
Adaptive Data Migration in Multi-tiered
Storage Based Cloud Environment

Gong Zhang∗, Lawrence Chiu†, Ling Liu∗
∗College of Computing

Georgia Institute of Technology, Atlanta, Georgia 30332
† IBM Almaden Research Center, San Jose, CA 95120

Abstract—Multi-tiered storage systems today are integrating
Solid State Disks (SSD) on top of traditional rotational hard
disks for performance enhancement due to the significant IO
improvements in SSD technology. It is widely recognized that
automated data migration between SSD and HDD plays a critical
role in effective integration of SSD into multi-tiered storage
systems. Furthermore, effective data migration has to take into
account of application specific workload characteristics, dead-
lines, and IO profiles. An important and interesting challenge for
automated data migration in multi-tiered storage systems is how
to fully release the power of data migration while guaranteeing
the migration deadline is critical to maximizing the performance
of SSD-enabled multi-tiered storage system. In this paper, we
present an adatpive lookahead data migration model that can
incorporate application specific characteristics and I/O profiles
as well as workload deadlines. Our adaptive data migration
model has three unique features. First, it incorporates a set of
key factors that may impact on the performance of lookahead
migration efficiency in our formal model develop. Second, our
data migration model can adaptively determine the optimal
lookahead window size, based on several parameters, to optimize
the effectiveness of lookahead migration. Third, we formally
and experimentally show that the adaptive data migration
model can improve overall system performance and resource
utilization while meeting workload deadlines. Through our trace
driven experimental study, we compare the adaptive lookahead
migration approach with the basic migration model and show
that the adaptive migration model is effective and efficient for
continuously improving and tuning of the performance and
scalability of multi-tier storage systems.

I. INTRODUCTION
The rise of solid-state drives (SSDs) in enterprise data

storage arrays in recent years has put higher demand on
automated management of multi-tiered data storage software
to better take advantage of expensive SSD capacity. It is widely
recognized that SSDs are a natural fit for enterprise storage
environments, as their performance benefits are best leveraged
for enterprise applications that require high inputs/outputs per
second (IOPS), such as transaction processing, batch process-
ing, query or decision support analysis. A number of storage
systems supporting Flash devices (SSDs and memory) have
appeared in the marketplace such as NetApp FAS3100 system
[1], IBM DS8000[2]. Most of these products fall into two
categories in terms of the ways of integrating Flash devices
into the storage system. The first category involves the prod-
ucts that have taken the approach of utilizing Flash-memory
based caches to accelerate storage system performance [1].
The main reason that is in favor of using Flash devices

as cache includes the simplicity of integration into existing
systems without having to explicitly consider data placement
and the performance improvement by increasing cache size
at lower cost (compared to DRAM) [3]. The second category
includes those vendors that have chosen to integrate SSDs
into tiered storage architectures as fast persistent storage [2].
On The arguments for using and integrating flash devices in
an SSD form factor as persistent storage in a tiered system
include issues such as data integrity, accelerated wear-out and
asymmetric write performance. Given the limited capacity of
SSD tier in the multi-tiered storage systems, it is critical to
place the most IOPS-intensive and latency sensitive data on the
fastest SSD tier, in order to maximize the benefits achieved by
utilizing SSD in the architecture. However, a key challenge in
addressing two-way data migration between SSDs and HDDs
arises from the observation that hot-spots in the stored data
continue to move over time. In particular, previously cold (i.e.,
infrequently accessed) data may suddenly or periodically be-
come hot (i.e., frequently accessed, performance critical) and
vice versa. Another important challenge for automated data
migration is the capability to control and confine migration
overheads to be within the acceptable performance tolerance
of high priority routine transactions and data operations.
By analyzing the real applications in environments such as

banking settings and retail stores with a comercial enterprise
multi-tiered storage server, one can discover certain temporal
and spatial regularity in terms of access patterns and temper-
ature of extents. For example, in a routine banking environ-
ment, the major workload during the daytime centers around
transaction processing and thus certain indices becomes hot
in the daytime period, while at the night time, the workload
switches into report generation type and correspondingly dif-
ferent indices become hot. Generally speaking, such patterns
may not only change from day-time to night-time and it is also
likely that the pattern changes from day to day, from weekdays
to weekends or from working period to vacation period. This
motivates us to utilize IO profile as a powerful tool to guide the
data migration. Further, in order to improve system resource
utilization, the data migration techniques devised for multi-
tiered storage architecture needs to be both effective and non-
intrusive. By effective, we mean that the migration activity
must select an appropriate subset of data for migration, which
can maximize overall system performance while guaranteeing
completion of the migration before the onset of the new



workload (i.e., within a migration deadline). By non-intrusive,
we mean that the migration activity must minimize its impact
on concurrently executing storage workloads running over the
multi-tier storage system.
In this paper, we present an adaptive deadline aware looka-

head data migration scheme, called ADLAM, which aims to
adaptively migrate data between different storage tiers in order
to fully release the power of the fast and capacity-limited SSD
tier to serve hot data and thus improves system performance
and resource utilization and meanwhile limiting the impact of
ADLAM on existing active workload. Concretely, we want
to capitalize on the expensive SSD tier primarily for hot data
extents based on IO profiling and lookahead migration. IO
profiling enables the shifts in hot spots at the extent level to
be predictable and exploitable, and based on this lookahead
migration practively migrates those extents, whose heat is
expected to rise in the next workload, into SSD tier during
a lookahead period. To optimally set the lookahead migra-
tion window, multiple dimensions that impacts the optimal
lookahead length needs to be exploited. By optimal we mean
that this lookahead migration should effectively prepare the
storage system for the next workload by reducing the time
taken to achieve the peak performance of the next workload,
and maximizing the utilization of SSDs. We deployed the a
prototype ADLAM in an operational enterprise storage system
and the results shows that lookahead data migration effectively
improves system response with reduced average cost by fully
utilizing the scarce resource such as SSDs.
The main contributions of this paper are two folds. First, we

describe the needs and impacts of the basic deadline aware
data migration on improving system performance from real
storage practice. We build a formal model to analzye the
benefits of basic data migration across different phase on
system response time improvements and integrates the benefits
in each phases into the benefits across all the phases.
Second, we present our data migration optimization process

which evolves from learning phase reduction, to constant
lookahead data migration and to adaptive lookahead data
migraiton scheme. The system utility meansure is built to
compare the performance gains in each data migration model.
Adaptive lookahead migration apparch, which works as an
effective solution for performing deadline aware data migra-
tion by carefully trading off the peformance gains achieved by
lookahead migration on the next workload and the potential
impacts on existing workloads. This approach centers around
a formal model which computes the optimal lookahead length
by considering a number of important factors, such as block
level IO bandwidth, the size of SSD tier, the workload
characteristics, and IO profiles. Our experiments confirms
the effectiveness of the proposed adaptive data migration
scheme by testing the IO traces collected from benchmark
and commercial applications running on an enterprise multi-
tiered storage server. The experiments shows that ADLAM
not only improves the overall storage performance, but also
outperforms the basic data migration model and constant
lookahead migration strategies significantly in terms of system

response time improvements.

II. ADLAM OVERVIEW
A typical SSD-based multi-tier storage system architecture

consists of three layers. The bottom layer contains many
physical disks classified into different tiers according to the
IO access performance characteristics, (for example as the
figure shows SSD provides the high speed IO access as
tier 0, and SATA disks and SCSI disks work as tier 1 to
provide mass storage), and the storage controller in the middle
layer is response for the functionalities such as generating
data placement advise, planning data migration and providing
device virtualization. As the top layer, virtual LUN presents
hosts a logical view of the storage system virtualy comprised
of many LUNs and each LUN is further divided into many
logical extents. The storage controller manages the mapping
between logical extents and the physical extents in the physical
layer. The two way data migration between tiers presents
different IO features. Data migration from tier 1 to tier 0
achieves higher access speed in the price of higher per GB
access cost, while the reverse data migration decreases IO
speed and IOPS correspondingly. Two way data migration
among different tiers provides us the flexibility to schedule
the resource to meet different access speed demand and cost
on the data extent level.

A. Motivation Scenario and Assumptions
In this paper, we focus on the working environments like

banking scenarios or retail stores where IO workloads typically
alternate between periods of high activities and low activities
and also the workload characteristics may change from day-
time to night time activities. For example, in a typical banking
environment, the workload during the daytime (business hours)
primarily focuses on the transaction processing tasks which
create intense accesses to indices and some small set of data
out of the large data collection, such as access permission
logs. However, during the night time, the workload type
is often switched into report generating style and the high
access frequency data is also changed into different indices
or different logs. Every 12 hours, one workload finishes
its cycle and the next workload starts its cycle. Every 24
hours, a complete cyclic period of workload pattern (with
respect to two workloads in this example) finishes and the
next period starts. Apparently, data segments like indices and
access logs attract significantly dense IO accesses and are hot.
Improving the access speed for these “hot data” is highly
critical to the performance enhancement of the entire storage
system. Through our experiences working with a number of
enterprise class storage system applications in banking and
retail store industries, we observe that many applications have
similar IO workloads as those in banking or retail stores and
exhibit similar time-dependent patterns in terms of random IO
accesses and batch IO reads.
We run the Industry standard IO benchmark SPC1 and

TPCE for a duration of time on a proprietary enterprise storage
system respectively. Certain stability for a given workload



Fig. 1. Migration Computation Model

presented by hot data during its running cycle is confirmed.
The experimental results reveals two interesting observations.
First the hot extents bands for the two different workloads are
totally different. Second, stability holds on both hot data and
cold data with given workload active cycle for both SPC1 and
TPCE workloads. Readers may refer to our technical report
for further details on this analysis.
The high disparity of access speed between traditional

HDDs and SSDs and the highly cyclic behaviors of differ-
ent IO workloads motivate us to migrate the hot data like
indices into SSD for each workload type and thus significantly
improve the access speed for hot data, which is a known
bottleneck that dominates the storage system performance.
Another important requirement for devising data migration
schedule is the fact that the workload pattern tends to alternate,
for example between daytime and nighttime, and thus different
workload cycles generate different hot data and hence it is
compulsory to finish the desired data migration before the
deadline of the corresponding workload to which the hot
data is associated. To address the data migration problem
that is constrained by the workload deadline, we identify the
following assumptions for the adaptive deadline aware data
migration problem:

1) The IO workloads exhibit cyclic behaviors and the set
of workload types alternate between one another within
a given period, such as every 24 hours.

2) The data access patterns, especially the hot data extents,
can be learned by continuously monitoring the data heat.

3) Fast storage resource like SSD exhibits scarcity in terms
of per unit cost.

4) Data migration for each aworkload is bounded by certain
deadline.

Bearing with these constraints, we develop an adaptive
deadline-aware lookahead data migration framework, − AD-
LAM, aiming at optimizing system resource utilization by
adaptively migrating data between faster storage tier and slow
storage tier triggered by workload alternation while guaran-
teeing the deadline requirements.

B. Storage Utility Cost
In multi-tier storage system, response time (for abbrevia-

tion,we refer response time as “resp”) is the major perfor-
mance goal whose optimization is concerned the most by the
users. Thus, the principal performance optimization objective
using data migration is to reduce the response time as the
storage system runs. We first define system response time
function as follows:

Definition 1. A function recording the response time during
a time period from t1 to t2 for the multi-tier storage system
is called “response time function” and is denoted as f(t), t ∈
[t1, t2].

Definition 2. The system utility cost, denoted by U , is the
summation of the response time of the multi-tier storage
system at each time t over the entire time period of [t1, t2]

and t ∈ [t1, t2]. That is, Ut1,t2(t) =
∫ t2

t1 f(t)dt.

Our goal is to minimize the system utility cost while guar-
anteeing the migration deadline. If migration is not employed,
then the system response time is maintained at its average peak
response time, denoted by ρ.

Definition 3. Let φ denote a workload duration (cycle) and U0

denote the utility cost of the system when data migration is not
equipped and U0 = ρ×φ. We call the utility improvement from
utility cost under a system without data migration to improved
utility cost with a system powered by data migration the utility
rise denoted by ΔU0, and we have ΔU0 = U0 − U .

C. Basic Migration Model
Basically, the migration process can be divided into three

phases based on its impact on the overall response time of the
system.
(1) Workload learning phase: The primary task in this

phase is continuously monitoring the IO profile and sorting
the extent list on the order of heat. To ensure data collection
process shed ignorible impacts on the ongoing workload, very
limited resource is allocated by this process. As shown in
Figure 1, if the learning phase takes θ time, then the utility cost
of this phase is U =

∫ θ

0 f(t)dt, which can be approximated
by ρ × θ.
(2) Data migration: In this phase, hot data extents are

migrated from slow HDD tier to fast SSD tier.
In this phase, the extents are migrated on the heat order of

data extents. Because there are limited number of hot expents
which plays significant impacts on the response time, thus,
the migration impacts on the response time observe the law
of “diminishing marginal returns”. That is, as the heat of the
migrated extent decreases, each additional data extent migrated
yields smaller and smaller reduction in response time and
finally at some time point, the migration impact is saturated
and no reduction in response time can be achieved by further
migration. We call this time point the “convergence point”. As
shown in Figure 1, if the data migration phase takes ψ time,
then the utility cost of this phase is

∫ θ+ψ

θ
f(t)dt.

(3) Optimization Phase:



After “convergence point” arrives, system enters into the
“optimization phase”, and the response time of the ongoing
workload maintains at the stable minimum level until the
active workload reaches its deadline and finishes its run-
ning cyle. As shown in Figure 1, if the optimization phase
takes π time, then the utility cost of optimization phase is∫ θ+ψ+π

θ+ψ
f(t)dt. Figure 1 illustrates the three phases that each

workload experiences.

D. Utility Cost of Single Data Migration

As illustrated in the basic data migration model, individ-
ual workload experiences three phases in one cycle and for
simplicity, we call such basic data migration process for
an individual workload as single migration. The utility cost
incurred in this process forms a basic unit in computing the
overall system utility cost. In this section, we analyze the
utility cost for single migration and further build the model
to computing the utility cost.
For an individual workload, the workload cycle time φ

equals to the sum of the time length of three phases, i.e.,
φ = θ+ψ+π. Thus, the aggregation of the utility cost in each
phase, corresponding to the solid line shaded area in Figure
1, forms the utility cost of the workload over one cycle, as
shown in the below lemma.

Lemma 1. The utility cost of an individual workload over one
cycle φ is:

U =

∫ φ

0

f(t)dt

=

∫ θ

0

f(t)dt +

∫ θ+ψ

θ

f(t)dt +

∫ θ+ψ+π

θ+ψ

f(t)dt. (1)

Data migration time refers to the time duration length, χ,
taken to migrate the data to SSD until it is full. For SSD tier
with capacity C and bandwidth B allocated for data migration,
then the total time duration length that is needed to fill in
the SSD tier is χ = C

B
. We define “saturation time” λ as

the time duration from the beginning of data migration to the
time point when the impacts of migration on response time
reduction is saturated or convergence point (see section II-C)
is reached. Depending on inherent SSD properties and the
allocated migration bandwidth, saturation time may be longer
or shorter than data migration time and it depends on specific
applications and SSDs. For simplicity, data migration time is
used as an reasonable approximation for saturation time, i.e.,
λ = χ.
With the peak response time ρ which is achived when data

migration is not employed and the saturation response time
μ, the response time function f(t) in data migration phase
is approximated with a linear function f(t) = μ−ρ

θ
× t +

ρ, t ∈ [θ, θ + ψ],which is shown as green dotted line above
response time funtion curve in Figure 1. Thus, the response
time function for single migration is:

Time

Response

Time
deadlineconverge

0

w1 w2

learning

w1 w2

migration

Fig. 2. Workload cycles with learning phase reduced

Fig. 3. Lookahead migration

f(t) =

⎧⎪⎨
⎪⎩

ρ t ∈ [0, θ]
μ−ρ

ψ
× t + ρ t ∈ [θ, θ + ψ]

μ t ∈ [θ + ψ, φ]

(2)

From equation 1 and equation 2, the utility cost for a single
migration process is derived as follows:

Theorem 1. The utility cost of a single migration is approx-
imated as:

U =

∫ φ

0

f(t)dt = (ρ − μ) × (
1

2
× ψ + θ) + μ × φ (3)

And the utility rise over the baseline case in which no
migration is employed is:

ΔU0 = ρ × φ − ((ρ − μ) × (
1

2
× ψ + θ) + μ × φ)

= (ρ − μ) × (φ − θ −
1

2
× ψ) (4)

E. Migration Model with Reduced Learning Phase
By utilizing the data heat stability discussed earlier, one

can reuse the stable IO profile in subsequent workflow cycles
and thus reduce the learning phase significantly. Concretely,
one can turn on the learning phase in the beginning workload
cycles. Once the data heat is stabilized, the learning phase



can be reduced for the subsequent workload cycles by reusing
the data heat information learned at the beginning rounds of
workload cycles. The reduction of learning cycles cuts off the
redundant learning cost and enables the system to enter the
optimization phase earlier than the basic migration model. In
Figure 2, the first run of w1 and w2 does not eliminate the
learning phase and in the second run the learning phase is
eliminated.
The corresponding response time function for learning

phase reduced data migration process is:

f(t) =

{
μ−ρ

ψ
× t + ρ t ∈ [0, ψ]

μ t ∈ [ψ, φ]
(5)

From equation 1 and equation 2, the utility cost for a learn-
ing phased reduced migration process is derived as follows:

Theorem 2. The utility cost of a reduced learning data
migration is as:

U =

∫ φ

0

f(t)dt = (ρ − μ) ×
1

2
× ψ + μ × φ (6)

And the utility rise over the baseline case in which no
migration is employed is:

ΔU0 = (ρ − μ) ×
1

2
× ψ + μ × φ − ρ × φ

= (ρ − μ) × (φ −
1

2
× ψ) (7)

III. ADAPTIVE LOOKAHEAD MIGRATION
A. Lookahead Migration
Adaptive lookahead migration is a further improvement over

learning phase reduced data migration model. As shown in
Figure 3. For a configurable lookahead window length α, the
solid green line and the dashed green line in w2 workload
time together show the effects of migration on response time
of workload w2. The dashed red curve shows the “virtual”
situation on how w2 response time evolves if no lookahead
data migration is deployed. Similary, the migration effects
under α lookahead on w1 is shown with the blue solid curve
and blue dashed curve in w1 workload time. α indicates that
data migration for w2 starts α units of time ahead of the time
point when the w1 workload finishes its running cycle. The
power force of lookahead migration is rooted from the the
fact that after w1 enters into its convergence point, further
migration of w1 extents creates ignorible benefits on system
response time. Thus it is more cost-effective to start migrating
the hottest extents of w2 into SSD tier ahead of activating time
of w2.
In practice, because the capacity of SSD is limited, it is very

likely that the SSD has already been filled with w1 extents
when lookahead migration starts. Thus typically, lookahead
migration incurs the swapping process in which relatively
cold w1 extents are replaced by the hottest w2 extents. Such
swapping increases the response time of ongoing workload w1
to some level, which is called “bending effect”, as shown in

Fig. 3, the solid blue response time curve of w1 is slightly
bending upward when lookahead migration of w2 starts. The
dashed green line in w2 cycle essentially depicts the implicit
data migration employed for w2 and we can see that because
of such implicit data migration is executed in advance, the
peak response time of w2 workload experienced by the client
applications by the amount of Δγ . The implicit undergoing
lookahead migration also reduces the time length taken to
reach the convergence point perceived by the clients from
(α + β) in the case of no lookahead migration to β under
the lookahead migration for workload w2.
The shaded green area, denoted by Δw2 represents the

resource utilization gain achieved by lookahead migration in
w2, and the shaded blue area, denoted by Ωw1, indicates the
resource utilization loss experienced by w1. As long as the
gain by Δw2 is greater than the loss of Ωw1, i.e., Δw2 > Ωw1

holds, lookahead migration with window size α can benefit the
system utilizations in a cost-effective manner. Obviously, when
difference of Δw2 and Ωw1 is maximized, the corresponding
looahead length releases its full power and lookahead data
migration achieves its maximum effects in term of system
utility optimization. The quesiton becomes how to decide
the optimal lookahead length. In [4], we proposed a greedy
algorithm, which can compute a near optimal lookahead length
depending on the granularity used. Next, we build a formal
model on the system utility optimization using lookahead
migration and derive the approach to compute the optimal
lookahead length precisely.

B. Computing Optimal Lookahead Migration Window Size

In this section, we design an algorithm which computes the
near optimal lookahead window size by taking into account
several important factors, such as the IO bandwidth, the size of
SSD tier (number of SSDs), and IO workload characteristics.
Let w1 denote the current dominating workload running in the
system and w2 denote the next workload that will dominate
the IO access after w1 approaches the end. We determine the
optimal lookahead migration window size in the following
three steps.
1) Finding the utility improvement of workload w2: As

shown in Figure 3, similarly we can apply a linear function
to approximate the response time function for workload w2 in
the migration function and thus derive the following function
to depict the response time curve.

f(t) =

{
μ2−ρ2

ψ2

× (t + α) + ρ2 t ∈ [0, β]

μ2 t ∈ [β, φ2]
(8)

In Figure 3, ρ2 is the peak response time for original
response time curve without employing lookahead migration
for w2.

Theorem 3. The utility gain of w2 through using α looka-
head migration compared with purely learning phase reduced



migration is

Δw2 = U2(0) − U2(α)

= (ρ2 − μ2) × α −
ρ2 − μ2

2 × ψ2
× α2 (9)

2) Finding the utility loss of workload w1: As shown
in Figure 3, starting migration of w2 workload causes the
increment of response time of workload w1 and the peak
response time in this increment process happens at the dead-
line of workload w1, which is called reverse peak response
time η. The reverse response time increment process can be
approximated by function f ′(t) = ρ1−μ1

ψ1

× t + μ1. Let t = α,
we derive η = f ′(α) = ρ1−μ1

ψ1

+ μ1. Thus, the performance
loss of workload w1 is as follows:

Theorem 4.
Ωw1 =

ρ1 − μ1

2 × ψ1
× α2 (10)

3) Compute the near optimal lookahead window size:
The lookahead migration utility can be derived from the
performance gain of w2 and performance loss of w1 using
the following theorem.

Theorem 5. The utility of α lookahead migration,

Γ(α) = Δw2 − Ωw1

= (ρ2 − μ2)α −
ρ2 − μ2

2 × ψ2
α2

−
ρ1 − μ1

2 × ψ1
α2

= (ρ2 − μ2)α − (
ρ2 − μ2

2 × ψ2
+

ρ1 − μ1

2 × ψ1
)α2 (11)

As our goal is to maximize Γα and its maximum value
is achieved at α = ψ1ψ2(ρ2−μ2)

φ1(ρ2−μ2)+φ2(ρ1−μ1)
and the maximum

lookahead utility is Γmax = 3φ1φ2(ρ2−μ2)2

2ψ1(ρ2−μ2)+2ψ2(ρ1−μ1) . With this
approach to compute the optimal lookahead length, even the
system parameter changes, such as migration bandwidth or
SSD sizes changes, a new lookahead length can be adaptively
recomputed and thus guarantee the adaptivity of the proposed
approach.

IV. EXPERIMENTAL EVALUATION
This section evaluates the performance of our adaptive,

deadline-aware lookahead migration scheme through four sets
of experiments.
To examine the benefits of lookahead migration, we first

collected IO trace from real enterprise storage controller
and implemented the lookahead data migration scheme in a
simulator that simulates the real enterprise storage system.
We developed a trace driven simulator, which consists of a
storage unit with dual SMP server processor complexes as
controllers, sufficiently large memory with large size cache,
multiple types of disk drives (including SATA, SCSI and SSD),
multiple FICON or ESCON adapters connected by a high
bandwidth interconnect, and management consoles. Its design
is to optimize both exceptional performance and throughput
in supporting critical workloads and around the clock service.
Our simulator simulates the IO processing functionalities

of the enterprise storage systems driven by the IO pressure

trace collected from running benchmark workloads on the
real enterprise storage system. For the experiments in this
paper, the simulator simulates a multi-tiered storage hierarchy
consisting of SSD drives as tier 0 and SATA drives as tier 1
and the total physical capacity is up to hundreds of terabytes
in terms of hundreds of disk drives. For the experiments in
this paper, we run the simulations on a server machine with 4
processors and 12 GB memory running Linux Fedora 10.
IO traces for the simulator were generated by running the

Industry standard IO benchmark SPC1 and TPCE on the
referred proprietary enterprise storage system for a durat ion
about 24 hours. In all the following experiment, “Average
response time” refers to the average of the accumulative
response time of all the requests for a extent in the extents pool
at a particular time point and it is in the unit of miliseconds.

A. Effect of Basic Data Migration
Using the IO trace collected from running the benchmarks

on real enterprise storage system to the simulator, we measured
the average response time across all data extents every 15
minutes (1 cycle). We compare three different approaches: no
data migration functionality, the basic data migration scheme
described in Section II-C and reducing the learning phase by
reusing the IO profile. Figure 4 shows the comparison of sys-
tem response time with the three basic migration approaches
under the IO trace collected from the TPCE benchmark. The
results show that the average response time without data
migration is more than twice the response time achieved by the
other two approaches which perform basic data migration. The
response time remains flat because TPCE workload presents
even distribution over time interval. When we turn on the basic
data migration scheme, in the first 1 hour, the IO profiles
of extents are collected and the extents are sorted based
on their heat levels. Then the basic data migration scheme
is activated and the extents are migrated in the descending
heat order. During the first hour learning phase, the system
response time maintains at the same level as the case without
data migration. After the first hour learning phase, as the
data migration process begins, the system response time starts
to drop. Within a few cycles, the data migration process
reaches the convergence point and enters into the optimization
phase as further data migration no longer creates notable
improvement on response time. The graph also shows that
reusing IO profiles for a workload with stable characteristics
can improve performance at a faster rate than an approach
which independently learns the IO profiles each time.

B. Effect of Look-ahead Window Length
In this set of experiments, we study the effects of looka-

head window length on data migration. The storage layer is
configured with 3 SSDs and 33 HDDs. The total capacity of
SSD is set to be much less than the capacity of HDD. The
input trace is a hybrid trace with TPCE trace as the first half
and SPC1 trace as the second half and works as workload
w1 and workload w2 respectively. In order to understand
the impacts of lookahead window on system performance,
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Fig. 7. The impacts of looka-
head length on the second work-
load (SPC1 trace on cluster 1) when
2 ≤lookahead length≤ 8 and mi-
gration bandwidth=2GB/5mins in the
TPCE-SPC1 sequential workload with
3 SSDs and 32 HDDs
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Fig. 8. The impacts of looka-
head length on the first workload
(TPCE trace on cluster 2) when
10 ≤lookahead length≤ 16 and mi-
gration bandwidth=2GB/5mins in the
TPCE-SPC1 sequential workload with
3 SSDs and 32 HDDs
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Fig. 9. The impacts of looka-
head length on the second work-
load (SPC1 trace on cluster 1) when
10 ≤lookahead length≤ 12 and mi-
gration bandwidth=2GB/5mins in the
TPCE-SPC1 sequential workload with
3 SSDs and 32 HDDs
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Fig. 10. Lookahead utility cost on in-
cremental lookahead length over mul-
tiple migration bandwidth for TPCE-
SPC1 workload with 3 SSDs
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Fig. 11. SSD size on response time
in fixed 4 hours lookahead length in
SPC1 cluster 1 trace with 32 HDDs
and 4GB/5mins migration bandwidth
allocated

we vary lookahead window length from 1 hour to 16 hours.
For each window size increment, we output the system wide
average response time every 15 minutes to observe the impacts
of lookahead migration on the performance of workload w1
and w2. To simplify the problem, we isolate the lookahead
migration only to workload w2 which help to extract segment
that is repeated among the continuous workloads and center on
the impacts of lookahead migration on the ongoing workload
and the next active workload.

Fig.6 and Fig.7 examines the impacts of lookahead window
length on the performance of both first workload and second
workload respectively, where lookahead length sets to 2, 4, 6, 8
hours and the migration bandwidth is set to 2GB/5mins in the
TPCE-SPCE workload. Fig.7 shows the impacts of lookahead
length on the second workload w2. The peak response time
of workload w2 experiences a continuous dropping as we
increase lookahead window length from 2 hour to 8 hours.
The peak response time when employing 8 hours lookahead
length is 1/3 of the peak response time with 2 hours lookahead
length. This is mainly because larger lookahead length enables
more hot data extents to be migrated into SSD, given the fixed
bandwidth allocated for migration purpose. The more data ex-
tents migrated into SSD, the higher reduction in response time
is achieved through access disparity between HDD and SSD.
Also larger lookahead length enables the migration process to

arrive the minimum stable response time level much earlier.
This confirms that lookahead window length is a critical knob
to control the effectiveness of lookahead migration. Fig.6
shows the impacts of lookahead length on the first workload. It
is notable that lookahead migration with window length within
the range of (2 ≤ LookaheadLength ≤ 8) introduces almost
negligible influence on the ongoing workload w1.

Fig.8 and Fig.9 present the results if we continue to increase
lookahead length to be over 8 hours. Fig.9 shows that the
peak response time of w2 is reduced at a much smaller rate.
From 10 hours to 16 hours lookahead length, the peak response
time of w2 is only reduced by about 8%. The reduction on
the response time is significantly fading as we continue to
increase lookahead length. In other words, the migration effect
is saturated when lookhead length is larger than 10 hours. This
is because the number of hot extents that are visited in high
frequency and thus contribute noteworthy influences on the
response time is limited in quantity, if these extents are all
migrated into SSD during particular lookahead length, then
further increment on lookahead length produces no apparent
impacts on reducing response time.

On the other hand, Fig.8 shows that as the lookahead length
increases from 12 hours upward the response time of the
ongoing workload w1 also increases. This is because, the
longer the lookahead length is, the more extents of w1 are



TABLE I
OPTIMAL LOOKAHEAD LENGTH

Bandwidth Greedy Formal
2GB/5mins 10 h 10.11 h
3GB/5mins 7 h 7.24 h
4GB/5mins 4 h 4.08 h

swapped out to accommodate the w2 extents. Although the
w1 extents is swapped in the order from cold extents to hot
extents, excessive growth of lookahead length may pose the
danger that certain useful hot extents of w1 are swapped out,
leading to increased response time of workload w1.

C. Optimal Lookahead Length Computation
Fig.10 shows the evolvement of lookahead utility as the

lookahead length increments in different bandwidth settings.
From the result, we can see that as the lookahead length
increments, lookahead utility increases first and then starts
to drop at particular lookahead length. For example, when
bandwidth is 4GB per 5mins, lookahead utility reaches max-
imum value at 4 hours lookahead length. This verifies the
effectiveness of the lookahead utility model. Also because of
larger bandwidth enables the faster migration of hot extents,
thus larger bandwidth reaches the maximum lookahead utility
values at a faster speed.
Table I compares the optimal lookahead migration window

length experimented through the use of a greedy algorithm
with the optimal lookahead window size computed using
our formal model for adaptive lookahead migration, under
different bandwidth scenarios with 3 SSDs using the same
workload as previous experiments. The results show that our
formal model for computing optimal lookahead window size
is able to derive the optimal lookahead length quickly and
precisely without resorting to a greedy approach. .

D. SSD size on Fixed Lookahead Length
Fig.11 shows the response time reduction process when we

use SSD size ranging from 1 to 4 SSDs. As the SSD size
increases, the converged response time is further reduced. The
larger the SSD size is, the lower the peak response time will
be. As the size of SSD tier increases, more and more hot
extents are migrated into the SSDs. Given that the majority of
the hot extents are migrated into the SSDs, further increasing
the SSD size does not help to further reduce the response
time. This can be exemplified by the overlap of the dotted
line representing the 3 SSD scenario and the dash-dotted line
representing the 4 SSDs scenario.

V. RELATED WORK

In storage systems, data migration has been employed to
achieve load balancing, system scalability, reliability or a
myriad of other objectives. Placing data in different tiers and
hence moving data plays an important role in tuning the system
resource utilization and guaranteeing quality of service. For
example, AutoRAID [5] divides its block storage into a high
frequency access layer and a low frequency access layer. As
the block access frequency changes, the system automatically

migrates frequently accessed blocks to higher layer and moves
less frequently accessed blocks to the lower layer.
Recently, sereral migration techniques have been proposed

as a part of the feedback control loop [6]. [7] propose a storage
system which evaluates the component’s ability in supporting
ongoing workload, and selects the candidates to migrate,
aiming at satisfying the workload requirements. However,
the migration scheme they proposed lacks of consideration
on IO bandwidth, SSD size, and migration deadline and
other constraints. [8] studies how to use a control-theoretical
approach to adjust the migration speed such that the latency
of the foreground workload is guaranteed.

VI. CONCLUSION
In this paper we have developed an adaptive lookahead

migration scheme for efficiently integrating SSDs into the
multi-tier storage systems through deadline aware data mi-
gration. Our lookahead migration scheme takes into account
several factors in determining the optimal lookahead window
size, including the heat information of data extents from the
IO profiles, the migration deadline, the migration bandwidth,
and the tradeoff between the gain in response time reduction
of the workload being migrated to the fast storage tier and
the performance degradation of the ongoing workload. The
experimental study demonstrates that the adaptive lookahead
migration scheme not only enhances the overall storage system
performance but also provides significantly better IO perfor-
mance as compared to the basic migration model and constant
lookahead migration scheme.
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