an enterprise workload ob-

tained from Delta Air Lines and a synthetically generated

RFID workload. Our results show that (1) our techniques

can reduce network usage by as much as 96% when com-

pared to the state-of-art approaches and (2) by our dynamic

grouping approach, computation costs can be reduced by

more than an order of magnitude while the increase in la-

tency and time-to-deployment is negligible.

5.1 Workloads

Our techniques are primarily aimed at workloads with

a high number of simultaneously executing continuous



queries where there is significant opportunity for operator

reuse. It should be noted that while our system can han-

dle the other workloads, if the number of queries is low,

the benefit to be realized from enabling operator reuse is

also low. We evaluate our techniques using two repre-

sentative workloads. Enterprise information systems (Sec-

tion 2.1) are representative of workloads with a high number

of queries and a low number of sources. Similarly, applica-

tions like the ones used for inventory tracking using RFID

tags can be categorized as a workload with a high number

of sources and a high number of queries.

EW: Enterprise-Workload The enterprise workload is

a real-world workload consisting of gate-agent, terminal

and monitoring queries posed as part of the day-to-day op-

erations of Delta Air Lines’ enterprise operational informa-

tion system. The query workload is based on the 5 query

sources - Flights, Check-ins, Baggage, Weather and Sales.

Gate agent queries constitute 80% of the workload and the

SLIDE for these queries is set to 1 minute. The queries use

the following template.

Q3: SELECT FL.GATE, BG.STATUS, CI.STATUS

FROM FLIGHTS FL [RANGE 5 MIN], BAGGAGE BG

[RANGE 1 MIN], CHECK-INS CI [RANGE 1 MIN]

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.NUM = BAGGAGE.FLIGHT

AND FLIGHTS.NUM = ?;

Each gate agent query originates at the gate of departure of

a flight and lasts for 2 hours prior to departure of the flight.

Terminal queries, which represent 15% of the workload, are

longer running queries (12 hours lifetime) and follow the

template of query Q1 in Section 2.1 and are evaluated every

minute. Finally, the last 5% of the workload represent long-

running (6 hours) ad-hoc monitoring queries over any com-

bination of the 5 sources. For these queries, we use window

ranges and slides that are uniformly distributed between [1-

5] minutes for all streams. With nearly 1500 flights a day,

we assume that queries arrive with a Poisson distribution

with µ = 60 queries/hour. Each update record was as-

sumed to be of the same size (100 bytes).

RW: RFID-Application Workload The synthetic RFID

workload models the quadrant representing systems with a

large number of queries over a large numbers of sources

resulting in smaller overlaps between queries. This work-

load consisted of 20 sources with varying query size (3-5

joins), Poisson arrival rate (µ = 30queries/hr) and query

lifetimes similar to that of the enterprise workload.

5.2 Experimental Setup

Our prototype was built over a distributed stream pro-

cessing system [14] and used a testbed of 128 Emulab

nodes (Intel XEON, 2.8 GHz, 512MB RAM, RedHat Linux

9), organized into a topology that was generated using the

standard tool, the GT-ITM internetwork topology genera-

tor [20]. Links were 100Mbps and the inter-node delays

were set between 1msec and 6msec. The simulation ex-

periments were conducted over transit-stub topology net-

works generated using GT-ITM. Experiments used a 128

node network, with a standard Internet-style topology: 1

transit (e.g., “backbone”) domain of 4 nodes, and 4 “stub”

domains (each of 8 nodes) connected to each transit domain

node. Link costs (per byte transferred) were assigned such

that the links in the stub domains had lower costs than those

in the transit domain, corresponding to transmission within

an intranet being far cheaper than long-haul links. We used

a uniformly random selection of nodes for sink placements.

The STREAMREUSE approach is compared with two

other state-of-the-art techniques: (1) NO REWRITING, reuses

existing operators only if their definitions exactly match the

requirements and does not perform any rewritings [17, 18]

and (2) NO REUSE [8] does not take into consideration any

existing operators while deploying new queries.

In order to compare the resource usage of our techniques

with other existing approaches, the following two concrete

metrics are used: the instantaneous network resource us-

age and the number of operators in the system which is

indicative of the processing resource usage. The effect of

dynamic operator grouping on response time of individual

deployments is measured using the end-to-end latency of

deployments. Finally, the time-to-deployment is used to

evaluate the overhead imposed on the planning process.

5.3 Efficiency of Deployments

Figure 3 shows the total network usage per instant of

time for a 5 hour duration of system deployment with the

EW workload. Gate, terminal and monitoring queries last

for 2, 12 and 6 hours respectively. After initial ramp-up,

approximately 120 queries execute concurrently.

Under the EW workload each gate query specifies a

unique flight number. Similarly, all terminal queries are

unique. All selection predicates are placed earlier in the

query deployment, as close to the source as possible. In

the presence of all unique predicates, the NO REWRITING tech-

nique degrades to a NO REUSE technique. As the graph shows,

even in the presence of unique selection predicates, our ap-

proach of runtime relaxation and rewriting can reduce net-

work usage by nearly 96% as compared to a NO REUSE/ NO

REWRITING approach. This large win can be attributed to

the fact that fewer join operators to which inputs need to

be streamed are deployed in the system. In the presence of

highly selective joins, the small increase in input size to few

join operators is negligible compared to streaming inputs to

a large number of join operators.

Figure 4 shows the total network usage with the RFID

workload (RW) over 5 hours. This workload has more
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ployed operators
sources than the enterprise workload, and sources speci-

fied in queries are chosen from a large range of combina-

tions. In fact, with the RW workload, within any set of con-

currently executing queries, only 5 queries had any com-

mon joins with other queries. Consequently the number of

rewrite/reuse opportunities available are fewer. Again, as in

the case of the enterprise workload, since negligible num-

ber of queries specify the exact same selection predicates,

the NO REWRITING approach degenerates into a NO REUSE ap-

proach. The figure shows that a dynamic grouping based

approach results in a 28% reduction in network usage even

with this workload.

5.4 Evaluation of Computation Costs

Computation costs are evaluated using the average num-

ber of operators deployed at any instant of time. Recall

that, since all selection predicates are unique in EW, the NO

REWRITING approach degenerates into a NO REUSE approach.

Figure 5 shows the average number of join, and select op-

erators that are concurrently executing at any given instant

of time with STREAMREUSE and the NO REUSE approaches.

The figure shows that the STREAMREUSE approach effects

a massive decrease in the number of join operators with only

a slight increase in the number of selection operators. The

increase in selection operators can be attributed to the intro-

duction of additional compensation operators while reusing

existing joins. This figure shows that even in the presence

of unique queries, by effectively sharing operators between

queries through dynamic grouping, the number of join op-

erators can be reduced by an order of magnitude. It is a

well known fact that joins are expensive operators and can

reduce throughput. By reducing the number of such ex-

pensive joins, we expect the throughput to increase signif-

icantly. Figure 6 shows the number of deployed operators

with the RW workload. Briefly, in spite of the low overlap

between queries, our techniques resulted in a 28% reduction

in join operators over the NO REUSE approach.

5.5 Effect of Grouping on Latency

Figure 7 shows the end-to-end latency of 120 queries of

the EW workload with STREAMREUSE and with NO REUSE/
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NO REWRITING. The figure shows that latencies experienced

by the queries with STREAMREUSE is comparable to that

with NO REUSE or NO REWRITING. On an average, latency in-

creases by 13 msec with STREAMREUSE. Under the RW

workload the average increase in latency with STREAM-

REUSE is only 3.675 msec. Since most applications can

tolerate this slight increase, this is a small price to pay for

the large savings in network and computational costs.

5.6 Prototype Experiments

The scalability of the STREAMREUSE approach was

studied by examining the overhead imposed by the planning

process (including searching the lattice and computing re-

laxations) on the total time to deployment. Figure 8 shows

the total planning time for the deployment of 300 queries

from the EW workload each with an average of 8 operators

(including selections and projections). The figure demon-

strates: (1)that the increase in planning time is negligible

(an average increase of 1 ms) and (2) the increase in plan-

ning time with the size of the lattice is near linear. Given the

large gains in network and computational costs, this leads

us to conclude that this one time overhead at the time of

deployment is completely justifiable.

6 Related Work

A number of data-stream systems such as

STREAM [10], Borealis [5], NiagaraCQ [11] and

System S [9] have been developed to process queries over

continuous streams of data. We present a summary of

related work pertaining to techniques for operator reuse.



Optimistic-deployment (Static): Such systems use

rules such as ‘pull-up selections’ to improve reusability [11]

or assume that the workload is already known [19, 13]. The

approach may be effective when the workload is known a

priori, but is unable to handle a dynamic workload since

the system must pay the price of increased intermediate data

size even for operators that are never reused.

Runtime recomputation (Dynamic): In this approach,

with each arrival or departure of a single query, a portion

of the query network [5] is replanned. However, operator

groupings are performed by the system administrator and

are not dynamic.

System level functionalities that allow runtime modifi-

cation of operator parameters have been implemented in

systems such as Borealis [5]. Our techniques utilize such

system-level functionality, along with semantic knowledge,

to perform dynamic grouping of queries and runtime migra-

tion of query plans. Our work also builds on query rewriting

techniques that have been widely studied in the context of

materialized views [12]. While operator definitions in our

context are similar to view definitions, our problem is com-

plicated by the need to consider network locality, operator

similarity, windows and runtime modifications in addition

to containment.

7 Conclusion and Future Work

High performance and massive scalability are some of

the most important goals in the design of a distributed

stream query processing service. In such systems, where

the service is often specified as a data flow graph consisting

of well-defined user-written or system generated operators,

the ability to decompose the request into smaller sub-graphs

and effectively utilize reuse opportunities may be the key to

achieving the desired levels of scalability and performance.

We have described STREAMREUSE, a reuse-conscious

distributed stream query processing system. It uses a dy-

namic query grouping approach to identify and encode

reuse opportunities at runtime based on operator semantics

and network locality awareness. We introduce the notion of

‘relaxations’ and the ‘reuse lattice’ data structure to enable

transformations of existing operators that exhibit operator

similarity and network locality similarity to be reused. We

evaluate the STREAMREUSE approach by conducting ex-

periments over a range of different workloads. The exper-

imental results show that our reuse techniques can reduce

resource usage and computational costs by more than an

order of magnitude compared to existing approaches. Our

research on STREAMREUSE continues along a number of

dimensions. Currently, we are investigating issues pertain-

ing to the migration of stateful operators and scalable tech-

niques for distribution of the planning process and the reuse

lattice.
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