
Distributed Line Graphs: A Universal Framework for Building DHTs Based
on Arbitrary Constant-Degree Graphs

Yiming Zhang1, Ling Liu2, Dongsheng Li1, Xicheng Lu1
1National Laboratory for Parallel and Distributed Processing, National University of Defense

Technology, Changsha, China
1{ymzhang, dsli, xclu}@nudt.edu.cn

2College of Computing, Georgia Institute of Technology, Atlanta, USA
2lingliu@cc.gatech.edu

Abstract

Most proposed DHTs have their unique maintenance
mechanisms specific to the static graphs on which they
are based. In this paper we propose distributed line
graphs (DLG), a universal framework for building
DHTs based on arbitrary constant-degree graphs. We
prove that in a DLG-enabled, N-node DHT, the out-
degree is d, the in-degree is between 1 and 2d, and the
diameter is less than 2(logdN�logdN0+D0+1), where d,
D0 and N0 represent the degree, diameter and number
of nodes of the initial graph, respectively. The
maintenance cost of DLG-enabled DHTs is O(logdN).
We show the power of DLG technique by applying it to
Kautz graphs to propose a newDHT scheme.

1. Introduction

Recently constant-degree Distributed Hash Tables
(DHTs) have attracted significant attention from both
industry and academic research due to their good
tradeoffs between routing path length and routing table
size. Constant-degree DHTs are usually proposed based
on a specific type of constant-degree graphs. E.g., CAN
[1] is based on d-torus; Viceroy [2] is based on butterfly;
D2B [3] and Koorde [4] are based on de Bruijn graphs;
FissionE [5] and Moore [6] are based on Kautz graphs.
DHTs engage certain maintenance mechanisms to

deal with dynamics such as node join/departure. These
mechanisms are usually complicated and error-prone.
Most constant-degree DHTs have a clean-slate design of
their maintenance mechanisms, tightly coupled with the
static graphs on which they are based. In this paper, we
present the distributed line graphs (DLG) technique, a
universal framework for building DHTs based on
arbitrary constant-degree graphs.
We prove that in a DLG-enabled, N-node DHT, the

out-degree is d, the in-degree is between 1 and 2d, and

the diameter is less than 2(logdN�logdN0+D0+1), where
d, D0 and N0 represent the degree, diameter and number
of nodes of the initial graph, respectively. This diameter
reaches the theoretical lower bound �(logdN) of
constant-degree DHTs [7]. The number of messages
caused by each node join/leave is O(logdN).
Our proposed DLG technique is inspired by a novel

technique called line graph (LG) iteration [8]. The LG
iteration, as well as its variations [8-11], has been
extensively studied and used as a universal framework
for building different multiprocessor networks. However,
it requires global topology information and centralized
control, and thus cannot be applied to DHTs.
The challenge we face is the absence of knowledge

for what graphs we are to deal with, combined with the
characteristics of DHTs such as decentralized control
and lack of global information. To address this, the key
idea behind our DLG-based solution lies in its iterated
edge-node transition for routing table construction,
which retains most properties of the initial graphs.
To the best of our knowledge, we are the first to

propose a universal framework for building DHTs based
on arbitrary constant-degree graphs. Using the DLG
technique, only minimum extra work is required to do to
design constant-degree DHTs. We demonstrate the
power of DLG technique by applying it to Kautz graphs
to present DLG-Kautz (DK), a DLG-enabled and Kautz
graph-based DHT. Furthermore, we use DK as a model
to evaluate the effectiveness of our proposals through
extensive simulations, and compare it with other DHTs.

2. Concept and line graph iteration

A graph G = (V, E) consists of a set of nodes V=V(G)
and a set of directed edges E=E(G) between nodes.
If a = [x, y] is an edge from x to y, we say that x (or a)

is adjacent to y and y is an out-neighbor of x, and also
that y (or a) is adjacent from x and x is an in-neighbor of

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.35

150

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.35

152

y. The number of nodes in G is called the order of G.
Let ()G x

�� and ()G x
�� denote the sets of nodes

adjacent to and from x, respectively. Their cardinalities
are the in-degree, () | () |G Gx x� � �� � , and the out-degree,
() | () |� � �� �G Gx x , of x. Graph G is d-out-regular (resp. d-

in-regular) if ()G x d� � � (resp. ()G x d� � �) for all nodes
x�G. Graph G is d-regular (constant-degree) if it is d-
out-regular and d-in-regular.
The diameter of G is the largest distance over all the

pairs of nodes. A series of graphs is incrementally
expandable if it contains graphs of size n for any n � n0.
Let the initial graph G0 be a d-regular graph. In the

line graph [8] Gi+1 = L(Gi) of Gi, i = 0,1,2,…, each node
corresponds to an edge of Gi, i.e. V(Gi+1) = {uv|[u, v]
�E(Gi)}; and a node uv is adjacent to a node wz iff v =
w, that is, [uv, wz]�Gi+1 when edge [u, v] is adjacent to
edge [w, z] in Gi. Clearly Gi, i = 0,1,2,…, is d-regular.
Line graphs can be defined iteratively as Gi=L(Gi�1)

=…=Li(G0). Line graph (LG) iteration simply refers to
the process of generating graphs by iteratively applying
the L operator, and Gi is said to be derived from G0.
Figure 1 shows two examples of LG iterations.

a) 0 (2,1)G K� b) 1 0() (2, 2)G L G K� � c) 2 1() (2,3)G L G K� �

Figure 1. Examples of line graph iterations

Let the order and diameter of G0 be N0 and D0. By
[8], the order Nn and diameter Dn of Gn = Ln(G0) satisfy

0� � n
nN N d , 0� �nD D n (1)

LG iteration retains almost all properties of the
initial graph, such as the degree, diameter, connectivity,
and routing algorithm. Many graphs can be defined
iteratively by LG iterations. For example, Kautz graph
K(d,D) = L(K(d,D�1)) = … = LD�1(K(d,1)). However, it
is easy to see they are not incrementally expandable.
To support any number of nodes, many variations

were proposed, e.g. partial line graphs (PLG) [8],
necklaces [9], and factorization [10]. However, they are
centralized algorithms and require global topology
information, and thus cannot be applied to DHTs.

3. Distributed line graphs

3.1 Basic DL graphs andDL iteration

Different graphs usually utilize different notation to
define their nodes and edges. We first unify the way to
describe a d-regular, N0-node initial graph G0.
Let |u| denote the length of identifier of node u, e.g.

if u = u1u2…uk, then |u| = k. Let X be an alphabet of N0
letters. Clearly 	 x�X satisfies |x| = 1. The initial graph
G0 has its nodes labeled with letters x�X one by one,
and for each node ��G0 there is an in-letter set ()
 �
and an out-letter set ()� � , which are defined as

0
() ()
 � ��� �G ,

0
() ()� � ��� �G . (2)

Obviously | () | | () |
 � � �� � d . Since all initial graphs
illustrated in this paper have an order of less than 10, we
simply label the nodes in an initial graph G0 with
identifiers 0,1,…, N0�1. This alphabet approach enables
us to describe all d-regular graphs in a universal way.
For example, Figure 2 shows a (2,2)-butterfly graph, in
which the in-letter set and out-letter set of node 0 are
(0) {4,6}
 � and (0)� {4,5}� , respectively.

Figure 2. Universal naming of a butterfly graph

Let u = u1u2…um, v = v1v2…vn, m � n. Define
1� ��� m nu v u v . (3)

The technique presented in this paper is based on the
concept of distributed line graphs as follows.
Definition 1: Let the initial graph 0 (,)G V E� be a d-

regular graph. A series of graphs ()
1 (,)ii iG DL G v� � ,

where () ()�i iv V G satisfies
() ()() ()� �	 � � �

i i

i i
G Gu v v ()| | | |�iv u (4a)

for i = 0,1,2,…, are said to be a family of distributed line
(DL) graphs with base d derived from the initial graph

0G , if the following conditions hold.
() () ()

1() () { } { ()}�
� � � � ��

i

i i i
i i GV G V G v u v u v� � (4b)

() () () ()
1

() () () () ()

() () {[,] ()} {[,] ()}

{[,] ()} {[,] (), ()}

� �
�

� � �

� � �� � �� �

�� � �� ��

i i

i i i

i i i i
i i G G

i i i i i
G G G

E G E G x v x v v y y v

u u v u v u v w u v w v� �
(4c)

The transitions from Gi to Gi+1 are called distributed
line (DL) iteration. Node ()iv is called the responsible
node for ()

1 (,)ii iG DL G v� � . Note the responsible nodes
of DL iterations are constrained to the ones with locally
shortest identifier compared with their neighbors. A new
node ()

1
i

iu v G ��� corresponds to an edge ()[,]�i
iu v G .

The DL iteration from Gi to Gi+1 can be summarized
as follows. 1) Let Gi+1 and Gi be the same, i.e. Gi+1 = Gi;
2) delete node ()iv and all edges adjacent to/from ()iv in
the new graph Gi+1; 3) for each edge ()[,]iu v adjacent to

151153

()iv in Gi, add a new node ()iu v� to Gi+1; and 4) in Gi+1,
the edges of the form ()[,]iu u v� will be adjacent to

()iu v� , and the edges of the form ()[,]iu v w� will be
adjacent from ()iu v� with ()()

i

i
Gw v�� � .

Figure 3 shows three examples of DL iterations.

Figure 3. Examples of DL iterations

To analyze the in-neighbors and out-neighbors of a
node (in Theorems 1 and 2), next we present Lemmas
1~2. Note that in this paper we only present the proofs
of important theorems due to lack of space.
Lemma 1: Let graph G be a DL graph with base d.

Let x = x1x2…xn�V(G). Then there are no nodes of the
form x' = xixi+1…xn in graph G, where 1< i � n.
Lemma 1 shows that in a DL graph the identifier of

one node can not be the suffix of another.
Lemma 2: Let graph G be a DL graph and x�V(G).

If there is some node ()���Gy x satisfying |y |<|x|, then
() 1G x� � � . (5)

Lemma 2 shows that if a node x has an in-neighbor
with shorter identifier compared with x, then it has no
other in-neighbors. Clearly, by Lemma 2 it is easy to see
that if there is some node ()�� �Gy x satisfying |y|�|x|,
then for any node ()���Gy x we have |y|�|x |.
The following Theorem 1 describes the in-neighbors

of a node in DL graphs.
Theorem 1: Let graph G be a DL graph with base d.

Let x = x1x2…xn�V(G).
If there is a node ()���Gy x satisfying |y |<|x|, then

1 1() { | ... ()}�
�� � � �G nx y y x x V G . (6a)

Otherwise for each 1()�
� x (defined in (2)), either
there is one in-neighbor ()Gy x�� � satisfying

1 2 1...� �� ny x x x , (6b)

or there are d in-neighbors ()Gy x�� � satisfying

1 2 1' ...� � �� ny x x x (6c)
with ' ()�
 �� . And x has no other in-neighbors in G.
Proof: Theorem 1 holds initially for G0. Suppose

Theorem 1 holds forGi. Let v=v1v2…vm, Gi+1=DL(Gi, v).
We first prove Theorem 1 holds if x is a new node.

By (3), the new nodes are of the form �v1v2…vm.
If there is some node

1
()

�

���
iG

y x satisfying |y|<|x |,
then by (4a) we have |y|=|u|. By (6b) we have

y = �v1v2…vm�1. (7)
By Lemma 2, node y is the only in-neighbor of x and

thus (6a) holds in this case.
Otherwise, similarly to the above case, by (3), (4a)

and (6a), the in-neighbors of v in Gi are of only one form:
u'=�'�v1v2…vm�1. Clearly we have |u'| = |x | = |v |+1. Since
Theorem 1 holds for Gi, we have 2 1' ()�
� �u v in Gi,
and node v has d distinct in-neighbors in the form of

1 2 1...�� �� my v v v with ()�
 �� . According to (4c), they
are the in-neighbor set of x in Gi+1. So, Theorem 1 holds
when x is a new node.
Similarly, Theorem 1 still holds for graph Gi+1 when

x is an out-neighbor of node v.
Compare Gi+1 with Gi, the in-neighbors of other

nodes do not change. Therefore, Theorem 1 holds. �
From Theorem 1 it is easy to infer Corollaries 1~3.
Corollary 1: If two nodes x and y are neighbors in a

DL graph, then ||x| � |y|| � 1.
Corollary 1 describes the relationship between the

identifier lengths of any two neighbors in a DL graph.
Corollary 2: Let graph G be a DL graph with base d.

If G' = DL(G, v), then we have
| (') | | () | 1� � �V G V G d , (8a)

� �1 2(') () ... mV G V G v v v�� � with 1()�
� v . (8b)
Corollary 2 shows that there would be d�1 new

nodes generated after the DL iteration.
Corollary 3: Let graph G be a DL graph with base d.

Let x = x1x2…xm�V(G). Then for i =1,2,…,m�1,
1()
 ��i ix x , 1 ()�� �i ix x (9)

Corollary 3 describes the relationship between any
two consecutive letters in a node identifier in DL graphs.
The following Theorem 2 describes the out-

neighbors of a node in DL graphs.
Theorem 2: Let graph G be a DL graph with base d.

Let x = x1x2…xn�V(G). For each ()� �� nx , there is one
out-neighbor ()Gy x�� � satisfying

2 3... ...t ny x x x x �� (10)
with 1 � t � 3. And x has no other out-neighbors in G.
Note that xm…xn represents a null string if m>n. The

proof of Theorem 2 is similar to that of Theorem 1.
The following Theorem 3 describes the in-degree

and out-degree of a node in DL graphs.

152154

Theorem 3: Let graph G be a DL graph with base d.
For each node x�V(G), the out-degree and in-degree,
()� �

G x and ()� �
G x , satisfy respectively

()G x d� � � , 21 ()G x d� �� � . (11)
And the average degree of all nodes is 2d.
Proof: ()G x d� � � holds initially for G0. Suppose it

holds for Gi with i � 0. From Definition 1 the new nodes
and old nodes in Gi+1 = DL(Gi, v) all have an out-degree
of d. Thus ()G x d� � � holds.
If node x has one in-neighbor y satisfying |y |<|x|, then

by Lemma 2 we have () 1G x� � � . Otherwise each in-
neighbor y satisfies |y|�|x |. Then by Theorem 1 we have

2()Gd x d� �� � . Thus 21 ()G x d� �� � holds.
Obviously, the in-degrees and out-degrees of all

nodes in graph G satisfy

() ()

() () ()G G
x V G x V G

x x E G� �� �

� �

� �� � . (12)

So the average degree is 2d, and Theorem 3 holds. �
To get the upper bound for the diameter of a DL

graph, we first define the optimal DL iteration and �
mapping, and present the following Lemmas 3, 4 and 5.
Let the initial graph G0 = (V, E) be a constant-degree

graph. For i = 0,1,2,…, DL iterations ()
1 (,)� � i

i iG DL G v
are said to be optimal, if condition (4a) for responsible
node ()iv in Definition 1 is tightened as

()	 � iu V G ()| | | |�iv u . (13)
Note that by (13) the identifier of the responsible

node is required to be globally shortest, while by (4a) it
is only required to be locally shortest compared with its
direct neighbors. Let u, v be any two nodes in graph G
derived by a series of optimal DL iterations . By (13),
obviously we have ||u| � |v|| � 1.
Let u = u1u2…um. Define

1... , if
(,)

, otherwise.
� � � ��

� �
�

m i mu u i m
u i

u
(14)

Clearly, if i � m then |�(u,i)| = i, and if |u| � |v| then
�(u � v, |v|)=v. E.g.�(012,2) = 12, �(012 � 23, |23|) = 23.
Define � mapping of G asG' = �(G,m), where

(') { (,) | ()}�� �V G v m v V G , (15a)
(') {[(,), (,)] | [,] ()}E G v m w m v w E G� �� � (15b)

Clearly the orders of G and G' satisfy |G| � |G'|. For
example, in Figure 3 we have G0=�(Gi,1) with i=1,2,3.
Lemma 3: Let graph G be a DL graph derived from

G0 with base d and diameter D0. Let u and v be any two
nodes inG. The distance from u to v, dG(u, v), satisfies

0(,) | | 1� � �Gd u v v D . (16)
Lemma 3 describes the distance between any two

nodes in a DL graph. For example, in a DL graph
initiated from Kautz graph K(d,1), the path length is no
greater than the identifier length of the destination node.
Lemma 4: Let graph G be a DL graph derived from

the initial graph G0 by a series of optimal DL iterations.
Let the shortest node in G be of length m. Then

1
0(,) ()� �� mG m L G . (17)

Lemma 4 shows that a DL graph derived by optimal
DL iterations is isomorphic to a standard line graph
under the � mapping. The correctness of Lemma 4 lies
in the homomorphism of the optimal DL iterations and
the PLG iterations [8].
Lemma 5: Let graph G be a DL graph derived from

the initial graph G0 by a series of DL iterations. Let the
shortest node identifier in G be of length n. Then

1
0(,) ()� �� nG n L G . (18)

Lemma 5 shows that a DL graph derived by normal
DL iterations is also isomorphic to a standard line graph
under the � mapping. The following Theorem 4 gives
the upper bound for the diameter of a DL graph.
Theorem 4: Let graph G be a DL graph with base d

and order N. Let the order and diameter of the initial
graph G0 be N0 and D0, respectively. Then the diameter
of G,D(G), satisfies

0 0() 2(log log)� � �d dD G N N D . (19)
Proof: Let u and v be of the shortest and longest

identifier in G, respectively. Let |u| = m, |v | = n.
From Lemma 3, we have

0() 1� � �D G D n . (20)
By Lemma 5 we have 1

0(,) ()� �� mG m L G . Let N(G)
denote the order of graph G. By (1), (15a) we have

1 1
0 0() (())� �� � �m mN G N L G N d . (21)

The distance from v to u in G, dG(v, u), satisfies
0(,) 1� � �Gd v u D m . (22)

From Corollary 1, if two nodes x and y are neighbors
in G, then ||x | � |y|| � 1. Let the path from v to u in G is

(1) (2) ()... jv x x x u� � � � � . (23)
Then the identifier lengths of node v and u satisfies

(1) (1) (2)

()

| | | | (| | | |) (| | | |)
... (| | | |) 1 1 ... 1 (,)

� � � � � � �

� � � � � � � �j
G

n m v u v x x x
x u d v u

(24)

Then, by (20) ~ (22) and (24), Theorem 4 holds. �

3.2 DL+ graphs with node merge/split

From Corollary 2, the order of Gi+1=DL(Gi, v) is d�1
greater than that of Gi, which means DL graphs with d >
2 are not incrementally expandable. E.g., suppose G0 is
a 3-regular graph G0=K(3,2), as shown in Figure 4(a).
After iteration G1=DL(G0,1), there would be two more
nodes in G1 than in G0, as shown in Figure 4(b).
To address this problem, we present the merge/split

operation. Let graphG be a DL graph with base d. From
Corollary 2, if G'=DL(G, v), v=v1v2…vm, then there
would be d distinct new nodes in G' and V(G') � V(G) =
{�v1v2…vm} with 1()�
� v . Sort them by ascending
their first letters, then the d new nodes are of the form

153155

�iv1v2…vm with 1()�
�i v , i = 0,1,…, d�1. Each of the d
nodes is called sib-neighbor to other d�1 nodes.

Figure 4. Example of merge operations

Node merge. Of d new nodes in G' = DL(G, v), the
first half, nodes of the form �iv1v2…vm with i� / 2� �� �d ,
merge to one node s = �v1v2…vm with � = �0; and the
second half, nodes of the form �iv1v2…vm with i> / 2� ��d ,
merge to one node t = �v1v2…vm with / 2 1� � �� �� �

� d . This
operation is referred to as merge operation G" = Merge
(G', v). Node s in G" holds its component nodes by
taking charge of their edges in G', i.e. '' '()� �� � �G Gs

1 2(...)� i mv v v and '' ' 1 2() (...)�� �� � �G G i ms v v v with i� / 2� ��d ,
and so does node t.
In this paper, nodes s and t are referred to as physical

nodes, corresponding to real nodes in a DHT overlay;
and nodes that s and t hold are referred to as logical
nodes (nodes for short), corresponding to nodes in a DL
graph. Clearly a physical node and its logical nodes
have the same identifier length. In the following, the
number of logical nodes that a physical node v holds is
denoted as � �v . Figure 4(c) shows an example of the
merge operation (01 and 41 merge to 01) with � �01 2� .
Node split. On the other hand, if before the DL

iteration G' = DL(G, v), node v satisfies � � 1�v , then a
split operation G' = Split(G, v) will take place instead of
the DL iteration. Let node v=�jv1v2…vm, then the split
operation divides the logical nodes and their edges that v
holds into two shares. The original physical node v holds
the first share, the nodes of the form �iv1v2…vm with

� �/ 2� �� � � �j i j v ; and a new physical node holds the
second share, the nodes of the form �iv1v2…vm with

� � � �/ 2� �� � � �� �j v i j v . The new physical node is of the
form �v1v2…vm with � �/ 2 1� � � � � �� �

� j v .

We refer to the basic DL iteration combined with the
merge and split operation as DL+ operation, which is
summarized in Figure 5.
Procedure DL+ operation (OldGraph G, ResultGraph G')
1 Choose a physical node ()v V G� satisfying | | | |�v u or

� � � �(| | | |) ()� �v u v u for any () ()G Gu v v� ��� � .

2 if (� � 1�v) { ' (,)G Split G v� ; }
3 else { ' (,)G DL G v� ; ' (',)G Merge G v� ; }

Figure 5. DL+ operations

The graphs generated by the DL+ operations are
referred to as DL+ graphs. Clearly, the nodes in DL+
graphs are physical nodes, and the nodes in DL graphs
are logical nodes. By replacing all physical nodes with
their logical nodes, each DL+ graph has a corresponding
DL graph. If every physical node in a DL+ graph holds
only one logical node, the DL+ graph is isomorphic to
its corresponding DL graph. We say the initial graph, its
DL graphs and DL+ graphs have the same base d.
Obviously, the DL+ operation requires only direct

neighbor information of node v, and the family of DL+
graphs with arbitrary base is incrementally extendable.
The following Theorem 5 describes the in-degree

and out-degree of a node in DL+ graphs.
Theorem 5: Let graph G be a DL+ graph with base

d. Let the order and diameter of the initial graph G0 be
N0 and D0 respectively. For each physical node x�V(G),

()G x d� � � , 1 () 2G x d� �� � . (25)
And the average in-degree of all nodes is d.
Proof: A physical node x in G is responsible for

some logical nodes, which obviously have the same out-
neighbors in the corresponding DL graph. Then x has
the same out-degree as any of its logical nodes. From
Theorem 3 we have ()G x d� � � .
For ()� �

G x , consider the following two cases.
1) There is some physical node () ()G Gv x x� ��� �

satisfying |v |>|x|. Clearly there must be some certain
time when node v is going to be generated by operation
Gi+1 = DL(Gi, v'). Note x is a neighbor of v'. Then

� � � �' 1� �x v . (26)
Since in G we have |x |<|v|, by now (26) still holds.

So we would use the notation “x” to represent the logical
node of x. Let *G be the corresponding DL graph of G.
From Theorem 1, given any 1()�
� x there is one and

only logical node * ()Gy x��� of the form

1 2 1... my x x x� �� , (27)
or there are d logical nodes * ()Gy x��� of the form

154156

1 2 1' ... my x x x� � �� . (28)
In the case of (27), there would be one and only

corresponding physical node ()Gy x��� . In the case of
(28), since the split operation for node y won’t take
place if |y|>|x |, there would be two corresponding
physical nodes. Thus (25) holds in this case.
2) There are no physical nodes () ()G Gv x x� �� � �

satisfying |v |>|x|. The proof for this case is similar to that
for the first case, and we omit it due to lack of space.
Obviously, the in-degrees and out-degrees of all

nodes in graph G satisfy

() ()

() () ()G G
x V G x V G

x x E G� �� �

� �

� �� � . (29)

Thus the average in-degree of G is d. �
The following Theorem 6 describes the upper bound

for the diameter of a DL+ graph.
Theorem 6: Let graph G be a DL+ graph with base

d and order N. Let the order and diameter of the initial
graph G0 be N0 and D0 respectively. Then D(G), the
diameter of graph G, satisfies

0 0() 2(log log 1)� � � �d dD G N N D . (30)
Proof: Let G* be the corresponding DL graph of G

with order N*. For each physical node x�V(G), the
number of logical nodes satisfies � � / 2�x d . Then the
order of G* satisfies

* / 2� � � �� �� �N d N d N . (31)
Clearly, the path between any two nodes inG has its

counterpart path with the same length in G*. Then
() (*)�D G D G . (32)

By (31), (32) and Theorem 4, Theorem 6 holds. �

4. Building DHTs by using DLG technique

4.1 Self-stabilization on node joins

Initially the topology of a DLG-enabled DHT is a d-
regular graph G0. Then it evolves into a family of DL+
graphs as nodes join/leave. A new node p first look for a
responsible physical node v, then update routing tables
of relevant nodes. Since key assignments are usually
coupled with node/object naming conventions, we will
discuss them in the case study in Section 4.3.
Finding a responsible node. First, the new node p

randomly generates a key and sends a query for this key,
through a gateway node n that is already in the DHT. To
find such a gateway n, node p can use any discovery
mechanisms proposed in the literature. This query will
eventually reach a node u' responsible for the key.
Second, new node p invokes a JOIN message from

node u'. Then, at any intermediate node u, if u has a
neighbor w satisfying |w|<|u|, the JOIN message will be
forwarded to w; otherwise if u has a neighbor w'

satisfying � � � �(| ' | | |) (')� �w u w u , the JOIN message
will be forwarded to w '. This procedure will continue
until the JOIN message reaches a physical node v which
has no neighbors with shorter identifiers or more logical
nodes. Node vwill be responsible for this join event.
Updating the routing tables. This procedure is

equal to take a DL+ operation (G'=Split(G, v), or G'=DL
(G, v) followed by G"=Merge(G', v)) at the responsible
node v. After that there would be two new physical
nodes in the new DL+ graph. The first node corresponds
to node v, and the second one corresponds to new node p.

4.2 Self-stabilization on node departures

Graceful departures. When a node p leaves, its
routing information will be occupied by other nodes.
a) Choose a responsible node. Node p invokes a

DEPART message. Then at an intermediate node u, if u
has a neighbor w satisfying |w|>|u|, then the DEPART
message is forwarded to w; otherwise if u has neighbor
w ' satisfying � � � �(| ' | | |) (')� �w u w u , this message is
forwarded to w'. This process will continue until the
DEPART message reaches a physical node v which has
no neighbors with longer identifiers or less logical nodes.
b) Hand over logical nodes. Node v hands over its

logical nodes, as well as the corresponding edges
(routing table entries), to neighbor v', the logical nodes
of which can be put together with the ones from v. And
node p hands over its logical nodes to v. The change of
the logical nodes’ ownership will be noticed to all
relevant neighbors. Then node p departs from the system.
c) Merge logical nodes. The number of logical nodes

of v' may reach d after the handover operation from v to
v'. Let the d logical nodes of v' be x ()i = �iv1v2…vk,
i=0,1,…, d�1. The d logical nodes will merge to one
node x = v1v2…vk with ()

' () ()iG Gx x� �� � � and '()��G x
()()�� � i

G x , where G and G' represent the graph before
and after the merge operation, respectively.
Ungraceful departures. To handle an ungraceful

departure, as in traditional DHTs all (physical) nodes
periodically send ALIVE messages to their neighbors to
detect their ungraceful departures. Once a node detects
ungraceful departure of one of its neighbors, it carries
through all the operations on behalf of the ungracefully
departed node. The remaining process is the same.
The following Theorem 7 describes the maintenance

cost of DLG-enabled DHTs per join/leave (measured in
terms of the number of hops a message traverses).
Theorem 7: Let the order and diameter of the d-

regular initial graph G0 be N0 and D0 , respectively. The
cost of a join event is less than

0 03(log log) 1� � � �d dN N D d . (33a)
The cost of a leave event is less than

155157

0 0log log 1� � � �d dN N D d . (33b)
At most 3d nodes need to update their routing tables.

4.3 Case study

Using the DLG technique, in order to build a DHT
overlay based on a given initial graph G0, one need
a) to describe G0 by defining the in-letter set ()
 �

and out-letter set ()� � for each node ��G0; and
b) to design policies for object naming and mapping

according to the notation of node identifiers.
Next we show how to build DLG-Kautz (DK), a

DLG-enabled, Kautz graph-based DHT. Let Zd= {0,1,…,
d�1} be an alphabet of d letters. Define Kautz space as

1 2 1 1(,) { , , }� �� � ! �k i d i iKSpace d k x x x x Z x x i k� . (34)
Let K(d,D) denote Kautz graphs with diameterD and

base d. Then the node set and edge set are respectively
((,)) (,)�V K d D KSpace d D , (35a)

1 2 2 1((,)) {[,] , }D D d DE K d D x x x x x Z x� � ��� � !� � . (35b)
Examples of Kautz graphs K(2,1), K(2,2), and K(2,3)

are shown in figure 1(a), (b), and (c), respectively.
Wewill build DK from the initial graph G0 = K(d,1).
a) The in-letter set and out-letter set of letter � are

1() () { | , }
 � � � � � � ��� � � !dZ . (36)
b) According to (35a), the key space should be

KSpace(d, k) with k large enough (e.g. 100) to be able to
contain all possible nodes. In [5] we have proposed a
determinate algorithm (named KautzHash) to generate
keys with base=2 which are uniformly distributed in the
Kautz namespace. This algorithm could be easily
extended to apply to DK to generate keys with arbitrary
base, and we omit it in this paper due to lack of space.
An alternative way for mapping keys onto nodes is

outlined as follows. Let u = u1u2…um, s = s1s2…sr.
DefineP(u,s) as the maximum value of all integers i, 0 �
i � min(m,r), which satisfy um�i+j = sj for any j with 1 � j
� i. A key s is mapped onto a node u, iff (37) holds.

(,) | |P u s u� ; or (,) | | 1P u s u� � and 1 � ru s . (37)

5. Evaluation

We utilize DK as a model to evaluate the DLG
technique. We first evaluate the diameter and average
routing path length of DK (d=4, d=16), and compare it
with other constant-degree DHTs including CAN and
Koorde. Queries are generated randomly at a node,
destined for keys uniformly distributed in the key space.
The results are plotted in Figure 6. The diameter and

average path length of DK are denoted as DK (avg) and
DK (max), respectively. Note although FissionE can
only initiate from Kautz graph K(2,1), we show it in the
first figure for comparison. From Figure 6 we can infer

that both the diameter and average path length of DK are
much less than those of other DHTs. The difference is
more pronounced at a larger network size.

Figure 6. Diameter and average path length

Figure 7 shows the probability distribution of routing
path lengths of DK (d=4, d=16) for a network size of 1
million nodes. The low variance indicates that the
lengths of most paths are very close to the mean.

Figure 7. Path length distribution

We then evaluate the average message cost per
join/leave event in DK with d=16 for a network size of 1
million. There are 100 gateway nodes and a new node
randomly chooses one to start the join procedure. The
results are shown in Figure 8(a), which also includes the
cost in CAN for comparison. We conclude that the cost
of a join event in DK is much less than that in CAN.
Note that the cost of a leave event in CAN is 0, which is
because CAN utilizes an asynchronous background
process to reassign its zones.
We then evaluate the distribution of node identifier

lengths in DK with d=16 and network size of 1 million.

156158

The results are shown in Figure 8(b). More than 70%
nodes have the same identifier length of 5 and no nodes
have an identifier length more than 6. We conclude that
the distribution of identifier lengths in DK is almost
uniform and DK has a good load balance property.

Figure 8. Message cost & ID length distribution

6. Related work

CAN [1] uses a d-dimensional Cartesian coordinate
space (for some fixed d) and its degree is 2d. Each node
in CAN corresponds to a zone. Zones split or merge
when nodes join/leave. It utilizes a bit-correct routing
algorithm. The diameter of CAN is 1/2dN1/d .
Koorde [4] is based on the de Bruijn graphs and

achieves a diameter of O(logN) with 2 neighbors per
node. Koorde uses the immediate real predecessor to
simulate nodes that are not active on the ring. However,
these bounds are achieved only in the expectation and
with a constant in the “bigO” notation.
FissionE [5] utilizes Kautz graph K(2,D) as its initial

topology. It has an average degree of 4 and a diameter of
O(log2N). It uses a space partitioning method to add new
nodes to the overlay. Its routing algorithm is similar to
that in static Kautz graphs. Since the base can only be 2,
it cannot achieve better performance with higher bases.
Moore [6] uses the PLG technique [8] and proposes

the incomplete Kautz digraph to design a P2P network
based on Kautz graphs with arbitrary base. As discussed
in [12], however,Moore requires centralized control and
global information for its topology maintenance, and
thus is not a practical P2P scheme.
To address the problem of Moore, SKY [12] uses a

decentralized technique called distributed Kautz graphs
(DKG) for its topology maintenance, which borrows the
idea of edge-node transition from line graphs to get a
series of P2P topologies based on Kautz graphs. SKY is
the first effective P2P network based on Kautz graphs
with any base. Clearly, DKG is a customized technique
which can only be applied to Kautz graphs, while DLG
is a universal framework which could be applied to
arbitrary constant-degree graphs. In a nutshell, DLG is a
generalization of DKG, and DKG could be viewed as a
specialization of DLG in Kautz graphs.

7. Conclusion

In this paper we present the design of distributed line
graphs, a universal framework for building DHTs based
on arbitrary constant-degree graphs. We show the power
of DLG technique by applying it to Kautz graphs to
build an efficient DHT named DK.
In the future we will utilize the DLG technique to

make an in-depth study to gain a deeper insight of
common design choices of constant-degree DHTs. We
also plan to implement a prototype of the DK DHT.

Acknowledgement

This work is sponsored in part by the National Basic
Research Program of China (973) under Grant No.
2005CB321801, National Natural Science Foundation
of China under Grant No. 60673167 and 60703072. This
work is also partially sponsored by grants from NSF
CISE CSR program, CyberTrust Program, an IBM SUR
Grant, and an IBM Faculty Award.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker. A Scalable Content Addressable Network.
SIGCOMM 2001.

[2] D. Malkhi, M. Naor, D. Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. PODC 2002.

[3] P. Fraigniaud and P. Gauron. D2B: A de Bruijn Based
Content-Addressable Network. Theoretical Computer
Science, 355(1):65–79, 2006.

[4] F. Kaashoek and D. Karger. Koorde: A Simple Degree-
optimal Distributed Hash Table. IPTPS 2003.

[5] D. Li, X. Lu, J. Wu. FISSIONE: A Scalable Constant-
degree and Low Congestion DHT Scheme Based on
Kautz Graphs. INFOCOM 2005.

[6] D. Guo, J. Wu, H. Chen, X. Luo. Moore: An Extendable
Peer-to-Peer Network Based on Incomplete Kautz
Digraphwith Constant Degree. INFOCOM 2007.

[7] J. Xu, A. Kumar, X. Yu. On the Fundamental Tradeoffs
between Routing Table Size and Network Diameter in
Peer-to-Peer Networks. JSAC, 22(1):151–163, 2004.

[8] M. A. Fiol and A. S. Llado. The Partial Line Digraph
Technique in the Design of Large Interconnection
Networks. Transactions on Computers, C-41(7):848–857,
1992.

[9] P.Tvrdik. Kautz Necklaces. Research Report 94-08, LIP
ENSL, France, Mar. 1994.

[10] P.Tvrdik. Factoring and Scaling Kautz Digraphs.
Research Report 94-15, LIP ENSL, France, Apr. 1994.

[11] D Du, Y. Lyuu and D. F. Hsu. Line Digraph Iterations
and Connectivity Analysis of de Bruijn and Kautz
Graphs. Transactions on Computers, 42(5):612–616,
1993.

[12] Y. Zhang. SKY: Efficient Peer-to-Peer Networks Based
on Distributed Kautz Graphs. Research Report, NUDT,
Aug. 2007. http://www.kylinx.com/Papers/SKY.pdf.

157159

