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ABSTRACT
In this paper, we explore the problem of processing a novel
type of location based queries, named the location based
top-k query, which involves both of spatial and non-spatial
specifications for data objects in the wireless broadcasting
system. We introduce two methods for processing location
based top-k queries on the broadcast stream. In the first
method, the search algorithm runs on the broadcast aggre-
gate R-tree (aR-tree). However, the aR-tree may deteriorate
the search performance, especially in terms of the tuning
time. With this problem in mind, we propose a novel in-
dex structure, called the bit-vector R-tree (bR-tree), which
stores additional bit-vector information to facilitate process-
ing of location based top-k queries. The search algorithm on
the broadcast bR-tree is also described. Our simulation ex-
periments demonstrate that the bR-tree method clearly out-
performs the aR-tree method in terms of the tuning time,
while maintaining similar or better performance in terms of
the access time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
spatial databases and GIS

General Terms
Algorithms, Design, Performance

Keywords
Wireless broadcasting system, Location based service, Lo-
cation based top-k query

1. INTRODUCTION
With the wide spread of wireless networks and the emer-

gence of positioning technologies like GPS, Location Based
Services (LBSs) have emerged as one of the most promis-
ing applications in mobile computing environments. Mobile
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users, equipped with hand-held devices, can now access a
variety of valuable information from anywhere and at any
time. In mobile computing environments, wireless broad-
casting is considered to be an effective way for provisioning
LBSs since it accommodates an unlimited number of mobile
users simultaneously at a constant cost [2-5, 16].

The main functionality of LBSs is to process location based
queries like range queries and k-Nearest Neighbor (k-NN)
queries. However, such conventional location based queries
only consider the spatial proximity of data objects to mobile
users’ locations. Consequently, they may be insufficient for
real-life applications, which usually take both spatial and
non-spatial attributes of data objects into consideration to
reflect the users’ preferences. This paper introduces a novel
class of location based queries: a location based top-k query.
Assume a set of data objects D, with each data object being
associated with both spatial attributes and a set of non-
spatial attributes. Then, the location based top-k query q,
issued by a mobile user over D, specifies the user’s location
and target values on the non-spatial attributes of interest.
The result of q is the ranked set of k data objects with the
lowest proximity scores in D. Without loss of generality, we
assume that a lower score is more preferable than a higher
score. The score of each data object is determined according
to the combination of the spatial distance to the user’s loca-
tion and the non-spatial distance to the user-specified target
values. In the following, we illustrate the motivational ex-
ample to our work.

Example 1. Consider the server that periodically broad-
casts the dataset of local restaurants R = {r1, r2, · · · , r8}
shown in Figure 1, where the locations of the restaurants
are depicted with their average prices. Suppose that a mo-
bile user at location q.p = (10, 8) asks for one (k = 1) nearby
restaurant and his/her expected price is $10. If both the lo-
cation and price of a restaurant are equally important to the
user, a mobile client1 tunes into the broadcast channel and
retrieves r7 that best matches the user’s specifications. Note
that although r3 is the nearest restaurant to the user’s lo-
cation, its price (= $20) is much more expensive than the
user-expected price, and thus it cannot be included in the
result.

In this paper, we propose the methods for processing loca-
tion based top-k queries in the wireless broadcasting system.
In particular, we make the following contributions:

1
Without ambiguity, we use the terms hand-held device and mobile

client interchangeably.



• We explore, for the first time to the best of our knowl-
edge, the problem of processing location based top-k
queries that involve both of spatial and non-spatial
specifications for data objects in the wireless broad-
casting system.

• We first propose a näıve method, where the search
algorithm runs on the broadcast aggregate R-tree (aR-
tree) [6, 9]. Then, we present a novel index structure
called the bit-vector R-tree (bR-tree), which stores ad-
ditional bit-vector information to improve the search
performance. We also describe the search algorithm
on the broadcast bR-tree.

• We show through simulation experiments that the bR-
tree method outperforms the aR-tree method in terms
of both the access time and the tuning time, which are
commonly used as the main performance measures in
the wireless broadcasting system.
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Figure 1: Dataset of the local restaurants

The remainder of this paper is organized as follows. In
Section 2, background and related work are presented. In
Section 3, details of the proposed methods for processing
location based top-k queries are described. In Section 4,
the performance evaluation results are presented. Finally,
in Section 5, we conclude the paper.

2. BACKGROUND AND RELATED WORK

2.1 Wireless Data Broadcasting
In the wireless broadcasting system, the server period-

ically broadcasts data objects through the public wireless
channel in a predetermined sequential order. When each
mobile client receives a query from its user, it tunes into the
channel and processes the query on the broadcast stream.
In this way, the server pushes the query processing task en-
tirely to the mobile client side, and thus the server load is
independent of mobile user population.

Two performance measures are commonly used in the
wireless broadcasting system: the access time and the tun-
ing time [14]. The former is the duration elapsed from the
moment a mobile client receives the query from its user to
the moment the query is satisfied. The latter is the duration
during which the mobile client remains in the full operational
mode, called the active mode, which is proportional to the
amount of the energy consumed by the mobile client.

Air index interleaving [2-5, 14-16] is commonly used for
reducing the tuning time at the expense of the increased

access time. The basic idea is to interleave an index infor-
mation with data objects on the broadcast stream. By first
examining the index information, the mobile client can get
the arrival times of the relevant data objects for the given
query. As a result, the mobile client selectively scans only
the relevant portions of the broadcast stream, by switching
between the active mode and the power conserving mode,
referred to as the doze mode, during its access time. The
(1, m) interleaving [14] is the most representative method,
where the entire index information is replicated m times and
inserted into every 1

m
fraction of the broadcast stream.

The basic unit of wireless data broadcasting is called the
bucket, and the broadcast stream consists of index buckets
and data buckets. Index buckets hold the index information,
while data buckets hold the data. We assume that all buck-
ets have the same capacity irrespective of their types. In
this paper, we use the number of buckets to measure the
access time and the tuning time.

2.2 Location Based Query Processing
Since Guttman’s work [1], the R-tree has been extensively

used as the access method for multi-dimensional data (e.g.,
spatial data), and many R-tree variant index structures have
been proposed [6, 8-9, 11]. Figure 2 shows the R-tree that
indexes the dataset in Figure 1. The R-tree naturally suits
for processing of a range query. Starting from the root, the
query is processed by only considering the entries whose min-
imum bounding rectangles (mbrs) intersect a given query re-
gion. Regarding processing of a k-NN query on the R-tree,
several algorithms have been proposed [7, 10, 12]. Most of
them follow a branch-and-bound approach, by utilizing the
following distance metrics to prune the search space: mindist
and minmaxdist [12]. Given a query point q.p and a non-
leaf entry E, mindist(q.p, E.mbr) indicates the minimum
possible distance between q.p and any data objects covered
by the subtree of E. On the other hand, minmaxdist(q.p,
E.mbr) guarantees that the subtree of E covers at least one
data object within this distance from q.p.
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Figure 2: The R-tree index structure

The best-first algorithm proposed in [7] is considered to
be the most efficient solution for processing k-NN queries,
which dynamically determines the traversal order of the R-
tree. However, the performance of the best-first algorithm
may deteriorate significantly in terms of the access time in
the wireless broadcasting system due to the sequential prop-
erty of the broadcast stream. The broadcast stream peri-
odically flows in a predetermined sequential order, and each
R-tree node is only available when it appears on the broad-
cast stream. Whenever the dynamic traversal order of the
best-first algorithm differs from the appearance order of the
R-tree nodes on the broadcast stream, the access time is sig-
nificantly extended. For example, suppose that the R-tree



is broadcast once in each version of the broadcast stream as
shown in Figure 3. When the best first algorithm tries to
visit N1 after visiting N2, it has to wait for the next broad-
cast stream, since N1 has already been broadcast.

Root N1 N3 N4 N2 N5 N6 Root N1 N3 N4 N2 N5 N6 r1 r2  r8
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 Broadcast Stream 

r1 r2  r8

2
nd

 Broadcast Stream 

Time
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Figure 3: Broadcast R-tree traversal

By taking the sequential property of the broadcast stream
into account, the appearance-first algorithm has been con-
sidered in [2, 4] for improving the access time performance.
The appearance-first algorithm sequentially visits the R-tree
nodes in the order of their appearance on the broadcast
stream, while filtering out the unqualified nodes according
to the mindist- and minmaxdist-based heuristics.

3. THE PROPOSED METHODS

3.1 Problem Definition
Let D = {d1, d2, · · · , d|D|} be a set of data objects, each

of which is associated with spatial attributes p = (x, y)
and a set of non-spatial attributes a = {a1, a2, · · · , an}.
A data object d ∈ D is represented as (d.p, d.a), where
d.p = (d.x, d.y) denotes the values of its spatial attributes
and d.a = {d.a1, d.a2, · · · , d.an} denotes the values of its
non-spatial attributes. A location based top-k query q, is-
sued by a mobile user over D, is represented as (q.p, q.v,
k). Here, q.p = (q.x, q.y) denotes the user’s location, q.v =
{q.v1, q.v2, · · · , q.vn} denotes a set of the target values that
the user specifies on a, and k is an integer value indicating
the desired number of the top-k data objects. The result of q

is a ranked set of the k data objects with the lowest proxim-
ity scores in D. The score of each data object d with respect
to q is determined according to the following expression:

score(q, d) = dist(q.p, d.p) + dist(q.v, d.a),

where dist(q.p, d.p) =
√

(q.x − d.x)2 + (q.y − d.y)2 is the spa-
tial distance and dist(q.v, d.a) =

∑

n

i=1
|q.vi − d.ai| is the

non-spatial distance from q to d.2

In the rest of this section, we make some assumptions
to facilitate our statement of the problem. Specifically, we
assume that each data object d ∈ D is associated with only
one non-spatial attribute a. In consequence, a query q is
assumed to specify only one non-spatial target value v on a,
and thus dist(q.v, d.a) = |q.v − d.a|. However, our methods
can be naturally extended without any modification for the
case of multiple non-spatial attributes, as will be shown in
Section 4. In addition, we assume that dist(q.p, d.p) and
dist(q.v, d.a) are scaled to be within [0, 1].

3.2 The aR-tree method

3.2.1 The Aggregate R-tree (aR-tree)

The conventional R-tree used in spatial databases deals
with only spatial attributes, and thus is not appropriate for

2
Although dist(q.p, d.p) and dist(q.v, d.a) can be associated with dif-

ferent weights from each other, we assign equal weight to them in this
paper.

processing location based top-k queries. Therefore, the first
näıve method makes use of the aR-tree [6, 9]. Let SubE be
a set of data objects covered by the subtree of a non-leaf
entry E. Then, the aR-tree used in this method is the R-
tree variant index structure that additionally satisfies the
following:

• Each leaf entry of the aR-tree is associated with the
non-spatial attribute value of the data object pointed
by it;

• Each non-leaf entry E of the aR-tree augments the
non-spatial interval E.iv = [iv−, iv+], where iv− and
iv+ are the minimum and the maximum values, re-
spectively, among the non-spatial attribute values of
all the data objects in SubE .

Figure 4 shows an example of the aR-tree that indexes
the dataset in Figure 1, where we can observe an important
property of the aR-tree.

Property 1. Given a non-leaf entry E of the aR-tree,
E.iv ensures that ∀d ∈ SubE , iv− ≤ d.a ≤ iv+.

E5 , [ 4, 18 ] E6 , [ 8 , 10 ]

N2

r5 ,18 r6 , 4 r7 , 10 r8 , 8
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E2 , [ 4, 18 ]

Root

Omitted for simplicity

Figure 4: Example of the aR-tree

3.2.2 Search Algorithm on the Broadcast aR-tree
The search algorithm on the broadcast aR-tree sequen-

tially visits the aR-tree nodes in the order of their appear-
ance on the broadcast stream, while pruning the branches
that are guaranteed to fail. Before presenting the detailed
search algorithm, the following metrics, defined between a
query q and a non-leaf entry E of the aR-tree, are intro-
duced: minscore and maxscore.

Definition 1. Given a query q and a non-leaf entry E of
the aR-tree, the following expression calculates the minscore
of E with respect to q:

minscore(q, E) = mindist(q.p, E.mbr) + mindist(q.v, E.iv),

where mindist(q.v, E.iv) =
{

0, if iv− ≤ q.v ≤ iv+;
min(|q.v − iv−|, |q.v − iv+|), otherwise.

Lemma 1. Given a query q and a non-leaf entry E of the
aR-tree, ∀d ∈ SubE , minscore (q, E) ≤ score(q, d).

Proof. Since we know from [12] that ∀d ∈ SubE , mindist
(q.p, E.mbr) ≤ dist(q.p, d.p), we only need to prove that ∀d

∈ SubE, mindist(q.v, E.iv) ≤ dist(q.v, d.a). For this purpose,
we proceed with two cases:



1. If iv− ≤ q.v ≤ iv+, mindist(q.v, E.iv) ≤ dist(q.v, d.a)
for any data object d ∈ SubE since mindist(q.v, E.iv)
= 0.

2. Otherwise, by Property 1 and Definition 1, we have
that ∀d ∈ SubE , min(|q.v−iv−|, |q.v−iv+|) ≤ |q.v − d.a|.
Therefore, mindist(q.v, E.iv) ≤ dist(q.v, d.a) for any
data object d ∈ SubE .

Definition 2. Given a query q and a non-leaf entry E of
the aR-tree, the following expression calculates the maxscore
of E with respect to q:

maxscore(q, E) = minmaxdist(q.p, E.mbr)+maxdist(q.v, E.iv),

where maxdist(q.v, E.iv) = max(|q.v − iv−|, |q.v − iv+|).

Lemma 2. Given a query q and a non-leaf entry E of the
aR-tree, ∃d ∈ SubE : score(q,d) ≤ maxscore(q, E).

Proof. Similar to the proof of Lemma 1, since we know
from [12] that ∃d ∈ SubE : dist(q.p, d.p) ≤ minmaxdist(q.p,
E.mbr), it suffices to prove that ∀d ∈ SubE , dist(q.v, d.a) ≤
maxdist(q.v, E.iv). By Property 1 and Definition 2, we have
that ∀d ∈ SubE , |q.v − d.a| ≤ max(|q.v − iv−|, |q.v − iv+|).
Hence, dist(q.v, d.a) ≤ maxdist(q.v, E.iv) for any data object
d ∈ SubE .

The above definitions and lemmas establish the founda-
tion for pruning the search space. Specifically, given a query
q and each non-leaf entry E, if there exist at least k data
objects whose scores are lower than minscore(q, E), E does
not have to be considered since its subtree cannot cover
any better data object (by Lemma 1). On the other hand,
maxscore(q, E) can help conservatively estimate the scores
of the current top-k data objects during the search process
since maxscore(q, E) ensures that the subtree of E covers at
least one data object whose score is lower than or equal to
it (by Lemma 2). The details of the search algorithm are
given in Algorithm 1, where two data structures below are
used:

• Search list: Search list stores non-leaf entries whose
subtrees should be traversed. The entries stored in
Search list are sorted according to the appearance or-
der of their subtrees on the broadcast stream.

• Candidate list: Candidate list stores either non-leaf
or leaf entries whose subtrees cover the current top-k
data objects during the search process. The entries
stored in Candidate list are sorted according to the
ascending order of their maxscore (or actual score) val-
ues. Candidate list can store at most k entries.3

The search algorithm performs an initial probe, i.e., tunes
into the broadcast channel to find out when the next root of
the aR-tree appears on the broadcast stream (line 1). After
the initial probe, the algorithm accesses the root and in-
serts all its entries into Search list (line 2). Then, the algo-
rithm iteratively examines the entries stored in Search list

until Search list becomes empty. Let candidate score be
the maxscore (or score) value of the kth entry stored in
Candidate list. In case there are fewer than k entries in

3
Consequently, when a new entry is inserted into Candidate list,

the current kth element is removed from Candidate list in case
Candidate list has already stored k entries.

Candidate list, candidate score = ∞. At each iteration,
the algorithm first removes the top entry E from Search list

and checks if candidate score < minscore(q, E). If this is
the case, the algorithm safely skips E and proceeds with the
next iteration (lines 5-7). Otherwise, the algorithm accesses
the node N pointed by E, removes E from Candidate list if
it is there (lines 8-10), and thereafter performs the following:

• If child entries obtained from N are non-leaf: For each
child entry, denoted as Echild, the algorithm checks if
candidate score < minscore(q, Echild). If so, Echild is
skipped (lines 13-14). Otherwise, it is inserted into
Search list and Candidate list (lines 15-16). Let us
note that Echild is inserted into Candidate list only if
its maxscore value is less than candidate score.

• If child entries obtained from N are leaf: For each child
entry Echild, the algorithm checks if candidate score

< score(q, d). If so, Echild is skipped (lines 19-20).
Otherwise, it is only inserted into Candidate list (lines
21-22).

Then, the algorithm proceeds with the next iteration.
When Search list becomes empty, the algorithm retrieves
the data objects, pointed by the entries in Candidate list,
as the final result (lines 24-25).

Algorithm 1 Search algorithm on the broadcast aR-tree

Input a location based top-k query q, k

Output the result of q

Procedure

1: Perform initial probe;
2: Search list = {Root}; // sorted by appearance order
3: Candidate list = ∅; // sorted by maxscore (or score), size=k

4: do{
5: Remove the next entry E from Search list;
6: if candidate score < minscore(q, E)
7: continue;
8: else

9: Remove E from Candidate list;
10: Access the node N pointed by E;
11: if child entries are non-leaf
12: for each child entry Echild

13: if candidate score < minscore(q, Echild)
14: continue;
15: else

16: Insert Echild into Search list & Candidate list;
17: else // child entries are leaf
18: for each child entry Echild

19: if candidate score < score(q, d)
20: continue;
21: else

22: Insert Echild into Candidate list;
23: }while (Search list is empty)
24: Retrieve the data objects pointed by entries ∈ Candidate list;
25: Return the result;
End of Procedure

3.2.3 Discussion
The search algorithm on the broadcast aR-tree skips all

the non-leaf entries whose minscore values are greater than
the current candidate score. However, each non-leaf entry
E of the aR-tree augments typically large non-spatial in-
terval E.iv=[iv−, iv+]; this negatively affects the pruning
capability of the search algorithm because q.v of a query q

is likely to lie within E.iv (i.e., iv− ≤ q.v ≤ iv+), which
makes minscore(q, E) inaccurately underestimated. Please
note that if iv− ≤ q.v ≤ iv+, mindist(q.v, E.iv) = 0.

In addition, the size of E is fairly large since E aug-
ments additional two floating-point numbers to represent



E.iv. In the case of a dataset with multiple non-spatial at-
tributes, the size of E would be significantly enlarged. Let
fmax=⌊ the bucket capacity

the size of E
⌋be the maximum fan-out of a non-

leaf node in the aR-tree.4 As the size of E increases, the
value of fmax decreases. Consequently, the overall search
cost in terms of the tuning time increases due to the height
growth of the aR-tree. Since the search algorithm sequen-
tially passes through the broadcast aR-tree to get the final
result, the access time performance deteriorates as well when
the size of E increases.

3.3 The bR-tree Method

3.3.1 The Bit-vector R-tree (bR-tree)

Motivated by the observations mentioned above, we present
the bR-tree for processing location based top-k queries in
a more efficient manner on the broadcast stream. The bR-
tree is an R-tree variant index structure, where each non-leaf
entry E augments a bit-vector information to describe the
non-spatial attribute values of all the data objects in SubE .
Specifically, let N be the total number of distinct non-spatial
attribute values of the dataset D, where N ≤ |D|. Then, we
classify N non-spatial attribute values into K (≤N) clusters
and generate a node bit-vector for each non-leaf entry E of
the bR-tree. We use the K-means clustering algorithm for
simplicity, but other sophisticated clustering algorithms can
be employed.

Definition 3. Node bit-vector : Suppose that a bit is
assigned for each cluster ci (1 ≤ i ≤ K). Then, the node bit-
vector E.bv, associated with a non-leaf entry E, is the K-bit
binary vector such that for each bit position bi (1 ≤ i ≤ K)
in E.bv, bi=“1”, if and only if the following condition holds
: ∃d ∈ SubE : d.a ∈ ci.

As a consequence of augmenting a node bit-vector to each
non-leaf entry, the non-leaf node of the bR-tree contains
entries of the form (node ptr, mbr, bv), where node ptr and
mbr have their usual meanings. The use of a node bit-vector
is beneficial since it leads to the small size of a non-leaf entry.
As with the aR-tree, each leaf node of the bR-tree contains
leaf entries, each of which is associated with the non-spatial
attribute value of the data object pointed by it. Figure 5
shows the bR-tree, assuming the number of bits in a node
bit-vector is 4 (i.e., K=4). For example, the subtree of E5

covers the restaurants r5 and r6, whose prices 18 and 4 are
in the clusters c4 and c1 respectively; hence, the node bit-
vector augmented in E5 is “1001”.

An important observation is that each cluster c in the fig-
ure can indicate the disjoint cluster interval whose boundary
consists of the minimum and the maximum prices in c (e.g.,
c1⇒[4, 5] and c4⇒[18, 20]). Accordingly, E5.bv can indicate
that the price of each restaurant r ∈ SubE5

lies within one
of the cluster intervals [4, 5] and [18, 20].

Property 2. Given a non-leaf entry E of the bR-tree,
let C (|C| ≤ K) be the set of clusters whose corresponding
bit positions in E.bv are set to “1”. We denote the minimum
and the maximum values in each cluster c ∈ C as c− and c+

respectively. Then, E.bv can indicate that ∀d ∈ SubE , ∃c ∈
C : c− ≤ d.a ≤ c+.

4
Note that, because the basic unit of wireless data broadcasting is

the bucket, as mentioned in Section 2.1, an index bucket corresponds
to a node in the aR-tree.
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Figure 5: Example of the bR-tree

3.3.2 Search Algorithm on the Broadcast bR-tree
The search algorithm on the broadcast bR-tree also se-

quentially visits the bR-tree nodes in the order of their ap-
pearance on the broadcast stream, while pruning the impos-
sible branches by using the modified minscore and maxscore.

Definition 4. Given a query q and a non-leaf entry E of
the bR-tree, let c−

min
= min

∀c∈C

(|q.v−c−|) and c+

min
= min

∀c∈C

(|q.v−

c+|). Then, the minscore defined between q and E is:

minscore(q, E) = mindist(q.p, E.mbr) + mindist(q.v, E.bv),

where mindist(q.v, E.bv) =

{

0, if ∃c ∈ C : c− ≤ q.v ≤ c+;
min(c−

min
, c+

min
), otherwise.

Lemma 3. Given a query q and a non-leaf entry E of the
bR-tree, ∀d ∈ SubE, mindist(q.v, E.bv) ≤ dist(q.v, d.a).

Proof. We prove this lemma by contradiction. Assume
that there exists some data object d́ ∈ SubE such that
dist(q.v, d́.a) < mindist(q.v, E.bv). We distinguish two cases:

1. If ∃c ∈ C : c− ≤ q.v ≤ c+, mindist(q.v, E.bv) = 0,
which contradicts the above assumption.

2. Otherwise, mindist(q.v, E.bv) = min(c−min, c+

min). Then,
the following inequality holds:

|q.v − d́.a| < min(c−min, c
+

min) (1)

By Property 2, we have for some ć (∈ C) that min(|

q.v − ć−|, |q.v − ć+|) ≤ |q.v − d́.a|. On the other
hand, we know from Definition 4 that min(c−min, c+

min)
≤ min(|q.v − ć−|, |q.v − ć+|). This generates a contra-

diction to inequality (1). Therefore, d́ cannot exist.

Corollary 1. Given a query q and a non-leaf entry E

of the bR-tree, ∀d ∈ SubE , minscore (q, E) ≤ score(q, d).

Proof. Trivially proved by Lemma 1 and Lemma 3.

Definition 5. Given a query q and a non-leaf entry E of
the bR-tree, let c−max = max

∀c∈C

(|q.v−c−|) and c+
max = max

∀c∈C

(|q.v−

c+|). Then, the maxscore defined between q and E is:

maxscore(q, E) = minmaxdist(q.p, E.mbr)+maxdist(q.v, E.bv),

where maxdist(q.v, E.iv) = max(c−max, c+
max).

Lemma 4. Given a query q and a non-leaf entry E of the
bR-tree, ∀d ∈ SubE, dist(q.v,d.a) ≤ maxdist(q.v, E.bv).



Proof. Assume to the contrary that there exists some
data object d́ ∈ SubE such that maxdist(q.v, E.bv) < dist(q.v,

d́.a). Then, the following inequality holds:

max(c−max, c
+
max) < |q.v − d́.a| (2)

By Property 2, we have for some ć (∈C) that |q.v − d́.a|
≤ max(|q.v − ć−|, |q.v − ć+|). This produces a contra-
diction to inequality (2) since we know from Definition 5
that max(|q.v − ć−|, |q.v − ć+|) ≤ max(c−max, c+

max). Hence,

d́ cannot exist.

Corollary 2. Given a query q and a non-leaf entry E of
the bR-tree, ∃d ∈ subtree(E) : score(q, d) ≤ maxscore(q, E).

Proof. Trivially proved by Lemma 2 and Lemma 4.

The search algorithm on the broadcast bR-tree is analo-
gous to that on the broadcast aR-tree, hence we omit the
details. However, it is important to note that the node bit-
vector, associated with each non-leaf entry of the bR-tree,
can indicate a number of small and discretized non-spatial
intervals. This makes the minscore, defined for the bR-tree,
more accurate compared with the minscore defined for the
aR-tree. Consequently, the search algorithm on the broad-
cast bR-tree achieves better pruning capability than that on
the broadcast aR-tree.

4. PERFORMANCE EVALUATION

4.1 Experiment Setup
The system model, which consists of a server, mobile clients

and a broadcast channel, was implemented in the Java lan-
guage. We generated 5 sets of data objects (See Table 1),
where the locations of data objects are uniformly distributed
in a square Euclidian space. In addition, the data objects
in the datasets are associated with 3 non-spatial attributes
(a1, a2 and a3), which are scaled to [0, 1] and follow a Zipf
distribution with parameter 0.8. In each experiment, we
generated 1,000 queries and measured the average access
and tuning times of the proposed methods in terms of the
number of buckets by varying one of the parameters illus-
trated in Table 1, where the default values of the parameters
are typeset in boldface.

Table 1: Parameter Settings

Parameter Setting

# of data objects 10K, 20K, 30K, 40K, 50K
k 1, 8, 16, 32, 64, 128, 256

Bucket capacity 128, 256, 512, 1024, 2048 bytes

In the construction of the aR-tree and the bR-tree, we
employed the sort tile recursive (STR) packing method [13],
where the operations for handling non-spatial attributes of
the data objects are added. In addition, we employed the
(1, m) interleaving method. Here, we used the optimal m

to minimize the access time [14]. The size of a data ob-
ject was assumed to fit into one data bucket irrespective of
bucket capacity. For the configuration of each non-leaf en-
try E of the aR-tree, we allocated 2 bytes to the pointer,
16 bytes to the spatial information (E.mbr), and 8 bytes to
the non-spatial information (E.ivi) per each non-spatial at-
tribute ai (1 ≤ i ≤ 3). On the other hand, for the non-leaf
entry E of the bR-tree, an important parameter affecting

the access and the tuning time performance is the size of a
node bit-vector, namely the value of K. Hence, we generated
1,000 queries and measured the average access and tuning
times of the bR-tree method by varying the size of the node
bit-vector E.bvi assigned to each non-spatial attribute ai (1
≤ i ≤ 3). We set all the parameters in Table 1 to their
default values. Note that the minscore and the maxscore,
defined for the bR-tree, can be easily extended for consider-
ing 3 non-spatial attributes. For example, minscore(q, E) =
mindist(q.p, E.mbr) +

∑3

i=1
mindist(q.vi, E.bvi), and maxs-

core(q,E) = minmaxdist( q.p,E.mbr) +
∑3

i=1
maxdist(q.vi,

E.bvi).
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Figure 6: Access and tuning times vs. node bit-vector

size

As depicted in Figure 6(a), the access time gradually in-
creases when the size of E.bvi increases, due to the enlarged
size of the bR-tree, which negatively affects the access time
performance. Regarding the tuning time performance, the
search algorithm on the broadcast bR-tree achieves the best
performance when the size of E.bvi is set to 3 bytes, as plot-
ted in Figure 6(b). Although the small size of E.bvi reduces
the height of the bR-tree, the algorithm needs to access more
unnecessary nodes due to the lack of the non-spatial infor-
mation. On the other hand, the large size of E.bvi provides
the abundance of the non-spatial information to the algo-
rithm but leads to the height growth of the bR-tree. Since
the bR-tree method achieves a good tradeoff between the
access time performance and the tuning time performance
when the size of E.bvi is set to 3 bytes, we chose to use
this value in the remainder of our simulation experiments.
As with the aR-tree, we allocated 2 bytes and 16 bytes to
the pointer and the spatial information, respectively, of each
non-leaf entry of the bR-tree.

4.2 Experimental Results
In the first experiment, we studied the effect of the num-

ber of data objects on the performance of the aR-tree and
the bR-tree methods. As illustrated in Figure 7, the ac-
cess and tuning times of the both methods increase as the
number of data objects increases. This is due to the fact
that as the number of data objects becomes lager, the size
of the aR-tree and the bR-tree increases and more nodes
of the aR-tree/bR-tree have to be accessed. However, the
bR-tree method outperforms the aR-tree method in terms of
the access and tuning times, due to the smaller size (height)
of the bR-tree than that of the aR-tree. In addition, since
the bR-tree method achieves better pruning capability com-
pared with the aR-tree method, it accesses a smaller number

5
Similarly, the minscore and the maxscore defined for the aR-tree

can be easily extended for considering 3 non-spatial attributes.



of nodes than the aR-tree method. In comparison with the
aR-tree method, the bR-tree method requires 97.6% of the
access time and consumes 82.2% of the tuning time on the
average.

(a) Access time (b) Tuning time

Figure 7: Access and tuning times vs. # of data objects

Figure 8 demonstrates the impact of the value of k on the
access and tuning times of the proposed methods. Again, the
bR-tree method performs better than the aR-tree method
due to the same reason mentioned in the first experiment.
On the average, the bR-tree method incurs 97.4% of the
access time of the aR-tree method, and it consumes 77.4%
of the tuning time of the aR-tree method.

(a) Access time (b) Tuning time

Figure 8: Access and tuning times vs. k

Finally, we varied the bucket capacity and studied the
performance of the proposed methods. As plotted in Figure
9, the access and tuning times of the both methods decrease
as the bucket capacity increases since the larger capacity of
bucket reduces more the size (height) of the aR-tree/bR-
tree. However, as expected, the bR-tree method performs
better than the aR-tree method in all the cases, in terms of
the access and tuning times.

(a) Access time (b) Tuning time

Figure 9: Access and tuning times vs. bucket capacity

5. CONCLUSIONS
In this paper, we addressed the problem of processing lo-

cation based queries in the wireless broadcasting system. In
particular, we presented a location based top-k query whose
primary goal is to find the best k data objects, determined
according to the mobile user’s specifications on the spatial
and the non-spatial attributes of data objects. To process
location based top-k queries on the broadcast stream, we
first proposed a näıve method, namely the aR-tree method.
Then, we presented the bR-tree, where each non-leaf entry
augments the bit-vector information generated to effectively
describe the non-spatial attribute values of the data objects
in its subtree. We also discussed the search algorithm on the
broadcast bR-tree. We carried out simulation experiments
and demonstrated that the bR-tree method outperforms the
aR-tree method, validating the effectiveness of the bR-tree
for processing location based top-k queries on the broadcast
stream.
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