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Abstract—Serverless distributed computing has received significant attention from both the industry and the research community.

Among the most popular applications are the wide-area network file systems, exemplified by CFS, Farsite, and OceanStore. These file

systems store files on a large collection of untrusted nodes that form an overlay network. They use cryptographic techniques to

maintain file confidentiality and integrity from malicious nodes. Unfortunately, cryptographic techniques cannot protect a file holder

from a denial-of-service (DoS) attack or a host compromise attack. Hence, most of these distributed file systems are vulnerable to

targeted file attacks, wherein an adversary attempts to attack a small (chosen) set of files by attacking the nodes that host them. This

paper presents LocationGuard—a location hiding technique for securing overlay file storage systems from targeted file attacks.

LocationGuard has three essential components: 1) location key, consisting of a random bit string (e.g., 128 bits) that serves as the key

to the location of a file, 2) routing guard, a secure algorithm that protects accesses to a file in the overlay network given its location key

such that neither its key nor its location is revealed to an adversary, and 3) a set of location inference guards, which refer to an

extensible component of the LocationGuard. Our experimental results quantify the overhead of employing LocationGuard and

demonstrate its effectiveness against DoS attacks, host compromise attacks, and various location inference attacks.

Index Terms—File systems, overlay networks, denial-of-service attacks, performance and scalability, location hiding.
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1 INTRODUCTION

SEVERAL serverless file storage services, like CFS [6],
Farsite [1], OceanStore [16], and SiRiUS [12], have

recently emerged. In contrast to traditional file systems,
they harness the resources available at desktop work-
stations that are distributed over a wide-area network. The
collective resources available at these desktop workstations
amount to several petaflops of computing power and
several hundred petabytes of storage space [1].

These emerging trends have motivated serverless file
storage as one of the most popular applications over

decentralized overlay networks. An overlay network is a
virtual network formed by nodes (desktop workstations) on

top of an existing TCP/IP-network. Overlay networks
typically support a lookup protocol. A lookup operation

identifies the location of a file given its filename. Location of
a file denotes the IP-address of the node that currently hosts

the file. There are four important issues that need to be
addressed to enable wide deployment of serverless file

systems for mission critical applications.
Efficiency of the lookup protocol. There are two kinds of

lookup protocol that have been commonly deployed: the
Gnutella-like broadcast-based lookup protocols [11] and the

distributed hash table (DHT)-based lookup protocols [29],
[23], [25]. File systems like CFS, Farsite, and OceanStore use
DHT-based lookup protocols because of their ability to
locate any file in a small and bounded number of hops.

Malicious and unreliable nodes. Serverless file storage
services are faced with the challenge of having to harness
the collective resources of loosely coupled, insecure, and
unreliable machines to provide a secure and reliable file-
storage service. To complicate matters further, some of the
nodes in the overlay network could be malicious. CFS
employs cryptographic techniques to maintain file data
confidentiality and integrity. Farsite permits file write and
update operations by using a Byzantine fault-tolerant (BFT)
group of metadata servers (directory service). Both CFS and
Farsite use replication as a technique to provide higher fault
tolerance and availability.

Targeted file attacks. A major drawback with serverless file
systems is that they are vulnerable to targeted attacks on
files. In a targeted attack, an adversary is interested in
compromising a small set of target files through a denial-of-
service (DoS) attack or a host compromise attack. A DoS
attack would render the target file unavailable; a host
compromise attack could corrupt all the replicas of a file
thereby effectively wiping out the target file from the file
system. The fundamental problem with these systems is
that: 1) the number of replicas ðRÞmaintained by the system
is usually much smaller than the number of malicious
nodes ðBÞ and 2) the replicas of a file are stored at publicly
known locations, that is, given the file name f , an adversary
(including users who may not have access to file f) can
determine the IP-addresses of nodes that host f ’s replicas.
Hence, malicious nodes can easily launch DoS or host
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compromise attacks on the set of R replica holders of a
target file ðR� BÞ.

Efficient access control. A read-only file system like CFS
can exercise access control by simply encrypting the
contents of each file, and distributing the keys only to the
legal users of that file. Farsite, a read/write file system,
exercises access control using access control lists (ACL) that
are maintained using a BFT protocol. However, access
control is not truly distributed in Farsite because all users
are authenticated by a small collection of directory group
servers. Further, public-key infrastructure (PKI)-based
authentication and Byzantine fault tolerance-based author-
ization are known to be more expensive than a simple and
fast capability-based access control mechanism [5].

Bearing these issues in mind, in this paper, we present
LocationGuard as an effective technique for countering
targeted file attacks. The fundamental idea behind
LocationGuard is to hide the very location of a file and
its replicas such that a legal user who possesses a file’s
location key can easily and securely locate the file on the
overlay network; but without knowing the file’s location
key, an adversary would not be able to even locate the file,
let alone access it or attempt to attack it. LocationGuard
implements an efficient capability-based file access control
mechanism through three essential components. The first
component of LocationGuard is a location key, which is a
random bit string (128 bits) used as a key to the location of
a file in the overlay network, and addresses the capability
revocation problem by periodic or conditional rekeying
mechanisms. A file’s location key is used to generate legal
capabilities (tokens) that can be used to access its replicas.
The second component is the routing guard, a secure
algorithm to locate a file in the overlay network given its
location key such that neither the key nor the location is
revealed to an adversary. The third component is an
extensible collection of location inference guards, which
protect the system from traffic analysis-based inference
attacks, such as lookup frequency inference attacks, user
IP-address inference attacks, file replica inference attacks,
and file size inference attacks.

In addition to providing an efficient file access control
mechanism with traditional cryptographic guarantees like
file confidentiality and integrity, LocationGuard mitigates
DoS and host compromise attacks, while adding minimal
performance overhead and small storage overhead to the
file system. Our initial experiments quantify the overhead
of employing LocationGuard and demonstrate its effective-
ness against DoS attacks, host compromise attacks, and
various location inference attacks.

The rest of this paper is organized as follows: Section 2
provides terminology and background on overlay network
and serverless file systems like CFS and Farsite. Section 3
describes our threat model in detail. We present the core
techniques of LocationGuard in Sections 4, 5, 6, and 7. We
present a concrete implementation and a thorough experi-
mental evaluation of LocationGuard in Section 8, related
work in Section 9, and conclude this paper in Section 10.

2 BACKGROUND AND TERMINOLOGY

In this section, we give a brief overview on the vital
properties of DHT-based overlay networks and their lookup

protocols (e.g., Chord [29], CAN [23], and Pastry [25]). All
these lookup protocols are fundamentally based on DHTs,
but differ in algorithmic and implementation details. All of
them store the mapping between a particular search key and
its associated data (file) in a distributed manner across the
network, rather than storing them at a single location like a
conventional hash table. Given a search key, these techniques
locate its associated data (file) in a small and bounded
number of hops within the overlay network. This is realized
using three main steps. First, nodes and search keys are
hashed to a common identifier space such that each node is
given a unique identifier and is made responsible for a
certain set of search keys. Second, the mapping of search
keys to nodes uses policies like numerical closeness or
contiguous regions between two node identifiers to
determine the (nonoverlapping) region (segment) that each
node will be responsible for. Third, a small and bounded
lookup cost is guaranteed by maintaining a tiny routing
table and a neighbor list at each node.

In the context of a file system, the search key can be a
filename. All the available node’s IP-addresses are hashed
using a hash function, and each of them store a small
routing table (for example, Chord’s routing table has only
m entries for an m-bit hash function and typically m ¼ 128)
to locate other nodes. Now, to locate a particular file, its
filename is hashed using the same hash function and the
node responsible for that file is obtained using the concrete
mapping policy. This operation of locating the appropriate
node is called a lookup.

Serverless file system like CFS, Farsite, and OceanStore
are layered on top of DHT-based protocols. These file
systems typically provide the following properties:

1. A file lookup is guaranteed to succeed if and only if
the file is present in the system.

2. A file lookup terminates in a small and bounded
number of hops.

3. The files are uniformly distributed among all active
nodes.

4. The system handles dynamic node joins and leaves.

In the rest of this paper, we assume that Chord [29] is
used as the overlay network’s lookup protocol. However,
the results presented in this paper are applicable to most
DHT-based lookup protocols.

3 THREAT MODEL

Adversary refers to a logical entity that controls and
coordinates all actions by malicious nodes in the system. A
node is said to be malicious if the node either intentionally or
unintentionally fails to follow the system’s protocols
correctly. For example, a malicious node may corrupt the
files assigned to them and incorrectly (maliciously) imple-
ment file read/write operations. This definition of adversary
permits collusions among malicious nodes. We also assume
that the underlying IP-network layer may be insecure.
However, we assume that the underlying IP-network
infrastructure, such as domain name service (DNS), and
the network routers cannot be subverted by the adversary.

An adversary is capable of performing two types of
attacks on the file system, namely, DoS attacks and host
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compromise attacks. When a node is under DoS attack, the
files stored at that node are unavailable. When a node is
compromised, the files stored at that node could be either
unavailable or corrupted. We model the malicious nodes as
having a large but bounded amount of physical resources at
their disposal. More specifically, we assume that a malicious
node may be able to perform a DoS attack only on a finite
and bounded number of good nodes, denoted by �. We limit
the rate at which malicious nodes may compromise good
nodes and use � to denote the mean rate per malicious node
at which a good node can be compromised. For instance,
when there are B malicious nodes in the system, the net rate
at which good nodes are compromised is � �B (node
compromises per unit time). Every compromised node behaves
maliciously. For instance, a compromised node may attempt
to compromise other good nodes. Every good node that is
compromised would independently recover at rate �. Note
that the recovery of a compromised node is analogous to
cleaning up a virus or a worm from an infected node. When
the recovery process ends, the node stops behaving
maliciously. Unless and otherwise specified, we assume
that the node compromise times and recovery times follow
an exponential distribution.

3.1 Targeted File Attacks

A targeted file attack refers to an attack wherein an
adversary attempts to attack a small (chosen) set of files
in the system. An attack on a file is successful if the target
file is either rendered unavailable or corrupted. Given
R replicas of a file f , file f is unavailable (or corrupted) if at
least a threshold cr number of its replicas are unavailable
(or corrupted). For example, for read/write files maintained
by a Byzantine quorum [1], cr ¼ dR=3e. For encrypted and
authenticated files, cr ¼ R, since the file can be successfully
recovered as long as at least one of its replicas is available
(and uncorrupt) [6]. Most P2P trust management systems
such as the scheme in [30] use a simple majority vote on the
replicas to compute the actual trust values of peers, thus we
have cr ¼ dR=2e.

Distributed file systems like CFS and Farsite are highly
vulnerable to target file attacks since the target file can be
rendered unavailable (or corrupted) by attacking a very
small set of nodes in the system. The key problem arises
from the fact that these systems store the replicas of a file f
at publicly known locations [14] for easy lookup. For instance,
CFS stores a file f at locations derivable from the public-key
of its owner. An adversary can attack any set of cr replica
holders of file f , to render file f unavailable (or corrupted).

Farsite utilizes a small collection of publicly known nodes
for implementing a BFT directory service. On compromis-
ing the directory service, an adversary could obtain all
replica locations for a target file.

Files on an overlay network have two primary attributes:
1) content and 2) location. File content could be protected
from an adversary using cryptographic techniques. How-
ever, if the location of a file on the overlay network is
publicly known, then the file holder is susceptible to DoS
and host compromise attacks. LocationGuard provides
mechanisms to hide files in an overlay network such that
only a legal user who possesses a file’s location key can
easily locate it. Thus, any previously known attacks on file
contents would not be applicable unless the adversary
succeeds in locating the file. It is important to note that
LocationGuard is oblivious to whether or not file contents
are encrypted.

4 LOCATIONGUARD

4.1 Overview

We first present a high-level overview of LocationGuard.
Fig. 1 shows an architectural overview of a file system
powered by LocationGuard. LocationGuard operates on top
of an overlay network of N nodes. Fig. 2 provides a sketch
of the conceptual design of LocationGuard. LocationGuard
scheme guards the location of each file and its access with
two objectives: 1) to hide the actual location of a file and its
replicas such that only legal users who hold the file’s
location key can easily locate the file on the overlay network
and 2) to guard lookups on the overlay network from being
eavesdropped by an adversary. LocationGuard consists of
three core components. The first component is location key,
which controls the transformation of a filename into its
location on the overlay network, analogous to a traditional
cryptographic key that controls the transformation of plain-
text into ciphertext. The second component is the routing
guard, which makes the location of a file unintelligible. The
routing guard is, to some extent, analogous to a traditional
cryptographic algorithm which makes a file’s contents
unintelligible. The third component of LocationGuard
includes an extensible package of location inference guards
that protect the file system from indirect attacks. Indirect
attacks are those attacks that exploit a file’s metadata
information such as file access frequency, user IP-address,
equivalence of file replica contents, and file size to infer the
location of a target file on the overlay network.

In the following sections, we first present the main
concepts behind location keys and location hiding
(Section 4.2) and describe a reference model for serverless
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file systems that operate on LocationGuard (Section 4.3).
Then, we present the concrete design of LocationGuard’s
three core components: the location key (Section 5), the
routing guard (Section 6), and a suite of location inference
guards (Section 7).

4.2 Concepts and Definitions

In this section, we define the concept of location keys and its
location hiding properties. We discuss the concrete design
of location key implementation and how location keys and
location guards protect a file system from targeted file
attacks in the subsequent sections.

Consider an overlay network of size N with a Chord-like
lookup protocol �. Let f1; f2; . . . ; fR denote the R replicas of
a file f . Location of a replica fi refers to the IP-address of
the node (replica holder) that stores replica fi. A file lookup
algorithm is defined as a function that accepts fi and
outputs its location on the overlay network. Formally, we
have � : fi ! loc maps a replica fi to its location loc on the
overlay network P .

Definition 1. location key. A location key lk of a file f is a
relatively small amount (m-bit binary string, typically
m ¼ 128) of information that is used by a lookup algorithm
� : ðf; lkÞ ! loc to customize the transformation of a file into
its location such that the following three properties are
satisfied:

1. Given the location key of a file f , it is easy to locate the
R replicas of file f .

2. Without knowing the location key of a file f , it is hard
for an adversary to locate any of its replicas.

3. The location key lk of a file f should not be exposed to
an adversary when it is used to access the file f .

Informally, location keys are keys with location hiding
property. Each file in the system is associated with a location
key that is kept secret by the users of that file. A location key
for the file f determines the locations of its replicas in the
overlay network. Note that the lookup algorithm � is
publicly known; only a file’s location key is kept secret.

Property 1 ensures that valid users of a file f can easily
access it provided they know its location key lk. Property 2
guarantees that illegal users who do not have the correct
location key will not be able to locate the file on the overlay
network, making it harder for an adversary to launch a
targeted file attack. Property 3 warrants that no information
about the location key lk of a file f is revealed to an
adversary when executing the lookup algorithm �.

Having defined the concept of location key, we present a
reference model for a file system that operates on
LocationGuard. We use this reference model to present a
concrete design of LocationGuard’s three core components:
the location key, the routing guard, and the location
inference guards.

4.3 LocationGuard File System

A serverless file system may implement read/write
operations by exercising access control in a number of
ways. For example, Farsite [1] uses an ACL maintained
among a small number of directory servers through a BFT
protocol. CFS [6], a read-only file system, may implement

access control by encrypting the files and distributing the
file encryption keys only to the legal users of a file. In this
section, we show how a LocationGuard-based file system
exercises access control.

In contrast to other serverless file systems, a Location-
Guard-based file system does not directly authenticate a user
attempting to access a file. Instead, it uses location keys to
implement a capability-based access control mechanism,
that is, any user who presents the correct file capability
(token) is permitted access to that file. Furthermore, it
utilizes routing guard and location inference guards to
secure the locations of files being accessed on the overlay
network. Our access control policy is simple: if you can name a
file, then you can access it. However, we do not use a file name
directly; instead, we use a pseudofilename (128-bit binary
string) generated from a file’s name and its location key (see
Section 5 for detail). The responsibility of access control is
divided among the file owner, the legal file users, and the file
replica holders and is managed in a decentralized manner.

File owner. Given a file f , its owner u is responsible for
securely distributing f’s location key lk (only) to those users
who are authorized to access the file f .

Legal user. A user u who has obtained the valid location
key of file f is called a legal user of f . Legal users are
authorized to access any replica of file f . Given a file f’s
location key lk, a legal user u can generate the replica
location token rlti for its ith replica. Note that we use rlti as
both the pseudofilename and the capability of fi. The user u
now uses the lookup algorithm � to obtain the IP-address of
node r ¼ �ðf; lkÞ. User u gains access to replica fi by
presenting the token rlti to node r. Note that rlti acts as a
pseudofilename during lookup and a capability during
access control.

Good replica holder. Assume that a node r is responsible
for storing replica fi. Internally, node r stores this file
content under its pseudofilename rlti. Note that node r does
not need to know the actual file name ðfÞ of a locally stored
file rlti. Also, by design, given the internal file name rlti,
node r cannot guess its actual file name (see Section 5).
When a node r receives a read/write request on a file rlti, it
checks if a file named rlti is present locally. If so, it directly
performs the requested operation on the local file rlti.
Access control follows from the fact that it is very hard for
an adversary to guess correct file tokens.

Malicious replica holder. Let us consider the case where the
node r that stores a replica fi is malicious. Note that node
r’s response to a file read/write request can be undefined.
Note that we have assumed that the replicas stored at
malicious nodes are always under attack (recall that up to
cr� 1 out of R file replicas could be unavailable or
corrupted). Hence, the fact that a malicious replica holder
incorrectly implements file read/write operation or that the
adversary is aware of the tokens of those file replicas stored
at malicious nodes does not harm the system. Also, by
design, an adversary who knows one token rlti for replica
fi would not be able to guess the file name f or its location
key lk or the tokens for other replicas of file f (see Section 5).

Adversary. An adversary cannot access any replica of file
f stored at a good node simply because it cannot guess the
token rlti without knowing its location key. However, when
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a good node is compromised, an adversary would be able to
directly obtain the tokens for all files stored at that node. In
general, an adversary could compile a list of tokens as it
compromises good nodes, and corrupt the file replicas
corresponding to these tokens at any later point in time.
Eventually, the adversary would succeed in corrupting cr
or more replicas of a file f without knowing its location key.
LocationGuard addresses such attacks using a location
rekeying technique discussed in Section 7.3.

In the subsequent sections, we show how to generate a
replica location token rlti ð1 � i � RÞ from a file f and its
location key (Section 5), and how the lookup algorithm �
performs a lookup on a pseudofilename rlti without
revealing the capability rlti to malicious nodes in the
overlay network (Section 6). It is important to note that the
ability to guard the lookup from attacks like eavesdropping
is critical to the file location hiding scheme, since a lookup
operation (using a lookup protocol such as Chord) on
identifier rlti typically proceeds in plaintext through a
sequence of nodes on the overlay network. Hence, an
adversary may collect file tokens by simply sniffing lookup
queries over the overlay network. The adversary could use
these stolen file tokens to perform write operations on the
corresponding file replicas, and thus corrupt them, without
the knowledge of their location keys.

5 LOCATION KEYS

The first and most simplistic component of LocationGuard
is the concept of location keys. The design of location key
needs to address the following two questions: 1) how to
choose a location key and 2) how to use a location key to
generate a replica location token—the capability to access a
file replica.

The first step in designing location keys is to determine the
type of string used as the identifier of a location key. Let user u
be the owner of a file f . User u should choose a long
random bit string (128 bits) lk as the location key for file f .

The second step is to find a pseudorandom function to
derive the replica location tokens rlti ð1 � i � RÞ from the
filename f and its location key lk. The pseudofilename rlti is
used as a file replica identifier to locate the ith replica of file
f on the overlay network. Let ElkðxÞ denote a keyed
pseudorandom function with input x and a secret key lk
and k denotes string concatenation. We derive the location
token rlti ¼ ElkðfkiÞ. Given a replica’s identifier rlti, one
can use the lookup protocol � to locate it on the overlay
network. We use a fast and efficient keyed-hash function
like HMAC-MD5 [15] since it satisfies the following
conditions:

1a. Given ðfkiÞ and lk, it is easy to compute ElkðfkiÞ.

2a. Given ðfkiÞ, it is hard to guess ElkðfkiÞ without
knowing lk.

2b. Given ElkðfkiÞ, it is hard to guess the file name f .
2c. Given ElkðfkiÞ and f , it is hard to guess lk.

Condition 1a ensures that it is very easy for a valid user to
locate a file f as long as it is aware of the file’s location
key lk. Condition 2a states that it would be very hard for an
adversary to guess the location of a target file f without
knowing its location key. Condition 2b ensures that even if

an adversary obtains the identifier rlti of replica fi, he/she
cannot deduce the file name f . Finally, Condition 2c
requires that even if an adversary obtains the identifiers
of one or more replicas of file f , he/she would not be able to
derive the location key lk from them. Hence, the adversary
still has no clue about the remaining replicas of the file f (by
Condition 2a). Conditions 2b and 2c play an important role
in ensuring good location hiding property. This is because
for any given file f , some of the replicas of file f could be
stored at malicious nodes. Thus, an adversary could be
aware of some of the replica identifiers. Finally, observe that
Condition 1a and Conditions {2a, 2b, 2c} map to Property 1
and Property 2 in Definition 1 (in Section 4.2), respectively.
In the remaining part of this paper, we use khash to denote
a keyed pseudorandom function that is used to derive a
file’s replica location tokens from its name and its secret
location key.

6 ROUTING GUARD

The second component of LocationGuard is the routing
guard. The design of routing guard aims at securing the
lookup of file f such that it will be very hard for an
adversary to obtain the replica location tokens by eaves-
dropping on the overlay network. Concretely, let rlti ð1 �
i � RÞ denote a replica location token derived from the file
name f , the replica number i, and f’s location key lk. We
need to secure the lookup algorithm �lkðrltiÞ such that the
lookup on pseudofilename rlti does not reveal the cap-
ability rlti to other nodes on the overlay network. Note that
a file’s capability rlti does not reveal the file’s name; but it
allows an adversary to write on the file and thus corrupt it
(see reference file system in Section 4.3).

There are two possible approaches to implement a secure
lookup algorithm: 1) centralized approach and 2) decen-
tralized approach. In the centralized approach, one could
use a trusted location server [13] to return the location of
any file on the overlay network. However, such a location
server would become a viable target for DoS and host
compromise attacks.

In this section, we present a decentralized secure lookup
protocol that is built on top of the Chord protocol. Note that
a naive Chord-like lookup protocol �ðrltiÞ cannot be
directly used because it reveals the token rlti to other
nodes on the overlay network.

6.1 Overview

The fundamental idea behind the routing guard is as follows:
Given a file f ’s location key lk and replica number i, we want
to find a safe region in the identifier space where we can
obtain a huge collection of obfuscated tokens, denoted by
fOTKig, such that, with high probability, �ðotkiÞ ¼ �ðrltiÞ,
8 otki 2 OTKi. We call otki 2 OTKi an obfuscated identifier
of the token rlti. Each time a user uwishes to look up a token
rlti, it performs a lookup on some randomly chosen token otki

from the obfuscated identifier set OTKi. Routing guard
ensures that even if an adversary were to observe obfuscated
identifiers from the set OTKi for one full year, it would be
highly infeasible for the adversary to guess the token rlti.

We now describe the concrete implementation of the
routing guard. For the sake of simplicity, we assume a unit
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circle for the Chord’s identifier space; that is, node
identifiers and file identifiers are real values from 0 to 1
that are arranged on the Chord ring in the anticlockwise
direction. Let IDðrÞ denote the identifier of node r. If r is the
destination node of a lookup on file identifier rlti, i.e.,
r ¼ �ðrltiÞ, then r is the node that immediately succeeds rlti

in the anticlockwise direction on the Chord ring. Formally,
r ¼ �ðrltiÞ if IDðrÞ � rlti and there exists no other nodes,
say v, on the Chord ring such that IDðrÞ > IDðvÞ � rlti.

We first introduce the concept of safe obfuscation to guide
us in finding an obfuscated identifier set OTKi for a given
replica location token rlti. We say that an obfuscated
identifier otki is a safe obfuscation of identifier rlti if and
only if a lookup on both rlti and otki result in the same
physical node r. For example, in Fig. 3, identifier otki1 is a
safe obfuscation of identifier rlti ð�ðrltiÞ ¼ �ðotki1Þ ¼ rÞ,
while identifier otki2 is unsafe ð�ðotki2Þ ¼ r0 6¼ r).

We define the set OTKi as a set of all identifiers in the
range ðrlti � srg; rltiÞ, where srg denotes a safe obfuscation
range ð0 � srg < 1Þ. When a user intends to query for a
replica location token rlti, the user actually performs a
lookup on an obfuscated identifier otki ¼ obfuscateðrltiÞ ¼
rlti � randomð0; srgÞ. The function randomð0; srgÞ returns a
number chosen uniformly and randomly in the range ð0; srgÞ.

We choose a safe value srg such that

. (C1) with high probability, any obfuscated identifier
otki is a safe obfuscation of the token rlti and

. (C2) given a large collection of obfuscated identifiers
fotkig, it is very hard for an adversary to guess the
actual identifier rlti.

Note that if srg is too small condition C1 is more likely to
hold, while condition C2 is more likely to fail. In contrast, if
srg is too big, condition C2 is more likely to hold but
condition C1 is more likely to fail. In our first prototype
development of LocationGuard, we introduce a system-
defined parameter prsq to denote the minimum probability
that any obfuscation is required to be safe. In the
subsequent sections, we present a technique to derive srg
as a function of prsq. This permits us to quantify the tradeoff
between condition C1 and condition C2.

6.2 Determining the Safe Obfuscation Range

Observe from Fig. 3 that a obfuscation rand on identifier rlti is
safe if rlti � rand > IDðr0Þ, where r0 is the immediate
predecessor of node r on the Chord ring. Thus, we have
rand < rlti � IDðr0Þ. The expression rlti � IDðr0Þdenotes the

distance between identifiers rlti and IDðr0Þ on the Chord
identifier ring, denoted by distðrlti; IDðr0ÞÞ. Hence, we say
that a obfuscation rand is safe with respect to identifier rlti if
and only if rand < distðrlti; IDðr0ÞÞ, or equivalently, rand is
chosen from the range ð0; distðrlti; IDðr0ÞÞÞ.

We use Theorem 6.1 to show that Prðdistðrlti;
IDðr0ÞÞ > xÞ ¼ e�x�N , where N denotes the number of
nodes on the overlay network and x denotes any value
satisfying 0 � x < 1. Informally, the theorem states that the
probability that the predecessor node r0 is further away
from the identifier rlti decreases exponentially with the
distance. Since an obfuscation rand is safe with respect to
rlti if distðrlti; IDðr0ÞÞ > rand, the probability that a
obfuscation rand is safe can be calculated using e�rand�N .

Now, one can ensure that the minimum probability of

any obfuscation being safe is prsq as follows. We first use

prsq to obtain an upper bound on rand: By e�rand�N � prsq,
we have rand � �logeðprsqÞN . Hence, if rand is chosen from a

safe range ð0; srgÞ, where srg ¼ �logeðprsqÞN , then all obfusca-

tions are guaranteed to be safe with a probability greater

than or equal to prsq.
For instance, when we set prsq ¼ 1� 2�20 and N ¼ 1

million nodes, srg ¼ � logeðprsqÞ
N ¼ 2�40. Hence, on a 128-bit

Chord ring rand could be chosen from a range of size
srg ¼ 2128 � 2�40 ¼ 288. Table 1 shows the size of a prsq-safe
obfuscation range srg for different values of prsq. Observe
that if we set prsq ¼ 1, then srg ¼ � logeðprsqÞ

N ¼ 0. Hence, if we
want 100 percent safety, the obfuscation range srg must be
zero, i.e., the token rlti cannot be obfuscated.

Theorem 6.1. Let N denote the total number of nodes in the
system. Let distðx; yÞ denote the distance between two
identifiers x and y on a Chord’s unit circle. Let node r0 be
the node that is the immediate predecessor for an identifier rlti

on the anticlockwise unit circle Chord ring. Let IDðr0Þ denote
the identifier of the node r0. Then, the probability that the
distance between identifiers rlti and IDðr0Þ exceeds rg is given
by Prðdistðrlti; IDðr0ÞÞ > xÞ ¼ e�x�N for some 0 � x < 1.

Proof. Let Z be a random variable that denotes the
distance between an identifier rlti and node r0. Let
fZðxÞ denote the probability distribution function (pdf)
that the node r0 is at a distance x from the identifier
rlti, i.e., distðIDðr0Þ; rltiÞ ¼ x. We first derive the
probability distribution fZðxÞ and use it to compute
PrðZ > xÞ ¼ Prðdistðrlti; IDðr0ÞÞ > xÞ.

By the uniform and random distribution properties
of the hash function, the identifier of a node will be
uniformly and randomly distributed between (0, 1).
Hence, the probability that the identifier of any node
falls in a segment of length x is equal to x. Hence, with
probability 4x, a given node exists between a distance
of ðx; xþ4xÞ from the identifier rlti (for any arbitrarily
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Fig. 3. Lookup using file identifier obfuscation: r: hosting node;

r0: previous node to r on the Chord ring; otk ffi rlt� randð0; srgÞ; otk1 2
ðIDðr0Þ; IDðrÞ� is safe, while otk2 < IDðr0Þ is unsafe; hence, safe

obfuscation range srg ¼ rlt� IDðr0Þ.

TABLE 1
Lookup Identifier Obfuscation



small region 4x). When there are N nodes in the
system, the probability that one of them exists between
a distance ðx; xþ4xÞ is N � 4x. Similarly, the prob-
ability that none of other node N � 1 nodes lie within a
distance rg from identifier rlti is ð1� xÞN�1. Therefore,
fZðxÞ is given by

fZðxÞ ¼ N � ð1� xÞN�1: ð1Þ

Now, using the probability density function in (1), one
can derive the cumulative distribution function (cdf),
PrðZ > xÞ ¼ ð1� xÞN 	 e�x�N (for small values of x)
using standard techniques in probability theory. tu

6.3 Ensuring Safe Obfuscation

Given that when prsq < 1, there is small probability that an
obfuscated identifier is not safe, i.e., 1� prsq > 0. We first
discuss the motivation for detecting and repairing unsafe
obfuscations and then describe how to guarantee good
safety by our routing guard through a self-detection and
self-healing process.

Let node r be the result of a lookup on identifier rlti and
node v ðv 6¼ rÞ be the result of a lookup on an unsafe
obfuscated identifier otki. To perform a file read/write
operation after locating the node that stores the file f , the
user has to present the location token rlti to node v. If a user
does not check for unsafe obfuscation, then the file token
rlti would be exposed to some other node v 6¼ r. If node v
were malicious, then it could misuse this information to
corrupt the file replica actually stored at node r (using the
capability rlti).

We require a user to verify whether an obfuscated
identifier is safe or not using the following check: An
obfuscated identifier otki is considered safe if and only if
rlti 2 ðotki; IDðvÞÞ, where v ¼ �ðotkiÞ. By the definition of v
and otki, we have otki � IDðvÞ and otki � rlti ðrand � 0Þ.
By otki � rlti � IDðvÞ, node v should be the immediate
successor of the identifier rlti and, thus, be responsible for
it. If the check failed, i.e., rlti > IDðvÞ, then node v is
definitely not a successor of the identifier rlti. Hence, the
user can flag otki as an unsafe obfuscation of rlti. For
example, referring to Fig. 3, otki1 is safe because rlti 2
ðotki1; IDðrÞÞ and r ¼ �ðotki1Þ, and otki2 is unsafe because
rlti =2 ðotki2; IDðr0ÞÞ and r0 ¼ �ðotki2Þ.

When an obfuscated identifier is flagged as unsafe, the
user needs to retry the lookup operation with a new
obfuscated identifier. This retry process continues until
max_retries rounds or until a safe obfuscation is found. Due
to the fact that the probability of an unsafe obfuscation can
be extremely small, the call for retry rarely happens. We
also found from our experiments that the number of retries
required is almost always zero and seldom exceeds one. We
believe that using max_retries equal to two would suffice
even in a highly conservative setting. Table 1 shows the
expected number of retries required for a lookup operation
for different values of prsq.

6.4 Strength of Routing Guard

The strength of a routing guard refers to its ability to
counter lookup sniffing-based attacks. A typical lookup
sniffing attack is called the range sieving attack. Informally, in

a range sieving attack, an adversary sniffs lookup queries
on the overlay network and attempts to deduce the actual
identifier rlti from its multiple obfuscated identifiers. We
show that an adversary would have to expend 228 years to
discover a replica location token rlti even if it has observed
225 obfuscated identifiers of rlti. Note that 225 obfuscated
identifiers would be available to an adversary if the file
replica fi was accessed once a second for one full year by
some legal user of the file f .

One can show that, given multiple obfuscated identifiers,
it is nontrivial for an adversary to categorize them into
groups such that all obfuscated identifiers in a group are
actually obfuscations of one identifier. To simplify the
description of a range sieving attack, we consider the worst
case scenario where an adversary is capable of categorizing
obfuscated identifiers (say, based on their numerical
proximity).

We first concretely describe the range sieving attack

assuming that prsq and srg (from Theorem 6.1) are publicly

known. When an adversary obtains an obfuscated

identifier otki, the adversary knows that the actual capability

rlti is definitely within the range RG ¼ ðotki; otki þ srgÞ,
where ð0; srgÞdenotes a prsq-safe range. In fact, if obfuscations

are uniformly and randomly chosen from ð0; srgÞ, then given

an obfuscated identifier otki, the adversary knows nothing

more than the fact that the actual identifier rlti could be

uniformly and randomly distributed over the range

RG ¼ ðotki; otki þ srgÞ. However, if a persistent adversary

obtains multiple obfuscated identifiers fotki1; otki2; . . . ; otkinidg
that belong to the same target file, the adversary can sieve the

identifier space as follows. Let RG1; RG2; . . . ; RGnid denote

the ranges corresponding to nid random obfuscations on the

identifier rlti. Then, the capability of the target file is

guaranteed to lie in the sieved range RGs ¼ \nidj¼1RGj.

Intuitively, if the number of obfuscated identifiers ðnidÞ
increases, the size of the sieved range RGs decreases. For all

tokens tk 2 RGs, the likelihood that the obfuscated identifiers

fotki1; otki2; . . . ; otkinidg are obfuscations of the identifier tk is

equal. In fact, the probability of observing otkij for some 1 �
j � nid given that the actual token is tk is Prðotkij j tkÞ ¼ 1

srg ,

8 tk 2 RGs. Also, the probability of observing the obfuscated

identifiersfotki1; otki2; . . . ; otkinidggiven that the actual token is

tk is Prðfotki1; otki2; . . . ; otkinidg j tkÞ ¼ 1
srgCnid

, 8 tk 2 RGs. Note

that srgCnid denotes the number of ways of choosing nid balls

from a pool of srg nonidentical balls. Hence, the adversary is

left with no smart strategy for searching the sieved rangeRGs

other than performing a brute force attack on some random

enumeration of identifiers tk 2 RGs.
Let E½RGs� denote the expected size of the sieved range.

Theorem 6.2 shows that E½RGs� ¼ srg
nid . Hence, if the safe

range srg is significantly larger than nid, then the routing
guard can tolerate the range sieving attack. Recall the
example in Section 6 where prsq ¼ 1� 2�20, N ¼ 106, the
safe range srg ¼ 288. Suppose that a target file is accessed
once per second for one year, this results in 225 file accesses.
An adversary who logs all obfuscated identifiers over a year
could sieve the range to about E½jRGsj� ¼ 263. Assuming
that the adversary performs a brute force attack on the
sieved range, by attempting a file read operation at the rate
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of one read per millisecond, the adversary would have tried
235 read operations per year. Thus, it would take the
adversary about 263=235 ¼ 228 years to discover the actual
file identifier. Table 1 summarizes the hardness of breaking
the obfuscation scheme for different values of prsq (mini-
mum probability of safe obfuscation), assuming that the
adversary has logged 225 file accesses (one access per
second for one year) and that the nodes permit at most one
file access per millisecond.

Discussion. An interesting observation follows from the
above discussion: the amount of time taken to break the file
identifier obfuscation technique is almost independent of
the number of attackers. This is a desirable property. It
implies that as the number of attackers increases in the
system, the hardness of breaking the file capabilities will not
decrease. The reason for location-key-based systems to have
this property is because the time taken for a brute force
attack on a file identifier is fundamentally limited by the rate
at which a hosting node permits accesses on files stored
locally. On the contrary, a brute force attack on a crypto-
graphic key is inherently parallelizable and, thus, becomes
more powerful as the number of attackers increases.

Theorem 6.2. Let nid denote the number of obfuscated identifiers
that correspond to a target file. Let RGs denote the sieved
range using the range sieving attack. Let srg denote the
maximum amount of obfuscation that could be prsq-safely
added to a file identifier. Then, the expected size of range RGs

can be calculated by E½jRGsj� ¼ srg
nid .

Proof. Let otkimin ¼ rlti � randmax and otkimax ¼ rlti �
randmin denote the minimum and the maximum value
of an obfuscated identifier that has been obtained by
an adversary, where randmax and randmin are chosen
from the safe range ð0; srgÞ. Then, we have the sieved
range RGs ¼ ðotkimax; otkimin þ srgÞ, namely, from the
highest lower bound to the lowest upper bound. The
sieved range RGs can be partitioned into two ranges
RGmin and RGmax, where RGmin ¼ ðotkimax; rltiÞ and
RGmax ¼ ðrlti; otkimin þ srgÞ. Thus, we have E½jRGsj�¼
E½jRGminj� þ E½jRGmaxj�.

The size of the range RGmin, denoted as jRGminj,
equals to randmin since rlti � otkimax ¼ randmin. We show
that the cdf of randmin is given by

Prðrandmin > rgÞ ¼ 1� rg

srg

� �nid
: ð2Þ

Since an obfuscation rand is chosen uniformly and

randomly over a range ð0; srgÞ, for 0 � rg � srg, the

probability that any obfuscation rand is smaller than rg,

denoted by Prðrand � rgÞ, is rg
srg . Hence, the probability

that any obfuscation rand is greater than rg is

Prðrand > rgÞ ¼ 1� Prðrand � rgÞ ¼ 1� rg
srg . Now, we

compute the probability that randmin ¼ minfrand1;

rand2; . . . ; randnidg i s greater than rg. We have

Prðrandmin > rgÞ¼Prððrand1>rgÞ ^ ðrand2 > rgÞ ^ 
 
 
 ^
ðrandnid > rgÞÞ ¼

Qnid
j¼1 Prðrandj > rgÞ ¼ ð1� rg

srgÞ
nid.

Now, using standard techniques from probability
theory and (2), one can derive the expected value of
randmin : E½jRGminj� ¼ E½randmin� 	 srg

nid . Symmetrically,
one can show that the expected size of range RGmax is

E½jRGmaxj� 	 srg
nid . Hence, the expected size of sieved

range is E½jRGsj� ¼ E½jRGminj� þ E½jRGmaxj� � srg
nid . tu

7 LOCATION INFERENCE GUARDS

Location inference attacks refer to those attacks wherein an
adversary attempts to infer the location of a file using
indirect techniques that exploit file metadata information
such as file access frequency, file size, and so forth.
LocationGuard includes a suite of four fundamental and
inexpensive inference guards: lookup frequency inference
guard, user IP-address inference guard, file replica in-
ference guard, and file size inference guard. LocationGuard
also includes a capability revocation-based location rekey-
ing mechanism as a general guard against any inference
attack. In this section, we present the four fundamental
inference guards and the location rekeying technique in
detail.

7.1 Passive Inference Guards

Passive inference attacks refer to those attacks wherein an
adversary attempts to infer the location of a target file by
passively observing the overlay network. We present two
inference guards: lookup frequency inference guard and
user IP-address inference guard to guard the file system
against two common passive inference attacks. The lookup
frequency inference attack is based on the ability of
malicious nodes to observe the frequency of lookup queries
on the overlay network. Assuming that the adversary
knows the relative file popularity, it can use the target file’s
lookup frequency to infer its location. The user IP-address
inference attack is based on assumption that the identity of
the user can be inferred from its IP-address by an overlay
network node r, when the user requests node r to perform a
lookup on its behalf. The malicious node r could log and
report this information to the adversary.

7.1.1 Lookup Frequency Inference Guard

In this section, we present lookup frequency inference
attack that would help a strategic adversary to infer the
location of a target file on the overlay network. It has been
observed that the general popularity of the web pages
accessed over the Internet follows a Zipf-like distribution
[30]. An adversary may study the frequency of file accesses
by sniffing lookup queries and match the observed file
access frequency profile with a actual (predetermined)
frequency profile to infer the location of a target file.1 Note
that if the frequency profile of the files stored in the file
system is flat (all files are accessed with the same
frequency), then an adversary will not be able to infer any
information. Lemma 7.1 formalizes the notion of perfectly
hiding a file from a frequency inference attack.

Lemma 7.1. Let F denote the collection of files in the file system.

Let �0f denote the apparent frequency of accesses to file f as
perceived by an adversary. Then, the collection of files is

perfectly hidden from frequency inference attack if �0f ¼ c :
8f 2 F and some constant c.
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1. This is analogous to performing a frequency analysis attack on old
symmetric key ciphers like the Caesar’s cipher [17].



Corollary 7.2. A collection of read-only files can be perfectly
hidden from frequency inference attack.

Proof. Let �f denote the actual frequency of accesses on a
file f . Set the number replicas for file f to be proportional
to its access frequency, namely Rf ¼ 1

c � �f (for some
constant c > 0). When a user wishes to read the file f , the
user randomly chooses one replica of file f and issues a
lookup query on it. From an adversary’s point of view, it
would seem that the access frequency to all the file
replicas in the system is identical, namely, 8f�0fi ¼

�f
Rf
¼ c

(1 � i � Rf for file f). By Lemma 7.1, an adversary
would not be able to derive any useful information from
a frequency inference attack. tu

Interestingly, the replication strategy used in Corollary 7.2
improves the performance and load balancing aspect of the
file system as well. However, it is not applicable to read/
write files since an update operation on a file may need to
update all the replicas of a file. In the following portions of
this section, we propose two techniques to flatten the
apparent frequency profile of read/write files.

Guard by result caching. The first technique to mitigate the

frequency inference attack is to obfuscate the apparent file

access frequency with lookup result caching. Lookup result

caching, as the name indicates, refers to caching the results

of a lookup query. Recall that wide-area network file

systems like CFS, Farsite, and OceanStore permit nodes to

join and leave the overlay network. Let us for now consider

only node departures. Consider a file f stored at node n. Let

�f denote the rate at which users accesses the file f . Let �dep
denote the rate at which a node leaves the overlay network

(rates are assumed to be exponentially distributed). The first

time the user accesses the file f , the lookup result (namely,

node n) is cached. The lookup result is implicitly invali-

dated when the user attempts to access file f the first time

after node n leaves the overlay network. When the lookup

result is invalidated, the user issues a fresh lookup query

for file f . One can show that the apparent frequency of file

access as observed by an adversary is �0f ¼
�f�dep
�fþ�dep (assuming

exponential distribution for �f and �dep). The probability

that any given file access results is a lookup is equal to the

probability that the node responsible for the file leaves

before the next access and is given by Prlookup ¼ �dep
�fþ�dep .

Hence, the apparent file access frequency is equal to the

product of the actual file access frequency ð�fÞ and the

probability that a file access results in a lookup operation

ðPrlookupÞ. Intuitively, in a static scenario where nodes never

leave the network ð�dep � �fÞ, �0f 	 �dep; and when nodes

leave the network very frequently ð�dep � �fÞ, �0f 	 �f .

Hence, the more static the overlay network is, the harder it

is for an adversary to perform a frequency inference attack

since it would appear as if all files in the system are

accessed at an uniform frequency �dep.
It is very important to note that a node m storing a file f

may infer f’s name since the user has to ultimately access
node m to operate on file f . Hence, an adversary may infer
the identities of files stored at malicious nodes. However, it

would be very hard for an adversary to infer the identities
of files stored at good nodes.

Guard by file identifier obfuscation. The second technique
that makes the frequency inference attack harder is based
on the file identifier obfuscation technique described in
Section 6. Let f1; f2; . . . ; fnf denote the files stored at some
node n. Let the identifiers of these replicas be
rlt1; rlt2; . . . rltnf . Let the target file be f1. The key idea is
to obfuscate the identifiers such that an adversary would
not be able to distinguish between an obfuscated identifier
intended for locating file f1 and that for some other file
fj ð2 � j � nfÞ stored at node n.

More concretely, when a user performs a lookup for f1,
the user would choose some random identifier in the range
R1 ¼ ðrlt1srg; rlt1Þ. A clever adversary may cluster identi-
fiers based on their numerical closeness and perform a
frequency inference attack on these clusters. However, one
could defend the system against such a clustering technique
by appropriately choosing a safe obfuscation range. Fig. 4
presents the key intuition behind this idea diagrammati-
cally. As the range R1 overlaps with the ranges of more and
more files stored at node n, the clustering technique and
consequently the frequency inference attack would perform
poorly. Let R1 \R2 denote the set of identifiers that belongs
to the intersection of ranges R1 and R2. Then, given an
identifier otk 2 R1 \R2, an adversary would not be able to
distinguish whether the lookup was intended for file f1 or
f2; but the adversary would definitely know that the lookup
was intended either for file f1 or f2. Observe that the
amount of information inferred by an adversary becomes
poorer and poorer as more and more ranges overlap. Also,
as the number of files ðnfÞ stored at node n increases, even a
small obfuscation might introduce significant overlap
between the ranges of different files stored at node n.

The apparent access frequency of a file f is computed as
a weighted sum of the actual access frequencies of all files
that share their range with file f . For instance, the apparent
access frequency of file f1 (see Fig. 4) is given by

�0f1
¼
X1Y1 � �f1

þ Y1Z1 �
�f1þ�f2

2

� �
þ Z1X2 �

�f1þ�f2þ�f3
3

� �
srg

:

ð3Þ

The apparent access frequency of a file evens out the
sharp variations between the frequencies of different files
stored at a node, thereby making frequency inference attack
significantly harder. We discuss more on how to quantify
the effect of file identifier obfuscation on frequency
inference attack in our experimental Section 8.

SRIVATSA AND LIU: MITIGATING DENIAL-OF-SERVICE ATTACKS ON THE CHORD OVERLAY NETWORK: A LOCATION HIDING APPROACH 9

Fig. 4. Countering frequency analysis attack by file identifier obfuscation.
X1X2, Y1Y2, and Z1Z2 denote the ranges of the obfuscated identifiers of
files f1, f2, and f3 stored at node n. Frequency inference attacks works
in scenario (i), but not in scenario (ii). Given an identifier otk 2 Y1Z1, it is
hard for an adversary to guess whether the lookup was for file f1 or f2.



7.1.2 User IP-Address Inference Guard

In this section, we describe a user IP-address inference
attack that assumes that the identity of a user can be inferred
from his/her IP-address. Note that this is a worst case
assumption; in most cases it may not possible to associate a
user with one or a small number IP-addresses. This is
particularly true if the user obtains IP-address dynamically
(DHCP [7]) from a large Internet service provider (ISP).

A user typically locate their files on the overlay network
by issuing a lookup query to some node r on the overlay
network. If node r were malicious, then it may log the file
identifiers looked up by a user. Assuming that a user
accesses only a small subset of the total number of files on
the overlay network (including the target file), the adversary
can narrow down the set of nodes on the overlay network
that may potentially hold the target file. One possible
solution is for users to issue lookup queries through a
trusted anonymizer. The anonymizer accepts lookup queries
from users and dispatches it to the overlay network without
revealing the user’s IP-address. However, the anonymizer
could itself become a viable target for the adversary.

A more promising solution is for the user to join the
overlay network (just like other nodes hosting files on the
overlay network). When the user issues lookup queries, it is
routed through some of its neighbors; if some of its
neighbors are malicious, then they may log these lookup
queries. However, it is nontrivial for an adversary to
distinguish between the queries that originated at the user
and those that were simply routed through it.

For the sake of simplicity, let us assume that q denotes

the number of lookups issued per user per unit time.

Assuming there are N users, the total lookup traffic is Nq

lookups per unit time. Each lookup on an average requires
1
2 log2 N hops on Chord. Hence, the total lookup traffic is

Nq � 1
2 log2 N hops per unit time. By the design of the

overlay network, the lookup traffic is uniformly shared

among all nodes in the system. Hence, the number of

lookup queries (per unit time) routed through any node u is
1
N � 1

2 qN log2 N ¼ q � 1
2 log2 N . Therefore, the ratio of lookup

queries that originate at a node to that routed through it is
q

q�1
2 log2 N

¼ 2
log2 N

. For N ¼ 106, this ratio is about 0.1, thereby

making it hard for an adversary to selectively pick only

those queries that originated at a particular node. Further,

not all neighbors of a node are likely to be bad; hence, it is

rather infeasible for an adversary to collect all lookup traffic

flowing through an overlay node.

7.2 Host Compromise-Based Inference Guards

Host compromise-based inference attacks require the
adversary to perform an active host compromise attack
before it can infer the location of a target file. We present
two inference guards: file replica inference guard and file
size inference guard to guard the file system against two
common host compromise-based inference attacks. The file
replica inference attack attempts to infer the identity of a file
from its contents. Note that an adversary can reach the
contents of a file only after it compromises the replica
holder (unless the replica holder is malicious). The file size
inference attack attempts to infer the identity of a file from

its size. If the sizes of files stored on the overlay network are
sufficiently skewed, the file size could by itself be sufficient
to identify a target file.

7.2.1 File Replica Inference Guard

Despite making the file capabilities and file access frequen-
cies appear random to an adversary, the contents of a file
could by itself reveal the identity of the file f . The file f
could be encrypted to rule out the possibility of identifying
a file from its contents. Even when the replicas are
encrypted, an adversary can exploit the fact that all the
replicas of file f are identical. When an adversary
compromises a good node, it can extract a list of identifier
and file content pairs (or a hash of the file contents) stored
at that node. Note that an adversary could perform a
frequency inference attack on the replicas stored at
malicious nodes and infer their filenames. Hence, if an
adversary were to obtain the encrypted contents of one of
the replicas of a target file f , it could examine the extracted
list of identifiers and file contents to obtain the identities of
other replicas. Once, the adversary has the locations of cr
copies of a file f , the f could be attacked easily. This attack
is especially more plausible on read-only files since their
contents do not change over a long period of time. On the
other hand, the update frequency on read/write files might
guard them from the file replica inference attack.

We guard read-only files (and files updated very
infrequently) by making their replicas nonidentical—this
is achieved by encrypting each replica with a different
cryptographic key. We derive the cryptographic key for
the ith replica of file f using its location key lk as
ki ¼ khashlkðfkik ‘‘cryptkey’’Þ. Further, if one uses a sym-
metric key encryption algorithm in cipher-block-chaining
mode (CBC mode [19], [10]), then we could reduce the
encryption cost by using the same cryptographic key, but
a different initialization vector ðivÞ for encrypting
different file replicas: ki ¼ khashlkðfk ‘‘cryptkey’’Þ and
ivi ¼ khashlkðfkik ‘‘ivec’’Þ.

We show in our experimental section that even a small
update frequency on read/write files is sufficient to guard
them the file replica inference attack. Additionally, one
could also choose to encrypt read/write file replicas with
different cryptographic keys (to make the replicas non-
identical) to improve their resilience to file replica inference
attack.

7.2.2 File Size Inference Guard

File size inference attack is based on the assumption that an
adversary might be aware of the target file’s size. Malicious
nodes (and compromised nodes) report the size of the files
stored at them to an adversary. If the size of files stored on
the overlay network follows a skewed distribution, the
adversary would be able to identify the target file (much
like the lookup frequency inference attack). We guard the
file system from this attack by fragmenting files into
multiple file blocks of equal size. For instance, CFS divides
files into blocks of 8 Kbytes each and stores each file block
separately. We hide the location of the jth block in the
ith replica of file f using its location key lk and token
rltði;jÞ ¼ khashlkðfkikjÞ. Note that the last file block may
have to be padded to make its size 8 Kbytes. Now, since all
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file blocks are of the same size, it would be vary hard for an
adversary to perform file size inference attack. It is
interesting to note that dividing files into blocks is useful
in minimizing the communication overhead for small
reads/writes on large files.

7.3 Location Rekeying

In addition to the inference attacks listed above, there could
be other possible inference attacks on a LocationGuard-
based file system. In due course of time, the adversary
might be able to gather enough information to infer the
location of a target file. Location rekeying is a general
defense against both known and unknown inference attacks.
Users can periodically choose new location keys so as to
render all past inferences made by an adversary useless. This
is analogous to periodic rekeying of cryptographic keys.
Unfortunately, rekeying is an expensive operation: rekeying
cryptographic keys requires data to be reencrypted; rekey-
ing location keys requires files to be relocated on the
overlay network. Hence, it is important to keep the rekeying
frequency small enough to reduce performance overheads
and large enough to secure files on the overlay network. In
our experiment section, we estimate the periodicity with
which location keys have to be changed in order to reduce
the probability of an attack on a target file.

8 EXPERIMENTAL EVALUATION

In this section, we report two sets of results. The first set of
results is obtained from our prototype implementation of
LocationGuard. The second set of results is from simulation-
based experiments to evaluate the LocationGuard approach
for building secure wide-area network file systems.

8.1 Implementation-Based Experiments

In this section, we briefly sketch our implementation of
LocationGuard and quantify the overhead added by
LocationGuard to the file system.

Implementation. We have implemented a prototype of
LocationGuard on a publicly available Java code for the
Chord lookup protocol [26]. We used AspectJ [9] to
modify the Chord lookup protocol to include routing
guard and lookup result caching. The method obfuscate
implements lookup identifier obfuscation. The method
check_safe_obfuscation implements our check for safe
obfuscation; if the check fails, then it calls obfuscate
followed by the Chord lookup protocol. The AspectJ
compiler statically weaves the obfuscate method and the
check_safe_obfuscation method before and after all method
calls to the Chord lookup protocol, respectively.

The file system is implemented on top of the overlay
network. We split files into blocks of 8 Kbytes and store each
block at a location determined by the file’s location key. The
file system is assumed to be flat (no directory hierarchy).
The file names are simply the 32-byte hexadecimal
representation of the 128-bit file identifier. Access control
in our system is implicit; if the file exists, then the requested
read/write operation is performed else an error is returned.

LocationGuard permits files to be any one of the four
types: no cryptographic security (T0), integrity only (T1),
confidentiality only (T2), and confidentiality and integrity
(T3). To ensure file integrity, the file includes a keyed
message authentication code using the HMAC-MD5 keyed-
hash function. To ensure file confidentiality, the file is
encrypted using the AES-128 encryption algorithm. Finally,
adding message authentication code (using MD5 [24] or
SHA1 [8]) followed by encryption (using AES-128) guaran-
tees both file confidentiality and integrity. We assume that
the file owners distribute location keys and cryptographic
keys through a secure out-of-band mechanism. Fig. 5 shows
our implementation architecture, and Table 2 shows the
four file types.

Operational overhead. We ran our prototype implementa-
tion on eight machines each with 8-processors (550-MHz
Intel Pentium III Xeon processor running RedHat Linux 9.0)
connected via a high-speed LAN. In reality, the nodes would
be distributed on a wide-area network. However, we believe
that this setup would be equally insightful in providing us
the percentage overhead added by LocationGuard.

We first quantify the performance and storage overheads
incurred by LocationGuard. Let us consider a typical file
read/write operation. The operation consists of the follow-
ing steps: 1) generate the replica location tokens, 2) look up
the replica holders on the overlay network, and 3) process
the request at replica holders. Step 1 requires computations
using the keyed-hash function with location keys, which
otherwise would have required computations using a
normal hash function. We found that the computation time
difference between HMAC (a keyed pseudorandom func-
tion) and MD5 (a pseudorandom function) is negligibly
small (order of a few microseconds) using the standard
OpenSSL library [20]. Step 2 involves a pseudorandom
number generation (few microseconds using the OpenSSL
library) and may require lookups to be retried in the event
that the obfuscated identifier turns out to be unsafe. Given
that unsafe obfuscations are extremely rare (see Table 1)
retries are only required occasionally, and thus, this
overhead is negligible. Step 3 adds no overhead because
our access check is almost free. As long as the user can
present the correct pseudofilename (token), the replica
holder would honor a request on that file. Figs. 6 and 7
show the overhead of LocationGuard for file read and file
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TABLE 2
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write operations, respectively. Each value reported in this
experiment has been averaged over 64 runs. Note that file
read/write operations of size greater than one block were
parallelized, with each file block operation proceeding in
parallel. Observe that the latency for file operations in a
naive file system (FS) and LocationGuard (LGFS) is almost
the same. For read operations, maximum overhead due to
LocationGuard was about 1.5 ms (relative overhead of
0.4 percent) and that for write operation was 1.6 ms (relative
overhead of 0.3 percent).

Now, let us compare the storage overhead at the users
and the nodes that are a part of the overlay network. Users
need to store only an additional 128-bit location key
(16 bytes) along with other file metadata for each file they
want to access. Even a user who uses 1 million files on the
overlay network needs to store only an additional 16 Mbytes
of location keys. Further, there is no extra storage overhead
on the rest of the nodes on the overlay network.

8.2 Simulation-Based Experiments

We implemented our simulator using a discrete event
simulation [10] model. We simulate the Chord lookup
protocol [29] on the overlay network compromising of
N ¼ 1;024 nodes. In all experiments reported in this paper,
a random p ¼ 10 percent of N nodes are chosen to behave
maliciously (the trends reported in this paper apply to all
values of p). We set the number of replicas of a file to be
R ¼ 7 and vary the corruption threshold cr in our
experiments. We simulated the bad nodes as having large
but bounded power based on the parameters � (DoS
attack strength), � (node compromise rate), and � (node
recovery rate) (see the threat model in Section 3). We
demonstrate the effectiveness of LocationGuard against
DoS and host compromise-based target file attacks.

DoS attacks. Fig. 8 shows the probability of an attack for
varying � and different values of corruption threshold ðcrÞ.

Without the knowledge of the location of file replicas, an
adversary is forced to attack (DoS) a random collection of
nodes in the system and hope that that at least cr replicas of
the target file is attacked. Observe that if the malicious nodes
are more powerful (larger �) or if the corruption threshold cr
is very low, then the probability of an attack is higher. If an
adversary were aware of theR replica holders of a target file,
then a weak collection ofBmalicious nodes, such asB ¼ 102
(i.e., 10 percent of N) with � ¼ R

B ¼ 7
102 ¼ 0:07, can easily

attack the target file. Also, for a file system to handle the DoS
attacks on a file with � ¼ 1, it would require a large number
of replicas (R close to B) to be maintained for each file. For
example, in the case where B ¼ 10 percent�N and
N ¼ 1; 024, the system needs to maintain as large as 100+
replicas for each file. Clearly, without LocationGuard, the
effort required for an adversary to attack a target file is
dependent only on R, but is independent of the number of
good nodes ðGÞ in the system. On the contrary, Location-
Guard-based techniques scale the hardness of an attack with
the number of good nodes in the system. Thus, even with a
very small R, a LocationGuard-based system can make it
very hard for any adversary to launch a targeted file attack.

Host compromise attacks. To further evaluate the effective-
ness of LocationGuard against targeted file attacks, we
evaluate LocationGuard against host compromise attacks.
Our first experiment on host compromise attack shows the
probability of an attack on the target file assuming that the
adversary does not collect capabilities (tokens) stored at
the compromised nodes. Hence, the target file is attacked if cr
or more of its replicas are stored at either malicious nodes or
compromised nodes. Fig. 9 shows the probability of an attack
for different values of corruption threshold ðcrÞ and varying
� ¼ �

� (measured in number of node recoveries per node
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Fig. 6. File read overhead.

Fig. 7. File write overhead.

Fig. 8. Probability of a target file attack for N ¼ 1;024 nodes and R ¼ 7

using DoS attack.

Fig. 9. Probability of a target file attack for N ¼ 1;024 nodes and R ¼ 7

using host compromise attack (with no token collection).



compromise). We ran the simulation for a duration of 100
� time

units. Recall that 1
� denotes the mean time required for one

malicious node to compromise a good node. Note that if the
simulation were run for infinite time then the probability of
attack is always one. This is because, at some point in time, cr
or more replicas of a target file would be assigned to
malicious nodes (or compromised nodes) in the system.

From Fig. 9, we observe that when � � 1, the system is
highly vulnerable since the node recovery rate is lower than
the node compromise rate. Note that while a DoS attack
could tolerate powerful malicious nodes ð� > 1Þ, the host
compromise attack cannot tolerate the situation where the
node compromise rate is higher than their recovery rate
ð� � 1Þ. This is primarily because of the cascading effect of
host compromise attack. The larger the number of compro-
mised nodes we have, the higher is the rate at which other
good nodes are compromised (see the adversary model in
Section 3). Table 3 shows the mean fraction of good nodes
ðG0Þ that are in an uncompromised state for different values
of �. Observe from Table 3 that when � ¼ 1, most of the
good nodes are in a compromised state.

As we have mentioned in Section 4.3, the adversary
could collect the capabilities (tokens) of the file replicas
stored at compromised nodes; these tokens can be used by
the adversary at any point in future to corrupt these replicas
using a simple write operation. Hence, our second experi-
ment on host compromise attack measures the probability
of an attack assuming that the adversary collects the file
tokens stored at compromised nodes. Fig. 10 shows the
mean effort required to locate all the replicas of a target file
ðcr ¼ RÞ. The effort required is expressed in terms of the
fraction of good nodes that need to be compromised by the
adversary to attack the target file.

Note that in the absence of LocationGuard, an adversary
needs to compromise at most R good nodes in order to
succeed a targeted file attack. Clearly, LocationGuard-based
techniques increase the required effort by several orders of
magnitude. For instance, when � ¼ 3, an adversary has to
compromise 70 percent of the good nodes in the system in

order to increase the probability of an attack to a nominal
value of 0.1, even under the assumption that an adversary
collects file capabilities from compromised nodes. Observe
that if an adversary compromises every good node in the
system once, it gets to know the tokens of all files stored on
the overlay network. In Section 7.3, we had proposed
location rekeying to protect the file system from such
attacks. The exact period of location rekeying can be
derived from Fig. 10. For instance, when � ¼ 3, if a user
wants to retain the attack probability below 0.1, the time
interval between rekeying should equal the amount of time
it takes for an adversary to compromise 70 percent of the
good nodes in the system. Table 4 shows the time taken
(normalized by 1

� ) for an adversary to increase the attack
probability on a target file to 0.1 for different values of �.
Observe that as � increases, location rekeying can be more
and more infrequent.

8.3 Location Inference Guards

In this section, we show the effectiveness of location
inference guards against the lookup frequency inference
attack and the file replica inference attack.

Lookup frequency inference guard. We have presented
lookup result caching and file identifier obfuscation as
two techniques to thwart the frequency inference attack.
Recall that our solutions attempt to flatten the frequency
profile of files stored in the system (see Lemma 7.1). Note
that we do not change the actual frequency profile of files;
instead, we flatten the apparent frequency profile of files as
perceived by an adversary. We assume that files are
accessed in proportion to their popularity. File popularities
are derived from a Zipf-like distribution [30], wherein, the
popularity of the ith most popular file in the system is
proportional to 1

i� with � ¼ 1.
Our first experiment on inference attacks shows the

effectiveness of lookup result caching in mitigating
frequency analysis attack by measuring the entropy [18]
of the apparent frequency profile (measured as number of
bits of information). Given the apparent access frequencies
of F files, namely, �0f1

; �0f2
; . . . ; �0fF , the entropy S is

computed as follows. First the frequencies are normalized
such that

PF
i¼1 �

0
fi
¼ 1. Then, S ¼ �

PF
i¼1 �

0
fi
� log2 �

0
fi

.
When all files are accessed uniformly and randomly, that
is, �0fi ¼

1
F for 1 � i � F , the entropy S is maximum

Smax ¼ log2 F . The entropy S decreases as the access
profile becomes more and more skewed. Note that if
S ¼ log2 F , no matter how clever the adversary is, he/she
cannot derive any useful information about the files stored
at good nodes (from Lemma 7.1). Table 6 shows the
maximum entropy ðSmaxÞ and the entropy of a Zipf-like
distribution ðSzipfÞ for different values of F . Note that
every additional bit of entropy doubles the effort required
for a successful attack; hence, a frequency inference attack
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TABLE 3
Mean Fraction of Good Nodes in Uncompromised State ðG0Þ

Fig. 10. Probability of a target file attack for N ¼ 1;024 nodes and R ¼ 7

using host compromise attack with token collection from compromised

nodes.

TABLE 4
Time Interval between Location Rekeying

(Normalized by 1
� Time Units)



on a Zipf-distributed 4,000 files is about 19 times ð212�7:75Þ
easier than the ideal scenario where all files are uniformly
and randomly accessed.

Table 5 shows the entropy of apparent file access
frequency as perceived by an adversary when lookup result
caching is employed by the system for F ¼ 32;000 files. We
assume that the actual access frequency profile of these files
follows a Zipf distribution with the frequency of access to
the most popular file ðf1Þ normalized to one access per unit
time. Table 5 shows the entropy of the apparent lookup
frequency for different values of �dep (the mean rate at
which a node joins/leaves the system). Observe if �dep is
large, the entropy of apparent file access frequency is quite
close to that of Zipf distribution (see Table 6 for 32,000 files);
and if the nodes are more stable (�dep is small), then the
apparent frequency of all files would appear to be
identically equal to �dep.

In our second experiment, we show the effectiveness of
file identifier obfuscation in mitigating frequency inference
attack. Fig. 11 shows the entropy of the apparent file access
frequency for varying values of prsq (the probability that
obfuscated queries are safe, see Theorem 6.1) for different
values of nf , the mean number of files per node. Recall that
an obfuscated identifier is safe if both the original identifier
and the obfuscated identifier are assigned to the same node
in the system. The higher the value prsq, the smaller is the
safe obfuscation range ðsrgÞ; and thus, the lookup queries
for a replica location token are distributed over a smaller
region in the identifier space. This decreases the entropy of
the apparent file access frequency. Also, as the number of
files stored at a node increases, there would be larger
overlaps between the safe ranges of different files assigned
to a node (see Fig. 4). This evens out (partially) the
differences between different apparent file access frequen-
cies and, thus, increases the entropy.

File replica inference guard. We study the severity of file
replica inference attack with respect to the update frequency
of files in the file system. We measured the probability that
an adversary may be able to successfully locate all the
replicas of a target file using the file replica inference attack
when all the replicas of a file are encrypted with the same
key. We assume that the adversary performs a host
compromise attack with � ¼ 3. Fig. 12 shows the probability
of a successful attack on a target file for different values of
its update frequency and different values of rekeying
durations. Note that the time period at which location keys

are changed and the time period between file updates are
normalized by 1

� (mean time to compromise a good node).
Observe the sharp knee in Fig. 12; once the file update
frequency increases beyond 3� (thrice the node compromise
rate), then the probability of a successful attack is very small.

Note that �, the rate at which a node can be
compromised by one malicious node, is likely to be quite
small. Hence, even if a file is infrequently updated, it could
survive a file replica inference attack. However, read-only
files need to be encrypted with different cryptographic keys
to make their replicas nonidentical. Fig. 12 also illustrates
that lowering the time period between key changes lowers
the attack probability significantly. This is because each
time the location key of a file f is changed, all the
information collected by an adversary regarding f would
be rendered entirely useless.

Inference attacks discussion. We have presented techniques
to mitigate some popular inference attacks. There could be
other inference attacks that have not been addressed in this
paper. Even the location inference guards presented in this
paper do not entirely rule out the possibility of an inference
attack. For instance, even when we used result caching and
file identifier perturbation in combination, we could not
increase the entropy of apparent lookup frequency to the
theoretical maximum (Smax in Table 6). Identifying other
potential inference attacks and developing better defenses
against the inference attacks that we have already pointed
out in this paper is a part of our ongoing work.

9 RELATED WORK

Serverless distributed file systems like CFS [6], Farsite [1],
OceanStore [16], and SiRiUS [12] have received significant
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TABLE 5
Countering Lookup Frequency Inference Attack Approach I:

Result Caching (with 32,000 Files)

TABLE 6
Entropy (in Number of Bits) of a Zipf Distribution

Fig. 11. Countering lookup frequency inference attack approach II: File

identifier obfuscation.

Fig. 12. Countering file replica frequency inference attack: Location

rekeying frequency versus file update frequency.



attention from both the industry and the research
community. These file systems store files on a large
collection of untrusted nodes that form an overlay net-
work. They use cryptographic techniques to secure files
from malicious nodes. Unfortunately, cryptographic tech-
niques cannot protect a file holder from DoS or host
compromise attacks. LocationGuard presents low overhead
and highly effective techniques to guard a distributed file
system from such targeted file attacks.

The Secure Overlay Services (SOS) paper [14] presents an
architecture that proactively prevents DoS attacks using
secure overlay tunneling and routing via consistent hash-
ing. However, the assumptions and the applications in [14]
are noticeably different from that of ours. For example, the
SOS paper uses the overlay network for introducing
randomness and anonymity into the SOS architecture to
make it difficult for malicious nodes to attack target
applications of interest. LocationGuard treats the overlay
network as a part of the target application and introduces
location hiding, making it difficult for malicious nodes to
target their attacks on a small subset of nodes in the system,
who are the replica holders of the target file.

While we have described LocationGuard for a Chord [29]
overlay network, we note that it also applies Pastry [25] and
Tapestry [4]. An identity in Pastry (or Tapestry) can be
obfuscated (using the same technique described in this
paper) while preserving the lookup property. We note
that within a small obfuscation range, both identities id and
idþ srg in Pastry (and Tapestry) are mapped to the same
target node. On the other hand, it may be nontrivial to
extend this scheme to the CAN [23] network.

The Hydra OS [5] proposed a capability-based file access
control mechanism. LocationGuard implements a simple and
efficient capability-based access control on a wide-area
network file system. The most important challenge for
LocationGuard is that of keeping a file’s capability secret
and yet being able to perform a lookup on it (see Section 6).

Indirect attacks such as attempts to compromise
cryptographic keys from the system administrator or use
fault attacks like RSA timing attacks, glitch attacks, and
hardware and software implementation bugs [21] have
been the most popular techniques to attack cryptographic
algorithms. Similarly, attackers might resort to inference
attacks on LocationGuard since a brute force attack (even
with range sieving) on location keys is highly infeasible.

A major overhead for LocationGuard arises from key
distribution and key management. In particular, one can
envision scenarios wherein 1) an owner owns several
thousand files and 2) the set of legal users for a file vary
significantly over time. In the former scenario, the file
owner could reduce the key management cost by assigning
one location key for a group of files (and directories).
Additionally, one could leverage literature on key manage-
ment algorithms for access control hierarchies [2] to encode
*nix-like access control policies. Note that *nix-like access
control is essentially hierarchical since a user can read a file
f only if it has execute (+x) permission on the parent
directory containing file f . Inductively, the user must have
executed permission on all directories in the absolute path

to file f , and thus represented as hierarchical access control
policies [2].

In the latter scenario, one could use efficient group key
management protocols to accommodate dynamic group
membership updates (detailed survey in [22]). Such proto-
cols typically incur a key update cost that is logarithmic in
the number of users. Additionally, one could leverage
recent advances in key management algorithms for tempor-
al access control [3], wherein a user leases access to a file for
some contracted time period ða; bÞ. Atallah et al. [3] require
no key update cost, a constant key distribution cost per
lease and a public storage that is OðT � log logT Þ (where T
denotes number of time units of interest). We note that
while LocationGuard mechanisms incur low overhead, the
choice of key management protocols may significantly
impact the file system’s performance metrics.

In this paper, we have not addressed the robustness of
the lookup protocol and the overlay network in the
presence of malicious nodes. Readers may refer to [27] for
detailed discussion on the robustness of lookup protocols
on DHT-based overlay networks.

10 CONCLUSION

We have described LocationGuard—a technique for secur-
ing wide-area serverless file sharing systems from targeted
file attacks. Analogous to traditional cryptographic keys
that hide the contents of a file, LocationGuard hides the
location of a file on an overlay network. LocationGuard
protects a target file from DoS attacks, host compromise
attacks, and file location inference attacks by providing a
simple and efficient access control mechanism with mini-
mal performance and storage overhead. The unique
characteristics of LocationGuard approach is the careful
combination of location key, routing guard, and an
extensible package of location inference guards, which
makes it very hard for an adversary to infer the location of a
target file by either actively or passively observing the
overlay network. Our experimental results quantify the
overhead of employing location guards and demonstrate
the effectiveness of the LocationGuard scheme against DoS
attacks, host compromise attacks, and various location
inference attacks.
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