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Abstract—In multiparty collaborative data mining, partici-
pants contribute their own datasets and hope to collaboratively
mine a comprehensive model based on the pooled dataset. How
to efficiently mine a quality model without breaching each
party’s privacy is the major challenge. In this paper, we propose
an approach based on geometric data perturbation and data-
mining-service oriented framework. The key problem of applying
geometric data perturbation in multiparty collaborative mining
is to securely unify multiple geometric perturbations that are
preferred by different parties, respectively. We have developed
three protocols for perturbation unification. Our approach has
three unique features compared to the existing approaches. (1)
With geometric data perturbation, these protocols can work for
many existing popular data mining algorithms, while most of
other approaches are only designed for a particular mining al-
gorithm. (2) Both the two major factors: data utility and privacy
guarantee are well preserved, compared to other perturbation-
based approaches. (3) Two of the three proposed protocols also
have great scalability in terms of the number of participants,
while many existing cryptographic approaches consider only two
or a few more participants. We also study different features of the
three protocols and show the advantages of different protocols
in experiments.

Index Terms—privacy preserving data mining, distributed
computing, collaborative computing, geometric data perturbation

I. INTRODUCTION

Recent advances in computing, communication, and digital
storage technologies have enabled incredible volumes of data
to be accessible remotely across geographical and administra-
tive boundaries. There is an increasing demand on collabora-
tive mining over the distributed data stores to find the patterns
or rules that benefit all of the participants. For example, mul-
tiple retailer stores in the same business section want to pool
their data together to determine the characteristics of customer
purchases. Cancer research institutes in different geographical
areas need to collaboratively find the environmental factors
related to certain type of cancer. However, these distributed
datasets could also contain sensitive information, such as
business sales data and patient clinical records. Therefore,
an important challenge for distributed collaborative mining is
how to protect each participant’s sensitive information, while
still finding useful data models (classification models, for
example).
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The service-oriented infrastructure for collaborative mining
of data distributed has become the most popular solution
[2], [27], where the data providers are the collaborators who
submit their own datasets to the designated data mining
service provider for discovering and mining the commonly
interested models on the pooled data. This model reduces the
high communication cost associated with most cryptographic
approaches [17], [13]. In this paper, we will study the problem
of privacy preserving multiparty collaborative data mining
using geometric data perturbation under this service-based
framework.

Geometric data perturbation has unique benefits [5], [7]
for privacy-preserving data mining. First, many popular data
mining models are invariant to geometric perturbation. For
example, the classifiers: kernel methods (including k-nearest-
neighbor (KNN) classifier), linear classifiers, and support-
vector-machine (SVM) classifiers [11], are invariant to ge-
ometric perturbation in the sense that the classifiers trained
on the geometrically perturbed data have almost the same
accuracy as those mined with the original raw data. This
conclusion is also valid for most popular clustering algorithms
based on Euclidean distance[14]. Second, multiple geometric
data perturbation can be easily generated with low cost, each
of which preserves about the same model accuracy. Thus, an
individual data provider needs only to select one perturbation
that can provide satisfactory privacy guarantee. Comparing
with other existing approaches to privacy preserving data
mining, geometric data perturbation significantly reduces the
complexity in balancing data utility and data privacy guarantee
[2], [8].

When applying geometric data perturbation to multi-party
collaborative mining, the above advantages are inherited. In
addition, due to the service-based framework, the collaboration
can scale up conveniently in most cases, while many crypto-
graphic protocols are limited to a small number of parties [17],
[13], [26].

The key challenge for applying geometric data perturbation
to multiparty collaborative data mining is to securely unify the
perturbations used by different data providers, while each party
still gets satisfactory privacy guarantee and the utility of the
pooled data is well preserved. There are three important factors
that impact the quality of unified perturbation: the privacy
guarantee of each dataset, the utility of the pooled data, and the
efficiency of the perturbation unification protocol. We consider
these factors in developing the following three protocols for
perturbation unification: the simple protocol, the negotiation
protocol, and the space adaptation protocol. Analytical and
experimental results show that the space adaptation protocol
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is the most efficient protocol with great scalability, while the
negotiation protocol can provide better privacy guarantee with
some additional cost.

The rest of the paper proceeds as follows. We give the
concepts and related issues in geometric perturbation in Sec-
tion II for better understanding of the paper. In Section III,
we will briefly review the multiparty framework and address
the problem of perturbation unification under this framework.
In Section IV, we present the three protocols and analyze
their cost and privacy guarantee. The related factors in these
protocols are further studied in experiments (Section V).

II. PRELIMINARY

In this section, we will introduce basic concepts in geo-
metric perturbation for better understanding of the paper. The
primary focus will be on the related issues in the scenario
of single data provider − a single data provider releases the
perturbed data to the service provider or to the public for
mining purpose. By convention we will use capital characters
to represent matrices, and bold lower cases to represent
vectors.

A. Geometric Perturbation and Privacy Protection

We first briefly describe the basic geometric perturbation
method, with which the participants of collaborative mining
will perturb their own private dataset before releasing it to
other parties.

We define a geometric perturbation as a combination of
random rotation perturbation, random translation perturbation,
and noise addition. Without loss of generality, it can be
represented as G(X) = RX +Ψ+∆. X denotes the original
dataset with N rows and d columns and we sometimes also
denote X by Xd×N , R is a random orthonormal matrix [21],
and Ψ is a random translation matrix. We define a random
translation matrix as follows.

Definition 1. A matrix Ψ is called a translation matrix, if
Ψ = t× 1′, t = [t1, t2, . . . , td]′ (0 ≤ ti ≤ 1, 1 ≤ i ≤ d), and
1 = [1, 1, . . . , 1]′.

t is randomly generated based on the uniform distribution
over [-1, 1]. ∆ is a noise matrix with i.i.d. (independent
identically distributed, with zero mean and small variance)
elements, which is used to perturb the distances so that the
perturbation is resilient to certain kind of attacks. If Ψ1 and Ψ2

are translation matrices and R is an orthogonal transformation,
it is easy to verify that Ψ1+/−Ψ2 and RΨi are also translation
matrices.

While it is delicate to find an appropriate R in terms of
the resilience to attacks, both t and the noise component of
G(X) can be generated independently. In initial investigation,
∆ with some general setting, such as Gaussian N(0, σ2) and
σ = 0.1, can provide satisfactory resilience to the identified
attacks, and still maintain high model accuracy [7].

In previous work [5], geometric perturbation is specially
designed for a family of “geometric transformation invariant
classifiers”, include KNN, kernel methods, linear classifiers,

and SVM classifiers with the commonly used kernels. How-
ever, more mining models can be added to this list, including
most clustering models. The major benefit of such a trans-
formation is: for a given dataset, all geometric perturbations
can give similar model accuracy for these classifiers; thus, an
individual data provider needs to select only one perturbation
that can provide satisfactory privacy guarantee. We next define
what is a “good” perturbation in terms of privacy guarantee.

Privacy Guarantee for Multidimensional Perturbation
Geometric perturbation is a multidimensional data perturba-
tion. In contrast to single dimension data perturbation [2], data
in all columns are perturbed together in a multidimensional
transformation. Thus, the privacy guarantee of an individual
data column is correlated to the privacy guarantee of other
columns. We define the privacy guarantee of a multidimen-
sional perturbation as follows.

Let Ci be a random variable representing the normalized
data of column i in the original dataset so that the values
across the d columns are comparable (1 ≤ i ≤ d). Let Oi be
a random variable representing the observed data of column
i, which can be the perturbed data or the data reconstructed
from the perturbed data by particular attacks. Both Ci and Oi

are normalized so that scaling will not artificially increase the
privacy guarantee. We use pi to denote the privacy guarantee
on column i and define pi by the standard deviation of the
difference between Oi and Ci, namely pi = stdev(Oi − Ci).
If both Oi and Ci are normalized to [0,1]. Figure 1 gives an
intuitive understanding of pi.

0 1estimated value v

Privacy guarantee: original value has 
high prob. in this range [v-p, v+p].

1-2p, the risk of 
privacy breach

Fig. 1. Understanding privacy guarantee

Furthermore, let the significance of privacy protection for
each column have a normalized weight wi, we define two basic
composite metrics by comparing pi/wi across all d columns:

Φ1(p1, . . . , pd, w1, . . . , wd) = min{ p1

w1
,

p2

w2
, . . . ,

pd

wd
}

Φ2(p1, . . . , pd, w1, . . . , wd) =
1
d

d∑

i=1

pi

wi

Φ1 is called Minimum Privacy Guarantee, which defines
the lowest privacy guarantee that a column should have
with the given perturbation. Φ2 is called Average Privacy
Guarantee, which defines the average privacy guarantee over
all d columns. In the sequel, we will use Φ1 to represent the
“privacy guarantee” of a perturbation.

Attack analysis and perturbation optimization: In opti-
mizing geometric perturbation, we also need to consider the
resilience to attacks. We identify three categories of attacks to
geometric perturbation, according to the amount of external
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knowledge the attacker may have [7].
(1) Naive-estimation attack is the first category, where attack-
ers have no additional knowledge about the original data, so
they simply estimate the original records from the perturbed
data.
(2) Independent Component Analysis (ICA) based attack is
the second category of attacks. When attackers know some
column statistics, such as the maximum/minimum values and
the probability density function of each column, they can try
to reconstruct the original dataset with ICA techniques. The
effectiveness of ICA-based attack is determined by the prop-
erty of the original dataset. We can find a good perturbation
resilient to ICA attack in most cases.
(3) Distance-inference attack is the third category of attack. If
the attacker knows enough number of original data records
and their maps in the perturbed dataset, they can use this
kind of knowledge to break geometric perturbation. The noise
component ∆ in geometric perturbation is used to perturb
the distance relationship and make the perturbation resilient
to the distance-inference attack. Initial experiments show that
low noise intensity can satisfactorily reduce the accuracy of
distance-inference attack, and still preserve the desired model
accuracy.

A randomized perturbation optimization algorithm [7] is
designed for finding a good perturbation with satisfactory
resilience to the discussed attacks. In general, compared to
randomly generated perturbations (the components R, Ψ,∆
are randomly selected), the optimized perturbation can give
significantly higher privacy guarantee. This optimization algo-
rithm will also be used in our multiparty protocols.

III. MULTIPARTY MINING SERVICE FRAMEWORK

In this section we give an overview of the data-mining-as-
a-service framework for multiparty collaborative data mining.
We will focus the discussion on the issues in applying ge-
ometric perturbation to multiparty mining under this frame-
work. First, we will briefly introduce the involved parties in
the framework, and then give the major issues of applying
geometric perturbation to the multiparty scenario.

A. Overview and Threat Model

Service computing is becoming a major paradigm in dis-
tributed computing and business processing. Since data min-
ing is a resource-intensive task, involving highly centralized
expertise and computing power, it can be a valuable service
supported by the companies or the research institutes that
have abundant resources. Interested in finding valuable global
models, multiple parties can use such data mining services by
providing restrictive sharing of their data. One of the major
concerns in collaborative mining is preserving the sensitive
information for each participating data provider, while main-
taining high quality of the mined models (or the utility of the
pooled data).

Figure 2 shows the parties and the possible interactions
between them. The service provider (S) is a party who owns
abundant computing power, data mining tools and talents and
willing to offer their data mining services to the contracted

parties through certain service provision scheme. All data
providers (notated by Pi) provide their own data which may
contain sensitive information and they are willing to collabo-
ratively find global models. Besides the two kinds of parties,
sometimes, trusted servers or semi-trusted commodity servers
[4] may also be used. However, in this paper, we do not assume
trusted parties are present because they are difficult to find in
practice.

Service 
Provider

Data 
Provider i

Data 
Provider j

Data 
Provider k

Parameters,
Keys,
Data 

Data/

Parameters

Models/

Keys

Fig. 2. Service-oriented multiparty privacy preserving data
mining.

In this paper we assume a semi-honest threat model for all
parties. A party is said to be semi-honest, if she will honestly
follow the multiparty interaction protocol agreed upon by all
the participants in the protocol, but she might be curious
about any potentially private information contained in the
intermediate results that she receives.

By assuming a semi-honest threat model, we do not consider
the scenarios where either the service provider or any of data
providers is malicious. Malicious adversaries may do anything
to infer secret information. They can abort the protocol at any
time, send spurious messages, spoof messages, collude with
other (malicious) parties, etc.

We believe the semi-honest assumption is realistic for secure
and privacy preserving multiparty computing. For example,
consider the case where credit card companies jointly build
data mining models for credit card fraud detection, which need
to share the credit card fraud transactions. Such sharing is
typically controlled by managing to whom and at what extent
such sharing will take place. It is more realistic to assume the
players (the credit card companies) are not malicious but semi-
honest in nature. More importantly, in this type of scenarios,
protocols developed under the semi-honest threat model enable
the participants to collaboratively perform data mining models
without considering the insider attacks.

In addition, most of existing research on secure and privacy
preserving computing assumes semi-honest model where the
players may exhibit malicious behavior in limited context
given that the admission to participate in a planned distributed
collaboration is to some extent controlled in most of the real
world applications. Many of the previous multiparty computa-
tional protocols are based on this assumption, such as secure
multiparty computation [10], multiparty privacy preserving
association rule mining [23], [15], multiparty decision tree
mining [17], and multiparty k-means clustering [24].

Note that in multiparty environment, anonymization might
also become a key factor in privacy preservation. In many
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cases, the private information becomes valuable to the privacy
attacker only when the owner of the private information is
identified. However, we will not consider anonymization in
the current version.

The semi-honest model in this paper is also relaxed −
the assumption of no collusion between any parties is not
strictly held. The design of our protocols allows the collusion
between data providers. However, the service provider should
not collude with any of the data providers. Otherwise, the
protocols may become too complicated and costly (we will
discuss this later).

In our threat model, passive logging and eavesdropping over
the network are possible. Therefore, encryption is needed for
transmitting secrets. In the rest of the paper we will focus
on the potential privacy breaches via the transmitted datasets
and parameters that a party can normally decrypt and see in
the protocol, which are mainly caused by the curious service
provider, the curious data providers, and the collusive data
providers.

B. Why Do We Need to Unify Perturbations

With geometric perturbation, each data provider can employ
the geometric perturbation algorithm to obtain a locally opti-
mized perturbation regarding to its own dataset. However, if
we want to use all datasets for mining, we still need to unify
all datasets under one perturbation. We will discuss the reason
why we need perturbation unification.

A geometric transformation changes the coordinates of the
data points, i.e., transforms data points in one coordinate
system to another, while preserving the distance information
that is critical to the applicable mining models. When datasets
are transformed differently, although the distance information
is preserved within a particular dataset, it is not preserved
crossing different datasets. There might exist multiple ways to
preserve distance between datasets, but we will use perturba-
tion unification in this paper to address this problem.

Let the original vector space V0 denote a d-dimensional
data space.By using the geometric perturbation Gi, we trans-
form the vector space V0 to any target space Vt. For clear
presentation, in the rest of the paper we use the geometric
perturbation Gi to represent the transformed vector space Vi,
and the “vector space” is equivalent to the “data space” as well.
Let {X1, X2, . . . , Xk} denote the sub-datasets in V0, each of
which is held by one of the k data providers Pi (1 ≤ i ≤ k),
respectively. Let Gi be the transformation used by the data
provider Pi. Clearly, the following are true :
• If Gi 6= Gj , directly merging the transformed datasets

Gi(Xi) and Gj(Xj) will break the distance relationship
between the original datasets Xi and Xj .

• Assume the models Mi and Mi depending on the distance
information. If Mi is trained with Gi(Xi), and Mj with
Gj(Xj), Gi 6= Gj , then Mi and Mj are not compatible
due to unpreserved distance relationship between Gi and
Gj .

Let Gt be the target unified space. One straightforward method
is to make Gi = Gt or indirectly transform Gi to Gt for any
party i. It is then equivalent to directly transforming the pooled

original data X to Gt(X), as in the single-party scenario. The
following protocols use these unification methods.

IV. PROTOCOLS FOR PERTURBATION UNIFICATION

In this section, we develop three protocols: the simple
protocol, the negotiation protocol, and the space adaptation
protocol. All of them are good candidates for certain applica-
tion scenarios. We will address the problems and advantages
associated with each protocol. In the following discussion, the
service provider will also provide a public key for encrypting
the data that only the service provider can decrypt. We will
skip some common steps for all protocols, steps such as
mining on the pooled data at the server side and applying
the mined model to new data by the data provider.

A. Simple Protocol

The first protocol is quite simple, yet presenting some basic
components that will also be used in other protocols. In this
protocol, the data providers use the same randomly generated
perturbation to perturb data. The basic issues include (1) how
to securely generate the same random perturbation in each
site, while preventing the curious service provider knowing
the unified perturbation, and (2) how to prevent privacy breach
caused by curious data providers.

The first issue can be addressed by the group-key based
random perturbation generation. The data providers share the
same random seed (the group key) to generate the same
perturbation locally. There are abundant literatures on group
key management [3], so we will skip the details here. The
perturbed data cannot be delivered to the service provider
directly, since the network is not secure and other data
providers can log the transmitted data and recover the original
data with the known perturbation. Thus, the perturbed data has
to be encrypted with the public key provided by the service
provider before it goes to public 1.

The service provider decrypts the perturbed data with her
private key and pool the data together to mine a unified model.
The unified model is returned to the data providers. Since
the unified model is in the perturbed space, before the data
provider applies it to the new data, she needs to transform her
new data with the unified perturbation. The mining procedure
and the model application procedure will be the same for all
protocols. We will skip them in later discussions.

Apparently, there are a few weaknesses with this simple
protocol. First of all, random perturbation may not provide
same privacy guarantee for all data providers. We will study
the difference between the distributions of privacy guarantee
provided by random perturbation and by locally optimized
perturbation in experiments. Secondly, encryption makes the
data exclusively used in the current collaboration, and any of
the perturbed datasets cannot be easily shared by the public
or reused in other collaborations. Data providers may need to
maintain multiple versions of perturbed data for different uses,
which increases the maintenance cost.

1Note that the data should be encrypted in blocks, i.e., multiple records,
otherwise, if different data providers have the same record, the singly
encrypted data record can be easily identified.
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B. Negotiation Protocol

Bearing the first weakness of the simple protocol in mind,
the negotiation protocol aims at improving the overall privacy
guarantee for all data providers. Some data providers may
not be satisfied with the randomly generated perturbation
in the simple protocol in terms of privacy guarantee. In
the negotiation protocol, each data provider has a chance to
review the candidate perturbation and vote for or against the
candidate.

Due to different data distributions of the locally owned
dataset, a data provider may prefer a different locally optimal
perturbation than other perturbations possibly preferred by
another data provider. Chances are slim that one perturbation
works optimally for all data providers. The data providers may
need to accept some suboptimal perturbations eventually. To
evaluate the “satisfaction level” of a unified perturbation to the
data provider, we define the following metric.

Definition 2. Assume the locally optimized perturbation Gi

gives privacy guarantee po
i for data provider Pi and the

unified perturbation Gt gives pi. The satisfaction level for Pi

is defined by
si = pi/po

i

In the negotiation protocol , the agreement on the unified
perturbation is reached by voting and negotiation. Each data
provider Pi sets her own “minimum satisfaction level” smin

i ,
which is the lower bound that a global perturbation is accept-
able to the data provider. Then, each of the k data providers
nominates her locally optimal perturbation, encrypts it by the
group key, and distributes it to the other k−1 parties. At each
party Pi, the k− 1 candidate perturbations from other parties
are evaluated and labeled with “accepted/rejected” according
to the lower bound smin

i po
i . Let pij be the privacy guarantee

given by the perturbation Gj from Pj . Pi’s vote to Gj is
defined as follows.

qij =

{
1 pij ≥ smin

i pi

0 pij < smin
i pi

When all parties return 1 to the party Pi, Gi is accepted
by all parties. In whatever situation, Pi has to broadcast either
her own perturbation is globally agreed or not. If multiple
perturbations are agreed by all parties, only the one with lowest
party ID is used as the global perturbation. If no perturbation
is agreed on, another round of negotiation starts.

Service
Provider

Pi
Gt(Xi)

Public Key

Mined Models

n round 
negotiation

Pj
Gt(Xj)

Gi

/votes

Gj

/votes

Fig. 3. Negotiation protocol.

The major issue is how efficient the negotiation process
is in terms of the setting of local minimum satisfaction

level. Apparently, a loose setting, i.e., a low local minimum
satisfaction, will lead to fast agreements. Therefore, there is
a tradeoff between the level of privacy guarantee and the
efficiency of negotiation. We will further study this tradeoff in
experiments.

C. Space Adaptation Protocol

The negotiation protocol can increase the overall privacy
guarantee of the unified perturbation. However, the interactions
between the parties are heavyweight, and, still, the perturbed
data has to be encrypted before distribution. This step of
encryption also makes the perturbed data exclusively used for
the service provider in the current collaboration. Thus, the
additional cost in maintaining different version of perturbed
datasets still exists. In this section, we propose the third pro-
tocol, the space adaptation (SA) protocol, which inherits the
convenience of distributing data in the single-party scenario,
while also reduces the cost of communication, encryption and
maintenance.

The space adaptation approach is based on the fact that geo-
metric perturbations are transformable. We define the transfor-
mation of perturbation Gi to Gt as Gi→t, the “Space Adpator”,
if Gt is the target perturbation. Gt can be represented as the
composition of Gi and Gi→t: Gt = Gi ◦ Gi→t. Specifically,
for a given dataset X ,

Gt(X) = (Gi ◦Gi→t)(X) = Gi→t(Gi(X))

Note if Gi or Gt also contains a noise component, this
equation becomes an approximation.

Although the overall satisfaction level to the unified per-
turbation is at the same level of the simple protocol, there
are a few advantages by using the space adaptation protocol.
In the space adaptation protocol, the data provider can simply
distribute Gi(X) without encryption, plus the encrypted space
adaptor Gi→t for the particular collaboration. This brings
considerable flexibility since Gi(X) can be released to the
public and be reused by future collaborations as well. While
keeping the locally optimally perturbed data published and
unchanged, the data provider just needs to change the space
adaptor and encrypt it for different multiparty collaborative
applications. With the combination of negotiation protocol, the
overall satisfaction level can be improved as well. We will first
give the detailed concept of space adaptation and then describe
the protocol.

Concept of Space Adaptation As we discussed earlier,
the perturbation parameters for the data provider i are Gi :
(Ri, ti), the translation matrix is Ψi = ti1t

ni
, and the original

sub-dataset is Xi. Let Yi be the perturbed data. Now, suppose
that we want to transform Yi to Yi→t in the target space Gt :
(Rt, tt) that has no noise component. The following procedure
can be applied. Since Yi = Gi(Xi) = RiXi + Ψi + ∆i, and
thus Xi = R−1

i (Yi − Ψi − ∆i), the proof of the following
equation is trivial:

Yi→t = RtR
−1
i Yi + (Ψt −RtR

−1
i Ψi)−RtR

−1
i ∆i

This equation consists of three components. We define the
first component RtR

−1
i as the rotation component of the
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adaptor Ri→t. Apparently, RtR
−1
i Ψi is still a translation

matrix (referring to the Definition 1, and thus we name the
second part Ψt −RtR

−1
i Ψi as the the translation component

of the adaptor Ψi→t. The third part involves the original
noise component and we name ∆it = RtR

−1
i ∆i as the

complementary noise component.

Proposition 1. Removing the complementary noise component
in the target space Gt is equivalent to inheriting the noise
component ∆i from the original space Gi.

PROOF SKETCH. Since ∆i consists of i.i.d. elements with
N(0, σ2), we have E[RtR

−1
i ∆i] = 0 and covariance matrix

cov[RtR
−1
i ∆i] = RtR

−1
i cov[∆i](RtR

−1
i )t

= RtR
−1
i σ2I(R−1

i )tRt
t = σ2I (1)

i.e., the transformed noise component has the same distribution
with ∆i. As this component is used to complement (de-
randomize) the random noise in Gi, removing this component
will exactly inherit the noise component of Gi.

Therefore, we can reformulate space adaptation as follows:

Yi→t = Ri→tYi + Ψi→t (2)

Where Ri→t = RtR
−1
i and Ψi→t = Ψt − RtR

−1
i Ψi. We

define the two components < Ri→t, Ψi→t > as the space
adaptor Gi→t from Gi to Gt. Clearly, by knowing data
provider i’s perturbed data Yi = Gi(Xi) and its space adaptor
Gi→t, one can transform the data to the target space.

With space adaptation, we split the perturbation into two
parts, the perturbed data and the space adaptors that are used
to transform the perturbed data to the global perturbation. This
split brings two unique advantages: 1) the perturbed data can
be safely released to any of the parties in terms of privacy
preservation; 2) only small encryption cost is needed to safely
transmit the space adaptors.

Protocol With space adaptation, now each data provider
needs to publish two components: the perturbed data Gi(Xi)
and the space adaptor Gi→t. The perturbed data is generated
by using the locally optimized privacy guarantee, which is only
known by the data provider. Therefore, the data can be directly
published without encryption. The space adaptor can be used
to recover the original perturbation by other data providers,
since every data provider knows the unified perturbation.
Therefore, the space adaptor Gi→t is only allowed to be
known by the service provider. In other words, Gi→t has to
be encrypted with the service provider’s public key.

1) The same group-key based procedure that we have
presented in the simple protocol is applied to setup the
randomly generated unified perturbation Gt;

2) Each data provider generates the perturbation that is
locally optimized for their own data, notated by Gi.
With Gt and Gi, Gi→t can be calculated according to
the definition;

3) Each data provider publishes Gi(Xi) and transmits the
encrypted Gi→t to the service provider;

4) The service provider decrypts the encrypted space adap-
tors and applies it to the corresponding perturbed data,
which transforms the data to the unified space Gt. Then,

the service provider can pool the datasets and train a
unified model.

Figure 4 shows the components and interactions in the space
adaptation protocol.

Service
Provider

Pi
Gi(Xi)

Public Key

Mined Models

Group
Key
Mgt

Ai

Pj
Gj(Xj)

Aj

key

key

Fig. 4. Space adaptation protocol.

D. Performance Analysis

One of the major issues in multiparty computation is
the cost, including the communication cost and the encryp-
tion(decryption) cost. In addition, we consider the reusability
of the perturbed data, which saves the cost of future use
of the dataset, as a part of performance analysis. In the
following analysis, we calculate the cost of communication
and encryption based on the data unit, e.g., a floating-point
unit.

Table I summarizes these metrics for the three protocols. As-
sume that each party provides approximately the same number
of records, say n records, each record has d dimensions, and
there are k data providers in total. Let the average cost of
local optimization for the dataset of above size be π. In the
negotiation protocol, with certain setting the average number
of negotiation rounds is r.

For the simple protocol, the communication cost consists
of the maintenance of group key [3], which is O(k), and the
transmission cost of data, which is O(knd). Since this protocol
does not locally optimize perturbations, there is no cost in
local optimization. Encryption is required to transmit the data,
which cost O(knd) in total. The perturbed data are exclusively
used in a single collaboration task. The data provider may need
to provide another locally optimized perturbed data for public
access.

For the negotiation protocol, it requires maximum r rounds
to get the agreed perturbation, r agreed by the parties.
In each round, k perturbation parameters (O(d2) for each)
are broadcast, which contributes to the communication cost
O(k2d2). The perturbation parameter is also encrypted in the
broadcast, i.e., O(kd2). In each round, each data provider will
also perform local optimization once. Similar to the simple
protocol, the perturbed data is not reusable.

The space adaptation protocol is the most efficient one.
The communication cost is the same as the simple protocol,
since both depend on group key for generating the unified
perturbation. Each data provider needs to generate local op-
timal perturbation once, and only the space adaptors (O(d2)
units) need to be encrypted. Furthermore, the perturbed data
can be reused for other purpose, which greatly decreases the
maintenance cost.
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communication local optimization encryption reusable
simple O(k(1 + nd)) 0 O(knd) no

negotiation O(rk2d2 + knd) rkπ O(rkd2 + knd) no
space adaptation O(k(1 + nd)) kπ O(kd2) yes

TABLE I
COST ANALYSIS FOR THE THREE PROTOCOLS

Overall, the negotiation protocol has the highest cost, which
might also results in lower scalability. We will study the
scalability issue in terms of the setting of satisfaction level.

E. Discussion on Risk of Privacy Breach

We first give a conceptual order of the overall satisfaction
level of privacy guarantee provided by the three protocols,
and then analyze the risk of privacy breach for each protocol.
Finally, we discuss whether any collusion will increase the risk
of privacy breach either between data providers or between the
service provider and data providers.

The simple protocol and the space adaptation protocol
employ a randomly generated unified perturbation, while the
negotiation protocol optimizes the unified perturbation to some
extent. Therefore, the ordering of overall satisfaction level can
be roughly represented as follows.

sSimple, sSA < sNegotiation

Note that the negotiation protocol can be used to generate
the agreed perturbation for the space adaptation protocol to
increase the overall satisfaction level, which, however, will
limit the scalability of the protocol.

Risk of Privacy Breach
The risk of privacy breach for different protocols can be
investigated through two types of adversaries: One is the
curious data providers and the other is the curious service
provider. We look at each protocol separately.

In the simple protocol, the data provider transmits en-
crypted perturbed data to the service provider, thus curious
data providers cannot figure out any useful information from
eavesdropping. The random perturbation is locally generated
with the same algorithm, according to the shared seed, i.e., the
group key sent by the service provider. If each party honestly
follows the protocol, the curious data providers cannot find any
information from the shared perturbation. The service provider
can see all perturbed datasets submitted by the data providers.
Since random perturbation does not guarantee all parties get
high satisfaction level, the risk of privacy breach caused by
the curious service provider might be higher for some data
provider than others. The individual risk can be evaluated
by the satisfaction level locally. If the data provider is not
comfortable with certain satisfaction level, she can refuse to
attend the collaboration.

The negotiation protocol enables multi-round voting to
reach an agreed perturbation. In each round of negotiation,
a data provider sees the perturbation parameters preferred by
other data providers and their boolean votes to her pertur-
bation. Since the perturbed data from other parties are all
encrypted, without knowing the perturbed data, the curious

data provider cannot utilize the perturbation parameters and
boolean votes to breach privacy. As the result of negotiation,
the unified perturbation is approved by all parties. Therefore,
the risk from the curious service provider is greatly reduced,
compared to the simple privacy.

If the space adaptation protocol uses random perturbation
as the agreed perturbation, the risk of privacy breach from the
curious service provider is similar to the simple protocol. Now,
the data providers can see the published perturbed data, which
was perturbed with locally optimized perturbation. Thus, the
risk from curious data providers, as well as any unknown
public privacy attackers, is minimized. The space adapters are
all encrypted so that curious data providers cannot utilize them.

Discussion on Collusion
For all three protocols we discussed, we do not allow the
collusion between the service provider and any of the data
providers. If this type of collusion happens, the current proto-
cols will not work. The service provider can exactly recover
all original datasets, if she knows the unified perturbation Gt,
which can be provided by the colluded data provider. Can we
revise the protocols and make them resilient to this type of
collusion? Probably, but the cost may increase dramatically.
The key point to make this collusion ineffective is to prevent
data providers knowing the unified perturbation Gt as well.
To achieve this, we may need a trusted server to take care
of the perturbation unification. Since the data provider does
not know Gt, she would not be able to use the mined model
locally. Therefore, the trusted party may also need to involve
in model application. Without a better solution, simply revised
protocols will put too much burden to the trusted party. We
will leave this challenging issue for the future study.

However, with the three protocols, the collusion between
two data providers will not increase the risk of privacy breach
of other data providers. In the simple protocol and the negotia-
tion protocol, one data provider cannot see another’s perturbed
data since the data are encrypted. Therefore, collusion between
two data providers brings no additional information of the
third data provider. In the space adaptation protocol, two
components are published: one is the data perturbed with a
locally optimized perturbation, known by no party except the
data owner, and the other is the encrypted space adaptor, which
can be decrypted by only the data owner and the service
provider. Collusion will not provide additional information
of the third data provider. Therefore, collusion between data
providers will not increase the risk of privacy breach in the
space adaptation protocol as well.

V. EXPERIMENTS

In this section, we present four sets of experiments on
evaluating the effectiveness of the proposed three protocols
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Simple Negotiation Space adaptation
Curious data providers none none very low

Curious service provider random low random/low
Other attackers none none very low

TABLE II
RISK OF PRIVACY BREACH FROM DIFFERENT ADVERSARIES FOR THE THREE PROTOCOLS

(simple, negotiation, and space adaptation). The first set of
experiments shows the difference between locally optimized
perturbations and randomly selected perturbations; The second
set studies the relationship between the setting of minimum
satisfaction level and the efficiency of negotiation in the ne-
gotiation protocol; The third set compares the satisfaction level
between the protocols; Finally, the fourth set of experiments
shows the preservation of model accuracy by using these
protocols.

A. Setting of Experiments
The perturbation optimization algorithm used by each data

provider uses the fastICA implementation2 to test the re-
silience of the candidate perturbation to the ICA-based attacks
[7]. We use two representative classifiers: KNN classifer and
SVM with radial basis function kernel to show model accuracy
preservation. The SVM implementation is from LIBSVM3,
and in our KNN implementation, we also use the kd-tree
implemented in ANN library4 to efficiently search the nearest
neighbors.

Twelve UCI machine learning datasets are used in exper-
iments. Each dataset are duplicated 10 times to generate a
larger dataset. Then, we randomly split them into several
random-sized sub-datasets, simulating the distributed datasets
from the data providers. In our experiments, we also simulate
two special partition distributions: the class-biased partition
and the uniform partition (as illustrated in Figure 5 and 6)
for the distributed datasets. In some experiments, we will
choose to show the detailed results of a few featured datasets:
Diabetes dataset that has an unclear geometric class boundary
(KNN with accuracy about 73%), Shuttle dataset that has
geometrically well-separated three major classes and a few tiny
classes (KNN with accuracy about 99%), and Votes dataset
that is a boolean dataset.

The Unified Dataset

D1

D2

Dk

contribute

Fig. 5. Uniform partition of
the pooled data

The Unified Dataset

D1

D2

Dk

contribute

Fig. 6. Class-biased partition
of the pooled data

The proposed protocols will use two types of algorithms to
generate perturbations: randomized and optimized. Randomly

2http://www.cis.hut.fi/ projects/ica/fastica/
3http://www.csie.ntu.edu.tw/ cjlin/libsvm/
4http://www.cs.umd.edu/ mount/ANN/

generated perturbation means the three components R, Ψ
and ∆ are randomly generated. The rotation component R
is generated from the QR decomposition [19] of a uniform
random matrix; the elements of Ψ is uniformly selected from
the range [-1,1]; the elements in ∆ are i.i.d drawn from
N(0, 0.12). The optimization algorithm [7] mainly optimizes
the rotation component R, while the other two components are
generated in the same way as in the randomized method. The
simple protocol will share a randomly generated perturbation
by sharing the same randomization seed, which is generated
from the shared group key with some hashing function. In
the negotiation protocol, each party will generate its own
locally optimized perturbation as the baseline for calculating
the satisfaction level. In the space adaptation protocol, each
party calculates the shared target perturbation, Gt, with the
group key, and then generates its own locally optimized Gi.
The rotation component and the translation component of the
adaptor Gi→t can be calculated with Gt and Gi using the
formula:

Ri→t = RtR
−1
i (3)

Ψi→t = Ψt −RtR
−1
i Ψi (4)

B. Random Perturbation vs. Optimized Perturbation
Local optimization gives significantly better perturbation

than randomly generated perturbations in terms of privacy
guarantee [5], [7]. Certainly, all parties will like to preserve
the gain of privacy guarantee, i.e., preferring their locally
optimized perturbations, when attending the multiparty collab-
orative mining. In this section, we show the difference between
optimized perturbations and randomly generated perturbations
in terms of cost and benefit, justifying that some costly
protocols such as the negotiation protocol has its value in
certain applications.

We use the three typical datasets in the experiments. For
each dataset, we generate 1000 perturbations with randomiza-
tion and with optimization, respectively. Since the optimization
process is also randomized, against the attacks to the algorithm
itself, the privacy guarantee of the generated perturbations will
also show certain randomness. In Figure 7, 8 and 9, the x-
axis is the minimum privacy guarantee of the perturbation
as defined in Section II-A, and the y-axis is the number
of perturbations having the corresponding privacy guarantee.
These three figures show that optimized perturbations often
have significantly higher privacy guarantee than randomly
generated perturbations.

C. Efficiency of Negotiation
Since the interactions between parties are straightforward

in the simple protocol and the space adaptation protocol, the
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formal analysis of time complexity are sufficient. However,
the negotiation protocol involves the number of negotiation
rounds, which the formal analysis cannot determine. We
believe that the setting of minimum satisfaction level smin has
an intuitive impact on the success rate of negotiation. Besides
that, we also notice that partition distribution can affect the
efficiency of negotiation. We choose to show the results of
the three typical datasets here with the setting of five-party
collaborative mining (five data providers). Figure 10 and 11
show the average results of 10 tests for each dataset, each
partition distribution, and each setting of minimum satisfaction
level. We use 50 rounds as the upper limit of the number of
rounds doing negotiation, i.e., if the parties cannot agree on
any good perturbation in 50 rounds, we simply stop it.

success rate =
# successful negotiations

50
Note that class-based partition has more impact on the Votes

dataset (boolean) than the other two datasets, possibly due to
the type of data. In addition, with a little relaxation on the
minimum satisfaction level, the negotiation protocol is pretty
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Fig. 12. Privacy guarantee vs. relaxation of minimum satisfaction level

efficient. For example, for uniform partition, if smin is relaxed
from 1 to 0.8, the success rate rises from almost 0 to around
60% to 90%. On the other hand, it is a little more difficult to
agree on a good perturbation for class-based partition, since
each subset has very different distributions, which should
results in different optimal perturbation. In particular, the
success rate for Votes data increases slowly from 0 to 20%
when smin is relaxed to 0.8. Most importantly, Figure 12
shows that the relaxation of minimum satisfaction level does
not significantly affect the average of the privacy guarantees
from all parties, which implies it will be safe and efficient to
relax the minimum satisfaction level in a small range, e.g.,
[0.8, 1].

So far we have not touched the scalability issue. The
negotiation protocol seemly works pretty efficient for a small
number of data providers. What if the number of parties
increases? Figure 14 shows that with increasing number of
parties, the effect to the performance of negotiation is not
trivial. In general, class-based partition results in much worse
performance. For example, the increase of parties makes the
agreement of Votes/class-based partition quickly become very
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difficult. In contrast, with uniform partition, the negotiation for
the Votes data is still quite efficient, a successful negotiation
happens in about 2-3 rounds on average at ten parties. Overall,
the efficiency of negotiation is seemly determined by both
the class distribution of the pooled dataset and the partition
distribution of the distributed datasets.

D. Satisfaction level to Unified Perturbation

One of the major metrics in perturbation unification is the
satisfaction level of privacy guarantee. We have used it in the
evaluation of the negotiation protocol. We will further compare
the overall satisfaction levels between the negotiation protocol
and the other two protocols, which are based on randomly
generated unified perturbations.

Figure 13 shows the comparison. We show the average of
min/max satisfaction level together with the average satisfac-
tion level among all parties. For the negotiation protocol, if
we set the minimum satisfaction level to 0.8 for five parties,
the resultant satisfaction level is quite high − on average it
is above 0.9 which confirms the observed pattern in Figure
12. At lease one party gets perfect satisfaction level 1.0 or
even higher. A satisfaction level higher than 1 can happen
because the local perturbation optimization algorithm is a
hill climbing algorithm, which does not guarantee to get
the best perturbation − In some cases, a perturbation from
another party might be better than the one optimized locally.
Interestingly, although the minimum satisfaction level from
randomly generated unified perturbations is lower than that
from the negotiation protocol, the average are reasonably high.
Moreover, most of the parties keep more than 50% of their
original privacy guarantee, and some parties may even get
satisfaction level higher than 1. A global perturbation may give
higher privacy guarantee than a locally optimized perturbation
in both negotiation or random cases, which indicates some
space for us to improve in the future in terms of privacy
guarantee.

E. Preservation of Data Utility

We finalize the experiments with the study of data utility
for the two representative classifiers: KNN classifier and SVM
classifier with RBF kernel. One of the major tradeoffs in
privacy preserving data mining is that between data utility
(or model accuracy in the classification case) and privacy
guarantee. However, most of this paper has been focused on
the efficiency of protocols and privacy guarantee (or risk of
privacy breach). In fact, all protocols we discussed so far
do not involve factors that can significantly downgrade the
quality of the pooled dataset. In other words, data utility should
be ideally as good as that in the single-party perturbation.
The nuance may come from the perturbation of the noise
component in the space adaptation protocol. According to
Eq. 1, space adaptation will not change the intensity of noise
component either. We will study this in experiments.

The pooled datasets generated by the simulation of protocols
are used to train the two kinds of classifiers, KNN and SVM.
The numbers in Figure 15 and 16 show the deviation from the
standard accuracy which is obtained with the original unper-
turbed dataset. These numbers are the average of 10 rounds of
randomized protocol simulation − in each round, data is split
randomly (according to different partition distributions), and
all local optimizations are done in a randomized manner. A
negative number means that the actual accuracy is reduced. We
use “SP”, “NP” and “SAP” to represent the three protocols,
respectively. The results of different partition distributions for
the space adaptation protocol are labeled with “SAP-Uniform”
and “SAP-Class”. The result shows that partition distributions
and protocols do not make significantly different impact on the
accuracy, while SAP may have slightly more negative impact
on some datasets. Therefore, the only factor is data itself, i.e.,
the class distribution, which is different from dataset to dataset.

VI. RELATED WORK

Data perturbation changes the data in such a way that it
is difficult to estimate the original values from the perturbed
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data, while some of the properties of the dataset critical to
data mining are still preserved. Recently data perturbation
techniques have become popular for privacy-preserving data
mining [2], [9], [1], [22], [5], due to the relatively low cost to
deploy them compared to the cryptographic techniques [17],
[23], [24], [15], [13]. However, there are a few challenges
in the data-perturbation based privacy-preserving data mining.
First, it is commonly recognized that it is critical but difficult
to balance data utility (affecting the model accuracy in the
classification case) and data privacy. Second, potential attacks
to the data perturbation methods are not sufficiently considered
in previous research. A few works have started to address the
privacy breaches to randomization approaches, by applying
data reconstruction techniques [7], [12], [16] or the domain
knowledge [8]. Third, some approaches, such as randomization
approach [2], require to develop new data mining algorithms
to mine the perturbed data, which raises extra difficulty in
applying these techniques. To address these challenges, it is
critical to understand the intrinsic relationship between data
mining models and the perturbation techniques.

The previous work [5], [7] has investigated the perturbation
techniques from the perspective of the specific data mining
models. The authors observed that different data mining
tasks/models actually care about different properties of the
dataset, which could be statistical information, such as the

column distribution and the covariance matrix, geometric
properties, such as distance, and so on. Clearly, it is almost
impossible to preserve all of the information in the original
dataset in data perturbation. Thus, perturbation techniques
should focus on preserving only the task-specific information
in the dataset that is critical to the specific data mining
task/model, in order to bring better flexibility in optimizing
data privacy guarantee. The initial study on the geometric
perturbation approach to data classification [5] has shown that
the task/model-specific data perturbation can provide better
privacy guarantee and better model accuracy. Liu et al. [18]
also discussed the scenarios where a general multiplicative
data perturbation is applied. However, such perturbation may
not preserve the model accuracy well for the classifiers we
have mentioned.

Data perturbation is particularly good for a single data
owner publishing his/her own data. It may raise particular
issues when applied to multiparty collaborative mining. Re-
cent research [27], [2] also mentioned the service-oriented
framework for collaborative privacy-preserving data mining
with data perturbation. Another branch of multiparty privacy
preserving data mining is derived from the basic idea of
secure multiparty computation (SMC) [25]. The generic SMC
protocols are costly and thus only applicable for small data.
Lindell et al. [17] proposes a protocol for efficiently computing
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mutual information from two-party distributed sources, which
is the basis of ID3 decision tree algorithm [20]. Jagannathan
et al. [13] proposes the cryptographic protocol for two-party
secure Kmeans clustering. There a few more protocols are
proposed [24], [26] for different data mining algorithms on
vertically partitioned datasets. However, all of them are at-
tached to certain data mining algorithm and not easy to extend
to other data mining algorithms. Furthermore, most of them
are two-party protocols. By increasing the number of parties,
either the communication cost will increase exponentially or
the original protocol does not work anymore. In contrast,
our geometric perturbation based approach can be applied to
multiple categories of mining algorithms with good scalability.
We have reported some of the preliminary result, primarily on
space adaptation [6]. In this paper, we present more protocols
with a comprehensive evaluation.

VII. CONCLUSION AND FUTURE WORK

Geometric perturbation has shown to be an effective pertur-
bation method in single-party privacy preserving data publish-
ing. In this paper, we present the geometric perturbation ap-
proach to multiparty privacy-preserving collaborative mining.
The main challenge is to securely unify the perturbations used
by different participants without much loss of privacy guaran-
tee and data utility. We designed three protocols and analyzed
the features and the cost of each protocol. The main factors
and tradeoffs are also studied in the experiments. Overall, the
space adaptation protocol provides a better balance between
scalability, flexibility of data distribution, and the overall
satisfaction level of privacy guarantee. For a small number of
collaborative parties, we can also use the negotiation protocol
which can provide better overall satisfaction level with some
more communication cost.

The three protocols described in this paper represent our
first effort on applying geometric data perturbation to mul-
tiparty privacy-preserving mining. Our work continues along
several dimensions. First, it is known that, often, when the
attacker knows where the breached information comes from,
the damage becomes more substantial. We are interested in
investigating the anonymization factor in the protocol design
to further enhance the privacy preservation. Second, our cur-
rent protocols assume that the service provider and the data
providers do not collude. We are interested in investigating the
challenging situation where this assumption is relaxed. Third,
as the experimental result shows, the negotiation protocol can
improve the overall privacy guarantee significantly. Therefore,
it is meaningful to improve the negotiation protocol by seeking
better balance between the satisfaction level and the efficiency
of the protocol. Finally, in the current framework, we consider
only the setting of one service provider and multiple data
providers. We are interested in studying the privacy and se-
curity issues in the situation where multiple service providers
collaboratively providing the privacy preserving mining ser-
vice to multiple data providers.
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