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Privacy has been identified as a vital requirement in designing and implementing data mining
systems. In general, privacy preservation in data mining demands protecting both input and out-

put privacy: the former refers to sanitizing the raw data itself before performing mining; while
the latter refers to preventing the mining output (models or patterns) from malicious inference
attacks. This paper presents a systematic study on the problem of protecting output privacy in
data mining, and particularly, stream mining: (i) we highlight the importance of this problem
by showing that even sufficient protection of input privacy does not guarantee that of output
privacy; (ii) we present a general inferencing and disclosure model that exploits the intra-window
and inter-window privacy breaches in stream mining output; (iii) we propose a light-weighted
countermeasure that effectively eliminates these breaches without explicitly detecting them, while

minimizing the loss of output accuracy; (iv) we further optimize the basic scheme by taking
account of two types of semantic constraints, aiming at maximally preserving utility-related se-
mantics while maintaining hard privacy guarantee; (v) finally, we conduct extensive experimental
evaluation over both synthetic and real data to validate the efficacy of our approach.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—
data mining; H.2.7 [Database Management]: Database Administration—security, integrity,

and protection

General Terms: Security, Algorithm, Experimentation

Additional Key Words and Phrases: Output privacy, stream mining, data perturbation

1. INTRODUCTION

Privacy of personal information has been arising as a vital requirement in designing
and implementing data mining and management systems; individuals were usually
unwilling to provide their personal information if they knew that the privacy of
the data could be compromised. To this end, a plethora of work has been done on
preserving input privacy for static data [Agrawal and Srikant 2000; Sweeney 2002;
Evfimievski et al. 2002; Chen and Liu 2005; Machanavajjhala et al. 2006], which
assumes untrusted data recipients and enforces privacy regulations by sanitizing the
raw data before sending it to the recipients. The mining algorithms are performed
over the sanitized data, and produce output (patterns or models) with accuracy
comparable to, if not identical to that constructed over the raw data. This scenario
is illustrated as the first four steps of the grand framework of privacy-preserving
data mining in Fig. 1.

Nevertheless, in a strict sense, privacy preservation not only requires to prevent
unauthorized access to raw data that leads to exposure of sensitive information,
but also includes eliminating unwanted disclosure of sensitive patterns through
inference attacks over mining output. By sensitive patterns, we refer to those
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Fig. 1. Grand framework of privacy-preserving data mining.

properties possessed uniquely by a small number of individuals participating in the
input data. At the first glance, it may seem sufficient to sanitize input data in order
to address such threat; however, as will be revealed, even though the patterns (or
models) are built over the sanitized data, the published mining output could still
be leveraged to infer sensitive patterns. Intuitively, this can be explained by the
fact that input-privacy protection techniques are designed to make the constructed
models close to, if not identical to that built over the raw data, in order to guarantee
the utility of the result. Such “no-outcome-change” property is considered as a key
requirement of privacy-preserving data mining [Bu et al. 2007]. Given that the
significant statistical information of the raw data is preserved, there exists the risk
of disclosure of sensitive information. Therefore, the preservation of input privacy
may not necessarily lead to that of output privacy, while it is necessary to introduce
another unique layer of output-privacy protection into the framework, as shown in
Fig. 1. A concrete example is given as follows.

Example 1.1. Consider a nursing-care records database that collects the observed
symptoms of the patients in a hospital. By mining such database, one can dis-
cover valuable information regarding syndromes characterizing particular diseases.
However, the released mining output can also be leveraged to uncover some combi-
nations of symptoms that are so special that only rare people match them (we will
show how to achieve this in the following sections), which qualifies as a severe threat
to individuals’ privacy.

Assume that Alice knows that Bob has certain symptoms a, b but not c (c), and by
analyzing the mining output, she finds that only one person in the hospital matching
the specific combination of {a, b, c}, and only one having all {a, b, c, d}. She can
safely conclude that the victim is Bob, who also suffers the symptom d. Further
more, by studying other medical databases, she may learn that the combination of
{a, b, d} is linked to a rare disease with fairly high chance.

The output-privacy issue is more complicated in stream mining, wherein the min-
ing output usually needs to be published in a continuous and in-time manner. Not
only a single-time release may contain privacy breaches, but also multiple releases
can potentially be exploited in combination, given the overlap of the corresponding
input data. Consider the sliding window model [Babcock et al. 2002] as an example,
arguably the most popular stream processing model, where queries are not evalu-
ated over the entire history of the stream, but rather over a sliding window of the
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most recent data from the stream. The window may be defined over data items or
timestamps, i.e., item-based or time-based window, respectively. Besides the leak-
age in the output of a single window (intra-window breach), the output of multiple
overlapping windows could also be combined to infer sensitive information (inter-
window breach), even each window itself contains no breach per se. Moreover, the
characteristics of the stream typically evolve over time, which precludes the fea-
sibility of global data analysis-based techniques, due to the strict processing time
and memory limitations. Hence, one needs to consider addressing output-privacy
vulnerabilities in stream mining systems as a unique problem.

Surprisingly, in contrast of the wealth of work on protecting input privacy, output
privacy has received fairly limited attention so far in both stream data mining
and privacy-preserving data mining in general. This work, to our best knowledge,
represents the most systematic study to date of output-privacy vulnerabilities in
the context of stream data mining.

1.1 State of the Art

The first naturally arising question might be: is it sufficient to apply input-privacy
protection techniques to address output vulnerabilities? Unfortunately, most exist-
ing techniques fail to satisfy the requirement of countering inference attacks over
mining output: they differ from one to another in terms of concrete mechanisms
to provide attack-resilient protection while minimizing utility loss of mining out-
put incurred by sanitization; however, the adversarial attacks over input data (raw
records) is significantly different from that over mining output (patterns or models),
which renders these techniques inapplicable for our purpose.

As a concrete case, in Example 1.1, one conceivable solution to controlling the
inference is to block or perturb those sensitive records, e.g., the one correspond-
ing to Bob, in the mining process; however, such record-level perturbation suffers
from a number of drawbacks. First, the utility of mining output is not guaranteed.
Since the perturbation directly affects the mining output, it is usually difficult to
guarantee both that the valuable knowledge (the intended result) is preserved and
that the sensitive patterns are disguised. Among these, one significant issue is that
it may result in a large amount of false knowledge. For instance, in Example 1.1,
if the dataset is prepared for frequent pattern mining, blocking or perturbing sen-
sitive records may make frequent patterns become non-frequent, or vice versa; if
the dataset is prepared for learning classification tree, modifying sensitive records
may result in significant deviation of the cut points, which are critical for decision
making. Second, unlike the scenarios considered in some existing work (e.g., [Wang
et al. 2007]), in real applications, the sensitive patterns may not be predefined or
directly observable; rather, sophisticated analysis over the entire dataset is typically
necessary to detect the potential privacy leakage of mining output. For example,
as we will show in Section 3, in the case of frequent pattern mining that involves a
lattice structure among the support of itemsets, the number of potential breaches
needed to be checked is exponential in terms of the number of items. The situation is
even more complicated for the case of stream mining case wherein multiple windows
can be exploited together for inference. Such complexity imposes efficiency issues
for record-level perturbation. Third, in a broad range of computation-intensive
applications, e.g., neural network-based models, the mining output is typically not
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directly observable; thus the effect of applying record-level perturbation cannot be
evaluated without running the mining process. In all theses cases, it is difficult to
perform record-level perturbation to protect sensitive patterns.

Meanwhile, one might draw a comparison between our work and the disclosure
control techniques in statistical and census databases. Both concern about provid-
ing statistical information without compromising sensitive information regarding
individuals; however, they also exhibit significant distinctions. First, the queries of
statistical databases typically involve only simple statistics, e.g., MIN, MAX, AVG,
etc., while the output (patterns or models) of data mining applications usually fea-
ture much more complex structures, leading to more complicated requirements for
output utility. Second, compared with that in statistical databases, the output-
privacy protection in data mining faces much stricter constraints over processing
time and space, which is especially true for the case of stream mining.

1.2 Overview of Our Solution

A straightforward yet inefficient solution to preserving output privacy is to detect
and eliminate all potential breaches, i.e., the detecting-then-removing paradigm
as typically adopted by inference control in statistical databases. However, the
detection of breaches usually requires computation-intensive analysis of the entire
dataset, which is negative in tone [Chin and Ozsoyoglu 1981] for stream mining
systems. Further, even at such high cost, the concrete operations of removing the
identified breaches, e.g., suppression and addition [Atzori et al. 2008], tend to result
in considerable decrease in the utility of mining output.

Instead, we propose a novel proactive model to counter inference attacks over
output. Analogous to sanitizing raw data from leaking sensitive information, we
introduce the concept of “sanitized pattern”, arguing that by intelligently modifying
the “raw patterns” produced by mining process, one is able to significantly reduce
the threat of malicious inference, while maximally preserving the utility of raw
patterns. This scenario is shown as the last step in Fig. 1.

In contrary to record-level perturbation, pattern-level perturbation demonstrates
advantages in both protecting sensitive patterns and preserving output utility.
First, the utility of mining output is guaranteed, e.g., it is feasible to precisely
control the amount of false knowledge. For instance, in Example 1.1, all the valu-
able frequent patterns regarding symptom-disease relationships can be preserved,
while no false frequent patterns are introduced. Also, as we will show in Section 5
and 6, in the case of frequent pattern mining, not only the accuracy of each frequent
itemset can be controlled, but also their semantic relationships can be preserved to
the maximum extent, which is hard to achieve with record-level perturbation. Sec-
ond, it is possible to devise effective yet efficient pattern-level perturbation schemes
that can be performed either online or offline, without affecting the efficiency of
(stream) mining process. Finally, since the target of perturbation, the mining out-
put, is directly observable to the perturbation process, it is possible to analytically
gauge the perturbation schemes.

Specifically, we present Butterfly∗, a light-weighted countermeasure against
malicious inference over mining output. It possesses a series of desirable features
that make it suitable for (stream) mining applications: (i) it needs no explicit
detection of (either intra-window or inter-window) privacy breaches; (ii) it requires
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no reference to previous output when publishing the current result; (iii) it provides
flexible control over the balance of multiple utility metrics and privacy guarantee.

Following a two-phase paradigm, Butterfly∗ achieves attack-resilient protection
and output-utility preservation simultaneously: in the first phase, it counters ma-
licious inference by amplifying the uncertainty of sensitive patterns, at the cost of
trivial accuracy loss of individual patterns; in the second phase, while guaranteeing
the required privacy, it maximally optimizes the output utility by taking account
of several model-specific semantic constraints.

Our contributions can be summarized as follows: (i) we articulate the problem
and the importance of preserving output privacy in (stream) data mining; (ii) we
expose a general inference attack model that exploits the privacy breaches existing
in current (stream) mining systems; (iii) we propose a two-phase framework that
effectively addresses attacks over (stream) mining output; (iv) we provide both
theoretical analysis and experimental evaluation to validate our approach in terms
of privacy guarantee, output utility, and execution efficiency.

1.3 Paper Roadmap

We begin in Section 2 with introducing the preliminaries of frequent pattern mining
over data streams, exemplifying with which, we formalize the problem of addressing
output-privacy vulnerabilities in (stream) data mining. In Section 3, after introduc-
ing a set of basic inferencing techniques, we present two general attack models that
exploit intra-window and inter-window privacy breaches in stream mining output,
respectively. Section 4 outlines the motivation and design objectives of Butterfly∗,
followed by Section 5 and 6 detailing the two phases of Butterfly∗ and discussing
the implicit trade-offs among privacy guarantee and multiple utility metrics. Sec-
tion 7 examines the impact of perturbation distribution over the quality of privacy
protection and utility preservation. An empirical evaluation of the analytical mod-
els and the efficacy of Butterfly∗ is presented in Section 8. Finally, section 9
surveys relevant literature, and the paper is concluded in Section 10.

2. PROBLEM FORMALIZATION

To expose the output-privacy vulnerabilities in existing mining systems, we exem-
plify with the case of frequent pattern mining over data streams. We first introduce
the preliminary concepts of frequent pattern mining and pattern categorization, and
then formalize the problem of protecting output privacy in such mining task.

2.1 Frequent Pattern Mining

Consider a finite set of items I = {i1, i2, . . . , iM}. An itemset I is a subset of I,
i.e., I ⊆ I. A database D consists of a set of records, each corresponds to a non-
empty itemset. The support of an itemset I with respect to D, denoted by TD(I),
is defined as the number of records containing I as a subset in D. Frequent pattern
mining aims at finding all itemsets with support exceeding a predefined threshold
C, called minimum support.

A data stream S is modeled as a sequence of records, (r1, r2, . . . , rN ), where N
is the current size of S, and grows as time goes by. The sliding window model is
introduced to deal with the potential of N going to infinity. Concretely, at each
N , one considers only the window of most recent H records, (rN−H+1, . . . , rN ),
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Fig. 2. Data stream and sliding window model.

denoted by S(N, H), where H is the window size. The problem is therefore to find
all the frequent itemsets in each window.

Example 2.1. Consider a data stream with current size N = 12, window size H
= 8, as shown in Fig. 2, where a ∼ d and r1 ∼ r12 represent the set of items
and records, respectively. Assuming minimum support C = 4, then within window
S(11, 8), {c, bc, ac, abc} is a subset of frequent itemsets.

One can further generalize the concept of itemset by introducing the negation of
an item. Let i denote the negation of the item i. A record is said to contain i if it
does not contain i. Following, we will use the term pattern to denote a set of items
or negation of items, e.g., abc. We use I to denote the negation of an itmeset I,
i.e., I = {i|i ∈ I}.

Analogously, we say that a record r satisfies a pattern P if it contains all the
items and negations of items in P and the support of P with respect to database
D is defined as the number of records containing P in D.

Example 2.2. In Fig. 2, r10 contains ab, but not ac. The pattern abc has support
2 with respect to S(12, 8), because only records r8 and r11 match it.

2.2 Pattern Categorization

Loosely speaking, output privacy refers to the requirement that the output of min-
ing process does not disclose any sensitive information regarding individuals par-
ticipating in input data.

In the context of frequent pattern mining, such sensitive information can be in-
stantiated as patterns with extremely low support, which correspond to properties
uniquely possessed by few records (individuals), as shown in Example 1.1. We cap-
ture this intuition by introducing a threshold K (K ≪ C), called vulnerable support,
and consider patterns with (non-zero) support below K as vulnerable patterns. We
can then establish the following classification system.

Definition 2.3. (Pattern Categorization) Given a database D, let P be the
set of patterns appearing in D, then all P ∈ P can be classified into three disjoint
classes, for the given threshold K and C.







Frequent Pattern (FP) : Pf = {P |TD(P ) ≥ C}
Hard Vulnerable Pattern (HVP) : Phv = {P |0 < TD (P ) ≤ K}
Soft Vulnerable Pattern (SVP) : Psv = {P |K < TD (P ) < C}
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Intuitively, frequent pattern (Pf ) is the set of patterns with support above min-
imum support C; they expose the significant statistics of the underlying data, and
are often the candidate in the mining process. Actually the frequent itemsets found
by frequent pattern mining are a subset of Pf . Hard vulnerable pattern (Phv) is
the set of patterns with support below vulnerable support K; they represent the
properties possessed by only few individual, so it is unacceptable that they are
disclosed or inferred from mining output. Finally, soft vulnerable pattern (Psv)
neither demonstrates the statistical significance, nor violates the privacy of indi-
vidual records; such patterns are not contained in mining output, but it is usually
tolerable that they are learned from the output.

Example 2.4. As shown in Fig. 2, given K = 1 and C = 4, ac and bc are both
Pf , and abc is Phv with respect to S(12, 8), while bcd is Psv since its support lies
between K and C.

2.3 Problem Definition

We are now ready to formalizing the problem of preserving output privacy in the
context of frequent pattern mining over streams: For each sliding window S(N, H),
output-privacy preservation prevents the disclosure or inference of any hard vulner-
able patterns with respect to S(N, H) from the mining output.

It may seem at the first glance that no breach exists at all in frequent pattern
mining, if it only outputs frequent itemsets (recall C ≫ K); however, as will be
revealed shortly, from the released frequent patterns and their associated support,
the adversary may still be able to infer certain hard vulnerable patterns, as shown
in the next example (with detailed discussion in Section 3).

Example 2.5. Recall Example 2.4. Given the support of {c, ac, bc, abc}, based on
the inclusion-exclusion principle [O’Connor 1993], T (abc) = T (c)−T (ac)−T (bc)+
T (abc), one is able to infer the support of abc, which is Phv in S(12, 8).

3. ATTACK OVER MINING OUTPUT

In this section, we reveal the privacy breaches existing in current (stream) mining
systems, and present a general attack model that can exploit these breaches.

3.1 Attack Model

For simplicity of presentation, we will use the following notations: given two item-
sets I and J , I ⊕ J denotes their union, I ⊙ J their intersection, J ⊖ I the set
difference of J and I, and |I| the size of I. The notations used in the rest of the
paper are listed in Table I.

As a special case of multi-attribute aggregation, computing the support of I
(I ⊆ J) can be considered as generalization of J over all the attributes of J ⊖ I;
therefore, one can apply the standard tool of multi-attribute aggregation, a lattice
structure, based on which we construct the attack model.

Lattice Structure. Consider two itemsets I, J that satisfy I ⊂ J . All the itemsets
X J

I = {X |I ⊆ X ⊆ J} form a lattice structure: Each node corresponds to an
itemset X , and each edge represents the generalization relationship between two
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notation description

S(N, H) stream window of (rN−H+1 ∼ rN )
TD(X) support of X in database D

K vulnerable support
C minimum support
XJ

I set of itemsets {X|I ⊆ X ⊆ J}
Wp previous window
Wc current window

∆+
X

number of inserted records containing X

∆−

X
number of deleted records containing X

Table I. Symbols and notations.

nodes Xs and Xt such that Xs ⊂ Xt and |Xt ⊖ Xs| = 1. Namely, Xs is the
generalization of Xt over the item Xt ⊖ Xs.

Example 3.1. A lattice structure is shown in Fig. 3, where I = c, J = abc, and
J ⊖ I = ab.

For simplicity, in what follows, we use X J
I to represent both the set of itemsets and

their corresponding lattice structure. Next, we introduce the basis of our inferencing
model, namely, deriving pattern support and estimating itemset support. These two
techniques have been introduced in [Atzori et al. 2008] and [Calders and Goethals
2002], respectively, with usage or purpose different from ours. In [Atzori et al. 2008],
deriving pattern support is considered as the sole attack model to uncover sensitive
patterns; in [Calders and Goethals 2002], estimating itemset support is used to
mine non-derivable patterns, and thus saving the storage of patterns. The novelty
of our work, however, lies in constructing a general inferencing model that exploits
the privacy breaches existing in single or multiple releases of mining output, with
these two primitives as building blocks.

Deriving Pattern Support. Consider two itemsets I ⊂ J , if the support of all the
lattice nodes of X J

I is accessible, one is able to derive the support of pattern P ,
P = I ⊕ (J ⊖ I), according to the inclusion-exclusion principle [O’Connor 1993]:

T (I ⊕ (J ⊖ I)) =
∑

I⊆X⊆J

(−1)|X⊖I|T (X)

Example 3.2. Recall the example illustrated in Fig. 3. Given the support of the
lattice nodes of X abc

c in S(12, 8), the support of pattern P = abc is derived as:
TS(12,8)(abc) = TS(12,8)(c) - TS(12,8)(ac) - TS(12,8)(bc) + TS(12,8)(abc) = 1.

Essentially, the adversary can use this technique to infer vulnerable patterns with
respect to one specific window from mining output.

Estimating Itemset Support. For the support of any itemset is non-negative, ac-
cording to the inclusion-exclusion principle, if the support of the itemsets {X |I ⊆
X ⊂ J} is available, one is able to bound the support of J as follows:

{

T (J) ≤ ∑

I⊆X⊂J(−1)|J⊖X|+1T (X) |J ⊖ I| is odd

T (J) ≥ ∑

I⊆X⊂J(−1)|J⊖X|+1T (X) |J ⊖ I| is even
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Fig. 3. Privacy breaches in stream mining output.

Example 3.3. Given the support of c, ac, and bc in S(12, 8), one is able to establish
the lower and upper bounds of TS(12,8)(abc) as: ≤ TS(12,8)(ac) = 5, ≤ TS(12,8)(bc) =
5, ≥ TS(12,8)(ac) + TS(12,8)(bc) − TS(12,8)(c) = 2.

When the bounds are tight, i.e., the lower bound meets the upper bound, one can
exactly determine the actual support. In our context, the adversary can leverage
this technique to uncover the information regarding certain unpublished itemsets.

3.2 Intra-Window Inference

In stream mining systems without output-privacy protection, the released frequent
itemsets over one specific window may contain intra-window breaches, which can
be exploited via the technique of deriving or estimating pattern support.

Example 3.4. As shown in Example 3.2, abc is Phv with respect to S(12, 8) if K =
1; however, one can easily derive its support if the support values of c, ac, bc, abc
are known.

Formally, if J is a frequent itemset, then according to the Apriori rule [Agrawal
and Srikant 1994], all X ⊆ J must be frequent, which are supposed to be reported
with their support. Therefore, the information is complete to compute the support
of pattern P = I ⊕ (J ⊖ I) for all I ⊂ J . This also implies that the number of
breaches needed to be checked is potentially exponential in terms of the number of
items.

Even if the support of J is unavailable, i.e, the lattice of X J
I is incomplete to infer

P = I ⊕ (J ⊖ I), one can first apply the technique of estimating itemset support to
complete some missing “mosaics”, then derive the support of vulnerable patterns.
Possibly the itemsets under estimation themselves may be vulnerable. Following,
we assume that estimating itemset support is performed as a preprocessing step of
the attack.

3.3 Inter-Window Inference

The intra-window inference attack is only a part of the story. In stream mining,
privacy breaches may also exist in the output of overlapping windows. Intuitively,
the output of a previous window can be leveraged to infer the vulnerable patterns
within the current window, and vice versa, even though no vulnerable patterns can
be inferred from the output of each window per se.

Example 3.5. Consider two windows Wp = S(11, 8) and Wc = S(12, 8) as shown
in Fig. 2, with frequent itemsets summarized in Fig. 3. Assume C = 4 and K =
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1. In window Wp, no Phv exists; while in Wc, abc is unaccessible (shown as dashed
box). From the available information of Wc, the best guess about abc is [2, 5], as
discussed in Example 3.3. Clearly, this bound is not tight enough to infer that abc
is Phv. Both windows are thus immune to intra-window inference.

However, if one is able to derive that the support of abc decreases by 1 between
Wp and Wc, then based on the information released in Wp, which is TWp(abc) = 4,

the exact value of abc in Wc can be inferred, and abc is uncovered.

The main idea of inter-window inference is to exactly estimate the transition of
the support of certain itemsets between the previous and current windows. We
below discuss how to achieve accurate estimation of such transition over two con-
secutive windows.

Without loss of generality, consider two overlapping windows Wp = S(N −L, H)
and Wc = S(N, H) (L < H), i.e., Wc is lagging Wp by L records (in the example
above, N = 12, H = 8 and L = 1). Assume that the adversary attempts to derive
the support of pattern P = I ⊕ (J ⊖ I) in Wc. Let Xp and Xc be the subsets of
X J

I that are released or estimated from the output of Wp and Wc, respectively. We
assume that Xp ⊕ Xc = X J

I (X J
I ⊖ Xc = Xp ⊖ Xc), i.e., the missing part in Xc can

be obtained in Xp. In Fig. 3, Xp = {c, ac, bc, abc}, while Xc = {c, ac, bc}.
For itemset X , let ∆+

X and ∆−
X be the number of records containing X in the

windows S(N, L) and S(N − H, L), respectively. Thus, the support change of X
over Wp and Wc can be modeled as inserting ∆+

X records and deleting ∆−
X ones,

i.e., TWc(X) = TWp(X) + ∆+
X - ∆−

X .

Example 3.6. Recall our running example, with N = 12, H = 8, and L = 1.
S(N, L) corresponds to the record r11 while S(N − H, L) refers to the record r4.
Clearly, r4 contains ac, while r11 does not; therefore, TS(12,8)(ac) =TS(11,8)(ac) +
∆+

ac - ∆−
ac = 5.

The adversary is interested in estimating TWc(X
∗) for X∗ ∈ Xp ⊖ Xc. The

bound (min, max) of TWc(X
∗) can be obtained by solving the following integer

programming problem:

max(min) TWp(X∗) + ∆+
X∗ − ∆−

X∗

satisfying the constraints:

R1 : 0 ≤ ∆+
X , ∆−

X ≤ L
R2 : ∆+

X − ∆−
X = TWc(X) − TWp(X) X ∈ Xp ⊙Xc

R3 : ∆+
X(∆−

X) ≤ ∑

I⊆Y ⊂X(−1)|X⊖Y |+1∆+
Y (∆−

Y ) |X ⊖ I| is odd

R4 : ∆+
X(∆−

X) ≥ ∑

I⊆Y ⊂X(−1)|X⊖Y |+1∆+
Y (∆−

Y ) |X ⊖ I| is even

Here, R1 stems from that Wp differs from Wc by L records. When transiting
from Wp to Wc, the records containing X that are deleted or added cannot exceed
L. R2 amounts to saying that the support change (∆+

X − ∆−
X) for those itemsets

X ∈ Xc⊙Xp is known. R3 and R4 are the application of estimating itemset support
for itemsets in windows S(N, L) and S(N − H, L).

Sketchily, the inference process runs as follows: starting from the change of X ∈
Xp ⊙Xc (R2), by using rules R1, R3, and R4, one attempts to estimate ∆+

X(∆−
X) for

X ∈ Xp ⊖ Xc. It is noted that when the interval L between Wp and Wc is small
enough, the estimation can be fairly tight.
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Example 3.7. Consider our running example, L = 1, and Xp ⊙ Xc = {c, ac, bc}.
One can first observe the following facts based on R1 and R2:

∆+
ac − ∆−

ac = −1, 0 ≤ ∆+
ac, ∆

−
ac ≤ 1 ⇒ ∆+

ac = 0, ∆−
ac = 1

∆+
bc − ∆−

bc = −1, 0 ≤ ∆+
bc, ∆

−
bc ≤ 1 ⇒ ∆+

bc = 0, ∆−
bc = 1

Take ac as an instance. Its change over Wp and Wc is ∆+
ac - ∆−

ac = −1, and both
∆+

ac and ∆−
ac are bounded by 0 and 1; therefore, the only possibility is that ∆+

ac =
0 and ∆−

ac = 1. Further, by applying R3 and R4, one has the following facts:

∆+
abc ≤ ∆+

ac = 0 ⇒ ∆+
abc = 0

∆−
abc ≥ ∆−

ac + ∆−
bc − ∆−

c = 1 ⇒ ∆−
abc = 1

Take abc as an instance. Following the inclusion-exclusion principle, one knows
that ∆+

abc should be no greater than ∆+
ac = 0; hence, ∆+

abc = 0. Meanwhile, ∆−
abc

has tight upper and lower bounds as 1. The estimation of abc over Wc is thus given
by TWc(abc) = TWp(abc) + ∆+

abc - ∆−
abc = 3, and the Phv abc is uncovered.

The computation overhead of inter-window inference is dominated by the cost of
solving the constrained integer optimization problems. The available fast off-the-
shelf tools make such attack feasible even with moderate computation power.

4. OVERVIEW OF BUTTERFLY∗

Motivated by the inferencing attack model above, we outline Butterfly∗, our so-
lution to protecting output privacy for (stream) mining applications.

4.1 Design Objective

Alternative to the reactive, detecting-then-removing scheme, we intend to use a
proactive approach to tackle both intra-window and inter-window inference in a
uniform manner. Our approach is motivated by two key observations. First, in
many mining applications, the utility of mining output are measured by metrics
other than the exact support of individual itemsets, but rather the semantic rela-
tionship of their support (e.g., the ordering or ratio of support values). It is thus
acceptable to trade the precision of individual itemsets for boosting the output-
privacy guarantee, provided that the desired output utility is maintained. Second,
both intra-window and inter-window inferencing attacks are based on the inclusion-
exclusion principle, which involves multiple frequent itemsets. Trivial randomness
injected into each frequent itemset can accumulate into considerable uncertainty in
inferred patterns. The more complicated the inference (i.e., harder to detect), the
more considerable such uncertainty.

We therefore propose Butterfly∗, a light-weighted output-privacy preservation
scheme based on pattern perturbation. By sacrificing certain trivial precision of
individual frequent itemsets, it significantly amplifies the uncertainty of vulnerable
patterns, thus blocking both intra-window and inter-window inference.

4.2 Mining Output Perturbation

Data perturbation refers to the process of modifying confidential data while pre-
serving its utility for intended applications [Adam and Worthmann 1989]. This is
arguably the most important technique used to date for protecting original input
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data. In our scheme, we employ perturbation to inject uncertainty into mining
output. The perturbation over output pattern significantly differs from that over
input data. In input perturbation, the data utility is defined by the overall statisti-
cal characteristics of dataset. The distorted data is fed as input into the following
mining process. Typically no utility constraints are attached to individual data
values. While in output perturbation, the perturbed results are directly presented
to end-users, and the data utility is defined over each individual value.

There are typically two types of utility constraints for the perturbed results.
First, each reported value should have enough accuracy, i.e., the perturbed value
should not deviate widely from the actual value. Second, the semantic relationships
among the results should be preserved to the maximum extent. There exist non-
trivial trade-offs among these utility metrics. To our best knowledge, this work is
the first to consider such multiple trade-offs in mining output perturbation.

Concretely, we consider the following two perturbation techniques, with their
roots at statistics literature [Adam and Worthmann 1989; Chin and Ozsoyoglu
1981]: value distortion perturbs the support by adding a random value drawn
from certain probabilistic distribution; value bucketization partitions the range of
support into a set of disjoint, mutually exclusive intervals. Instead of reporting the
exact support, one returns the interval which the support belongs to.

Both techniques can be applied to output perturbation. However, value bucketi-
zation leads to fairly poor utility compared with value distortion, since all support
values with in an interval are modified to the same value, and any semantic con-
straints, e.g., order or ratio, can hardly be enforced in this model. We thus focus
on value distortion in the following discussion. Moreover, in order to guarantee
the precision of each individual frequent itemset, we are more interested in prob-
abilistic distributions with bounded intervals. We thus exemplify with a discrete
uniform distribution over integers, although our discussion is applicable for other
distributions (details in Section 7).

4.3 Operation of Butterfly∗

On releasing the mining output of a stream window, one perturbs the support
of each frequent itemset X , T (X)1 by adding a random variable rX drawn from a
discrete uniform distribution over integers within an interval [lX , uX ]. The sanitized
support T ′(X) = T (X) + rX is hence a random variable, which can be specified by
its bias β(X) and variance σ2(X). Intuitively, the bias indicates the difference of the
expected value E[T ′(X)] and the actual value T (X), while the variance represents
the average deviation of T ′(X) from E[T ′(X)]. Note that compared with T (X),
rX is non-significant, i.e., |rX | ≪ T (X).

While this operation is simple, the setting of β(X) and σ2(X) is non-trivial, in
order to achieve sufficient privacy protection and utility guarantee simultaneously,
which is the focus of our following discussion. Specifically, we will address the trade-
off between privacy guarantee and output utility in Section 5, and the trade-offs
among multiple utility metrics in Section 6.

1In what follows, without ambiguity, we omit the referred database D in the notations.
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5. BASIC BUTTERFLY∗

We start with defining the metrics to quantitatively measure the precision of indi-
vidual frequent itemsets, and the privacy protection for vulnerable patterns.

5.1 Precision Measure

The precision loss of a frequent itemset X incurred by perturbation can be measured
by the mean square error (mse) of the perturbed support T ′(X):

mse(X) = E[(T ′(X) − T (X))2] = σ2(X) + β2(X)

Intuitively, mse(X) measures the average deviation of perturbed support T ′(X)
with respect to actual value T (X). A smaller mse implies higher accuracy of the
output. Also, it is conceivable that the precision loss should take account of the
actual support. The same mse may indicate sufficient accuracy for an itmeset with
large support, but may render the output of little value for an itemset with small
support. Therefore, we have the following precision metric:

Definition 5.1. (Precision Degradation) For each frequent itemset X , its
precision degradation, denoted by pred(X), is defined as the relative mean squared
error of T ′(X):

pred(X) =
E[(T ′(X) − T (X))2]

T 2(X)
=

σ2(X) + β2(X)

T 2(X)

5.2 Privacy Measure

Distorting the original support of frequent itemsets is only a part of the story, it
is necessary to ensure that the distortion cannot be filtered out. Hence, one needs
to consider the adversary’s power in estimating the support of vulnerable patterns
through the protection.

Without loss of generality, assume that the adversary desires to estimate the sup-
port of pattern P of the form I⊕(J ⊖ I), and has full access to the sanitized support
T ′(X) of all X ∈ X J

I . Let T ′′(P ) denote the adversary’s estimation regarding T (P ).
The privacy protection should be measured by the error of T ′′(P ). Following let us
discuss such estimation from the adversary’s perspective. Along the discussion, we
will show how various prior knowledge possessed by the adversary may impact the
estimation.

Recall that T (p) is estimated following the inclusion-exclusion principle: T (p) =
∑

X∈XJ
I
(−1)|X⊖I|T (X). From the adversary’s view, each support T (X)(X ∈ X J

I )

is now a random variable; T (P ) is thus also a random variable. The estimation
accuracy of T ′′(P ) with respect to T (P ) (by the adversary) can be measured by
the mean square error, defined as mse(P ) = E[(T (P )− T ′′(P ))2]. We consider the
worst case (the best case for the adversary) wherein mse(P ) is minimized, and define
the privacy guarantee based on this lower bound. Intuitively, a larger min mse(P )
indicates a more significant error in estimating T (P ) by the adversary, and thus
better privacy protection. Also it is noted that the privacy guarantee should account
for actual support T (P ): if T (P ) is close to zero, trivial variance makes it hard for
the adversary to infer if pattern P exists. Such “zero-indistinguishability” decreases
as T (P ) grows. Therefore, we introduce the following privacy metric for vulnerable
pattern P .
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Definition 5.2. (Privacy Guarantee) For each vulnerable pattern P , its pri-
vacy guarantee, denoted by prig(P ), is defined as its minimum relative estimation
error (by the adversary):

prig(P ) =
min mse(P )

T 2(P )

In the following, we show how various assumptions regarding the adversary’s prior
knowledge impact this privacy guarantee. We start the analysis by considering each
itemset independently, then take account of the interrelations among them.

Prior Knowledge 5.3. The adversary may have full knowledge regarding the ap-
plied perturbation, including its distribution and parameters.

In our case, the parameter of rX specifies the interval [lX , rX ] from which the
random variable rX is drawn; therefore, from the adversary’s view, of each X ∈ X J

I ,
its actual support T (X) = T ′(X) − rX , is a random variable following a discrete
uniform distribution over interval [l′X , u′

X ], where l′X = T ′(X)−uX , u′
X = T ′(X)−lX

and has expectation T ′(X) − (lX + uX)/2 and variance σ2(X). Recalling that
|rX | ≪ T (X), this is a bounded distribution over positive integers. Given the
expectation of each T (X), we have the following theorem that dictates the lower
bound of mse(P ).

Theorem 5.4. Given the distribution f(x) of a random variable x, the mean square
error of an estimate e of x, mse(e) =

∫ ∞

−∞
(x−e)2f(x)dx reaches its minimum value

V ar[x], when e = E[x].

Proof (Theorem 5.4). We have the following derivation:

mse(x) =

∫ ∞

−∞

(x − e)2f(x)dx

= E[x2] + e2 − 2e · E[x]

= (e − E[x])2 + V ar[x]

Hence, mse(e) is minimized when e = E[x].

Therefore, mse(P ) is minimized when T ′′(P ) = E[T (P )], which is the best guess
the adversary can achieve (note that the optimality is defined in terms of average
estimation error, not the semantics, e.g., E[T (P )] is possibly negative). In this best
case for the adversary, the lowest estimation error is reached as V ar[T (P )].

In the case that each itemset is considered independently, the fact that T (p) is a
linear combination of all involved T (X) implies that V ar[T (p)] can be approximated
by the sum of the variance of all involved T (X), i.e., minmse(p) =

∑

X∈XJ
I

σ2(X).

Prior Knowledge 5.5. The support values of different frequent itemsets are in-
terrelated by a set of inequalities, derived from the inclusion-exclusion principle.

Here, we take into consideration the dependency among the involved itemsets.
As we have shown, each itemset X is associated with an interval [l′X , u′

X ] containing
its possible support. Given such itemset-interval pairs, the adversary may attempt
to apply these inequalities to tighten the intervals, and thus obtaining better es-
timation regarding the support. Concretely, this idea can be formalized in the
entailment problem [Calders 2004]:
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Definition 5.6 (Entailment). A set of itemset-interval pairs C entail a constraint
T (X) ∈ [lX , uX ], denoted by C |= T (X) ∈ [lX , uX ] if every database D that satisfies
C, also satisfies T (X) ∈ [lX , uX ]. The entailment is tight if for every smaller interval
[l′X , u′

X ] ⊂ [lX , uX ], C 6|= T (X) ∈ [l′X , u′
X ], i.e., [lX , uX ] is the best interval that can

be derived for T (X) based on C.

Clearly, the goal of the adversary is to identify the tight entailment for each T (X)
based on the rest; however, we have the following complexity result.

Theorem 5.7. Deciding whether T (X) ∈ [lX , uX ] is entailed by a set of itemset-
interval pairs C is DP-Complete.

Proof (Theorem 5.7-sketch). Deciding whether C |= T (X) ∈ [lX , uX ] is
equivalent to the entailment problem in the context of probabilistic logic program-
ming with conditional constraints [Lukasiewicz 2001], which is proved to be DP-
Complete.

This theorem indicates that it is hard to leverage the dependency among the in-
volved itemsets to improve the estimation of each individual itemset; therefore, one
can approximately consider the support values of frequent itemsets as independent
varaibles in measuring the adversary’s power. The privacy guarantee prig(P ) can
thus be expressed as prig(P ) =

∑

X∈XJ
I

σ2(X)/T 2(P ).

Prior Knowledge 5.8. The adversary may have access to other forms of prior
knowledge, e.g., published statistics of the dataset, samples of a similar dataset, or
support of the top-k frequent itemsets, etc.

All these forms of prior knowledge can be captured by the notion of knowledge
point : a knowledge point is a specific frequent itemset X , for which the adversary
has estimation error less than σ2(X). Note that following Theorem 5.7, the in-
troduction of knowledge points in general does not influence the estimation of the
other itemsets. Our definition of privacy guarantee can readily incorporate this
notion. Concretely, let KJ

I denote the set of knowledge points in the set of X J
I , and

κ2(X) be the average estimation error of T (X) for X ∈ KJ
I . We therefore have the

refined definition of privacy guarantee.

prig(P ) =

∑

X∈KJ
I

κ2(X) +
∑

X∈XJ
I \KJ

I
σ2(X)

T 2(P )

Another well-known uncertainty metric is entropy. Both variance and entropy are
important and independent measures of privacy protection. However, as pointed
out in [Hore et al. 2004], variance is more appropriate in measuring individual-
centric privacy wherein the adversary is interested in determining the precise value
of a random variable. We therefore argue that variance is more suitable for our
purpose, since we are aiming at protecting the exact support of vulnerable patterns.

Prior Knowledge 5.9. The sanitized support of the same frequent itemsets may
be published in consecutive stream windows.

Since our protection is based on independent random perturbation, if the same
support value is repeatedly perturbed and published in multiple windows, the ad-
versary can potentially improve the estimation by averaging the observed output
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(the law of large numbers). To block this type of attack, once the perturbed sup-
port of a frequent itemset is released, we keep publishing this sanitized value if the
actual support remains unchanged in consecutive windows.

Discussion. In summary, the effectiveness of Butterfly∗ is evaluated in terms
of its resilience against both intra-window and inter-window inference over stream
mining output. We note three key implications.

First, the uncertainty of involved frequent itemsets is accumulated in the inferred
vulnerable patterns. Moreover, more complicated inferencing attacks (i.e., harder
to be detected) face higher uncertainty.

Second, the actual support of a vulnerable pattern is typically small (only a
unique or less than K records match vulnerable patterns), and thus adding trivial
uncertainty can make it hard to tell the existence of this pattern in the dataset.

Third, inter-window inference follows a two-stage strategy, i.e., first deducing the
transition between contingent windows, then inferring the vulnerable patterns. The
uncertainty associated with both stages provides even stronger protection.

5.3 Trade-off between Precision and Privacy

In our Butterfly∗ framework, the tradeoff between privacy protection and output
utility can be flexibly adjusted by the setting of variance and bias for each frequent
itemset. Specifically, variance controls the overall balance between privacy and
utility, while bias gives a finer control over the balance between precision and other
utility metrics, as we will show later. Here, we focus on the setting of variance.
Intuitively, smaller variance leads to higher output precision, however also decreases
the uncertainty of inferred vulnerable patterns, thus lower privacy guarantee.

To ease the discussion, we assume that all the frequent itemsets are associated
with the same variance σ2 and bias β. In Section 6 when semantic constraints are
taken into account, we will lift this simplification, and consider more sophisticated
settings.

Let C denote the minimum support for frequent itemsets. From the definition of
precision metrics, it can be derived that for each frequent itemset X , its precision
degradation pred(X) ≤ (σ2 + β2)/C2, because T (X) ≥ C. Let P1(C) = (σ2 +
β2)/C2, i.e., the upper bound of precision loss for frequent itemsets. Meanwhile,
for a vulnerable pattern P = I(J \ I), it can be proved that its privacy guarantee
prig(P ) ≥ (

∑

X∈XJ
I

σ2)/K2 ≥ (2σ2)/K2, because T (P ) ≤ K and the inference

involves at least two frequent itemsets. Let P2(C, K) = (2σ2)/K2, i.e., the lower
bound of privacy guarantee for inferred vulnerable patterns.

P1 and P2 provide convenient representation to control the trade-off. Specifically,
setting an upper bound ǫ over P1 guarantees sufficient accuracy of the reported
frequent itemsets; while setting a lower bound δ over P2 provides enough privacy
protection for the vulnerable patterns. One can thus specify the precision-privacy
requirement as a pair of parameters (ǫ, δ), where ǫ, δ > 0. That is, the setting of β
and σ should satisfy P1(C) ≤ ǫ and P2(C, K) ≥ δ, as

σ2 + β2 ≤ ǫC2 (1)

σ2 ≥ δK2/2 (2)

To make both inequalities hold, it should be satisfied that ǫ/δ ≥ K2/(2C2). The
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term ǫ/δ is called the precision-privacy ratio (PPR). When precision is a major
concern, one can set PPR as its minimum value K2/(2C2) for given K and C, re-
sulting in the minimum precision loss for given privacy requirement. The minimum
PPR also implies that β = 0 and the two parameters ǫ and δ are coupled. We
refer to the perturbation scheme with the minimum PPR as the basic Butterfly∗

scheme.

6. OPTIMIZED BUTTERFLY∗

The basic Butterfly∗ scheme attempts to minimize the precision loss of individual
frequent itemsets, without taking account of their semantic relationships. Although
easy to implement and resilient against attacks, this simple scheme may easily
violate these semantic constraints directly related to the specific applications of
the mining output, and thus decreasing the overall utility of the results. In this
section, we refine this basic scheme by taking semantic constraints into our map,
and develop constraint-aware Butterfly∗ schemes. For given precision and privacy
requirement, the optimized scheme preserves the utility-relevant semantics to the
maximum extent.

In this work, we specifically consider two types of constraints, absolute ranking
and relative frequency. By absolute ranking, we refer to the order of frequent item-
sets according to their support. In certain applications, users pay special attention
to the ranking of patterns, rather than their actual support, e.g., querying the top-
ten most popular purchase patterns. By relative frequency, we refer to the pair-wise
ratio of the support of frequent itemsets. In certain applications, users care more
about the ratio of two frequent patterns, instead of their absolute support, e.g.,
computing the confidence of association rules.

To facilitate the presentation, we first introduce the concept of frequency equiv-
alent class (FEC).

Definition 6.1. (Frequent Equivalent Class). A frequent equivalent class
(FEC) is a set of frequent itemsets that feature equivalent support. Two itemsets
I, J belong to the same FEC if and only if T (I) = T (J). The support of a FEC
fec, T (fec), is defined as the support of any of its members.

A set of frequent itemsets can be partitioned into a set of disjoint FECs, according
to their support. Also note that a set of FECs are a strictly ordered sequence: we
define two FECs feci and fecj as feci < fecj if T (feci) < T (fecj). Following we
assume that the given set of FECs FEC are sorted according to their support, i.e.,
T (feci) < T (fecj) for i < j.

Example 6.2. In our running example as shown in Fig. 3, given C = 4, there are
three FECs, {cd}, {ac, bc}, {c}, with support 4, 5 and 8, respectively.

Apparently, to comply with the constraints of absolute ranking or relative fre-
quency, the equivalence of itemsets in a FEC should be preserved to the maximum
extent in the perturbed output. Thus, in our constraint-aware schemes, the per-
turbation is performed at the level of FECs, instead of each specific itemset.

We argue that this change does not affect the privacy guarantee as advertised,
provided the fact that the inference of a vulnerable pattern involves at least two
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frequent itemsets with different support, i.e., at least two FECs. Otherwise as-
suming that the involved frequent itemsets belong to the same FEC, the inferred
vulnerable pattern would have support zero, which is a contradiction. Therefore,
as long as each FEC is associated with uncertainty satisfying Eq.(2), the privacy
preservation is guaranteed to be above the advertised threshold.

6.1 Order Preservation

When the order of itemset support is an important concern, the perturbation of each
FEC cannot be uniform, since that would easily invert the order of two itemsets,
especially when their support values are close. Instead, one needs to maximally
separate the perturbed support of different FECs, under the given constraints of
Eq.(1) and Eq.(2). To capture this intuition, we first introduce the concept of
uncertainty region of FEC.

Definition 6.3. (Uncertainty Region) The uncertainty region of FEC fec is
the set of possible values of its perturbed support: {x|Pr(T ′(fec) = x) > 0}.

For instance, when adding to FEC fec a random variable drawn from a discrete
uniform distribution over interval [a, b], the uncertainty region is all the integers
within interval [a + T (fec), b + T (fec)]. To preserve the order of FECs with over-
lapping uncertainty regions, we maximally reduce their intersection, by adjusting
their bias setting.

Example 6.4. As shown in Fig. 4, three FECs have intersected uncertainty regions,
and their initial biases are all zero. After adjusting the biases properly, they share
no overlapping uncertainty region; thus, the order of their support is preserved in
the perturbed output.

Note that the order is not guaranteed to be preserved if some FECs still have
overlapping regions after adjustment, due to the constraints of given precision and
privacy parameters (ǫ, δ). We intend to achieve the maximum preservation under
the given requirement.

Minimizing Overlapping Uncertainty Region. Below we formalize the problem of
order preservation. Without loss of generality, consider two FECs feci, fecj with
T (feci) < T (fecj). To simplify the notation, we use the following short version:
let ti = T (feci), tj = T (fecj), t′i and t′j be their perturbed support, and βi and βj

the bias setting, respectively.
The order of feci and fecj can be possibly inverted if their uncertainty regions

intersect; that is, Pr[t′i ≥ t′j ] > 0. We attempt to minimize this inversion probability
Pr[t′i ≥ t′j ] by adjusting βi and βj . This adjustment is not arbitrary, constrained by
the precision and privacy requirement. We thus introduce the concept of maximum
adjustable bias :

Definition 6.5. (Maximum Adjustable Bias) For each FEC fec, its bias is
allowed to be adjusted within the range of [−βmax(fec), βmax(fec)], βmax(fec) is
called the maximum adjustable bias. For given ǫ and δ, it is defined as

βmax(fec) = ⌊
√

ǫT 2(fec) − δK2/2⌋
derived from Eq.(1) and Eq.(2).
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Fig. 4. Adjusting bias to minimize overlapping uncertainty regions.

Wrapping up the discussion above, the problem of preserving absolute ranking
can be formalized as: Given a set of FECs {fec1, . . . , fecn}, find the optimal bias
setting for each FEC fec within its maximum adjustable bias [−βmax(fec), βmax(fec)]
to minimize the sum of pair-wise inversion probability: min

∑

i<j Pr[t′i ≥ t′j ].
Exemplifying with a discrete uniform distribution, we now show how to compute

Pr[t′i ≥ t′j ]. Consider a discrete uniform distribution over interval [a, b], with α

= b − a as the interval length. The variance of this distribution is given by σ2 =
[(α + 1)2 − 1]/12. According to Eq.(2) in Section 5, we have α = ⌈

√
1 + 6δK2⌉− 1.

Let dij be the distance of their estimators ei = ti + βi and ej = tj + βj
2, i.e.,

dij = ej − ei.
The intersection of uncertainty regions of feci and fecj is a piece-wise function,

with four possible types of relationships: 1) ei < ej , feci and fecj do not overlap;
2) ei ≤ ej , feci and fecj intersect; 3) ei > ej , feci and fecj intersect; 4) ei > ej ,
feci and fecj do not overlap. Correspondingly, the inversion probability Pr[t′i ≥ t′j ]
is computed as follows:

Pr[t′i ≥ t′j ] =



















0 dij ≥ α + 1
(α+1−dij)

2

2(α+1)2 0 < dij < α + 1

1 − (α+1+dij)
2

2(α+1)2 −α − 1 < dij ≤ 0

1 dij ≤ −α − 1

Following we use Cij (or Cji) to denote Pr[t′i ≥ t′j ], the cost function of the pair
feci and fecj. The formulation of Cij can be considerably simplified based on the
next key observation: for any pair feci and fecj with i < j, the solution of the
optimization problem contains no configuration of dij < 0, as proved in the next
lemma.

Lemma 6.6. In the optimization solution of min
∑

i<j Cij , any pair of FECs feci

and fecj with i < j must have ei ≤ ej, i.e., dij ≥ 0.

Proof (Lemma 6.6). Assume that the estimators {e1, . . . , en} corresponding
to the optimal setting, and there exists a pair of FECs, feci and fecj with i < j
and ei > ej . By switching their setting, i.e., let e′i (β′

i), and e′j(β
′
j) be their new

2Following we will use the setting of bias and estimator exchangeably.
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setting, and e′i = ej , and e′j = ei, the overall cost is reduced, because

∑

k 6=i,j Cki +
Ckj remains the same, and Cij is reduced, thus contradictory to the optimality
assumption.

We need to prove that the new setting is feasible, that is |β′
i| ≤ βmax(feci) and

|β′
j | ≤ βmax(fecj). Here, we prove the feasibility of β′

i, and a similar proof applies
to β′

j . First, according to the assumption, we know that

ej = tj + βj < ti + βi = ei and ti < tj

therefore, we have the next fact:

β′
i = βj + tj − ti < βi ≤ βmax(feci)

We now just need to prove that β′
i ≥ −βmax(feci), equivalent to βj + tj − ti ≥

−βmax(feci), which is satisfied if

tj − ti ≥ βmax(fecj) − βmax(feci)

By substituting the maximum adjustable bias with its definition, and considering
the fact ǫ ≤ 1, this inequality can be derived.

Therefore, it is sufficient to consider the case dij ≥ 0 for every pair of feci

and fecj when computing the inversion probability Pr[t′i ≥ t′j ]. The optimization

problem is thus simplified as:
∑

i<j(α + 1 − dij)
2.

One flaw of the discussion so far is that we treat all FECs uniformly without
considering their characteristics, i.e., the number of frequent itemsets within each
FEC. The inversion of FECs containing more frequent itemsets is more serious than
that of FECs with less members. Quantitatively, let si be the number of frequent
itemsets in the FEC feci, the inversion of two FECs feci and fecj means the
ordering of si + sj itemsets are disturbed.

Therefore, our aim now is to solve the weighted optimization problem:

min
∑

i<j

(si + sj)(α + 1 − dij)
2

s.t. dij =

{

α + 1 ej − ei ≥ α + 1
ej − ei ej − ei < α + 1

∀i < j, ei ≤ ej

∀i, ei ∈ Z
+, |ei − ti| ≤ βmax(feci)

This is a quadratic integer programming (QIP) problem, with piece-wise cost
function. In general, QIP is NP-Hard, even without integer constraints [Vavasis
1990]. This problem can be solved by first applying quadratic optimization tech-
niques, such like simulated annealing, and then using random rounding techniques
to impose the integer constraints. However, we are more interested in online al-
gorithms that can flexibly trade between efficiency and accuracy. Following we
present such a solution based on dynamic programming.

A Near Optimal Solution. By relaxing the constraint that ∀i < j, ei ≤ ej to
ei < ej , we obtain the following key properties: (i) the estimators of all the FECs
are in strict ascending order, i.e., ∀i < j, ei < ej ; (ii) the uncertainty regions of all
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the FECs have the same length α. Each FEC can thus intersect with at most α of
its previous ones. These properties lead to an optimal substructure, crucial for our
solution.

Lemma 6.7. Given that the biases of the last α FECs {fecn−α+1 : fecn}3 are
fixed as {βn−α+1 : βn}, and {β1 : βn−α} are optimal w.r.t. {fec1 : fecn}, then for
given {βn−α : βn−1}, {β1 : βn−α−1} must be optimal w.r.t. {fec1 : fecn−1}.

Proof (Lemma 6.7). Suppose that there exists a better setting {β′
1 : β′

n−α−1}
leading to lower cost w.r.t. {fec1 : fecn−1}. Since fecn does not intersect with any
{fec1 : fecn−α−1}, the setting {β′

1 : β′
n−α−1, βn−α : βn} leads to lower cost w.r.t.

{fec1 : fecn}, contradictory to our optimality assumption.

Based on this optimal substructure, we propose a dynamic programming solution,
which adds FECs sequentially according to their order. Let Cn−1(βn−α : βn−1) rep-
resent the minimum cost that can be achieved by adjusting FECs {fec1 : fecn−α−1}
with the setting of the last α FECs fixed as {βn−α : βn}. When adding fecn, the
minimum cost Cn(βn−α+1 : βn) is computed using the rule:

Cn(βn−α+1 : βn) = min
βn−α

Cn−1(βn−α : βn−1) +

n−1
∑

i=n−α

(si + sn)(α + 1 − din)2

The optimal setting is the one with the minimum cost among all the combination
of {βn−α+1 : βn}.

Now, let us analyze the complexity of this scheme. Let β∗
max denote the maximum

value of maximum adjustable biases of all FECs: β∗
max = maxi βmax(feci). For each

fec, its bias can be chosen from at most 2β∗
max+1 integers. Computing Cn(βn−α+1 :

βn) for each combination of {βn−α+1 : βn} from Cn−1(βn−α : βn−1) takes at most
2β∗

max+1 steps, and the number of combinations is at most (2β∗
max+1)α. The time

complexity of this scheme is thus bounded by (2β∗
max + 1)α+1n, i.e., O(n) where

n is the total number of FECs. Meanwhile, the space complexity is also bounded
by the number of cost function values needed to be recorded for each FEC, i.e.,
(2β∗

max + 1)α. In addition, at each step, we need to keep track of the bias setting
for the added FECs so far for each combination, thus (2β∗

max + 1)α(n−α) in total.
In practice, the complexity is typically much lower than this bound, given that

(i) under the constraint ∀i < j, ei < ej , a number of combinations are invalid, and
(ii) β∗

max is an over-estimation of the average maximum adjustable bias.
It is noted that as α or β∗

max grows, the complexity increases sharply, even though
it is linear in terms of the total number of FECs. In view of this, we develop an
approximate version of this schem that allows trading between efficiency and accu-
racy. The basic idea is that on adding each FEC, we only consider its intersection
with its previous γ FECs, instead of α ones (γ < α). This approximation is tight
when the distribution of FECs is not extremely dense, which is usually the case, as
verified by our experiments. Formally, a (γ/α)-approximate solution is defined as:

Cn(βn−γ+1 : βn) = min
βn−γ

Cn−1(βn−γ : βn−1) +
n−1
∑

i=n−γ

(si + sn)(α + 1 − din)2

3In the following we use {xi : xj} as a short version of {xi, xi+1, . . . , xj}.
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Input: {ti, βmax(feci)} for each feci ∈ FEC, α, γ.
Output: βi for each feci ∈ FEC.
begin

/*initialization*/;
for β1 = −βmax(fec1) : βmax(fec1) do

C1(β1) = 0;

for i = 2 : γ do

for βi = −βmax(feci) : βmax(feci) do
/*ei < ej*/;
if βi + ti > βi−1 + ti−1 then

Ci(β1 : βi) = Ci−1(β1 : βi−1) +
∑i−1

j=1(sj + si)(α + 1 − dji)
2;

/* dynamic programming */;
for i = γ + 1 : n do

for βi = −βmax(feci) : βmax(feci) do

if βi + ti > βi−1 + ti−1 then
Ci(βi−γ+1 : βi) = minβi−γ Ci−1(βi−γ : βi−1) +
∑i−1

j=i−γ(sj + si)(α + 1 − dji)
2;

/*find the optimal setting*/;
find the minimum Cn(βn−γ+1 : βn);
backtrack and output βi for each feci ∈ FEC;

end

Algorithm 1: Order-preserving bias setting

Now the complexity is bounded by (2β∗
max + 1)γ+1n. By properly adjusting γ, one

can control the balance between accuracy and efficiency.
The complete algorithm is sketched in Algorithm 1: one first initializes the cost

function for the first γ FECs; then by running the dynamic programming pro-
cedure, one computes the cost function for each newly added FEC. The optimal
configuration is the one with the global minimum value Cn(βn−γ+1 : βn).

6.2 Ratio Preservation

In certain applications, the relative frequency of the support of two frequent item-
sets carries important semantics, e.g., the confidence of association rules. However,
the random perturbation may easily render the ratio of the perturbed support con-
siderably deviate from the original value. Again, we achieve the maximum ratio
preservation by intelligently adjust the bias setting of FECs. First, we formalize
the problem of ratio preservation.

Maximizing (k, 1/k) Probability of Ratio. Consider two FECs feci and fecj with
ti < tj . To preserve the ratio of feci and fecj, one is interested in making the ratio
of perturbed support t′i/t′j appear in the proximate area of original value ti/tj with

high probability, e.g., interval [k ti

tj
, 1

k
ti

tj
], where k ∈ (0, 1), indicating the tightness

of this interval. We therefore introduce the concept of (k, 1/k) probability.
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Definition 6.8. ((k, 1/k) Probability) The (k, 1/k) probability of the ratio of

two random variables t′i and t′j, Pr(k,1/k)

[

t′i
t′j

]

is defined as

Pr(k,1/k)

[

t′i
t′j

]

= Pr

[

k
ti
tj

≤ t′i
t′j

≤ 1

k

ti
tj

]

This (k, 1/k) probability quantitatively describes the proximate region of original
ratio ti/tj . A higher probability that t′i/t′j appears in this region indicates better
preservation of the ratio. The problem of ratio preservation is therefore formalized
as the following optimization problem:

max
∑

i<j

Pr(k,1/k)

[

t′i
t′j

]

s.t ∀i, ei ∈ Z
+, |ei − ti| ≤ βmax(feci)

It is not hard to see that in the case of discrete uniform distribution, the (k, 1/k)
probability of the ratio of two random variables is a non-linear piece-wise function,
i.e., a non-linear integer optimization problem. In general, non-linear optimization
problem is NP-Hard, even without integer constraints. Instead of applying off-the-
shelf non-linear optimization tools, we are more interested in efficient heuristics that
can find near-optimal configurations with linear complexity in terms of the number
of FECs. Following, we present one such scheme that performs well in practice.

A Near Optimal Solution. We construct our bias setting scheme based on Markov’s

Inequality. To maximize the (k, 1/k) probability Pr
[

k ti

tj
≤ t′i

t′j
≤ 1

k
ti

tj

]

, we can alter-

natively minimize the probability Pr
[

t′i
t′j

≥ 1
k

ti

tj

]

+ Pr
[

t′j
t′i

≥ 1
k

tj

ti

]

. From Markov’s

Inequality, we knows that the probability Pr
[

t′i
t′j

≥ 1
k

ti

tj

]

is bounded by

Pr

[

t′i
t′j

≥ 1

k

ti
tj

]

≤
E

[

t′i
t′j

]

1
k

ti

tj

= k
tj
ti

E

[

t′i
t′j

]

The maximization of (k, 1/k) probability of t′i/t′j is therefore simplified as the
following expression (k is omitted since it does not affect the optimization result):

min
tj
ti

E

[

t′i
t′j

]

+
ti
tj

E

[

t′j
t′i

]

(3)

The intuition here is that neither expectation
tj

ti
E

[

t′i
t′j

]

nor ti

tj
E

[

t′j
t′i

]

should deviate

far from one.
According to its definition, the expectation of

t′i
t′j

, E
[

t′i
t′j

]

, is computed as

E

[

t′i
t′j

]

=
1

(α + 1)2

ej+α/2
∑

ej−α/2

1

t′j

ei+α/2
∑

ei−α/2

t′i =
ei

α + 1
(Hej+ α

2
− Hej−

α
2
)
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where Hn is the nth harmonic number. It is known that Hn = lnn + Θ(1), thus

E

[

t′i
t′j

]

≈ ei

α + 1
ln

ej + α/2

ej − α/2
=

ei

α + 1
ln(1 +

α

ej − α/2
) (4)

This form is still not convenient for computation. We are therefore looking for
a tight approximation for the logarithm part of the expression. It is known that
∀x, y ∈ R

+, (1 + x/y)y+x/2 is a tight upper bound for ex. We have the following

approximation by applying this bound: 1 + α/(ej − α/2) = e
α

ej−α/2+α/2 = e
α
ej .

Applying the approximation to computing E
[

t′i
t′j

]

in Eq.(4), it is derived that

E

[

t′i
t′j

]

=
ei

α + 1
ln e

α
ej =

α

α + 1

ei

ej

The optimization of Eq.(3) is thus simplified as

min
tj
ti

ei

ej
+

ti
tj

ej

ei
(5)

Assuming that ei is fixed, by differentiating Eq.(5) w.r.t. ej, and setting the deriva-
tive as 0, we get the solution of ej as ej/ei = tj/ti, i.e., βj/βi = tj/ti.

Following this solution is our bottom-up bias setting scheme: for each FEC feci,
its bias βi should be set in proportion to its support ti. Note that the larger ti +βi

compared with α, the more accurate the applied approximation applied; hence, βi

should be set as its maximum possible value.

Input: {ti} for each feci ∈ FEC, ǫ, δ, K.
Output: βi for each feci ∈ FEC.
begin

/* setting of the minimum FEC */;
set β1 = ⌊

√

ǫt21 − δK2/2⌋;
/* bottom-up setting */;
for i = 2 : n do

set βi = ⌊βi−1
ti

ti−1
⌋;

end

Algorithm 2: Ratio-preserving bias setting

Algorithm 2 sketches the bias setting scheme: one first sets the bias of the mini-
mum FEC fec1 as its maximum βmax(fec1), and for each rest FEC feci, its bias
βi is set in proportion to ti/ti−1. In this scheme, for any pair of feci and fecj,
their biases satisfy βi/βj = ti/tj. Further, we have the following lemma to prove
the feasibility of this scheme. By feasibility, we mean that for each FEC feci, βi

falls within the allowed interval [−βmax(feci), βmax(feci)].

Lemma 6.9. For two FECs feci and fecj with ti < tj, if the setting of βi is

feasible for feci, then the setting βj = βi
tj

ti
is feasible for fecj.
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Proof (Lemma 6.9). Given that 0 < βi ≤ βmax(feci), then according to the
definition of maximum adjustable bias, βj has the following property

βj = βi
tj
ti

≤ βmax(feci)
tj
ti

= ⌊
√

ǫt2i −
δK2

2
⌋ tj
ti

= ⌊
√

ǫt2j −
δK2

2

t2j
t2i
⌋ ≤ ⌊

√

ǫt2j −
δK2

2
⌋ = βmax(fecj)

Thus if β1 is feasible for fec1, βi is feasible for any feci with i > 1, since ti > t1.

6.3 A Hybrid Scheme

While order-preserving and ratio-preserving bias settings achieve the maximum
utility at their ends, in certain applications wherein both semantic relationships are
important, it is desired to balance the two factors in order to achieve the overall
optimal quality.

We thus develop a hybrid bias setting scheme that takes advantage of the two
schemes, and allows to flexibly adjust the trade-off between the two quality metrics.
Specifically, for each FEC fec, let βop(fec) and βrp(fec) denote its bias setting
obtained by the order-preserving and frequency-preserving schemes, respectively.
We have the following setting based on a linear combination:

∀fec ∈ FEC β(fec) = λβop(fec) + (1 − λ)βrp(fec)

The parameter λ is a real number within the interval of [0, 1], which controls the
trade-off between the two quality metrics. Intuitively, a larger λ tends to indi-
cate more importance over order information, but less over ratio information, and
vise versa. Particularly, the order-preserving and ratio-preserving schemes are the
special cases when λ = 1 and 0, respectively.

7. EXTENSION TO OTHER DISTRIBUTION

In the section, we intend to study the impact of the perturbation distribution over
the quality of privacy protection and (multi-)utility preservation. It will be revealed
shortly that while uniform distributions lead to the best privacy protection, it may
not be optimal in terms of other utility metrics.

7.1 Privacy and Precision

Recall that the precision degradation of frequent itemset X is given by pred(X) =
[σ2(X) + β2(X)]/T 2(X), while the privacy guarantee of vulnerable pattern P of
the form I ⊕ (J ⊖ I) is given by prig(P ) =

∑

X∈XJ
I

σ2(X)/T 2(P ). Clearly, if two

perturbation distributions share the same bias and variance, they offer the same
amount of precision preservation for X and privacy guarantee for P . Next we focus
our discussion on order and ratio preservation.

7.2 Order Preservation

For ease of presentation, we assume that the perturbation added to the support
of each FEC is drawn from a homogeneous distribution with probability density
function (PDF) f(·), plus a bias specific to this FEC. Following the development
in Section 6, we attempt to minimize the sum of pair-wise inversion probability:
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Fig. 5. Trade-off between uncertainty region length (intersection possibility) and probability mass
density (σ = 1).

min
∑

i<j Pr[t′i ≥ t′j ], by finding the optimal bias setting for each FEC feci within

its maximum adjustable bias βmax
i . Note that βmax

i = ⌊
√

ǫt2i − δK2/2⌋ is solely
determined by the precision and privacy requirement (ǫ, δ), irrespective of the un-
derlying distribution f(·).

For general distribution f(·), the inversion probability Pr[t′i ≥ t′j ] is defined as:

Pr[t′i ≥ t′j ] =

∫ +∞

−∞

f(xj − βj)

∫ +∞

xj+tj−ti

f(xi − βi)dxidxj

=

∫ +∞

−∞

f(xj − βj)(1 − F (xj + tj − ti − βi))dxj

=

∫ +∞

−∞

F (xj − βj)f(x)dx

= E[F (x − (tj − ti + βj − βi))] , E[F (x − dij)]

where F (·) is the cumulative distribution function (CDF) of f(·), and dij denotes
the distance of the estimators of ti and tj . Clearly, Pr[t′i ≥ t′j ] is the expectation
of the CDF after shifting transformation, which is a continuous function of dij for
unbounded distribution, e.g., normal distribution, and possibly piece-wise function
for discrete distribution, e.g., uniform distribution; thus, no closed form of Pr[t′i ≥
t′j ] is available for general f(·).

It is noted that Lemma 6.6 makes no specific assumption regarding the underlying
distribution, and thus holding for any distribution f(·); therefore, under the optimal
bias setting, for any i < j, it must hold that dij ≥ 0. Furthermore, let si be the
number of frequent itemsets within the FEC feci. Taking into consideration the
weight of each FEC, the optimization problem is formulated as:

min
∑

i<j

(si + sj)E[F (x − ej + ei)]

s.t. ∀i, |ei − ti| ≤ βmax
i

∀i < j, ei ≤ ej

This is in general a non-linear programming problem, with the difficulty of opti-
mization mainly depending on the concrete form of the underlying distribution. For
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example, in the case of uniform distribution, it becomes a quadratic programming
problem (QIP); while in the case of Rademacher distribution, it becomes a piece-
wise minimization problem. Tailored optimization tools are therefore necessary for
different distributions, which is beyond the scope of this work. Here, instead, we
attempt to explore the interplay between the distribution of perturbation noise and
that of itemset support.

From Fig. 4, it is noticed that two contributing factors affect the inversion prob-
ability Pr[t′i ≥ t′j ], namely, the length of the uncertainty regions of feci and fecj,
and the average probability mass (per unit length) of feci and fecj in the inter-
sected region. Intuitively, if the uncertainty region length is large, the average
probability mass distributed over the region tends to be small, but the possibility
that two uncertainty regions intersect is high; meanwhile, if the uncertainty region
length is small, they will have less chance to intersect, but the probability mass
density in the intersected region will be large if they overlap. Here, we consider two
representative distributions featuring small and large uncertainty regions for fixed
variance σ2.

—Rademacher distribution. Its probability mass function f(·) is defined as:

f(x) =

{

1/2 x = −σ or σ
0 otherwise

The uncertainty region length is 2σ.

—triangular distribution. Its probability density function f(·) is given by:

f(x) =







(
√

6σ + x)/(6σ2) x ∈ [−
√

6σ, 0]

(
√

6σ − x)/(6σ2) x ∈ [0,
√

6σ]
0 otherwise

The uncertainty region length is 2
√

6σ.

Now, exemplifying with these two distributions, we attempt to explore the trade-
off of uncertainty region length and probability mass density that contribute to the
inversion probability. Fig. 5 illustrates the inversion probability Pr[t′i ≥ t′j ] as a
function of the intersection length of two uncertainty regions. To reflect the dif-
ference of uncertainty region length of the two distributions, we horizontally shift
the inversion probability of Rademacher distribution 2(

√
6 − 1)σ units. It is noted

that there is no clear winner over the entire interval; rather, each distribution
demonstrates superiority over the other in certain regions. For example, when the
intersection length is small, Rachemacher is better than triangular since its inver-
sion probability is close to zero; when the intersection length reaches 3, there is
a sharp increase in the inversion probability of Rachemacher, which makes trian-
gular a better choice; after the intersection length exceeds 4, triangular dominates
Rachemacher in terms of the inversion probability again.

From the analysis above, we can conclude: 1) No single distribution is optimal
for all possible distributions of support in terms of order preservation; rather, the
perturbation distribution needs to be carefully selected, adapted to the underly-
ing support distribution. 2) Intuitively, when the underlying support distribution
is relative sparse, i.e., the gap between two consecutive support values is large,
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distributions with small uncertainty regions, e.g., Rachmacher, are more prefer-
able, which lead to less intersection possibility; when the support distribution is
dense, distributions with less probability mass density, e.g., triangular, are more
preferable. 3) The impact of the perturbation distribution over the quality of order
preservation needs to empirically evaluated.

7.2.1 Ratio Preservation. Next we study the impact of perturbation distribu-
tion over the quality of ratio preservation. We first re-formulate the (k, 1/k) proba-
bility under general distribution f(·). For ease of presentation, we assume that the
perturbation distributions for all FECs are homogeneous, plus a FEC-specific bias.

Under general distribution f(·), the (k, 1/k) probability is calculated as follows:

Pr(k,1/k)[t
′
i/t′j] =

∫ ∞

−∞

f(xj − βj)

∫ 1
k

ti
tj

(tj+xj)−ti

k
ti
tj

(tj+xj)−ti

f(xi − βi)dxidxj

= E[F (
ti
tj

x

k
+

ti
k
− ti +

ti
tj

βj

k
− βi)

−F (k
ti
tj

x + kti − ti + k
ti
tj

βj − βi)]

Clearly, this quantity is the expectation difference of two CDFs after scaling and
shifting transformation. Similar to the problem of order optimization, the difficulty
of optimizing min

∑

i<j Pr(k,1/k)[t
′
i/t′j ] depends on the concrete form of the underly-

ing perturbation distribution f(·), which needs to be investigated on a case-by-case
basis, and is beyond the scope of this work. Here, we are interested in investigat-
ing the impact of uncertainty region length and probability mass density over the
(k, 1/k) probability.

Fig. 6 illustrates the trade-off between uncertainty region length and probabil-
ity mass density, with respect to varying ratio of ti/tj . For presentation purpose,
we filter out the effect of bias setting (βi and βj are fixed as zero). We then fix
tj , and measure the (k, 1/k) probability Pr(k,1/k)[t

′
i/t′j ] of the two distributions,

Rademacher and triangular, under varying ti. Again, neither distribution demon-
strates consistent superiority over the entire interval: for small ratio ti/tj , trian-
gular is better than Rademacher given its larger (k, 1/k) probability; as the ratio
increases, Rademacher offers better quality of ratio preservation; while for large
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ratio (close to 1), the influence of both distributions is non-significant.
We can thus draw conclusions similar to the case of order preservation: no sin-

gle distribution is optimal for all possible support distributions in terms of ratio
preservation; rather, the perturbation distribution needs to be selected, based on
the underlying support distribution. A rule of thumb is: when the underlying sup-
port distribution is sparse, i.e., a large number of small ratios, distributions with
small probability mass density, e.g., triangular, are more preferable; when the sup-
port distribution is relative dense, distributions with smaller uncertainty regions,
e.g., Rademacher, are more preferable.

8. EXPERIMENTAL ANALYSIS

In this section, we investigate the efficacy of the proposed Butterfly∗ approaches.
Specifically, the experiments are designed to measure the following three properties:
1) privacy guarantee: the effectiveness against both intra-window and inter-window
inference; 2) result utility: the degradation of the output precision, the order and
ratio preservation, and the trade-off among these utility metrics; 3) execution ef-
ficiency: the time taken to perform our approaches. We start with describing the
datasets and the setup of the experiments.

8.1 Experimental Setting

We tested our solutions over both synthetic and real datasets. The synthetic dataset
T20I4D50K is obtained by using the data generator as described in [Agrawal and
Srikant 1994], which mimics transactions from retail stores. The real datasets used
include: 1) BMS-WebView-1, which contains a few months of clickstream data from
an e-commerce web site; 2) BMS-POS, which contains several years of point-of-sale
from a large number of electronic retailers; 3) Mushroom in UCI KDD archive4,
which is used widely in machine learning research. All these datasets have been
used in frequent pattern mining over streams [Chi et al. 2006].

We built our Butterfly∗ prototype on top of Moment [Chi et al. 2006], a stream-
ing frequent pattern mining framework, which finds closed frequent itemsets over a
sliding window model. By default, the minimum support C and vulnerable support
K are set as 25 and 5, respectively, and the window size is set as 2K. Note that the
setting here is designed to test the effectiveness of our approach with high ratio of
vulnerable/minimum threshold (K/C). All the experiments were performed over
a workstation with Intel Xeon 3.20GHz and 4GB main memory, running Red Hat
Linux 9.0 operating system. The algorithm is implemented in C++ and compiled
using g++ 3.4.

8.2 Experimental Results

To provide an in-depth understanding of our output-privacy preservation schemes,
we evaluated four different versions of Butterfly∗: the basic version, the optimized
version with λ = 0, 0.4, and 1, respectively, over both synthetic and real datasets.
Note that λ = 0 corresponds to the ratio-preserving scheme, while λ = 1 corresponds
to the order-preserving one.

4http://kdd.ics.uci.edu/
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Fig. 7. Average privacy guarantee (avg prig) and precision degradation (avg pred).

Privacy and Precision. To evaluate the effectiveness of our approach in terms
of output-privacy protection, we need to find all potential privacy breaches in the
mining output. This is done by running an analysis program over the results re-
turned by the mining algorithm, and finding all possible vulnerable patterns that
can be inferred through either intra-window or inter-window inference.

Concretely, given a stream window, let Phv denote all the hard vulnerable pat-
terns that are inferable from the mining output. After the perturbation, we eval-
uate the relative deviation of the inferred value and the estimator for each pat-
tern P ∈ Phv for 100 continuous windows. we use the following average privacy
(avg prig) metric to measure the effectiveness of privacy preservation:

avg prig =
∑

P∈Phv

(T ′(P ) − E[T ′(P )])2

T 2(P )|Phv|

The decrease of output precision is measured by the average precision degradation
(avg pred) of all frequent itemsets I:

avg pred =
∑

I∈I

(T ′(I) − T (I))2

T 2(I)|I|

In this set of experiments, we fix the precision-privacy ratio ǫ/δ = 0.04, and
measure avg prig and avg pred for different settings of ǫ (δ).

Specifically, the four plots in the top tier of Fig. 7 show that as the value of
δ increases, all four versions of Butterfly∗ provide similar amount of average
privacy protection for all the datasets, far above the minimum privacy guarantee
δ. The four plots in the lower tier show that as σ increases from 0 to 0.04, the
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output precision decreases; however, all four versions of Butterfly∗ have average
precision degradation below the system-supplied maximum threshold ǫ. Also note
that among all the schemes, basic Butterfly∗ achieves the minimum precision loss,
for given privacy requirement. This can be explained by the fact that the basic
approach considers no semantic relationships, and sets all the bias as zero, while
optimized Butterfly∗ trades precision for other utility-related metrics. Although
the basic scheme maximally preserves the precision, it may not be optimal in the
sense of other utility metrics, as shown next.

Order and Ratio. For given privacy and precision requirement (ǫ, δ), we measure
the effectiveness of Butterfly∗ in preserving order and ratio of frequent itemsets.

The quality of order preservation is evaluated by the proportion of order-preserved
pairs over all possible pairs, referred to as the rate of order preserved pairs (ropp):

ropp =

∑

I,J∈I and T (I)≤T (J) 1T ′(I)≤T ′(J)

C2
|I|

where 1x is the indicator function, returning 1 if condition x holds, and 0 otherwise.
Analogously, the quality of ratio preservation is evaluated by the fraction of the

number of (k, 1/k) probability-preserved pairs over the number of possible pairs,
referred to as the rate of ratio preserved pairs (rrpp) (k is set 0.95 in all the exper-
iments):

rrpp =

∑

I,J∈I and T (I)≤T (J) 1k T (I)
T (J)

≤ T ′(I)

T ′(J)
≤ 1

k
T (I)
T (J)

C2
|I|

In this set of experiments, we vary the precision-privacy ratio ǫ/δ for fixed δ =
0.4, and measure the ropp and rrpp for four versions of Butterfly∗ (the parameter
γ = 2 in all the experiments), as shown in Fig. 8.

As predicted by our theoretical analysis, the order-preserving (λ = 1) and ratio-
preserving (λ = 0) bias settings are fairly effective, both outperform all other
schemes at their ends. The ropp and rrpp increase as the ratio of ǫ/δ grows, due
to the fact that larger ǫ/δ offers more adjustable bias therefore leading to better
quality of order or ratio preservation.

It is also noticed that order-preserving scheme has the worst performance in
the terms of avg rrpp, even worse than the basic approach. This is explained by
that in order to distinguish overlapping FECs, the order-preserving scheme may
significantly distort the ratio of pairs of FECs. In all these cases, the hybrid scheme
λ = 0.4 achieves the second best in terms of avg rrpp and avg ropp, and an overall
best quality when order and ratio preservation are equally important.

Tuning of Parameters γ and λ. Next we give a detailed discussion on the setting
of the parameters γ and λ.

Specifically, γ controls the depth of dynamic programming in the order-preserving
bias setting. Intuitively, a larger γ leads to better quality of order preservation, but
also higher time and space complexity. We desire to characterize the gain of the
quality of order preservation with respect to γ, and find the setting that balances
the quality and efficiency.

For all four datasets, we measured the ropp with respect to the setting of γ, with
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Fig. 8. Average order preservation (avg ropp) and ratio preservation (avg rrpp).
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Fig. 9. Average rate of order-preserved pairs with respect to setting of γ.

result shown in Fig. 9. It is noted that the quality of order-preservation increases
sharply at certain points γ = 2 or 3, and the trend becomes much flatter after
that. This is explained by that in most real datasets, the distribution of FECs is
not extremely dense; under proper setting of (ǫ, δ), a FEC can intersect with only
2 or 3 neighboring FECs on average. Therefore, the setting of small γ is usually
sufficient for most datasets.

The setting of λ balances the quality of order and ratio preservation. For each
dataset, we evaluate ropp and rrpp with different settings of λ (0.2, 0.4, 0.6, 0.8 and
1) and precision-privacy ratio ǫ/δ (0.3, 0.6 and 0.9), as shown in Fig. 10.

These plots give good estimation of the gain of order preservation, for given cost
of ratio preservation that one is willing to sacrifice. A larger ǫ/δ gives more room
for this adjustment. In most cases, the setting of λ = 0.4 offers a good balance
between the two metrics. The trade-off plots could be made more accurate by
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Fig. 11. Overhead of Butterfly∗ algorithms in stream mining systems.

choosing more settings of λ and ǫ/δ to explore more points in the space.

8.2.1 Execution Efficiency. In the last set of experiments, we measured the
computation overhead of Butterfly∗ over the original mining algorithm for dif-
ferent settings of minimum support C. We divide the execution time into two
parts contributed by the mining algorithm (mining algorithm) and Butterfly∗ algo-
rithm (butterfly), respectively. Note that we do not distinguish basic and optimized
Butterfly∗, since basic Butterfly∗ involves simple perturbation operations, with
unnoticeable cost. The window size is set 5K for all four datasets.

The result plotted in Fig. 11 shows clearly that the overhead of Butterfly∗

is much less significant than the mining algorithm; therefore, it can be readily
implemented in existing stream mining systems. Further, while the current versions
of Butterfly∗ are window-based, it is expected that the incremental versions of
Butterfly∗ can achieve even lower overhead.

It is noted that in most cases, the running time of both mining algorithm and
Butterfly∗ algorithm grow significantly as C decreases; however, the growth of the
overhead of Butterfly∗ is much less evident compared with the mining algorithm
itself. This is expected since as the minimum support decreases, the number of
frequent itemsets increases super-linearly, but the number of FECs has much lower
growth rate, which is the most influential factor for the performance of Butterfly∗.
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9. RELATED WORK

9.1 Disclosure Control in Statistical Database

The most straightforward solution to preserving output privacy is to detect and
eliminate all potential privacy breaches, i.e., the detecting-then-removing strategy,
which stemmed from the inference control in statistical and census databases from
1970’s. Motivated by the need of publishing census data, the statistics literature
focuses mainly on identifying and protecting the privacy of sensitive data entries in
contingency tables, or tables of counts corresponding to cross-classification of the
microdata.

Extensive research has been done in statistical databases to provide statistical in-
formation without compromising sensitive information regarding individuals [Chin
and Ozsoyoglu 1981; Shoshani 1982; Adam and Worthmann 1989]. The techniques,
according to their application scenarios, can be broadly classified into query re-
striction and data perturbation. The query restriction family includes controlling
the size of query results [Fellegi 1972], restricting the overlap between successive
queries [Dobkin et al. 1979], suppressing the cells of small size [Cox 1980], and au-
diting queries to check privacy compromises [Chin and Ozsoyoglu 1981]; the data
perturbation family includes sampling microdata [Denning 1980], swapping data
entries between different cells [Dalenius and Reiss 1980], and adding noises to the
microdata [Traub et al. 1984] or the query results [Denning 1980]. Data pertur-
bation by adding statistical noise is an important method of enhancing privacy.
The idea is to perturb the true value by a small amount ǫ where ǫ is a random
variable with mean = 0 and a small variance = σ2. While we adopt the method
of perturbation from statistical literature, one of our key technical contributions
is the generalization of the basic scheme by adjusting the mean to accommodate
various semantic constraints in the applications of mining output.

9.2 Input Privacy Preservation

Intensive research efforts have been directed to addressing the input-privacy issues.
The work of [Agrawal and Srikant 2000; Agrawal and Aggarwal 2001] paved the way
for the rapidly expanding field of privacy-preserving data mining; they established
the main theme of privacy-preserving data mining as to provide sufficient privacy
guarantee while minimizing the information loss in the mining output. Under this
framework, a variety of techniques have been developed.

The work of [Agrawal and Srikant 2000; Agrawal and Aggarwal 2001; Evfimievski
et al. 2002; Chen and Liu 2005] applied data perturbation, specifically random
noise addition, to association rule mining, with the objective of maintaining suf-
ficiently accurate estimation of frequent patterns while preventing disclosure of
specific transactions (records). In the context of data dissemination and publica-
tion, group-based anonymization approaches have been considered. The existing
work can be roughly classified as two categories: the first one aims at devising
anonymization models and principles, as the criteria to measure the quality of
privacy protection, e.g., k-anonymity [Sweeney 2002], l-diversity [Machanavajjhala
et al. 2006], (ǫ, δ)k-dissimilarity [Wang et al. 2009], etc.; the second category of work
explores the possibility of fulfilling the proposed anonymization principles, mean-
while preserving the data utility to the maximum extent, e.g., [LeFevre et al. 2006;
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Park and Shim 2007]. Cryptographic tools have also been used to construct privacy-
preserving data mining protocols, e.g., secure multi-party computation [Lindell and
Pinkas 2000; Vaidya and Clifton 2002]. Nevertheless, all these techniques focus on
protecting input privacy for static datasets, Quite recently, the work [Li et al. 2007]
addresses the problem of preserving input privacy for streaming data, by online
analysis of correlation structure of multivariate streams. The work [Bu et al. 2007]
distinguishes the scenario of data custodian, where the data collector is entrusted,
and proposes a perturbation scheme that guarantees no change in the mining out-
put. In [Kargupta et al. 2003; Huang et al. 2005], it is shown that a hacker can
potentially employ spectral analysis to separate the random noise from the real
values for multi-attribute data.

9.3 Output Privacy Preservation

Compared with the wealth of techniques developed for preserving input privacy, the
attention given to protecting mining output is fairly limited. The existing literature
can be broadly classified as two categories. The first category attempts to propose
general frameworks for detecting potential privacy breaches. For example, the
work [Kantarcioǧlu et al. 2004] proposes an empirical testing scheme for evaluating
if the constructed classifier violates the privacy constraint. The second category
focuses on proposing algorithms to address the detected breaches for specific mining
tasks. For instance, it is shown in [Atzori et al. 2008] that the association rules
can be exploited to infer information about individual transactions; while the work
[Wang et al. 2007] proposes a scheme to block the inference of sensitive patterns
satisfying user-specified templates by suppressing certain raw transactions. This
paper is developed based on our previous work [Wang and Liu 2008].

10. CONCLUSIONS

In this work, we highlighted the importance of imposing privacy protection over
(stream) mining output, a problem complimentary to conventional input privacy
protection. We articulated a general framework of sanitizing sensitive patterns
(models) to achieve output-privacy protection. We presented the inferencing and
disclosure scenarios wherein the adversary performs attacks over the mining out-
put. Motivated by the basis of the attack model, we proposed a lighted-weighted
countermeasure, Butterfly∗. It counters the malicious inference by amplifying
the uncertainty of vulnerable patterns, at the cost of trivial decrease of output pre-
cision; meanwhile, for given privacy and precision requirement, it maximally pre-
serves the utility-relevant semantics in mining output, thus achieving the optimal
balance between privacy guarantee and output quality. The efficacy of Butterfly∗

is validated by extensive experiments on both synthetic and real datasets.
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