
DHT-Based Range Query Processing for Web Service Discovery

Yiming Zhang1, Ling Liu2, Dongsheng Li1, Xicheng Lu1
1PDL, School of Computer, National University of Defense Technology, Changsha, 410073 China

1{ymzhang, dsli, xclu}@nudt.edu.cn
2College of Computing, Georgia Institute of Technology, Atlanta, 30332-0765 USA

2lingliu@cc.gatech.edu

Abstract

DHTs are scalable, self-organizing, and adaptive to
underlying topology changes, thus being a promising
infrastructure for realizing efficient Web service
discovery. Range queries play an important role in
service discovery, and in recent years a number of DHT-
based range query schemes have been proposed.
However, most of them suffer from high query delay and
high processing cost. This paper presents ERQ, an
Efficient scheme for delay-bounded Range Query
processing over DHTs. We first design a balanced Kautz
(BK) tree to uniformly map the m-dimensional data space
onto DHT nodes, and then present a novel algorithm that
processes range queries in a parallel fashion, where an
on-the-fly space pruning mechanism is adopted to reduce
the processing cost. In a DHT with N nodes, ERQ can
answer any multi-attribute range query in less than
logN(2loglogN+1) hops with low processing cost,
irrespective of the queried range, the whole space size, or
the number of queried attributes. The effectiveness of
ERQ is demonstrated through extensive experiments.

1. Introduction

Over the last decade, we see an increasing trend of
hosting large number of Web services in decentralized
networks organized by a distributed hash table (a.k.a.
DHT [1-3]) model. DHTs are scalable, self-organizing,
and adaptive to underlying topology changes, thus being
a promising infrastructure for realizing efficient discovery
of various Web services [4-6]. The basic functionality
provided by DHTs is exact-match query, which might be
enough in some simple applications. For example, a file
sharing service [4] may use filenames as keywords for
service publication and discovery. However, the simple
exact-match interface is not flexible enough for many
more complicated services. For example, in an Internet
RAM service [6] a customer might wish to find RAM
providers satisfying “Memory ≥ 2GB”, and in a reputation
management service a user might issue queries like “60 ≤
Reputation Score ≤ 80”, and so on.

The above illustrated queries are called range queries,
which play an important role in Web service discovery.

Recently, a number of DHT-based schemes for range
query processing have been proposed. One important
category of DHT-based range query schemes is the
layered schemes (e.g., [7-15]), which are built on top of
existing DHTs and do not need to modify the underlying
infrastructure, thus having a number of methodological
merits such as being easy to design and error isolation.
However, current layered schemes suffer from inefficient
performance since they do not adapt the behavior of
underlying DHTs to the requirement of range queries. In
most proposed layered schemes, the query delay depends
on both the size of the network (i.e. the number of nodes)
and the properties of the query (such as the queried range,
the whole space size and the number of queried attributes).
As a result, these schemes cannot guarantee to return the
results in a bounded delay (defined by [12]) that is
relevant only to the size of the network.

In this paper we present ERQ, an Efficient layered
scheme for delay-bounded Range Query processing over
DHTs. ERQ is built on top of DLG-Kautz (DK) [3], a
high-performance constant-degree DHT. ERQ does not
need to modify the underlying DK infrastructure, and thus
directly inherits the desirable properties of DK such as
low diameter, constant degree and low congestion. ERQ
supports efficient range queries and can return all the
results in a bounded delay, irrespective of the queried
range, the whole space size, or the number of queried
attributes.

The contribution of this paper is three-fold.
• We propose the balanced Kautz (BK) tree model to

uniformly map the m-dimensional data space onto the
network via a 1-dimensional Z-curve.

• We present a parallel query processing algorithm that
searches along the BK tree with an on-the-fly space
pruning mechanism.

• We theoretically analyze the delay and cost of ERQ,
and demonstrate the effectiveness of our proposals
through extensive experiments.

ERQ can answer any range query in less than
logdN(2logdlogdN+1) hops with low processing cost,
where N and d are the size and base of the underlying
DHT, respectively. This is very close to the asymptotic
lower bound Ω(logdN) [12] for range queries over
constant-degree DHTs.

Up to now the most relevant work to ERQ is Armada
[12], a novel delay-bounded scheme that supports range
queries over the FissionE DHT [20]. The advantages of
ERQ over Armada mainly include: (i) ERQ has a better
load balancing property than Armada under dynamic load
distribution changes, which are very common in real
Internet environments; and (ii) ERQ can increase the base
d to reduce the delay, while keeping a relatively small
routing table size (2d) and maintenance overhead. In
contrast, Armada can only have a fixed base d = 2.

The rest of this paper is organized as follows. Section
2 introduces the preliminaries. Section 3 presents the
detailed design of ERQ, followed by theoretical analysis
and extensive evaluations in Sections 4 and 5,
respectively. Section 6 discusses related work and Section
7 concludes the paper.

2. Preliminaries

In this section we first introduce the background of

DK on which ERQ is based, and then present an
overview of ERQ.

2.1. Background: the DK DHT

DK is a Kautz graph-based DHT that was proposed in

our previous work [3]. Let Zd = {0, 1, 2, …, d−1} be an
alphabet of d letters. A Kautz string a of length k and base
d is defined as a = a1a2…ak, where ai∈ Zd+1 with 1 ≤ i ≤ k
and aj ≠ aj+1 with 1 ≤ j ≤ k−1. The Kautz name space KS(d,
k) is the set that contains all Kautz strings of base d and
length k. The Kautz graph K(d, k) is a directed graph in
which each node is labeled with a Kautz string in KS(d, k)
and has d out-neighbors: for each β ∈ Zd+1 and β ≠ uk,
node u = u1u2…uk has one out-edge to node v = v2v3…vkβ
(denoted by u v→). Figure 1(a) shows an example of
Kautz graph K(2,2). The routing path in a Kautz graph
from node u = u1u2…uk to node v = v1v2…vk is:

1 2 2 1 1 2...k k ku u u u u u v v v v v= → → → =L .
In a DK DHT with base d, node identifiers are Kautz

strings with base d and the identifier lengths might be
different. Let | u | denote the identifier length of node u.
DK utilizes a mechanism called edge-node transition to
deal with node joining/departure. For example, suppose
that the current topology of DK is as shown in Figure 1(a).
When a new node p joins, it first looks for a DK node u
that satisfies | u | ≤ | v | for all the neighbors v of u. Let u =
10 in this example. Then the edge from 21 to 10 will turn
into node 210 that corresponds to node p, and the edge
from 01 to 10 will turn into node 010 that corresponds to
node u. The new topology is shown in Figure 1(b). By
this means DK would get a series of topologies, the first
three of which are illustrated in Figures 1(b), (c), and (d).
All nodes in DK are organized into an approximate Kautz

graph according to their identifiers. Each node has d out-
neighbors: node u = u1u2…um has one out-neighbor
ut…u2u3…umβ (1 ≤ t ≤ 3) for each β ≠ um.

 (a) Kautz graph K(2, 2) (b) DK topology (i)

 (c) DK topology (ii) (d) DK topology (iii)
Figure 1. Kautz graph K(2,1) and DK topologies.

2.2. ERQ overview

To facilitate Web service look up and discovery, we

model a service in terms of the set of attributes to specify
the properties of the service. For example, consider a
computing service with two attributes: the CPU frequency
(CPU) and the memory capacity (Memory). All possible
service instances form a two-dimensional data space and
a specific service corresponds to a data point in the space.
A service customer might lookup services satisfying
“CPU ≥ 1GHz & Memory ≥ 2GB”, which is a typical
range query.

DHTs are a promising infrastructure for realizing
efficient Web service discovery. However, most DHTs
cannot directly support such range queries since their
hash functions destroy the original order relationship
(either “<” or “>”) between attribute values. This paper
addresses the problem and proposes an Efficient Range
Query scheme (ERQ) that is layered on top of the DK
DHT.

The main advantage provided by the layered design is
that the underlying DHT eases the burden of dealing with
topology maintenance and message routing. Thus, ERQ
needs only to focus on the range query-related issues,
namely, publishing and searching.

In the publishing phase, the services are published by
the following operations. (i) Map the multi-attribute data
points to a 1-dimensional Z-curve; and (ii) Map the Z-
curve to the nodes organized by a BK tree. For example,

suppose that the computing service is deployed in a
network as shown in Figure 1(a) and node 21 is a
provider with attributes “Memory = 3GB & CPU =
1.5GHz”. After the publishing phase, this information
would be published to its responsible node, say node 10,
together with the provider address “ProviderID = 21”.

In the searching phase, the query node issues a range
query and ERQ propagates the query along the BK tree in
a parallel fashion, where an on-the-fly space pruning
mechanism is adopted to reduce the processing cost. For
example, suppose that in the network as shown in Figure
1(a) node 02 wants to look up services satisfying “CPU ≥
1GHz & Memory ≥ 2GB”. The searching phase would
propagate the query to node 10 and return the result
(“ProviderID = 21”).

3. Design

This section presents the detailed design, including
service publication and query processing, of ERQ.

3.1. Service publication

This subsection first discusses the linearization of

multi-attribute values, then presents the balanced Kautz
tree, and at last proposes the service publication algorithm.

3.1.1. Linearization of multi-attribute values. Range
queries can be classified into single-attribute queries and
multi-attribute queries [12]. ERQ processes both single-
attribute and multi-attribute queries in a unified way by
linearizing the multi-attribute values to a one-dimensional
Z-curve [21].

Suppose that a data point X has m attributes Xi = xi
with 0 ≤ i < m, and X is denoted as a vector X = <x0, x1, …,
xm−1>. Let the entire interval of attribute Xi be xi(min) ≤ Xi <
xi(max), denoted as Xi ∈ [xi(min), xi(max)). We first use a k-digit
base d number xi' to normalize xi as

 (min)

(max) (min)

(1) ()
'

()

k
i i

i
i i

d x x
x

x x
− × −

=
−

. (1)

Clearly xi' satisfies 0 ≤ xi' < dk. For simplicity, in the
following we will not distinguish xi and xi', and assume
that all attributes have the same entire interval [0, dk).

DEFINITION 1. Z-mapping [22,23]. Suppose that a data
point X has m attributes, namely Xi = xi with 0 ≤ i < m.
Let xi be a k-digit base d integer 0 1...i i ikx x x , then
 00 10 (1)0 01 11 (1)1 0 1 (1)()m m k k m kZ X x x x x x x x x x− − −= (2)
is called Z-mapping from the m-dimensional space to a
one-dimensional Z-curve.

Let n represent the length of Z(X). Clearly n = k× m
and 0 ≤ Z(X) < d

n. Then, a data point X is mapped by (2)
to a unique n-digit integer Z(X) on the Z-curve.

3.1.2. Balanced Kautz tree. This subsection designs the
BK tree by emulating the PHT structure [13] in DK.

A node (including inner nodes and leaves) in a BK tree
represents an m-dimensional space S and corresponds to a
string s that is a common prefix of Z(P), where P
represents all possible data points in S. The node will be
labeled as KHash(s), the Kautz hash value [3] of string s.

The root at layer 0 represents the whole m-dimensional
space 0 ≤ Xi < dk with 0 ≤ i < m, which is denoted as [0,
dk)m. The root corresponds to a null string, thus being
labeled as “NULL”. Suppose that a node A at layer h
corresponds to a common prefix s and is labeled as
KHash(s). Then node A represents a multi-attribute value
space that consists of all data points Y, which satisfy s is a
prefix of Z(Y). We also say that node A represents prefix s.

Each node in the tree has 0 or d children. If node A has
d children, say nodes Bj with 0 ≤ j < d, then node Bj will
correspond to the concatenation of string s and letter j
(denoted as s o j) and is labeled as KHash(s o j). Note that
node Bj corresponds to a prefix one more digit than s. Let
i = h mod m, then the ith-dimension of the data space
represented by node A is divided into d equal shares, each
of which is assigned to a children Bj. The intervals of
other d−1 attributes Xi' (i' ≠ i) represented by the children
of node A are the same as that represented by A.

In the following we will use the term tree node (inner
node or leaf node) to represent a node in the BK tree, and
use the term DK node (node for short) to represent a real
node in the DK DHT.

Suppose that a tree node R represents an m-
dimensional data space S and the corresponding common
prefix s. R is emulated by the DK node that is responsible
for the label (KHash(s)) according to the following policy
[3].

Let the DK node be u = u1u2…um and the label s =
s1s2…sn. Define M(u,s) as the maximum value of all
integers i (0 ≤ i ≤ min(m, n)) that satisfy um−i+j = sj for any
j (0 ≤ j ≤ i). E.g., M(10121, 012120) = 4, M(10121, 12120)
= 3. The tree node R is emulated by a DK node u, iff
 (,) | |M u s u= ; or 1 *(,) | | 1M u s u u s= − ∧ = , (3)
where s* = sn if sn ≠ u2, or s* = sn−1 if sn = u2.

In the following we will use r(x) to denote the DK
node that emulates the tree node with label x. For
example, suppose that the current topology of DK is as
shown in Figure 1(b), and node u = 010, u' = 210, label t
= 010201 and s = 101202. Then r(t) = u, i.e. the tree node
of t is emulated by u, since M(u,t) = 3 = | u |; and r(s) = u'
since M(u',s) = 2 = | u | − 1 and sn = 2 = u'2 ∧ sn = 2 = u'1.

3.1.3. Publication in the BK tree. A data point is
assigned to a leaf in the BK tree that represents the space
containing the point. A leaf contains at most MAX points
to limit the maximum load of a node. If a leaf node, say
node A, contains more than MAX points since new points
are published onto it, node A will generate d children as

described above and divide its load to its d children
according to their Z-mapping values: a point X will be
assigned to the child that corresponds to a prefix of Z(X).
Then, A will contain no points and it will turn into an
inner node. Moreover, node A will add d links to its
routing table, each of which points to a child.

All service providers periodically invoke the
procedure and a service is considered stopped when the
leaf node can no longer receive any messages from its
provider. Note that if the total number of points of the d
children is less than MAX they will move their points to
their parent A and A will again become a leaf node, the
procedure of which can be viewed as a counterpart of the
split procedure and is omitted here.

3.2. Range query processing

Suppose that the queried range is xi

(1) ≤ Xi < xi
(2) with 0

≤ i < m, which is denoted as [X(1), X(2)) with X(1) = <xi
(1)>

and X(2) = <xi
(2)>. Let Zmin = Z(X(1)), Zmax = Z(X(2)), and let

ComPrefix(Zmin, Zmax) denote the common prefix of Zmin
and Zmax. To reduce the search space, ERQ’s query
processing consists of two phases, namely, (i) locating the
representing node A for ComPrefix(Zmin, Zmax), and (ii)
searching down the BK tree from A.

3.2.1. Locating the representing node. Let ComPrefix
(Zmin, Zmax) = z1z2...zp. Then there are p+1 possible strings
to be a prefix of z1z2...zp, namely, z1z2...zp, z1z2...zp−1, …, z1
and null. An intuitive method to locate the representing
node is to travel a top-down path along the BK tree: root
→ r(KHash(z1)) → r(KHash(z1z2)) → …, until the
current node is r(KHash(z1z2...zp)) or a leaf. However,
clearly in this way the tree root tends to be a performance
bottleneck when there are large amounts of queries.

To address this problem, ERQ utilizes a variation of
the binary search algorithm as follows. Let a = /p d⎡ ⎤⎢ ⎥ ,
the query node first issues d queries to check whether
some of the d DK nodes, namely, r(KHash(z1z2...za)),
r(KHash(z1z2...z2a)), …, r(KHash(z1z2...zda)), exist in the
network. If so, the node with the maximum identifier
length will be the representing node for ComPrefix(Zmin,
Zmax) and the first phase is finished. Otherwise, Let b =

/a d⎡ ⎤⎢ ⎥ and the query node will start a similar procedure
to check whether some of the d nodes, r(KHash(z1z2...zb)),
r(KHash(z1z2...z2b)), etc., exist. By parity of reasoning,
this algorithm ensures that the representing node for
ComPrefix(Zmin, Zmax) can be found in at most logp ≤
logdlogdN steps. The algorithm for locating representing
node is referred to as d-Search.

Note that if the bandwidth allows checking all possible
strings simultaneously, ERQ can locate the representing
node in one step. Similarly, if the bandwidth is limited

that ERQ can only check all possible strings one by one,
this phase can be finished in at most p ≤ logdN steps.

3.2.2. Parallel searching. If the representing node (say
node A) for ComPrefix(Zmin, Zmax) is a leaf node, then
ERQ can easily finish the processing at A. Otherwise
ERQ needs to perform a top-down search along the BK
tree from the inner node A.

As shown in Theorem 1 (presented in the next section),
for subinterval [X(1), X(2)) in the m-dimensional space the
corresponding interval of the Z-mapping might be only a
subset of [Z(X(1)), Z(X(2))). Therefore, from an inner node,
say node B, an on-the-fly space pruning mechanism can
be conducted as follows. (i) For each child of B, say node
C, check whether its represented space intersects with the
queried range. (ii) If there are some intersections, then the
query will be sent to child C; Otherwise C and its sub-tree
will not be queried any more.

Procedure Parallel-Search (Value X(1), Value X(2))
01 A = d-Search (X(1), X(2));
02 if (A==NULL) {return; }
03 if (A is a leaf node) {
04 LocalSearch (X(1), X(2)); return; }
05 Prune (A, X(1), X(2));
06 return;

Procedure Prune (Node B, Value X(1), Value X(2))
01 if (B is a leaf node) {
02 LocalSearch (X(1), X(2)); return; }
03 else {
04 s = GetString (B); len = Length (s);
05 for each C ∈Children (B) {
06 if (Check(C, len, X(1), X(2))) {
07 Prune (C, X(1), X(2)); } } }
08 return;
Figure 2. Range query processing and on-the-fly
space pruning.

The complete algorithm for range query processing in

ERQ (named Parallel-Search) is summarized in Figure 2,
together with the space pruning algrithm (named Prune).

4. Analysis

This section analyzes the properties of query delay and
processing cost in ERQ.

For two data points X = <xi> and Y = <yi> with 0 ≤ i <
m, we say that X is smaller than Y (denoted as “X < Y”) if
there exists an integer t (0 ≤ t < m) satisfying: for each j
(0 ≤ j < t), xj = yj and xt < yt.

The following Theorem 1 gives the upper bound for
the range query delay in ERQ.

Theorem 1. Any range queries in ERQ can be
answered in less than logdN(2logdlogdN+1) hops, where N
and d are the size and base of the DHT, respectively.

Proof. Let the queried range be [X(1), X(2)). Let Zmin =
Z(X(1)), Zmax = Z(X(2)). As described in Section 3.2.1, the
d-division algorithm can locate the tree node representing
ComPrefix(Zmin, Zmax) within at most logdp ≤ logdlogdN
steps.

According to [5], the diameter of DK is less than
2logdN, thus one step corresponds to at most 2logdN DHT
hops and the delay (D1) of the first phase (locating)
satisfies
 1 2 log log logd d dD N N≤ . (4)

On the other hand, since the height of ZK tree is at
most logdN and for each branch in the tree there is a link,
the delay (D2) of the second pruning phase satisfies
 2 logdD N< . (5)

By (4) and (5), the delay (D) of any range queries in
ERQ satisfies
 log (2 log log 1)d d dD N N< + . (6)

Therefore, Theorem 1 holds. ■
From Theorem 1 it is easy to see that ERQ guarantees

to return the results within a bounded delay, which is only
relevant to the size of the network but independent of the
queried range, the whole space size or the number of
queried attributes. This delay is very close to the
asymptotic lower bound O(logdN) for range queries over
constant-degree DHTs.

The following Theorem 2 gives the average message
cost of single-attribute range query processing in ERQ.

Theorem 2. The average message cost of single-
attribute range query processing in ERQ is no more than
O(logdNlogdlogdN+βN), where N and d are respectively
the size and base of the DHT, and β represents the ratio
of the queried range to the entire interval.

Proof. Let the queried range be S = [X(1), X(2)). Let
Zmin = Z(X(1)), Zmax = Z(X(2)). By the definition of Z-
mapping, for Z(X) and any two values X and Y in S, if X <
Y then Z(X) < Z(Y); and for S the corresponding interval
of Z is [Z(X(1)), Z(X(2))).

Therefore, the range query for S is equal to searching a
set of neighboring tree nodes, which represent a
consecutive interval [Z(X(1)), Z(X(2))).

As discussed in the proof of Theorem 1, the delay of
the first phase (locating) is no more than 2logdNlogdlogdN,
and thus the cost (C1) of the first phase satisfies
 1 2 log log logd d dC d N N≤ . (7)

Suppose that the ZK tree has k layers. On average we
have k = logdN. Suppose that the tree node representing
ComPrefix(Zmin, Zmax) is at layer h. Then in the second
phase (pruning search) all the message forwarding paths
can be approximated as a k−h layer base-d tree, in which
the number of tree nodes is equal to the cost (C2) of the
second phase. Clearly C2 satisfies

1

2
2

11
1

k h
k h dC d d d

d

− +
− −

≈ + + + + =
−

L . (8)

Since the ratio of the queried range size to the entire
interval is β, on average there are βN nodes involved in
representing the interval [Z(X(1)), Z(X(2))). Thus we have
 logdk h Nβ− ≈ . (9)

By (7) ~ (9), it is easy to infer that the average cost is
no more than O(logdNlogdlogdN+βN) messages, and this
completes the proof. ■

From Theorem 2 we conclude that the average cost of
single-attribute range query processing in ERQ is close to
the asymptotic lower bound O(logN)+βN [12]. We will
evaluate the average cost of multi-attribute range queries
through experiments in the next section.

5. Evaluation

This section evaluates ERQ by extensive experiments.

5.1. Methodology

We evaluate the properties of ERQ by modifying the

DK simulator [3]. Among the well-known layered range
query schemes, only Armada [12], PlaceLab [13] and
DCF-CAN [14] (see Section 6) can support range queries
over constant-degree DHTs. Since the performance of
PlaceLab is much worse than others, we only compare
ERQ with Armada and DCF-CAN in this section.

There are four configurable parameters involved in our
experiments, namely, the network size (N), the size of the
whole space (S), the ratio of the queried range to the
entire interval in each dimension (β), and the number of
queried attributes (m). In our experiments,
• The network size is varied from 1K to 10K;
• The entire interval in each dimension in the data space

is [0, 1000);
• The ratio is varied from 0.05 to 0.4; and
• The number of queried attributes is set to 1 (single-

attribute) and 6 (multi-attribute).
In the rest of this section we vary these parameters one

at a time, and in turn evaluate the query delay and
processing cost of ERQ. The experiment for each
property is repeated at least 1000 times.

5.2. Query delay

We first evaluate the average delay of single-attribute

range queries (as a function of the network size) in ERQ,
Armada and DCF-CAN, which are designed on top of
DK [3], FissionE [20] and CAN [2] respectively. In the
three underlying DHTs, the base (d) of DK and CAN can
be set to any integer (≥ 2), while the base of FissionE can
only be 2. Since all the three DHTs have the same

average degree 2d, we can say that they have the same
routing table size if their base is equal. In our experiments
the base of DK and CAN is set to d = 2 and d = 4, and the
base of FissionE is set to d = 2.

In each experiment we randomly select a node to
initiate a range query. The queried range is randomly
selected from [0, 1000) with a fixed ratio β = 0.2. The
results are shown in Figure 3.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10
Network size (*1000)

Qu
er

y
de

la
y

(h
op

s)

ERQ(d=2)
ERQ(d=4)
Armada
DCF-CAN (d=2)
DCF-CAN (d=4)

Figure 3. Average query delay (m = 1).

Our conclusion for Figure 3 is two-fold.
First, the query delay of ERQ is considerably less than

that of DCF-CAN when they have the same base. This is
mainly because ERQ and DCF-CAN have different delay
functions (O(logdNlogdlogdN) and O(N1/d) respectively) of
the network size.

Second, the query delay of ERQ is a little greater than
that of Armada when d = 2, but ERQ outperforms
Armada when d = 4. This result proves the second
advantage of ERQ over Armada (discussed in Section 1),
that is, ERQ benefits from the configurable base of its
underlying DK DHT, in contrast Armada can only have a
fixed base d = 2. Note that (although not shown in this
figure) ERQ can adopt a larger base d to further reduce
the delay, and the effect would become more pronounced
for considerably large values of the network size (for
example, millions of nodes).

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
Network size (*1000)

Qu
er

y
de

la
y

(h
op

s)

ERQ(d=2)
ERQ(d=4)
Armada

Figure 4. Average query delay (m = 6).

We then evaluate the average delay of multi-attribute

range queries with m = 6. Other parameters (N, S, β and d)
are the same as the previous experiment. Since DCF-
CAN can only support single-attribute range queries, only
ERQ and Armada are evaluated.

The results are shown in Figure 4. From this figure we
can deduce similar conclusions to Figure 3, which are
omitted here due to lack of space.

We then evaluate the impact of the queried range ratio
(β) on the performance of ERQ (with d = 2 and d = 4).
The network size (N) is fixed to 6000, the number of
attributes (m) is 6, and the ratio in all dimensions is
simultaneously varied from 0.05 to 0.4. The results are
shown in Figure 5.

5

10

15

20

25

30

1 2 3 4 5 6 7 8
β(*0.05)

Qu
er
y

de
la
y

(h
op

s)

ERQ(d=2)
ERQ(d=4)

Figure 5. Impact of queried range ratio on the
query delay of ERQ.

From Figure 5 we can see that the query delay of ERQ

almost keeps a constant regardless of the ratio (β). We
conclude that the queried range ratio affects little the
performance of ERQ, which demonstrates ERQ’s delay-
bounded property.

5.3. Processing cost

We evaluate the average processing cost of ERQ, as a

function of the network size, and compare it with Armada.
In our experiments, the base, the number of attributes and
the queried range ratio are set to d = 4, m = 6 and β = 0.2,
respectively.

The results are shown in Figure 6. Our conclusion for
this figure is two-fold.

First, from this figure we observe that the average cost
of ERQ increases slowly with the network size, which
illustrates ERQ can efficiently processing range queries
with a low overhead.

Second, the average cost of ERQ is always less than
that of Armada. This is because ERQ’s BK tree has fewer
levels compared with Armada’s forwarding tree, which
demonstrates ERQ’s advantage of the configurable base d.

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10
Network size (*1000)

Qu
er

y
co

st
 (
me

ss
ag

es
)

ERQ(d=4)
Armada

Figure 6. Average processing cost (m = 6).

We evaluate the impact of the queried range ratio (β)

on the processing cost of ERQ with d = 4, N = 6000 and
m = 6. The ratio in all dimensions is simultaneously
varied from 0.05 to 0.4. The results are shown in Figure 7.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8
β(*0.05)

Q
ue
r
y
c
os
t
 (
m
e
ss
a
ge
s
)

ERQ(d=4)

Armada

Figure 7. Impact of queried range ratio on the
processing cost of ERQ and Armada.

From this figure we can see that the processing cost of

ERQ increases nearly exponentially with the queried
range ratio (β), which is mainly because the number of
nodes involved in the queried range is exponential to β. In
this experiment ERQ again outperforms Armada due to
the lower Balanced Kautz tree and the less number of
involved nodes.

6. Related work

DHT-based range query schemes could be classified
into two categories, namely, layered schemes and
customized schemes. The layered schemes [7-15] refer to
the ones that are layered over existing DHTs and do not
need to modify the topology or behavior of underlying
DHTs. In contrast, the customized schemes [16-19] refer
to the ones that have a clean-slate design of the

underlying DHTs, which are tightly coupled with their
query processing methods.

6.1. Layered schemes

Squid [7] provides range query functionality based on

Chord [1]. Squid uses a space-filling curve (SFC) to map
data points to nodes and performs range queries by
searching SFC clusters recursively. The query delay of
Squid is about O(h*logN), where h is related to the depth
of SFC clusters and the specific query. Gupta et al. [8]
proposes a probabilistic scheme that uses locality
sensitive hashing to support single-attribute range queries
on Chord. SkipNet [9] is a DHT that directly supports
single-attribute range queries, and has a query delay of
O(logdN + n), where n is the queried range size.
Brushwood [10] provides multi-attribute range query
functionality based on SkipNet with a high query delay.
March et al. [11] focuses on multi-attribute range query
processing over read-only DHTs.

Among the well-known layered range query schemes,
only Armada [12], PlaceLab [13] and DCF-CAN [14] are
built on top of constant-degree DHTs.

In our previous work [12] we proposed Armada, a
delay-bounded range query scheme based on the FissionE
DHT [20]. Armada can return the results for any range
query within 2log2N hops in a network of N nodes, with
an average processing cost of O(log2N). As shown in
Section 5, however, the fixed base d (= 2) prevents
Armada from further reducing the query delay even if the
bandwidth allows a larger base. Moreover, Armada
utilizes historical statistical information to predict the load
distribution, inevitably inducing inaccuracy problems
under dynamic load changes, which are common in real
Internet applications. In contrast, ERQ directly inherits
the load balancing property from the PHT technique. MR-
FissionE [22] is a variation of Armada and supports
multi-attribute range queries on top of FissionE [20] with
a fixed base d = 2. However, it suffers from a long query
delay similar to Armada.

DCF-CAN [14] uses CAN [2] as the underlying DHT.
When a node P invokes a range query [l, u] in DCF-CAN,
it first routes the query to the node in charge of the
median value, i.e. (l+u)/2, and then starts two “waves” of
propagation. In the first wave, the current node
propagates the query only to the neighbors that intersect
the query and have a “higher” interval than the current
node. Then, the current node propagates the query to the
neighbors with a “lower” interval. The directed controlled
flooding (DCF) mechanism can achieve a good tradeoff
between query delay and overhead. DCF-CAN can only
support single-attribute range queries.

Chawathe et al. designed the PHT structure to support
range queries in PlaceLab [13]. The PHT structure is a
prefix hash tree in which leaf nodes are keys and each

internal node corresponds to a distinct prefix, which is
similar to the BK tree. The BK tree differs from the PHT
structure mainly in two aspects: (i) the BK tree node
labels are Kautz strings; and (ii) the inner nodes have
direct DK links to its children. PlaceLab achieves good
load balancing by branching the leaves where attribute
values are densely populated. However, each hop in the
tree in PlaceLab corresponds to a DHT routing, and the
diameter and average degree of the underlying DHT of
PlaceLab are both O(logN). Thus the query delay in
PlaceLab is about O2(logN). Recently Tang et al.
proposes LHT [15] that redesigns the indexing scheme of
PHT to reduce the maintenance cost. LHT and PHT have
similar range query delay.

6.2. Customized schemes

Among the customized range query schemes, Mercury

[16] and SWORD [17] provide multi-attribute range
queries by indexing the data set along each individual
attribute; Liu et al. [18] propose NR-tree, which extends
R*-tree index to support range queries and k-nearest
neighbor queries in super-peer P2P systems; P-tree [19]
builds specific P2P networks to support range queries
based on B+-tree. Since customized range query schemes
requires a clean-slate design of underlying DHTs which
are complicated and error-prone, our ERQ has an obvious
methodological advantages over these schemes.

7. Conclusion

This paper presents ERQ, a DHT-based, delay-
bounded range query scheme for efficient Web service
discovery. ERQ designs a balanced Kautz tree to
uniformly map the m-dimensional data space onto DHT
nodes, and presents a parallel query processing algorithm
with an on-the-fly space pruning mechanism.

ERQ utilizes the d-Search algorithm to locate the
representing node for the common prefix. In the future we
plan to develop an adaptive algorithm to automatically
adjust its search patterns (one-by-one, d-Search, or fully-
parallel search) according to the bandwidth limitation. We
also plan to extend ERQ to support other complex queries
on DK, such as top-k queries, skyline queries, and nearest
neighbor queries.

Acknowledgement

This work is sponsored in part by the National Basic
Research Program of China (973) under Grant No.
2005CB321801, the National Natural Science Foundation
of China under Grant No. 60673167 and 60703072. This
work is also partially sponsored by grants from NSF

CISE CSR program, CyberTrust Program, an IBM SUR
Grant, and an IBM Faculty Award.

References

[1] I. Stoica, R. Morris, D. R. Karger, et al. Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications.
IEEE/ACM Trans. Networking, 2003, 11(1): 17–32

[2] S. Ratnasamy, P. Francis, M. Handley, et al. A Scalable
Content Addressable Network. Proc. SIGCOMM 2001.

[3] Y. Zhang, L. Liu, D. Li, et al. Distributed Line Graphs: A
Universal Framework for Building DHTs Based on
Arbitrary Constant-Degree Graphs. Proc. ICDCS 2008.

[4] Y. Yang, R. Dunlap, et al. Performance of Full Text Search
in Structured and Unstructured Peer-to-Peer Systems. Proc.
INFOCOM 2006.

[5] R. Cox, A. Muthitacharoen, R. T. Morris. Serving DNS
Using a Peer-to-Peer Lookup Service. Proc. IPTPS 2002.

[6] Y. Zhang, D. Li, et al. PIBUS: A Network Memory-based
Peer-to-Peer IO buffering service. Proc. Networking 2007.

[7] C. Schmidt, and M. Parashar. Enabling Flexible Queries
with Guarantees in P2P systems. IEEE Internet Computing,
Vol. 8, No. 3, pp. 19-26, May/June 2004.

[8] A. Gupta, D. Agrawal, et al. Approximate Range Selection
Queries in Peer-to-Peer systems. Proc. CIDR 2003.

[9] N. Harvey, M. Jone, et al. Skipnet: A Scalable Overlay
Network with Practical Locality Properties. Proc. USITS
2003.

[10] C. Zhang, A. Krishnamurthy, et al. Brushwood: Distributed
Trees in Peer-to-Peer Systems. Proc. IPTPS 2005.

[11] V. March, Y. M. Teo. Multi-Attribute Range Queries on
Read-only DHT. Proc. ICCCN 2006.

[12] D. Li, J. Cao, X. Lu, et al. Delay-Bounded Range Query in
DHT-based Peer-to-Peer Systems. Proc. ICDCS 2006.

[13] Y. Chawathe, et al. A Case Study in Building Layered
DHT Applications. Proc. SIGCOMM 2005.

[14] A. Andrzejak and Z. Xu. Scalable Efficient Range Queries
for Grid Information Services. Proc. IEEE P2P Computing
2002.

[15] Y. Tang, S. Zhou. LHT: A Low-Maintenance Indexing
Scheme over DHTs. Proc. IEEE ICDCS 2008.

[16] A. R. Bharambe, M. Agrawal, S. Seshan. Mercury:
Supporting Scalable Multi-Attribute Range Queries. Proc.
SIGCOMM 2004.

[17] D. Oppenheimer, J. Albrecht, et al. Distributed Resource
Discovery on Planetlab with SWORD. Proc. WORLDS
2004.

[18] B. Liu, W. Lee, D. L. Lee. Supporting Complex Multi-
Dimensional Queries in P2P Systems. Proc. ICDCS 2005.

[19] A. Crainiceanu, P. Linga, et al. PTree: A P2P Index for
Resource Discovery Applications. Proc. WWW 2004.

[20] D. Li, X Lu, J Wu. FISSIONE: A Scalable Constant-
Degree and Low Congestion DHT Scheme Based on Kautz
Graphs. Proc. INFOCOM 2005.

[21] H. V. Jagadish. Linear Clustering of Objects with Multiple
Attributes. Proc. SIGMOD 1990.

[22] Y. Zhang, et al. Scalable Distributed Resource Information
Service for Internet-Based Virtual Computing
Environment. Journal of Software (in Chinese with English
abstract). Vol.18, No.8, August 2007, pp.1933–1942.

[23] K. Lee, B. Zheng, H. Li, and W. Lee. Approaching the
skyline in Z order. Proc. VLDB 2007.

