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Abstract. Data perturbation is a popular technique in privacy-preserving data mining. A major
challenge in data perturbation is to balance privacy protection and data utility, which are normally
considered as a pair of conflicting factors. We argue that selectively preserving the task/model spe-
cific information in perturbation will help achieve better privacy guarantee and better data utility.
One type of such information is the multidimensional geometric information, which is implicitly
utilized by many data mining models. To preserve this information in data perturbation, we pro-
pose the Geometric Data Perturbation (GDP) method. In this paper, we describe several aspects of
the GDP method. First, we show that several types of well-known data mining models will deliver
a comparable level of model quality over the geometrically perturbed dataset as over the original
dataset. Second, we discuss the intuition behind the GDP method and compare it with other mul-
tidimensional perturbation methods such as random projection perturbation. Third, we propose
a multi-column privacy evaluation framework for evaluating the effectiveness of geometric data
perturbation with respect to different level of attacks. Finally, we use this evaluation framework to
study a few attacks to geometrically perturbed datasets. Our experimental study also shows that
geometric data perturbation can not only provide satisfactory privacy guarantee but also preserve
modeling accuracy well.

Keywords: Privacy-preserving Data Mining, Data Perturbation, Geometric Data Perturbation,
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1. Introduction

With the rise of cloud computing, service-based computing is becoming the major
paradigm (Amazon, n.d.; Google, n.d.). Either to use the cloud platform services (Armbrust,
Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin, Stoica and Zaharia,
2009), or to use existing services hosted on clouds, users will have to export their private
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data to the service provider. Since these service providersare not within the trust bound-
ary, the privacy of the outsourced data has become one of the top-priority problems
(Armbrust et al., 2009; Bruening and Treacy, 2009). As data mining is one of the most
popular data intensive tasks, privacy preserving data mining for the outsourced data has
become an important enabling technology for utilizing the public computing resources.
Different from other settings of privacy preserving data mining such as collaboratively
mining private datasets from multiple parties (Lindell andPinkas, 2000; Vaidya and
Clifton, 2003; Luo, Fan, Lin, Zhou and Bertino, 2009; Teng and Du, 2009), this paper
will focus on the following setting: the data owner exports data to and then receives
a model (with the quality description such as the accuracy for a classifier) from the
service provider. This setting also applies to the situation that the data owner uses the
public cloud resources for large-scale scalable mining, where the service provider just
provides computing infrastructure.

We present a new data perturbation technique for privacy preserving outsourced
data mining (Aggarwal and Yu, 2004; Chen and Liu, 2005) in this paper. A data per-
turbation procedure can be simply described as follows. Before the data owners pub-
lish their data, they change the data in certain way to disguise the sensitive information
while preserving the particular data property that is critical for building meaningful data
mining models. Perturbation techniques have to handle the intrinsic tradeoff between
preserving data privacy and preserving data utility, as perturbing data usually reduces
data utility. Several perturbation techniques have been proposed for mining purpose
recently, but these two factors are not satisfactorily balanced. For example, random
noise addition approach (Agrawal and Srikant, 2000; Evfimievski, Srikant, Agrawal
and Gehrke, 2002) is weak to data reconstruction attacks andonly good for very few
specific data mining models. The condensation approach (Aggarwal and Yu, 2004)
cannot effectively protect data privacy from naive estimation. The rotation perturba-
tion (Chen and Liu, 2005; Oliveira and Zaiane, 2010) and random projection pertur-
bation (Liu, Kargupta and Ryan, 2006) are all threatened by prior-knowledge enabled
Independent Component Analysis (Hyvarinen, Karhunen and Oja, 2001). Multidimen-
sional k-anonymization (LeFevre, DeWitt and Ramakrishnan, 2006) is only designed
for general-purpose utility preservation and may result inlow-quality data mining mod-
els. In this paper, we propose a newmultidimensionaldata perturbation technique: geo-
metric data perturbation that can be applied for several categories of popular data mining
models with better utility preservation and privacy preservation.

1.1. Data Privacy vs. Data Utility

Perturbation techniques are often evaluated with two basicmetrics: the level of pre-
served privacy guarantee and the level of preserved data utility. Data utility is often
task/model-specific and measured by the quality of learned models. An ultimate goal
for all data perturbation algorithms is to maximize both data privacy and data utility,
although these two are typically representing conflicting goals in most existing pertur-
bation techniques.

Level of Privacy Guarantee:Data privacy is commonly measured by the difficulty
level in estimating the original data from the perturbed data. Given a data perturba-
tion technique, the more difficult the original values can beestimated from the per-
turbed data, the higher level of data privacy this techniqueprovides. In (Agrawal and
Srikant, 2000), the variance of the added random noise is used as the level of difficulty
for estimating the original values. However, recent research (Evfimievski, Gehrke and
Srikant, 2003; Agrawal and Aggarwal, 2002) reveals that variance of added noise only is
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not an effective indicator of privacy guarantee. More research (Kargupta, Datta, Wang
and Sivakumar, 2003; Huang, Du and Chen, 2005) has shown thatprivacy guarantee
is subject to the attacks that can reconstruct the original data (or some records) from
the perturbed data. Thus, attack analysis has to be integrated into privacy evaluation.
Furthermore, since the amount of attacker’s prior knowledge on the original data deter-
mines the type of attacks and its effectiveness, we should also study privacy guarantee
according to the level of prior knowledge the attacker may have. With this study, the
data owner can decide whether the perturbed data can be released under the assumption
of certain level of prior knowledge. In this paper, we will study the proposed geomet-
ric data perturbation under a new privacy evaluation framework that incorporates attack
analysis and calculates multi-level privacy guarantees according to the level of attacker’s
prior knowledge.

Level of Data Utility: The level of data utility typically refers to the amount of crit-
ical information preserved after perturbation. More specifically, the critical information
should be task or model oriented. For example, decision treeand k-Nearest-Neighbor
(kNN) classifier for classification modeling typically utilize different sets of informa-
tion about the datasets: decision tree construction primarily concerns the related col-
umn distributions; the kNN model relies on the distance relationship which involves
all columns. Most of existing perturbation techniques do not explicitly address that the
critical information is actually task/model-specific. We argue that by narrowing down to
preserve only the task/model-specific information, we are able to provide better quality
guarantee on both privacy and model accuracy. The proposed geometric data pertur-
bation aims to approximately preserve the geometric properties that many data mining
models are based on.

It is interesting to note that privacy guarantee and data utility have exhibited con-
tradictive relationship in most data perturbation techniques. Typically, data perturbation
algorithms that aim at maximizing the level of privacy guarantee often have to bear with
reduced data utility. The intrinsic correlation between the two factors makes it challeng-
ing to find a right balance for them in developing a data perturbation technique.

1.2. Contributions and Scope

Bearing the above issues in mind, we have developed the geometric data perturbation
approach to privacy preserving data mining. In contrast to other perturbation approaches
(Aggarwal and Yu, 2004; Agrawal and Srikant, 2000; Chen and Liu, 2005; Liu, Kar-
gupta and Ryan, 2006), our method exploits the task and modelspecific multidimen-
sional information about the datasets and produces a robustdata perturbation method
that not only preserves such critical information well but also provides a better balance
between the level of privacy guarantee and the level of data utility. The contributions of
this paper can be summarized into three aspects.

First, we articulate that the multidimensional geometric properties of datasets are
the critical information for many data mining models. We define a data mining model
to be “perturbation invariant”, if the model built on the geometrically perturbed dataset
presents a quality to that over the original dataset. With geometric data perturbation,
the perturbed data can be exported to the public platform, where these perturbation-
invariant data mining models are applied to obtain equivalent models. We have proved
that a batch of data mining models, including kernel methods, SVM classifiers with
the three popular kernels, linear classifiers, linear regression, regression trees, and all
Euclidean-distance based clustering algorithms, are invariant to geometric data pertur-
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bation with the rotation and translation components only, and we have also studied the
effect of the distance perturbation component to the model invariance property.

Second, we also study whether random projection perturbation (Liu, Kargupta and
Ryan, 2006) can be an alternative component in geometric data perturbation, based on
the formal analysis of the effect of multiplicative perturbation to model quality. We use
the Gaussian mixture model (McLachlan and Peel, 2000) to show in which situations
the multiplicative component can affect the model quality.It helps us understand why
the rotation component is a better choice than other multiplicative components in terms
of preserving model accuracy.

Third, since a random geometric-transformationbased perturbation is a multidimen-
sional perturbation, the privacy guarantee of the multipledimensions (attributes) should
be evaluated collectively, not separately. We use a unified privacy evaluation metric for
all dimensions and a generic framework to incorporate attack analysis in privacy eval-
uation. We also analyze a set of attacks according to different levels of knowledge an
attacker may have. A randomized perturbation optimizationalgorithm is presented to
incorporate the evaluation of attack resilience into the perturbation algorithm design.

The rest of paper is organized as follows. Section 2 briefly reviews the related work
in data perturbation. Section 3 defines some notations and gives the background knowl-
edge about geometric data perturbation. Then, in Section 4 and 5, we define the geo-
metric data perturbation and prove that many major models inclassification, regression
and clustering modeling are invariant to rotation and translation perturbation. In Section
5, we also extend the discussion to the effect of noise component and other choices of
multiplicative components such as random projection to model quality. In Section 6, we
first introduce a generic privacy evaluation model and definea unified privacy metric
for multidimensional data perturbation. Then, a few inference attacks are analyzed un-
der the proposed privacy evaluation model, which results ina randomized perturbation
optimization algorithm. Finally, we present experimentalresults in Section 7.

2. Related Work

A considerable amount of work on privacy preserving data mining methods have been
reported in recent years (Aggarwal and Yu, 2004; Agrawal andSrikant, 2000; Clifton,
2003; Agrawal and Aggarwal, 2002; Evfimievski et al., 2002; Vaidya and Clifton, 2003).
The most relevant work about perturbation techniques for data mining includes the ran-
dom noise addition methods (Agrawal and Srikant, 2000; Evfimievski et al., 2002),
the condensation-based perturbation (Aggarwal and Yu, 2004), rotation perturbation
(Oliveira and Zaiane, 2010; Chen and Liu, 2005) and projection perturbation (Liu, Kar-
gupta and Ryan, 2006). In addition, k-anonymization (Sweeney, 2002) can also be re-
garded as a perturbation technique, and there are a large body of literatures focusing
on the k-anonymity model (Fung, Wang, Chen and Yu, 2010). Since our work is less
relevant to the k-anonymity model, we will focus on other perturbation techniques.

Noise Additive Perturbation The typical additive perturbation technique (Agrawal
and Srikant, 2000) is column-based additive randomization. This type of techniques
relies on the facts that 1) Data owners may not want to equallyprotect all values in a
record, thus a column-based value distortion can be appliedto perturb some sensitive
columns. 2) Data classification models to be used do not necessarily require the individ-
ual records, but only the column value distributions (Agrawal and Srikant, 2000) with
the assumption of independent columns. The basic method is to disguise the original
values by injecting certain amount of additive random noise, while the specific infor-
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mation, such as the column distribution, can still be effectively reconstructed from the
perturbed data.

A typical random noise addition model (Agrawal and Srikant,2000) can be precisely
described as follows. We treat the original values(x1, x2, . . . , xn) from a column to be
randomly drawn from a random variableX, which has some kind of distribution. The
randomization process changes the original data by adding random noisesR to the
original data values, and generates a perturbed data columnY, Y = X + R. The
resulting record(x1+r1, x2+r2, . . . , xn+rn) and the distribution ofR are published.
The key of random noise addition is the distribution reconstruction algorithm (Agrawal
and Srikant, 2000; Agrawal and Aggarwal, 2002) that recovers the column distribution
of X based on the perturbed data and the distribution ofR.

While the randomization approach is simple, several researchers have recently iden-
tified that reconstruction-based attacks are the major weakness of the randomization ap-
proach (Kargupta et al., 2003; Huang et al., 2005). In particular, the spectral properties
of the randomized data can be utilized to separate noise fromthe private data. Further-
more, only the mining algorithms that meet the assumption ofindependent columns
and work on column distributions only, such as decision-tree algorithms (Agrawal and
Srikant, 2000), and association-rule mining algorithms (Evfimievski et al., 2002), can
be revised to utilize the reconstructed column distributions from perturbed datasets. As
a result, it is inconvenient to apply this method for data mining in practice.

Condensation-based PerturbationThe condensation approach (Aggarwal and Yu,
2004) is a typical multi-dimensional perturbation technique, which aims at preserv-
ing the covariance matrix for multiple columns. Thus, some geometric properties such
as the shape of decision boundary are well preserved. Different from the randomiza-
tion approach, it perturbs multiple columns as a whole to generate the entire “perturbed
dataset”. As the perturbed dataset preserves the covariance matrix, many existing data
mining algorithms can be applied directly to the perturbed dataset without requiring any
change or new development of algorithms.

The condensation approach can be briefly described as follows. It starts by parti-
tioning the original data intok-record groups. Each group is formed by two steps –
randomly selecting a record from the existing records as thecenter of group, and then
finding the(k − 1) nearest neighbors of the center to be the other(k − 1) members.
The selectedk records are removed from the original dataset before forming the next
group. Since each group has small locality, it is possible toregenerate a set ofk records
to approximately preserve the distribution and covariance. The record regeneration al-
gorithm tries to preserve the eigenvectors and eigenvaluesof each group, as shown in
Figure 1. The authors demonstrated that the condensation approach can well preserve
the accuracy of classification models if the models are trained with the perturbed data.

However, we have observed that the condensation approach isweak in protecting
data privacy. As stated by the authors, the smaller the size of the locality is in each
group, the better the quality of preserving the covariance with the regeneratedk records
is. However, the regeneratedk records are confined in the small spatial locality as shown
in Figure 1. Our result (section 7) shows that the differences between the regenerated
records and the nearest neighbor in original data are very small on average, and thus,
the original data records can be estimated from the perturbed data with high confidence.

Rotation Perturbation Rotation perturbation was initially proposed for privacy pre-
serving data clustering (Oliveira and Zaı̈ane, 2004). As one of the major components in
geometric perturbation, we first applied rotation perturbation to privacy-preserving data
classification in our paper (Chen and Liu, 2005) and addressed the general problem of
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Fig. 1. Condensation approach

privacy evaluation for multiplicative data perturbations. Rotation perturbation is sim-
ply defined asG(X) = RX whereRd×d is a randomly generated rotation matrix and
Xd×n is the original data. The unique benefit and also the major weakness is distance
preservation, which ensures many modeling methods are perturbation invariant while
bringing distance-inference attacks. Distance-inference attacks have been addressed by
recent study (Chen, Liu and Sun, 2007; Liu, Giannella and Kargupta, 2006; Guo and
Wu, 2007). In (Chen et al., 2007), we discussed some possibleways to improve its
attack resilience, which results in our proposed geometricdata perturbation. To be self-
contained, we will include some attack analysis in this paper under the privacy eval-
uation framework. In (Oliveira and Zaiane, 2010), the scaling transformation, in addi-
tion to the rotation perturbation, is also used in privacy preserving clustering. Scaling
changes the distances; however, the geometric decision boundary is still preserved.

Random Projection Perturbation Random projection perturbation (Liu, Kargupta and
Ryan, 2006) refers to the technique of projecting a set of data points from the original
multidimensional space to another randomly chosen space. LetPk×d be a random pro-

jection matrix, whereP ’s rows are orthonormal (Vempala, 2005).G(X) =
√

d
kPX

is applied to perturb the datasetX . The rationale of projection perturbation is based on
its approximate distance preservation, which is supportedby the Johnson-Lindenstrauss
Lemma (Johnson and Lindenstrauss, 1984). This lemma shows that any dataset in Eu-
clidean space could be embedded into another space, such that the pair-wise distance
of any two points are maintained with small error. As a result, model quality can be
approximately preserved. We will compare random projection perturbation to the pro-
posed geometric data perturbation.

3. Preliminaries

In this section, we first give the notations and then define thecomponents in geometric
perturbations. Since geometric perturbation works only for numericaldata classifica-
tion, by default, the datasets discussed in this paper are all numerical data.

3.1. Training Dataset

Training dataset is the part of data that has to be exported/published in privacy-preserving
data classification or clustering. A classifier learns the classification model from the
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Fig. 2. Applying geometric data perturbation to out-
sourced data

training data and then is applied to classify the unclassified data. Suppose thatX is a
training dataset consisting ofN data rows (records) andd columns (attributes, or di-
mensions). For the convenience of mathematical manipulation, we useXd×N to denote
the dataset, i.e.,X = [x1 . . .xN ], wherexi is a data tuple, representing a vector in the
real spaceRd. Each data tuplexi belongs to a predefined class if the data is for classi-
fication modeling, which is indicated by the class label attributeyi. The data for clus-
tering do not have labels. The class label can be nominal (or continuous for regression),
which is public, i.e., privacy-insensitive. All other attributes containing private informa-
tion needs to be protected. Unclassified dataset could also be exported/published with
privacy-protection if necessary.

If we considerX is a sample dataset from thed-dimension random vector[X1,X2,
. . . ,Xd]

T , we use boldXi to represent the random variable for the columni. In general,
we will use bold lower case to represent vectors, bold upper case to represent random
variables, and regular upper case to represent matrices.

3.2. Framework and Threat Model for Applying Geometric Data
Perturbation

We study geometric data perturbation under the following framework (Figure 2). The
data owner wants to use the data mining service provider (or the public cloud service
provider). The outsourced data needs to be perturbed first and then sent to the service
provider. Then, the service provider develops a model basedon the perturbed data and
returns it to the data owner, who can use the model either by transforming it back to the
original space or perturb new data to use the model. In the middle of developing models
at the service provider, there is no additional interactionhappening between the two
parties. Therefore, the major costs for the data owner incurin optimizing perturbation
parameters that can use a sample set of the data and perturbing the entire dataset.

We take the popular and reasonable honest-but-curious service provider approach
for our threat model. That is, we assume the service providerwill honestly provide
the data mining services. However, we also assume that the provider might look at the
data stored and processed on their platforms. Therefore, only well-protected data can be
processed and stored on such an untrusted environment.
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4. Definition of Geometric Data Perturbation

Geometric data perturbation consists of a sequence of random geometric transforma-
tions, including multiplicative transformation (R) , translation transformation (Ψ), and
distance perturbation∆.

G(X) = RX +Ψ+∆ (1)

We briefly define these transformations and describe their properties.

4.1. Multiplicative Transformation

The componentR can be rotation matrix (Chen and Liu, 2005) or random projection
matrix (Liu, Kargupta and Ryan, 2006). Rotation matrix exactly preserves distances
while random projection matrix only approximately preserve distances. We will com-
pare the advantages and disadvantages of the two choices.

It is intuitive to understand a rotation transformation in two-dimensional or three-
dimensional (2D or 3D, for short) space. We extend it to represent all kind of orthonor-
mal transformation in multi-dimensional space. A rotationperturbation is defined as
follows: G(X) = RX . The matrixRd×d is an orthonormal matrix (Sadun, 2001),
which has some important properties. LetRT represent the transpose ofR, rij repre-
sent the(i, j) element ofR, andI be the identity matrix. Both rows and columns ofR

are orthonormal: for any columnj,
∑d

i=1 r
2
ij = 1, and for any two columnsj andk,

j 6= k,
∑d

i=1 rijrik = 0; a similar property is held for rows. This definition infers that
RTR = RRT = I. It also implies that by changing the order of the rows or columns
of an orthogonal matrix, the resulting matrix is still orthonormal. A random orthonor-
mal matrix can be efficiently generated following the Haar distribution (Stewart, 1980),
which preserves some important statistical properties (Jiang, 2005).

A key feature of rotation transformation is preserving the Euclidean distance. Let
xT represent the transpose of vectorx, and‖x‖ = xTx represent the length of a vector
x. By the definition of rotation matrix, we have‖Rx‖ = ‖x‖. Similarly, inner product
is also invariant to rotation. Let〈x,y〉 = xTy represent the inner product ofx and
y. We have〈Rx, Ry〉 = xTRTRy = 〈x,y〉. In general, rotation transformation also
completely preserves the geometric shapes such as hyperplane and manifold in the mul-
tidimensional space. Thus, many modeling methods are “rotation-invariant” as we will
see. Rotation perturbation is a key component of geometric perturbation, which pro-
vides the primary protection to the perturbed data from naive estimation attacks. Other
components of geometric perturbation are used to protect rotation perturbation from
more complicated attacks.

A random projection matrix (Vempala, 2005)Rk×d is defined asR =
√

d
kR0. R0

is randomly generated and its row vectors are orthonormal (note there is no such re-
quirement on column vectors). The Johnson-Lindenstrauss Lemma (Johnson and Lin-
denstrauss, 1984) proves that random projection can approximately preserve Euclidean
distances if certain conditions are satisfied. Concretely,let x andy be any original
data vectors. Given0 < ǫ < 1 andk = O(ln(N)/ǫ2), there is a random projection
f : Rd → Rk, so that(1−ǫ)‖x−y‖ ≤ ‖f(x)−f(y)‖ ≤ (1+ǫ)‖x−y‖. ǫ defines the
accuracy of distance preservation. Therefore, in order to precisely preserve distances,
k has to be large. For large dataset (N is large), it would be difficult to well preserve
distances with computationally acceptablek. We will discuss the effect of random pro-
jection and rotation transformation to the result of perturbation.
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4.2. Translation Transformation

It is easy to understand a translation in low-dimensional (< 4D) space. We extend the
definition to anyd-dimensional spaces as follows.Ψ is a translation matrix ifΨ =
[t, t, . . . , t]d×n, i.e.,Ψd×n = td×11

T
N×1, where1 is a vector of one in all elements. A

translation transformation is simply:G(X) = X+Ψ. For any two pointsx andy in the
original space, with translation, we have the distance‖(x− t)− (y − t)‖ ≡ ‖x− x‖.
Therefore, translation always preserves distances. However, it does not preserve inner
product according to the definition of inner product.

Translation perturbation only does not provide protectionto the data. TheΨ com-
ponent can be simply canceled if the attacker knows only translation perturbation is
applied. However, when combined with rotation perturbation, translation perturbation
can increase the overall resilience to attacks.

4.3. Distance Perturbation

The above two components preserve the distance relationship. By preserving distances,
a bunch of important classification models will be “perturbation-invariant”, which is the
core of geometric perturbation. However, distance preserving perturbation may be under
distance-inference attacks in some situations (Section 6.2). The goal of distance pertur-
bation is to preserve distances approximately, while effectively increasing the resilience
to distance-inference attacks. We define the third component as a random matrix∆d×n,
where each entry is an independent sample drawn from the samedistribution with zero
mean and small variance. By adding this component, the distance between a pair of
points is disturbed slightly.

Again, solely applying distance perturbation without the other two components will
not preserve privacy since the noise intensity is low. However, a low-intensity noise
component will provide sufficient resilience to attacks to rotation and translation per-
turbation. The major issue brought by distance perturbation is the tradeoff between the
reduction of model accuracy and the increase of privacy guarantee. In most cases, if we
can assume the original data items are secure and the attacker knows no information
about the original data, the distance-inference attacks cannot happen and thus the dis-
tance perturbation component can be removed. The data ownercan decide to remove or
keep this component according to their security assessment.

4.4. Cost Analysis

The major cost of perturbation is determined by the Eq. 1 and arandomized perturbation
optimization process that applies to a sample set of dataset. The perturbation can be
applied to data records in a streaming manner. Based on the Eq. 1, it will cost O(d2)
to perturb eachd-dimensional data record. Note that this is an one-time cost, no further
cost incurring when the service provider developing models.

5. Perturbation-Invariant Data Mining Models

In this section, first, we give the definition of perturbationinvariant data mining models
that would be appropriate for our setting of mining on outsourced data. Then, we prove
that several categories of data mining models are invariantto rotation and translation



10 K. Chen and L. Liu

perturbation. We also formally analyze the effect of the noise components and arbitrary
multiplicative perturbations (including random projection) to the quality of data mining
models, using the Gaussian mixture model.

5.1. A General Definition of Perturbation Invariance

We say a data mining model is invariant to a transformation, if the model mined with
the transformed data has asimilar model quality as that mined with the original data.
We formally define this concept as follows.

Let M represent a type of data mining model (or modeling method) and MX be a
specific model mined from the datasetX , andQ(MX , Y ) be the model quality evalu-
ated on a datasetY , e.g., the accuracy of classification model. LetT () be any perturba-
tion function, which transforms the datasetX to another datasetT (X). Given a small
real numberε, 0 < ε < 1,

Definition 5.1. The modelMX is invariant to the perturbationT () if and only if |Q(MX , Y )−
Q(MT (X), T (Y ))| < ε for any training datasetX and testing datasetY .

If Q(MX , Y ) ≡ Q(MT (X), T (Y )), we call the model isstrictly invariantto the pertur-
bationT (). In the following subsections, we will prove some of the datamining models
are strictly invariant to the rotation and translation components of geometric data pertur-
bation and discuss how the invariance property is affected by the distance perturbation
component.

5.2. Perturbation-Invariant Classification Models

In this section, we show some of the classification models that are invariant to geomet-
ric data perturbation (with only rotation and translation components). The model quality
Q(MX , Y ) is the classification accuracy of the trained model tested onthe test dataset.

kNN Classifiers and Kernel Methods: A k-Nearest-Neighbor (kNN) classifier deter-
mines the class label of a point by looking at the labels of itsk nearest neighbors in the
training dataset and classifies the point to the class that most of its neighbors belong to.
Since the distance between any pair of points is not changed with rotation and trans-
lation, thek nearest neighbors are not changed and thus the classification result is not
changed either.

Theorem 1. kNN classifiers are strictly invariant to rotation and translation perturba-
tions.

kNN classifier is a special case of kernel methods. We assert that any kernel methods
will be invariant to rotation, too. Same as the kNN classifier, a typical kernel method1

is a local classification method, which classifies the new data record only based on the
information of its neighbors in the training data.

Theorem 2. Kernel methods are strictly invariant to rotation and translation.

1 SVM is also a kind of kernel method, but its training process is different from the kernel methods we
discuss here.
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Proof. Let us define kernel methods first. Like kNN classifiers, a kernel method also
estimates the class label of a pointx with the class labels of its neighbors. LetKλ(x,xi)
be the kernel function used for weighting any pointxi in x’s neighborhood, and letλ
define the geometric width of the neighborhood. We assume{x1,x2, . . . ,xn} be the
points in thex’s neighborhood determined byλ. A kernel classifier for continuous class
labels2 is defined as

f̂X(x) =

∑n
i=1 Kλ(x,xi)yi

∑n
i=1 Kλ(x,xi)

(2)

Specifically, the kernelKλ(x,xi) is defined as

Kλ(x,xi) = D(
‖x− xi‖

λ
) (3)

D(t) is a function, e.g., the Gaussian kernelD(t) = 1√
2π

exp{−t2/2}. Since‖Rx −
Rxi‖ = ‖x − xi‖ for rotation perturbation andλ is constant,D(t) is not changed af-
ter rotation, and thusKλ(Rx, Rxi) = Kλ(x,xi). Since the geometric area around the
point is also not changed, the point set in the neighborhood of Rx are still the rotation
of those in the neighborhood ofx, i.e.,{Rx1, Rx2, . . . , Rxn} and thesen points are
used in trainingMRX , which makesQ(MRX , (Rx) = f̂X(x). It is similar to prove that
kernel methods are invariant to translation perturbation.�

Support Vector Machines: Support Vector Machine (SVM) classifiers also utilize
kernel functions in training and classification. However, it has an explicit training pro-
cedure to generate a global model, while kernel methods are local methods that use
training samples in classifying new instances. Letyi be the class label to a tuplexi in
the training set,αi andβ0 be the parameters determined by training. A SVM classifier
calculates the classification result ofx using the following function.

f̂X(x) =

N
∑

i=1

αiyiK(x,xi) + β0 (4)

First, we prove that SVM classifiers are invariant to rotation with two key steps: 1)
training with the rotated dataset generates the same set of parametersαi andβ0; 2) the
kernel functionK() is invariant to rotation. Second, we prove that some SVM classifiers
are also invariant to translation (empirically, SVM classifiers with the discussed kernels
are all invariant to translation).

Theorem 3. SVM classifiers using polynomial, radial basis, and neural network kernels
are strictly invariant to rotation, and SVM classifiers using radial basis are also strictly
invariant to translation.

Proof. The SVM training problem is an optimization problem, which finds the param-
etersαi andβ0 to maximize the Lagrangian (Wolfe) dual objective function(Hastie,
Tibshirani and Friedman, 2001)

LD =

N
∑

i=1

αi − 1/2

N
∑

i,j=1

αiαjyiyjK(xi,xj),

2 It has different form for discrete class labels, but the proof will be similar.
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subject to:

0 < αi < γ,

N
∑

i=1

αiyi = 0,

whereγ is a parameter chosen by the user to control the allowed errors around the deci-
sion boundary. The training result ofαi is only determined by the form of kernel func-
tionK(xi,xj). With the determinedαi, β0 can be determined by solvingyif̂X(xi) = 1
for anyxi (Hastie et al., 2001), which is again determined by the kernel function. It is
clear that ifK(T (x), T (xi)) = K(x,xi) is held, the training procedure generates the
same set of parameters.

Three popular choices for kernels have been discussed in theSVM literature
(Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001).

d-th degree polynomial: K(x,x′) = (1+ < x,x′ >)d,

radial basis: K(x,x′) = exp(−‖x− x′‖/c),
neural network:K(x,x′) = tanh(κ1 < x,x′ > +κ2)

Note that the three kernels only involve distance and inner product calculation. As we
discussed in Section 4, the two operations keep invariant tothe rotation transformation.
Thus,K(Rx, Rx′) = K(x,x′) is held for the three kernels, and, thus, training with
the rotated data will not change the parameters for the SVM classifiers using the three
popular kernels. However, with this method, we can only prove that the radial basis
kernel is invariant to translation, while the other two are not.

It is easy to verify that the classification function (Eq. 4) is invariant to rotation,
which involves only the invariant parameters and the invariant kernel functions. Simi-
larly, we can prove that the classification function with radial basis kernel is also invari-
ant to translation.�

Although we cannot prove that polynomial and neural networkkernels are also in-
variant to translation with this method, we use experimentsto show that they are also
invariant to translation.

Linear Classifiers: A linear classifier uses a hyperplane to separate the training data.
Let the weight vector bewT = [w1, . . . , wd] and the bias beβ0. The weight and bias
parameters are determined by the training procedure (Hastie et al., 2001). A trained
classifier is represented as follows.

f̂X(x) = wTx+ β0

Theorem 4. Linear classifiers are strictly invariant to rotation and translation.

Proof. First, it is important to understand the relationship between the parameters and
the hyperplane. As Figure 3 shows, the hyperplane can be represented aswT (x − xt) =
0, wherew is the perpendicular axis to the hyperplane, andxt represents the deviation
of the plane from the origin (i.e.,β0 = −wTxt).

Intuitively, rotation will rotate the classification hyperplane and feature vectors. The
perpendicular axisw is changed toRw and the deviationxt becomesRxt after ro-
tation. Letxr represent the data in the rotated space. Then, the rotated hyperplane is
represented as(Rw)T (xr −Rxt) = 0, and the classifier is transformed tôfRX(xr) =

wTRT (xr − Rxt). Sincexr = Rx andRTR = I, f̂RX(xr) = wTRTR(x− xt)

= wT (x − xt) = f̂X(x). The two classifiers are equivalent.
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It is also easy to prove that linear classifiers are invariantto translation. We will
ignore the proof.�

5.3. Perturbation Invariant Regression Methods

Regression modeling (Hastie et al., 2001) is very similar toclassification modeling.
The only difference is that the class label is changed from discrete to continuous, which
requires the change of the criterion for model evaluation. Aregression model is often
evaluated by the loss functionL(f(X),y), wheref(X) is the response vector of apply-
ing the regression functionf() to the training instancesX , andy is the original target
vector (i.e., the class labels in classification modeling).A typical loss function is mean
square error (MSE).

L(f(X),y) =

n
∑

i=1

(f(xi)− yi)
2

As the definition of model quality is instantiated by the lossfunctionL, we give the
following definition of perturbation invariant regressionmodel.

Definition 5.2. A regression method is invariant to a transformationT if and only if
|L(fX(Y ),yY )−L(fT (X)(T (Y )),yY )| < ε for any training datasetX , and any testing
datasetY . 0 < ε < 1 andyY is the target vector of the testing dataY .

Similarly, the strictly invariant condition becomes
L(fX(Y ),yY ) ≡ L(fT (X)(T (Y )),yY ). We prove that

Theorem 5. The linear regression model using MSE as the loss function isstrictly
invariant to rotation and translation.

Proof. The linear regression model based on the MSE loss function can be represented
asy = XTβ + ǫ, whereǫ is a vector of random Gaussian noise with mean zero and
varianceσ2. The estimate ofβ is β̂ = (XXT )−1XyX . Thus, for any testing dataY ,
the estimated model iŝyY = Y T β̂. Since the loss function for the testing dataY is



14 K. Chen and L. Liu

L(fX(Y ),y) = ‖Y T (XXT )−1XyX − yY ‖. After rotation it becomes

L(fXTRT (Y TRT ),y) = ‖Y TRT (RX(RX)T )−1RXyX − yY ‖
= ‖Y TRT (RXXTRT )−1RXyX − yY ‖
= ‖Y TRT (RT )−1(XXT )−1R−1RXyX − yY ‖
= ‖Y T (XXT )−1XyX − yY ‖ ≡ L(fX(Y ),y) (5)

The linear regression model can also be represented asy = β̂0 +
∑d

i=1 β̂ixi, where
xi is the value of dimensioni for the vectorx. It is clear that ifx is translated to
x′ = x+t, we can reuse the model parameters exceptˆbeta0 is replaced with ˆbeta0−dt.
Thus, the new model does not change MSE as well.�

Other regression models, such as regression tree based methods (Friedman, 2001),
which partitions the global space based on Euclidean distance, are also strictly invariant
to rotation and translation. We skip the details here.

5.4. Perturbation Invariant Clustering Algorithms

There are several metrics used to evaluate the quality of clustering result, all of which
are based on cluster membership, i.e., recordi belongs to clusterCj . Suppose the num-
ber of cluster is fixed asK. The same clustering algorithm applied to the original data
and the perturbed data will generate two clustering results. Since the record ID does not
change before and after perturbation, we can compare the difference between two sets
of clustering results to evaluate the invariance property.We use theconfusion matrix
method (Jain, Murty and Flynn, 1999) to evaluate this difference, where each element
cij 1 6 i, j 6 K represents the number of points from the clusterj in the original
dataset assigned to clusteri by the clustering result on the perturbed data. Since cluster
labels may represent different clusters in two clustering results. Let{(1), (2), . . . , (K)}
be any permutation of the sequence of cluster labels{1, 2, . . . , K}. There is a permu-
tation that best matches the clustering results of before and after data perturbation and
maximizes the number of consistent pointsmC for clustering algorithmC.

mC = max{
K
∑

i=1

ci(i), for any{(1), (2), . . . , (K)}}

We define the error rate asDQC(X,T (X)) = 1 − mC

N , whereN is the total number
of points.DQC is the quality difference between the two clustering results. Then, the
criterion for perturbation invariant clustering algorithm can be defined as

Definition 5.3. A clustering algorithm is invariant to a transformationT if and only if
DQC(X,T (X)) < ε for any datasetX , and a small value0 < ε < 1.

For strict invariance,DQC(X,T (X)) = 0.

Theorem 6. Any clustering algorithms or cluster visualization algorithms that are based
on Euclidean distance are strictly invariant to rotation and translation.

Since geometric data perturbation aims at preserving the Euclidean distance relation-
ship, the cluster membership does not change before and after perturbation. Thus, it is
easy to prove that the above theorem is true and we skip the proof.
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Fig. 4. Analyzing the points being
perturbed out of boundary.

5.5. Effect of Noise Perturbation to the Invariance Property

Intuitively, the noise component will affect the quality ofdata mining model. In this
section, we give a formal analysis on how the noisy intensityaffects the model quality
for classification (or clustering) modeling.

Assume the boundary for the data perturbed without the noisecomponent is shown
in Figure 4 and the noises are drawn from the normal distributionN(0, σ2). Let’s look at
the small band withδ distance (one side) around the classification or clusteringbound-
ary. The increased error rate is determined by the number of points that are original
properly classified or clustered but now are perturbed to theother side of the boundary.
Out of the band the points are less likely perturbed to the other side of the boundary. For
a d-dimension pointx = (x1, x2, . . . , xd), its perturbed version (with only the noise
component) is represented asx′ = (x1 + ǫ1, x2 + ǫ2, . . . , xd + ǫd), whereǫi is drawn
from the same distributionN(0, σ2). To further simplify the analysis, assume a decision
boundary is perpendicular to one of the dimensions (we can always rotate the dataset to
meet this setting), sayxi, and there aren points uniformly distributed in theδ band.

According to normal distribution, forδ > 2σ, the points located out of theδ band,
will have small probability (< 0.025) to be perturbed to the other side of the boundary.
Therefore, we consider only the points within theδ = 2σ band. Letp(y) be the proba-
bility of a point that has distancey to the boundary perturbed out of the boundary, then
the average number of points perturbed out of the boundary is

∫ 2σ

0

p(y)
n

2σ
dy =

∫ 2σ

0

∫ ∞

y

1√
2πσ

exp−
x
2

2σ2 dx
n

2σ
dy.

Expandingexp−
x
2

2σ2 with Taylor series (Gallier, 2000) for the first three terms we

obtain exp−
x
2

2σ2 ≈ 1 − x2

2σ2 + x4

8σ4 . With the fact
∫∞
y

1√
2πσ

exp−
x
2

2σ2 dx = 1/2 −
∫ y

0
1√
2πσ

exp−
x
2

2σ2 dx, we solve the equation and get the number of out-of-the-boundary

points≈ (12 − 4
5
√
2π
)n ≈ 0.18n. The other side of the boundary has the similar amount

of points perturbed out of the boundary. Depending on the data distribution andσ, the
amount of affected data points can vary. Borrowing the concept of “margin” from SVM
literature, we understand that if the margin is greater than2δ, the model accuracy is not
affected at all; if the margin is less than2δ, the model quality is affected by the amount
of points in the2δ region.
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5.6. Effect of General Multiplicative Perturbation to Model Quality

In geometric data perturbation, the rotation and translation components strictly preserve
distance, which is then slightly perturbed by distance perturbation. If we relax the con-
dition of strictly preserving distance, what will happen tothe discussed mining models?
This relaxation may use any linear transformation matrix toreplace the rotation com-
ponent, e.g., projection perturbation (Liu, Kargupta and Ryan, 2006). In this section,
we will discuss the effect of a general multiplicative perturbation withG(x) = Ax to
classification model quality, whereA is ak × d matrix andk may not equal tod. We
analyze why arbitrary projection perturbations do not generally preserve geometric de-
cision boundaries and what are the alternative ways to rotation perturbation to generate
decision-boundary (or approximately) preserving multiplicative perturbations.

This analysis is based on a simplified model of data distribution - multidimensional
Gaussian mixture model. Assume the dataset can be modeled with multiple data clouds,
each of which has approximately normal (Gaussian) distributionN(µi,Σi), whereµi is
the mean vector andΣi is the covariance matrix. Since such a general multiplicative per-
turbation does not necessarily preserve all of the geometric properties for the dataset, it
is not guaranteed that the discussed data mining models willbe invariant to these trans-
formations. Let’s first consider a more general case that does not put a constraint onk.
The rationale of projection perturbation is based on approximate distance preservation
supported by the Johnson-Lindenstrauss Lemma (Johnson andLindenstrauss, 1984).

Theorem 7. For any0 < ǫ < 1 and any integern, let k be a positive integer such that
k ≥ 4 log n

ǫ2/2−ǫ3/3 . Then, for any setS of n data points ind dimensional spaceRd, there is

a mapping functionf : Rd → Rk such that, for allx ∈ S,

(1 − ǫ)‖x− x‖2 ≤ ‖f(x)− f(x)‖2 ≤ (1 + ǫ)‖x− x‖2

where‖ · ‖ denotes the vector 2-norm.

This lemma shows that any set ofn points ind-dimensional Euclidean space could be
embedded into aO( log n

ǫ2 ) -dimensional space with some linear transformationf , such
that the pair-wise distance of any two points are maintainedwith a controlled error.
However, there is a cost to achieve high precision in distance preserving. For example,
a setting ofn = 1000, a quite small dataset, andǫ = 0.01, will requirek ≈ 0.5 million
dimensions, which makes the transformation impossible to perform. Increasingǫ to 0.1,
we still need aboutk ≈ 6, 000. In order to further reducek, we have to increaseǫ more,
which brings larger errors, however. In the case of increased distance error, the decision
boundary may not be well preserved.

We also analyze the effect of transformation from a more intuitive perspective. In
order to see the connections between the general linear transformation and data mining
models, we use classifiers that are based on geometric decision boundaries for example.

Below we name a dense area (a set of points are similar to each other) ascluster,
while the points with the same class label are in the sameclass. We can approximately
model the whole dataset with Gaussian mixtures based on its density property. Without
loss of generality, we suppose that a geometrically separable class consists of one or
more Gaussian clusters as shown in Figure 5. Letµ be the density center, andΣ be
the covariance matrix of one Gaussian cluster. A clusterCi can be represented with the
following distribution.

N i
d(µ,Σ) =

1

(2π)d/2|Σ|1/2 exp{−(x− µ)′Σ−1(x− µ)/2}
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µ describes the position of the cluster andΣ describes thehyper-elliptic shapeof the
dense area. After the transformation with invertibleA, the center of the cluster is moved
to Aµ and the covariance matrix (corresponding to the shape of dense area) is changed
to AΣAT .

Let x andy be any two points. After the transformation, the distance between the
two becomesD′ = ||A(x− y)|| = (x− y)TATA(x− y). If we compare this distance
to the original distanceD, we get their difference as

D′ −D = (x− y)T (ATA− I)(x− y) (6)

We study the property ofATA− I to find how the distance changes. First, for a random
invertible anddiagonalizable(Bhatia, 1997) matrixA that preserves dimensions, i.e.,
k = d, we will haveATA positive definite for the following reason. SinceA is diago-
nalizable,A can be eigen-decomposed toUTΛU , whereU is an orthogonal matrix,Λ is
the diagonal matrix of eigenvalues, and all eigenvalues arenon-zero for the invertibility
of A. Then, we haveATA = UTΛUUTΛU = UTΛ2U , where all eigenvalues ofΛ2

are positive. Therefore,ATA is positive definite. If all eigenvalues ofATA are greater
than 1, thenATA− I will be positive definite andD′ −D > 0 for all distances. Simi-
larly, if all eigenvalues ofATA are less than 1, thenATA− I will be negative definite
andD′ − D < 0 for all distances. For any case else, we are unable to determine how
distances change - it can be lengthened or shortened. Because of the possibly arbitrary
change of distances for an arbitraryA, the points belonging to one cluster may possi-
bly become members of another cluster. Since we define classes based on clusters, the
change of clustering structure may also perturb the decision boundary.

Then, what kind of perturbations will preserve clustering structures? Besides the
distance preserving perturbations, we may also use a familyof distance-ordering pre-
servingperturbations. Assumex,y,u,v are any four points in the original space, and
||x − y|| ≤ ||u − v||, i.e.,

∑d
i=1(xi − yi)

2 ≤ ∑d
i=1(ui − vi)

2, which defines the
order of distances, wherexi, yi, ui, andvi are dimensional values. It is easy to ver-
ify that if distance ordering is preserved after transformation, i.e.,||G(x) − G(y)|| ≤
||G(u) − G(v)||, the clustering structure is preserved as well and thus the decision
boundary is preserved. Therefore, distance ordering preserving perturbation is an alter-
native choice to rotation perturbation.

In the following we discuss how to find a distance ordering preserving perturbation.
Letλ2

i , i = 1, . . . , d, be the eigenvalues ofATA. Then, the distance ordering preserving
property requires

∑d
i=1 λ

2
i (xi−yi)

2 ≤ ∑d
i=1 λ

2
i (ui−vi)

2. Apparently, for arbitraryA,
this condition cannot be satisfied. One simple setting will guarantee to preserve distance
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ordering that isλi = λ, whereλ is some constant. This results in distance ordering
preserving matricesA = λR whereR is a rotation matrix andλ is an arbitrary constant
− we name itscalingof the rotation matrix. Based on this analysis, we can also derive
approximate distance ordering preserving by perturbingλi to λ+ δi, whereδi is a small
value drawn from a distribution. In fact, scaling is also discussed in transformation-
based data perturbation for privacy preserving clustering(Oliveira and Zaiane, 2010).

6. Attack Analysis and Privacy Guarantee of Geometric Data
Perturbation

The goal of random geometric perturbation is twofold: preserving the data utility and
preserving the data privacy. The discussion about the transformation-invariantclassifiers
has proven that geometric transformations theoretically guarantee preserving the model
accuracy for many models. As a result, numerous such geometric perturbations can
present the same model accuracy, and we only need to find one that maximizes the
privacy guaranteein terms of various potential attacks.

We dedicate this section to discuss how good the geometric perturbation approach is
in terms of preserving privacy. The first critical step is to define amulti-column privacy
measurefor evaluating the privacy guarantee of a geometric perturbation to a given
dataset. It should be distinct from that used for additive perturbation (Agrawal and
Srikant, 2000), which assumes each column is independentlyperturbed, since geomet-
ric perturbation changes the data on all columns (dimensions) together. We will use this
multi-column privacy metric to evaluate several attacks and optimize the perturbation
in terms of attack resilience.

6.1. A Conceptual Privacy Model for Multidimensional Perturbation

Unlike the existing random noise addition methods, where multiple columns are per-
turbed independently, random geometric perturbation needs to perturball columns to-
gether. Therefore, the privacy quality of all columns is correlated under one single trans-
formation and should be evaluated under a unified metric. We first present a conceptual
model for privacy evaluation in this section, and then we will discuss the design of the
unified privacy metric and a framework for incorporating attack evaluation.

In practice, since different columns (attributes) may havedifferent privacy con-
cern, we consider that the general-purpose privacy metricΦ for entire dataset should
be based oncolumn privacy metric. A conceptual privacy evaluation model is de-
fined as follows. Letp be the column privacy metric vectorp = (p1, p2, . . . , pd),
and there areprivacy weights associated to thed columns, respectively, denoted as
w = (w1, w2, . . . , wd). Without loss of generality, we assume that the weights are
normalized, i.e.,

∑d
i=1 wi = 1. Then,Φ = Φ(p,w) defines the privacy guarantee. In

summary, the design of the specific privacy model should consider the three factorsp,
w, and the functionΦ.

We will leave the concrete discussion about the design ofp in the next section, and
define the other two factors first. We notice that different columns may have different
importance in terms of the level of privacy-sensitivity. The first design idea is to take the
column importance into consideration. Intuitively, the more important the column is, the
higher level of privacy guarantee will be required for the perturbed data, corresponding
to that column. If we usewi to denote the importance of columni in terms of preserving
privacy,pi/wi can be used to represent theweighted column privacyfor columni.
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The second intuition is the concept ofminimum privacy guaranteeamong all columns.
Normally, when we measure the privacy quality of a multi-column perturbation, we
need to pay special attention to the column that has the lowest weighted column privacy,
because such a column could become the breaking point of privacy. Hence, we design
the first composition functionΦ1 = mindi=1{pi/wi} and call it the minimum privacy
guarantee. Similarly, theaverage privacy guaranteeof the multi-column perturbation,
defined byΦ2 = 1

d

∑d
i=1 pi/wi, could be another interesting measure.

With the definition of privacy guarantee, we can evaluate theprivacy quality of a
perturbation to a specific dataset, and most importantly, wecan use it to find a multi-
dimensional perturbation that locally maximizes the privacy guarantees. With random
geometric perturbation, we demonstrate that it is convenient to adjust the perturbation
method to obtain high privacy guarantees, without the concern of preserving the model
accuracy for the discussed classifiers.

6.1.1. A Unified Column Privacy Metric

Intuitively, for a data perturbation approach, the qualityof preserved privacy can be
understood as the difficulty level of estimating the original data from the perturbed
data. We name such estimation methods as “inference attacks”. A unified metric should
be a generic metric that can be used to evaluate as many types of inference attacks
as possible. In the following, we first derive a unified privacy metric from the mean-
square-error method, and then discuss how to apply the metric to evaluate the attacks to
geometric perturbation.

We compare the original value and the estimated value to determine the uncer-
tainty brought by the perturbation. This uncertainty is theprivacy guarantee that pro-
tects the original value. Let the difference between the original column dataY and
the perturbed/reconstructed dataŶ be a random variableD. We use the root of mean
square error (RMSE) to estimate this difference. Assume theoriginal data samples are
y1, y2, . . . , yN . Correspondingly, the estimated values areŷ1, ŷ2, . . . , ŷN . The root of
mean square error of estimation,r, is defines as

r =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2

As we have discussed, to evaluate the privacy quality of multi-dimensional perturbation,
we need to evaluate the privacy of all perturbed columns together. Unfortunately, the
single-column metric is subject to the specific column distribution, i.e., the same amount
is not equally effective for different value scales. For example, the same amount of
RMSE for the “age” column has much stronger protection than for “salary” due to
the dramatically different value ranges. One effective wayto unify the different value
ranges is vianormalization, e.g., max-min normalization or standardization. We employ
the standardization procedure, which is simply described as a transformation to the
original valuey′ = y−µ

σ , whereµ is the mean of the column andσ is the standard
deviation. By using this procedure all columns are approximately unified into the same
data range. The rationale behind the standardization procedure is that for large sampleset
(e.g. hundreds of samples) normal distribution would be a good approximation for most
distributions (Lehmann and Casella, 1998). The standardization procedure normalizes
all distributions to standard normal distribution (with mean zero and variance one).
According to normal distribution, the range[µ − 2σ, µ + 2σ] covers more than 95%
points in the population. Let’s use this range, i.e.,4σ to approximately represent the
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Fig. 6. The intuition behind the privacy met-
ric.

value range. We use the normalized values, the definition of RMSE, and the normalized
value range to represent the unified privacy metric.

Priv(ŷ,y′) =
2r

4σ
=

1

2σ

√

√

√

√

1

N

N
∑

i=1

(
yi − µ

σ
− ŷi)2

This definition3 can be explained with Figure 6. The normalized RMSE

r =
√

1
N

∑N
i=1(

y−µ
σ − ŷi)2 represents the average error on value estimation. The real

value can be in the range of[ŷi − r, ŷi + r]. The rate of this range2r to the value range
4σ represents the normalized uncertainty of estimation. Thisrate can be possibly higher
than 1, which means extremely large uncertainty. If the original data is standardized
(σ = 1), this metric is reduced top = r/2.

6.1.2. Incorporating Attack Analysis into Privacy Evaluation

The proposed metric should compare the difference between two datasets: the original
dataset and theobserved or estimated dataset. With different level of knowledge, the
attacker observes the perturbed dataset differently. The attacks we know so far can be
summarized into the following three categories: (1) the basic statistical methods that
estimate the original data directly from the perturbed data(Agrawal and Srikant, 2000;
Agrawal and Aggarwal, 2002), without any other knowledge about the data (as known
as “naive inference”); (2) data reconstruction methods that reconstruct data from the per-
turbed data with any released information about the data andthe perturbation, and then
use the reconstructed data to estimate the original data (Kargupta et al., 2003; Huang
et al., 2005) (as known as “reconstruction-based inference”); and (3) if some particular
original records and their image in the perturbed data can beidentified, e.g., outliers of
the datasets, based on the preserved distance information,the mapping between these
points can be used to discover the perturbation (as known as distance-based inference).

Let X be the normalized original dataset,P be the perturbed dataset, andO be
the observed dataset. We calculateΦ(X,O), instead ofΦ(X,P ), in terms of different
attacks. Using rotation perturbationG(X) = RX for example, we can summarize the
evaluation of privacy in terms of attacks.

1. Naive inference:O = P , there is no more accurate estimation than the released
perturbed data;

2. Reconstruction-based inference: methods like Independent Component Analysis (ICA)
are used to estimateR. Let R̂ be the estimate ofR, andO = R̂−1P ;

3 Note that this definition is improved from the one we gave in the SDM paper (Chen et al., 2007).
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3. Distance-based inference: the attacker knows a small setof special points inX that
can be mapped to certain set of points inP , so that the mapping helps to estimateR,
and thenO = R̂−1P .

4. Subset-based inference: the attacker knows a significantnumber of original points
that can be used to estimateR and thenO = R̂−1P .

The higher the inference level is, the more knowledge about the original dataset the
attacker needs to break the perturbation. In the following sections, we analyze some in-
ference attacks and see how geometric perturbation provides resilience to these attacks.

Note that the proposed privacy evaluation method is a generic method that can be
used to evaluate the effectiveness of a general perturbation, where nothing but the per-
turbed data is released to the attacker. It is important to remember that this metric should
be evaluated on the original data and theestimateddata. We cannot simply assume the
perturbed data is the estimated data as the original additive perturbation does (Agrawal
and Srikant, 2000), which makes the assumption that the attacker has no knowledge
about the original data.

6.2. Attack Analysis and Perturbation Optimization

In this section, we will use the unified multi-column privacymetric to analyze a few
attacks. The similar methodology can be used to analyze any new attacks. Based on the
analysis, we develop a randomized perturbation optimization algorithm.

6.2.1. Privacy Analysis on Naive Estimation Attack

We start with the analysis on multiplicative perturbation,which is the key component
in geometric perturbation. With the proposed metric over the normalized data, we can
formally analyze the privacy quality of random rotation perturbation. LetX be the nor-
malized dataset,X ′ = RX be the rotation ofX , andId be thed-dimensional identity
matrix. Thus, the difference matrixX ′ −X can be used to calculate the privacy metric,
and the columnwise metric is based on the element(i, i) in K = (X ′ −X)(X ′ −X)T

(note thatX andX ′ are column vector matrices as we defined), i.e.,
√

K(i,i)/2, where
K(i,i) is represented as

K(i,i) = ((R − Id)XXT (R − Id)
T )(i,i) (7)

SinceX is normalized,XXT is also the covariance matrix, where the diagonal
elements are the column variances. Letrij represent the element(i, j) in the matrixR,
andcij be the element(i, j) in the matrix ofXX. K(i,i) is transformed to

K(i,i) =

d
∑

j=1

d
∑

k=1

rijrikckj − 2

d
∑

j=1

rijcij + cii (8)

When the random rotation matrix is generated following the Haar distribution, a con-
siderable number of matrix entries are approximately independent normal distribution
N(0, 1/d) (Jiang, 2005). The full discussion about the numerical characteristics of the
random rotation matrix is out of the scope of this paper. For simplicity and easy under-
standing, we assume that all entries in random rotation matrix approximately follow in-
dependent normal distributionN(0, 1/d). Therefore, sample randomly rotations should
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makeK(i,i) changing around the mean valuecii as shown in the following result.

E[K(i,i)] ∼
d

∑

j=1

d
∑

k=1

E[rij ]E[rik]ckj − 2

d
∑

j=1

E[rij ]cij + cii = cii

It means that the original column variance could substantially influence the result of
random rotation. However,E[K(i,i)] is not the only factor determining the final privacy
guarantee. We should also look at the variance ofK(i,i). If the variance is considerably
large, we still have great chance to get a rotation with largeK(i,i) in a set of sample
random rotations, and the larger the variance is, the more likely the randomly generated
rotation matrices can provide a high privacy level. With thesimplicity assumption, we
can also roughly estimate the factors that contribute to thevariance.

V ar(K(i,i)) ∼
d

∑

i=1

d
∑

j=1

V ar(rij)V ar(rik)c
2
ij + 4

d
∑

j=1

V ar(rij)c
2
ij

∼ O(1/d2
d

∑

i=1

d
∑

j=1

c2ij + 4/d

d
∑

j=1

c2ij). (9)

The above result shows that the variance is approximately related to the average of the
squared covariance entries, with more influence from the rowi of covariance matrix.

A simple method is to select the best rotation matrix among a bunch of randomly
generated rotation matrices. But we can do better or be more efficient in a limited num-
ber of iterations. In Equation 8, we also notice that thei-th row vector of rotation matrix,
i.e., the valuesri∗, plays a dominating role in calculating the metric. Hence, it is possible
to simply swap the rows ofR to locally improve the overall privacy guarantee, which
drives us to propose a row-swapping based fast local optimization method for finding
a better rotation from a given rotation matrix. This method can significantly reduce the
search space and thus provides better efficiency. Our experiments show that, with the
local optimization, the minimum privacy level can be increased by about 10% or more.
We formalize the swapping-maximization method as follows.Let {(1), (2), . . . , (d)}
be a permutation of the sequence{1, 2, . . . , d}. Let the importance level of privacy pre-
serving for the columns bew = (w1, w2, . . . , wd). The goal is to find the permutation
of rows of a given rotation matrix that results in a new rotation matrix that maximizes
the minimum or average privacy guarantee .

argmax{(1),(2),...,(d)}{min1≤i≤d{(
d

∑

j=1

d
∑

k=1

r(i)jr(i)kckj − 2

d
∑

j=1

r(i)jcij + cii)/wi}}

(10)

Since the matrixR′ generated by swapping the rows ofR is still a rotation matrix, the
above local optimization step will not change the rotation-invariance property of the
discussed classifiers.

Attacks to Rotation Center The basic rotation perturbation uses the origin as the ro-
tation center. Therefore, the points closely around the origin are still around the origin
after the perturbation, which leads to weaker privacy protection about these points. We
address this problem with random translation so that the weakly perturbed points around
the rotation center are not detectable due to the randomnessof the rotation center. At-
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tacks to translation perturbation will depend on the success of the attack to rotation
perturbation, which will be described in later sections.

6.2.2. Privacy Analysis on ICA-based Attack

The unified privacy metric evaluates the privacy guarantee and the resilience against
the first type of privacy attack− the naive inference. Considering the reconstruction-
based inference, we identify that Independent Component Analysis (ICA) (Hyvarinen
et al., 2001) could be the most powerful one to estimate the original datasetX , if more
column statistics are known by the attacker. We dedicate this section to analyze the
ICA-based attacks with the unified privacy metric.

Requirements of Effective ICA. ICA is a fundamental problem in signal process-
ing which is highly effective in several applications such as blind source separation
(Hyvarinen et al., 2001) of mixed electro-encephalographic(EEG) signals, audio sig-
nals and the analysis of functional magnetic resonance imaging (fMRI) data. Let ma-
trix X composed by source signals, where row vectors represent source signals. Sup-
pose we can observe the mixed signalsX ′, which is generated by linear transformation
X ′ = AX . The ICA model can be applied to estimate the independent components
(the row vectors) of the original signalsX , from the mixed signalsX ′, if the following
conditions are satisfied:

1. The source signals are independent, i.e., the row vectorsof X are independent;
2. All source signals must be non-Gaussian with possible exception of one signal;
3. The number of observed signals, i.e. the number of row vectors ofX ′, must be at

least as large as the independent source signals.
4. The transformation matrixA must be of full column rank.

For rotation matrices and full rank random projection, the 3rd and 4th conditions are
always satisfied. However, the first two conditions, especially the independency condi-
tion, although practical for signal processing, seem not very common in data mining.
Concretely, there are a few basic difficulties in applying the above ICA-based attack to
the rotation-based perturbation. First of all, if there is significant dependency between
any attributes, ICA fails to precisely reconstruct the original data, which thus cannot
be used to effectively detect the private information. Second, even if ICA can be done
successfully, the order of the original independent components cannot be preserved or
determined through ICA (Hyvarinen et al., 2001). Formally,any permutation matrixP
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and its inverseP−1 can be substituted in the model to giveX ′ = AP−1PX . ICA could
possibly give the estimate for some permutated sourcePX . Thus, we cannot identify
the particular column if the original column distributionsare unknown. Finally, even if
the ordering of columns can be identified, ICA reconstruction does not guarantee to pre-
serve the variance of the original signal− the estimated signal may scale up the original
one but we do not know how much it scales, without knowing the statistical property of
the original column.

In summary, without the necessary knowledge about the original dataset, the at-
tacker cannot simply use the ICA reconstruction. In case that attackers know enough
distributional information that includes the maximum/minimum values and the prob-
ability density functions (PDFs) of the original columns, the effectiveness of ICA re-
construction will totally depend on the independency condition of the original columns.
We observed in experiments that, since pure independency does not exist in the real
datasets, we can still tune the rotation perturbation so that we can find one resilient
enough to ICA-based attacks, even though the attacker knowsthe column statistics.
In the following, we analyze how the sophisticated ICA-based attacks can be done and
develop a simulation based method to evaluate the resilience of a particular perturbation.

ICA Attacks with Known Column Statistics. When the basic statistics, such as the
max/min values and the PDF of each column are known, ICA data reconstruction can
possibly be done more effectively. We assume that ICA is quite effective to the dataset
(i.e., the four conditions are approximately satisfied) andthe column PDFs aredis-
tinctive. Then, the reconstructed columns can be approximately matched to the original
columns by comparing the PDFs of the reconstructed columns and the original columns.
When the maximum/minimum values of columns are known, the reconstructed data can
be scaled to the proper value ranges. We define an enhanced attack with the following
procedure.

1. Running ICA algorithm to get a reconstructed data;
2. Estimate column distributions for the reconstructed columns, and for each recon-

structed column find the closest match to the original columnby comparing their
column distributions;

3. Scale the columns with the corresponding maximum/minimum values of the original
columns;

Note if the four conditions for effective ICA are exactly satisfied and the basic statis-
tics and PDFs are all known, the basic rotation perturbationapproach will not work.
However, in practice, since the independency conditions are not all satisfied for most
datasets in classification, we observed that different rotation perturbations may result
in different quality of privacy and it is possible to find one rotation that is consider-
ably resilient to the enhanced ICA-based attacks. For this purpose, we can simulate
the enhanced ICA attack to evaluate the privacy guarantee ofa rotation perturbation.
Concretely, it can be done in the following steps.

First step is called “PDF Alignment”. We need to calculate the similarity between
the PDF of the original column and that of the reconstructed data column to find the best
matches between the two sets of columns. A direct method is tocalculate the difference
between the two PDF functions. Letf(x) andg(x) be the original PDF and the PDF
of the reconstructed column, respectively. A typical method to define the difference of
PDFs employs the following function.

∆PDF =

∫

|f(x)− g(x)|dx (11)
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Fig. 8. Comparing PDFs in different ranges results in large error. (The
lined areas are calculated as the difference between the PDFs.)

In practice, for easy calculation we discretize the PDF intobins. It is then equivalent to
use the discretized version:

∑n
i=1 |f(bi)− g(bi)|, wherebi is the discretized bini. The

discretized version is easy to implement by comparing the two histograms with a same
number of bins. However, the evaluation is not accurate if the values in the two columns
are not in the same range as shown in Figure 8. Hence, the reconstructed PDF needs
to be translated to match the range, which requires to know the maximum/minimum
values of the original column. Since the original column is already scaled to [0, 1] in
calculating unified privacy metric, we can just scale the reconstructed data to [0, 1],
making it consistent with the normalized original data (Section 6.1.1). Meanwhile, this
also scales the reconstructed data down so that the variancerange is consistent with the
original column. As a result, after the step of PDF Alignment, we can directly calculate
the privacy metrics between the matched columns to measure the privacy quality.

Without loss of generality, we suppose that the level of confidence for an attack
is primarily based on the PDF similarity between the two matched columns. LetO
be the reconstruction of the original datasetX . ∆PDF (Oi,Xj) represents the PDF
difference of the columni in X and the columnj in O. Let {(1), (2), . . . , (d)} be
a permutation of the sequence{1, 2, . . . , d}, which means a match from the original
columni to (i). Let an optimal match minimize the sum of PDF differences of all pairs
of matched columns. We define the minimum privacy guarantee based on the optimal
match as follows.

pmin = min{ 1

wk
priv(Xk,O(k)), 1 ≤ k ≤ d} (12)

where{(1), (2), . . . , (d)} = argmin{(1),(2),...,(d)}
∑d

i=1 ∆PDF (Xi,X(i)). Similarly,
we can define the average privacy guarantee based on an optimal match.

With the above multi-column metric, we are able to estimate how resilient a rota-
tion perturbation is to the ICA-based attack equipped with the known column statistics.
We observed in experiments that, although the ICA method mayeffectively reduce the
privacy guarantee for certain rotation perturbations, we can always find some rotation
matrices so that they can provide satisfactory privacy guarantee to ICA-based attacks.

6.2.3. Attacks to Translation Perturbation

Previously, we use random translation to address the weak protection on the points
around the rotation center. We will see how translation perturbation is attacked if the
ICA-based attack is applied .

Let each dimensional value of the random translation vectort is uniformly drawn
from the range [0, 1], so that the center hides in the normalized data space. The pertur-
bation can be represented as

f(X) = RX +Ψ = R(X +R−1Ψ)
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to infer the rotation matrix.

It is easy to verify thatT = R−1Ψ is also a translation matrix. An effective attack to
estimate the translation component should be based on the ICA inference toR and then
remove the componentR−1Ψ based on the unknown distribution ofX . Concretely, the
process can be described as follows.

By applying ICA attack, the estimate toX+T is X̂ + T = R̂−1P . Suppose that the
original columni has maximum and minimum valuesmaxi andmini, respectively, and
R̂−1P hasmax′

i andmin′
i, respectively. Since translation does not change the shapeof

column PDFs, we can align the column PDFs first. As scaling is one of the major effect
of ICA estimation, we rescale the reconstructed column withsome factors, which can
be estimated bys ≈ max′

i
−min′

i

maxi−mini
. Then, the columni of R̂−1P is scaled down to the

same span ofX by the factors. Then, we can extract the translationti for columni with

t̂i ≈ min′
i × s−mini

Since the quality of the estimation is totally dependent on that of ICA reconstruction
to rotation perturbation, a good rotation perturbation will protect translation perturba-
tion as well. We will show some experimental results to see how well we can protect
the translation component.

6.2.4. Privacy Analysis on Distance-inference Attack

In the previous section, we have discussed naive-inferenceattacks and ICA-based at-
tacks. In the following discussion, we assume that, besidesthe information necessary
to perform these two kinds of attacks, the attacker manages to get more knowledge about
the original dataset: s/he also knows at leastd+1 original data points,{x1,x2, . . . ,xd+1},
d points of which are also linearly independent. Since the basic geometric perturbation
preserves the distances between the points, the attacker can possibly find the mapping
between these points and their images in the perturbed dataset, {o1,o2, . . . ,od+1}, if
the point distribution is peculiar, e.g. the points are outliers. With the known mapping
the rotation componentR and translation componentt can be calculated consequently.
There is also discussion about the scenario that the attacker knows less thand points
(Liu, Giannella and Kargupta, 2006).

The mapping might be identified precisely for low-dimensional small datasets (< 4
dimensions). With considerable cost, it is not impossible for higher dimensional larger
datasets by simple exhaustive search if the known points have special distribution. There
may have multiple matches, but the threat can be substantial.

So far we have assumed the attacker has obtained the right mapping between the
known points and their images. In order to protect from the distance-inference attack, we



Geometric Data Perturbation for Privacy Preserving Outsourced Data Mining 27

use the noise component∆ to protect geometric perturbation−G(X) = RX+Ψ+∆.
After we append the distance perturbation component, we have the original points and
their maps be{x1,x2, . . . ,xd+1} → {o1,o2, . . . ,od+1}, oi = Rxi + t+ εi, whereεi
is the noise. The attacker can perform a linear regression based estimation method.

1)R is estimated with the known mapping. The translation vectort can be canceled
from the perturbation and we getd equations:oi − od+1 = R(xi − xd+1) + εi − εd+1,
1 ≤ i ≤ d. Let Ō = [o1 − od+1, o2 − od+1, . . . , od − od+1], X̄ = [x1 − xd+1, x2 −
xd+1, . . . , xd − xd+1], andε̄ = [ε1 − εd+1, ε2 − εd+1, . . . , εd − εd+1]. The equations
are unified toŌ = RX̄+ ε̄, and estimatingR becomes a linear regression problem. The
minimum variance unbiased estimator forR is R̂ = Ō′X̄(X̄ ′X)−1 (Hastie et al., 2001).

2) With R̂, the translation vectort can also be estimated. Sinceoi−Rxi−εi = t and
εi has mean value 0, witĥR the attacker has the estimate oft ast̂ = 1

d+1{
∑d+1

i=1 (oi −
R̂xi)−

∑d+1
i=1 εi} ≈ 1

d+1

∑d+1
i=1 (oi − R̂xi). t̂ will have certain variance brought by the

componentŝR andεi.
3) Finally, the original dataX can be estimated as follows. AsO = RX + Ψ+∆,

using the estimatorŝR and Ψ̂ = [t̂, . . . , t̂], we getX̂ = R̂−1(O − Ψ̂). Due to the
variance introduced bŷR, Ψ̂, and∆, the attacker may need to run several times to get
the average of estimated̂X , in practice.

By simulating the above process, we are able to estimate the effectiveness of the
added noise. As we have discussed, as long as the geometric boundary is preserved, the
geometric perturbation with noise addition can preserve the model accuracy. We have
formally analyzed the effect of the noise component to modelquality in Section 5.5. We
will further study the relationship between the noise level, the privacy guarantee, and
the model accuracy in experiments.

6.2.5. Privacy Analysis on Other Attacks

We have studied a few attacks, according to the different levels of knowledge that an
attacker may have. There are also studies about the extreme case that the attacker can
know a considerable number of points (≫ d)in the original dataset. In this case, classical
methods, such as Principle Component Analysis (PCA) (Liu, Giannella and Kargupta,
2006) and ICA (Guo, Wu and Li, 2008), can be used to reconstruct the original dataset
with the higher order statistical information derived fromboth the known points and
the perturbed data. In order to make these methods effective, the known points should
be representative for the original data distribution, so that higher order statistics can
be preserved, such as the covariance matrix of the original dataset that both PCA and
ICA based methods depend on. As a result, what portion of samples are known by
the attacker and how different the known sample distribution is from the original one
become the important factor for the success of attacks. Mostimportantly, these attacks
become less meaningful in practice: when a large number of points have been cracked
it is too late to protect data privacy and security. In addition, outliers in the dataset may
be easily under attacks, if additional knowledge about the original outliers is available.
Further study should be performed on the outlier-based attacks. We will leave these
issues for future study.

6.2.6. A Randomized Algorithm for Finding a Better Perturbation

We have discussed the unified privacy metric for evaluating the quality of a random geo-
metric perturbation. Three kinds of inference attacks are analyzed under the framework
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of multi-column privacy evaluation, based on which we design an algorithm to choose
good geometric perturbations that are resilient to the discussed attacks. In addition, the
algorithm itself, even published, should not be a weak pointin privacy protection. Since
a deterministic algorithm in optimizing the perturbation may also provide extra clues to
privacy attackers, we try to bring some randomization into the optimization process.

Algorithm 6.1 runs in a given number of iterations, aiming atmaximizing themin-
imum privacy guarantee. At the beginning, a random translation is selected. In each
iteration, the algorithm randomly generates a rotation matrix. Local maximization of
variance through swapping rows is then applied to find a better rotation matrix. And
then, the candidate rotation matrix is tested by the ICA-based attacks 6.2.2 assuming
the attacker knows column statistics. The rotation matrix is accepted as the currently
best perturbation, if it provides higher minimum privacy guarantee in terms of both
naive estimation and ICA-based attacks than the previous perturbations. Finally, the
noise component is appended to the perturbation, so that thedistance-inference attack
cannot reduce the privacy guarantee to a safety levelφ, e.g.,φ = 0.2. Algorithm 6.1
outputs the rotation matrixRt, the random translation matrixΨ, the noise levelσ2, and
the corresponding minimum privacy guarantee. If the privacy guarantee is lower than
the anticipated threshold, the data owner can choose not to release the data. Note that
this optimization process is applied to a sample set of the data. Therefore, the cost will
be manageable even for very large original dataset.

Algorithm 6.1 Finding a Good Perturbation (Xd×N , w, m)
Input : Xd×N :the original dataset,w: weights of attributes in privacy evaluation,m: the number of itera-
tions.
Output : Rt: the selected rotation matrix,Ψ: the random translation,σ2: the noise level,p: privacy guar-
antee
calculate the covariance matrixC of X;
p = 0, and randomly generate the translationΨ;
for Each iterationdo

randomly generate a rotation matrixR;
swapping the rows ofR to getR′, which maximizesmin1≤i≤d{

1
wi

(Cov(R′X −X)(i,i)};

p0 = the privacy guarantee ofR′, p1 = 0;
if p0 > p then

generateX̂ with ICA;
{(1), (2), . . . , (d)} = argmin{(1),(2),...,(d)}

∑d
i=1 ∆PDF (Xi, O(i))

p1 = min1≤k≤d
1

wk

Priv(Xk , O(k))

end if
if p < min(p0, p1) then

p = min(p0, p1), Rt = R′;
end if

end for
p2 = the privacy guarantee to the distance-inference attack with the perturbationG(X) = RtX+Ψ+∆.

Tune the noise levelσ2 , so thatp2 ≥ p if p < φ or p2 > φ if p < φ .

7. Experiments

We design four sets of experiments to evaluate the geometricperturbation approach.
The first set is designed to show that the discussed classifiers are invariant to rotations
and translations. In this set of experiments, general linear transformations, including
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Dataset N d k kNN SVM(RBF) Perceptron

orig R A orig R A orig R A

Breast-w 699 10 2 97.6 −0.5± 0.3 −0.5± 0.3 97.2 0± 0 −0.2± 0.2 80.4 −8.7± 0.3 −8.0± 1.5

Credit-a 690 14 2 82.9 0± 0.8 −0.7± 0.8 85.5 0± 0 +0.9± 0.3 73.6 −7.3± 1.0 −8.8± 0.7

Credit-g 1000 24 2 72.9 −1.2± 0.9 −1.8± 0.8 76.3 0± 0 +0.9± 0.9 75.1 0± 0 −0.2± 0.2

Diabetes 768 8 2 73.3 +0.4± 0.5 −0.4± 1.4 77.3 0± 0 −3.6± 1.0 68.9 0.0± 0.7 −2.5± 2.8

E.Coli 336 7 8 85.7 −0.4± 0.8 −2.0± 2.2 78.6 0± 0 −4.3± 1.5 - - -

Heart 270 13 2 80.4 +0.6± 0.5 −1.7± 1.1 84.8 0± 0 −2.3± 1.0 75.6 −5.2± 0.3 −3.9± 1.1

Hepatitis 155 19 2 81.1 +0.8± 1.5 0± 1.4 79.4 0± 0 +3.3± 1.9 77.4 −1.2± 0.4 −1.8± 2.4

Ionosphere 351 34 2 87.4 +0.5± 0.6 −30.0± 1.0 89.7 0± 0 +0.4± 0.4 75.5 −3.5± 1.0 −5.6± 1.0

Iris 150 4 3 96.6 +1.2± 0.4 −2.0± 2.1 96.7 0± 0 −10.2± 3.0 - - -

Tic-tac-toe 958 9 2 99.9 −0.3± 0.4 −8.3± 0.4 98.3 0± 0 +1.6± 6.9 76.4 −5.3± 0.0 −5.2± 0.1

Votes 435 16 2 92.9 0± 0.4 −12.6± 3.1 95.6 0± 0 −0.5± 1.9 90.7 −4.3± 1.0 −8.3± 4.9

Wine 178 13 3 97.7 0± 0.5 −2.0± 0.2 98.9 0± 0 −5.7± 1.3 - - -

Table 1. Experimental result on transformation-invariantclassifiers

dimensionality-preserving transformation and projection transformation, are also in-
vestigated to see the advantage of distance preserving transformations. The second set
shows the optimization of the privacy guarantee in geometric perturbation without the
noise component, in terms of the naive-inference attack andthe ICA-based attack. In
the third set of experiments, we explore the relationship between the intensity of the
noise component, the privacy guarantee and the model accuracy, in terms of distance-
inference attack. Finally, we compare the overall privacy guarantee provided by our
geometric perturbation and another multidimensional perturbation− condensation ap-
proach. All datasets used in the experiments can be found in UCI machine learning
database4.

7.1. Classifiers Invariant to Rotation Perturbation

In this experiment, we verify the invariance property of several classifiers discussed
in section 5.1 to rotation perturbation. Three classifiers:kNN classifier, SVM classi-
fier with RBF kernel, and perceptron, are used as the representatives. To show the ad-
vantage of distance preserving transformations, we will test the invariance property of
dimensionality-preserving general linear transformation and projection perturbation.

Each dataset is randomly rotated 10 times in the experiment.Each of the 10 resultant
datasets is used to train and cross-validate the classifiers. The reported numbers are
the average of the 10 rounds of tests. We calculate the difference of model accuracy,
between the classifier trained with the original data and those trained with the rotated
data.

In the table 1, ‘orig’ is the classifier accuracy to the original datasets, ‘R’ denotes

4 http://www.ics.uci.edu/∼mlearn/Machine-Learning.html
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the result of the classifiers trained with rotated data, and the numbers in ‘R’ columns are
the performance difference between the classifiers trainedwith original and rotated data,
for example, “−1.0± 0.2” means that the classifiers trained with the rotated data have
the accuracy rate1.0% lower than the original classifier on average, and the standard
deviation is0.2%. We use single-perceptron classifiers in the experiment. Therefore,
the datasets having more than two classes, such as “E.Coli”,“Iris” and “Wine” datasets,
are not evaluated for perceptron classifier. ‘A’ means arbitrarily generated nonsingular
linear perturbations that preserves the dimensionality ofthe original dataset. From this
result, we can see that rotation perturbation almost fully preserves the model accuracy
for all of the three classifiers, except that perceptron might be sensitive to rotation per-
turbation for some datasets (e.g., “Breast-w”). Arbitrarily generated linear perturbations
may downgrade the model accuracy a lot for some datasets, such as “Inonosphere” for
kNN (-30.0%), and “Iris” for SVM (RBF) (-10.2%).

7.2. The Effect of Random Projection to Model Accuracy

To see whether random projection can safely replace the rotation perturbation com-
ponent in geometric data perturbation, we perform a set of experiments to check how
model accuracy is affected by random projection. We implement the standard random
projection method (Vempala, 2005). Random projection is defined as

G(x) =

√

k

d
RTx,

whereR is ad × k matrix with orthonormal columns.R can be generated in multiple
methods. One simple method is to generate a random matrix with each element drawn
from the standard normal distributionN(0, 1) first, and then apply Gram-Schmidt pro-
cess (Bhatia, 1997) to orthogonalize the columns. From the Johnson-Lindenstrauss
Lemma (Johnson and Lindenstrauss, 1984), we understand that the number of pro-
jected dimensions is the major factor affecting the accuracy of models. We will look
at this relationship in the experiment. For clear presentation, we will pick three datasets
for each classifier that show great impact to accuracy. Similarly, each result is based on
the average of ten rounds of different random projections.

For clear presentation, for each classifier modeling, we select only three datasets
that show the most representative patterns. In Figure 10, the x-axis is the difference
between the projected dimensions and the original dimensions and the y-axis is the dif-
ference between original model accuracy and the perturbed model accuracy (perturbed
accuracy - original accuracy). Note that random projections that preserve dimension-
ality (dimension difference=0) is as same as rotation perturbation. It shows that the
kNN model accuracy for the three datasets can decrease dramatically regardless of in-
creased or decreased dimensionality. The numbers are the average of ten runs for each
dimensionality setting. In Figure 11, SVM models also show the model accuracy is sig-
nificantly reduced with a dimensionality different to the original one. The “Diabetes”
data is less affected by changed dimensionality. Interestingly, the perceptron models
(Figure 12) are less sensitive to changed dimensionality for some datasets such as “Di-
abetes” and “Heart”, while very sensitive to others such as “BreastW”. In general, the
error caused by random projection perturbation that changes dimensionality is so large
that the resultant models are not useful.
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Fig. 11. The effect of projection pertur-
bation to SVM.
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Fig. 12. The effect of projection pertur-
bation to Perceptron.
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Fig. 13. Resilience to the attack to ran-
dom translation

7.3. Effectiveness of Translation Perturbation

The effectiveness of translation perturbation is two-fold. First, we show that translation
perturbation cannot be effectively estimated based on the discussed techniques. Then,
we give complementary experimental results to show that theclassifiers: SVMs with
polynomial kernel and sigmoid kernel indeed invariant to translation perturbation.

As we have mentioned, if the translation vector could be precisely estimated, the
rotation center would be exposed. We applied the ICA-based attack to rotation center
that is described in Section 6.2.3. The data in Figure 13 showsstdev(t̂− t). Compared
to the range of the elements int, i.e., [0, 1], the standard deviations are quite large, so
we can conclude that random translation is also hard to estimate if we have optimized
rotation perturbation in terms of ICA-based attacks.

SVMs with polynomial kernel, and sigmoid kernel, are also invariant to translation
transformation. Table 2 lists the experimental result on random translation for the 12
datasets. We randomly translate each dataset for ten times.The result is the average of
the ten runs. For most datasets, the result shows zero or tinydeviation from the standard
model accuracy.
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Table 2. Experimental result on random translation

Dataset SVM(polynomial) SVM(sigmoid)

orig Tr orig Tr

breast-w 96.6 0± 0 65.5 0± 0

credit-a 88.7 0± 0 55.5 0± 0

credit-g 87.3 −0.4± 0.4 70 0± 0

diabetes 78.5 0± 0.3 65.1 0± 0

ecoli 89.9 −0.1± 0.5 42.6 0± 0

heart 91.1 −0.2± 0.2 55.6 0± 0

hepatitis 96.7 −0.4± 0.3 79.4 0± 0

ionosphere 98 +0.3± 0 63.5 +0.6± 0

iris 97.3 0± 0 29.3 −1.8± 0.4

tic-tac-toe 100 0± 0 65.3 0± 0

votes 99.2 +0.2± 0.1 65.5 −4.7± 0.6

wine 100 0± 0 39.9 0± 0
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Fig. 14. Minimum privacy guarantee
generated by local optimization, com-
bined optimization, and the perfor-
mance of ICA-based attack.
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Fig. 15. Average privacy guarantee
generated by local optimization, com-
bined optimization, and the perfor-
mance of ICA-based attack.

7.4. Perturbation Optimization against Naive Estimation and ICA-based
Attack

We run the randomized optimization algorithm and show how effective it can generate
resilient perturbations5. Each column in the experimental dataset is considered equally
important in privacy evaluation. Thus, the weights are not included in evaluation.

Figure 14 and 15 summarize the evaluation of privacy qualityon experimental
datasets. The results are obtained in 50 iterations with theoptimization algorithm de-

5 Since we slightly changed the definition of privacy guarantee from our SDM paper (Chen et al., 2007), we
need to re-ran the experiments that use this metric for comparison. Therefore, the numbers in this section can
be slightly different from those in the paper (Chen et al., 2007).
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Fig. 16. Optimization of perturbation
for Diabetes data.
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Fig. 17. Optimization of perturbation
for Votes data.

scribed in Section 6.2.6. “LocalOPT” represents the locally optimized minimum privacy
guarantee addressing naive estimation at a number of iterations. “Best ICA attack” is the
worst perturbation that gives the best ICA attack performance, i.e., getting the lowest
privacy guarantee among the perturbations tried in the rounds. “CombinedOPT”is the
combined optimization result given by Algorithm 6.1 after anumber of iterations. The
above values are calculated with the proposed privacy metric based on the estimated
dataset and the original dataset. The LocalOPT values can often reach a relatively high
level after 50 iterations, which means that the swapping method is very efficient in lo-
cally optimizing the privacy quality in terms of naive estimation. In the contrast, the
best ICA attacks often result in very low privacy guarantee,which means some rota-
tion perturbations are very weak to ICA-based attacks. CombinedOPT values are much
higher than the corresponding ICA-based attacks, which supports our conjecture that
we can always find one perturbation that is sufficiently resilient to ICA-based attacks in
practice.

We also show the detail in the course of optimization for two datasets “Diabetes”
and “Votes” in Figure 16 and 17, respectively. For both datasets, the combined optimal
result is between the curves of best ICA-attacks and the bestlocal optimization result.
Different datasets or different randomization processes may cause different change pat-
terns of privacy guarantee in the course of optimization. However, we see after a few
rounds the results are quickly stabilized round satisfactory privacy guarantee, which
means the proposed optimization method is very efficient.

7.5. Distance Perturbation: the Tradeoff between Privacy and Model
Accuracy

Now we extend the geometric perturbation with random noise component :G(X) =
RX + Ψ + ∆, to address the potential distance-inference attacks. From the formal
analysis, we know that the noise component∆ can conveniently protect the perturbation
from distance-inference attack. Intuitively, the higher the noise level is, the better the
privacy guarantee. However, with the increasing noise level, the model accuracy could
also be affected. In this set of experiments, we first study the relationship between the
noise level, represented by its varianceσ2, and the privacy guarantee, and then the
relationship between the noise level and the model accuracy.

Each known I/O attack is simulated by randomly picking a number of records (e.g.,
5% of the total records) as the known records and then applying the estimation proce-
dure discussed in Section 6.2.4. After running 500 runs of simulated attacks for each
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Fig. 18. The change of minimum pri-
vacy guarantee vs. the increase of noise
level for the three datasets.
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Fig. 19. The change of accuracy of
KNN classifier vs. the increase of noise
level.

¼½¼¾¼¿¼À
ÁÀ

ÁÂÁÃ ÁÂÁ¾ ÁÂÁÄ ÁÂÁ½ ÁÂÁÅ ÁÂÆÇÈÈÉÊËÈÌÍÎËÏÐÑÒÓÔ ÕÖ×ØÙ ÚÙÛÙÜ ÝØ×Þßàá
âãäåæçæè éêãè ëìçæè

Fig. 20. The change of accuracy of
SVM(RBF) classifier vs. the increase
of noise level.
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Fig. 21. The change of accuracy of per-
ceptron classifier vs. the increase of
noise level.

noise level, we get the average of minimum privacy guarantee. In addition, since the pa-
per (Huang et al., 2005) showed that the PCA based noise filtering technique may help
reduce the noise for some noise perturbed datasets, we also simulate the PCA filtering
method based on the described algorithm (Huang et al., 2005)and checked its effec-
tiveness. The results show that in most cases (except for some noise levels for “Iris”
data) when the number of principal components equals to the number of the original
dimensions (i.e., no noise reduction is applied), the attack is most effective. Since the
PCA method cannot clearly distinguish the noise from other perturbation components,
removing the smallest principal components will inevitably change the non-noise part
as well. Figure 18 shows the best attacking results for different noise levels. Overall,
the privacy guarantee increases with the increase of noise level for all three datasets.
At the noise levelσ = 0.1, the privacy guarantee is between the range 0.1-0.2. Figure
19 and 20 show a trend of decreasing accuracy for KNN classifier and SVM (RBF ker-
nel) classifier, respectively. However, with the noise level lower than 0.1, the accuracy
of both classifiers is only reduced less than 6%, which is quite acceptable. Meanwhile,
perceptron (Figure 21) is less sensitive to different levels of noise intensity. We perform
experiments on all datasets at the noise levelσ = 0.1 to see how the model accuracy is
affected by the noise component.

We summarize the privacy guarantees at the noise level 0.1 for all experimental
datasets6 in Figure 22, and also the change of model accuracy for KNN, SVM(RBF),

6 “Ionosphere” is not included because the existence of nearly constant value in one column.
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Fig. 23. The change of model accuracy
at the noise levelσ = 0.1

and Perceptron in Figure 23. Among the three types of classifiers, KNN is the most sta-
ble one while perceptron classifiers are most sensitive to distance perturbation. Overall,
the distance perturbation component may affect model accuracy, but it has much less
impact on model accuracy. Last but not least, it is worth noting that the noise compo-
nent can be removed if the data owner makes sure to securely store the original data.
This important feature provides extra and valuable flexibility in geometric perturbation
for data mining.

8. Conclusion

We present a random geometric perturbation approach to privacy preserving data clas-
sification. Random geometric perturbation,G(X) = RX +Ψ+∆, includes the linear
combination of the three components: rotation perturbation, translation perturbation,
and distance perturbation. Geometric perturbation can preserve the important geomet-
ric properties, thus most data mining models that search forgeometric class boundaries
are well preserved with the perturbed data. We proved that many data mining models,
including classifier, regression models, and clustering methods, are invariant to geomet-
ric perturbation.

Geometric perturbation perturbs multiple columns in one transformation, which in-
troduces new challenges in evaluating the privacy guarantee for multi-dimensional per-
turbation. We propose a multi-column privacy evaluation model and design a unified
privacy metric to address these problems. We also thoroughly analyze the resilience
of the rotation perturbation approach against three types of inference attacks: naive-
inference attacks, ICA-based attacks, and distance-inference attacks. With the privacy
model and the analysis of attacks, we are able to construct a randomized optimization
algorithm to efficiently find a good geometric perturbation that is resilient to the attacks.
Our experiments show that the geometric perturbation approach not only preserves the
accuracy of models, but also provides much higher privacy guarantee, compared to ex-
isting multidimensional perturbation techniques.
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