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ABSTRACT
Operational networks typically generate massive monitoring
data that consist of local (in both space and time) observa-
tions of the status of the networks. It is often hypothesized
that such data exhibit both spatial and temporal correlation
based on the underlying network topology and time of occur-
rence; identifying such correlation patterns offers valuable
insights into global network phenomena (e.g., fault cascad-
ing in communication networks). In this paper we introduce
a new class of models suitable for learning, indexing, and
identifying spatio-temporal patterns in network monitoring
data. We exemplify our techniques with the application of
fault diagnosis in enterprise networks. We show how it can
help network management systems (NMSes) to efficiently
detect and localize potential faults (e.g., failure of routing
protocols or network equipments) by analyzing massive op-
erational event streams (e.g., alerts, alarms, and metrics). We
provide results from extensive experimental studies over real
network event and topology datasets to explore the efficacy
of our solution.

1. INTRODUCTION
A network, in its simplest form, can be modeled as

a graph wherein nodes represent network entities and
edges represent their pairwise interactions. It is known
that simple, local interactions between network entities
can give rise to complex, global network phenomena [5]
(e.g., fault cascading in communication networks). Nev-
ertheless, understanding and modeling such global phe-
nomena based on local observations remains one key
challenge in network science.

An operational network typically generates various
monitoring data that essentially consist of local (in both
space and time) observations on the state of dispersed
network entities. Examples include SNMP (Simple Net-
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Figure 1: Percentage of fault-triggered events reported
at faulty nodes (SE) and nodes with specific relation-
ships to faulty ones (NE, DS, US, TN) in four real en-
terprise networks, with size of 2,514 nodes, 3,200 nodes,
141 nodes, and 12,444 nodes, respectively.

work Management Protocol) and syslog messages (e.g.,
ping failure, interface down, high CPU usage) in com-
munication networks, and resource utilization alarms,
SLA (Service Level Agreement) violations and thresh-
old crossing alerts in datacenter networks.

Such local observations (henceforth, called as events)
provide a window into understanding the global network
phenomena. However, the analysis of the raw monitor-
ing data is inherently difficult due to its (1) incomplete-
ness, e.g., important symptom events of a network fault
may be missing due to incomplete monitoring or loss in
transit; (2) imprecision, e.g., the recorded timestamps
of individual events may be erroneous with respect to
systemic causality relationships; and (3) massive vol-
ume, e.g., a single network fault often results in a burst
of messages sent to the network management system
(NMS) from the affected entities. Therefore, it can offer
significant performance benefits to succinctly and scal-
ably identify relevant events occurring across the entire
network. Figure 1 motivates this with a concrete ex-
ample from fault diagnosis in enterprise networks, us-
ing event data collected from four real enterprise net-
works. The fractions of relevant events (that correspond
to a same fault) reported at the faulty node itself (SE),
and nodes with specific relationships (neighboring - NE,
down-streaming - DS, up-streaming - US, and tunneling
- TN) to the faulty node are shown. Observe that those
topologically related nodes account for an overwhelm-
ing 71-82% of the events.

It is often hypothesized that relevant network events
exhibit both spatial and temporal correlation based on
the underlying network topology and their time of oc-
currence, although the correlation extent may depend



on the accuracy of monitoring system. It is worth em-
phasizing that in complex, multi-layer networks (e.g.,
enterprise networks as targeted in this work), the net-
work topology includes both horizontal (e.g., that be-
tween BGP peers) and vertical (e.g., that between layer
L1 and L3 counterparts) relationships. We argue that
identifying and leveraging such spatio-temporal patterns
to correlate relevant events may offer both scalable (ef-
ficient in facing massive event volumes) and robust (re-
silient to incomplete and imprecise monitoring data)
primitives for network-event analysis.

In this paper, we propose a new class of models suit-
able for learning, indexing and matching spatio-temporal
patterns in network-event data. We exemplify our tech-
niques with the application of detecting and localizing
potential faults in enterprise networks. Conventional
solutions, as adopted by most widely deployed NMSes in
such networks, maintain a cache of “unresolved” events,
and use rule or codebook based mechanisms (e.g., [23,
25]) to correlate each new event with all cached events
to suppress dependent events and retain only the (un-
fixed) root-cause events in the cache. These approaches
however suffer from both scalability (e.g., the compu-
tation complexity is quadratic in terms of the network
size) and robustness (e.g., missing important symptom
or root-cause events may result in a large number of
unresolved events in the cache) issues.

We observe: (i) Events triggered by a fault are typi-
cally generated by a small, approximately constant sub-
set1 of network entities that are topologically related to
the faulty entity within a limited time window; thus,
for each new event arriving at the NMS, only those (po-
tentially) topologically and temporally relevant events
need to be considered. (ii) By aggregating a set of cor-
related events, one may be able to infer the root cause
with high confidence, despite the possible loss of im-
portant symptom or root-cause events, and imprecision
in individual events. To exploit these observations, we
propose a new class of indexable network signatures that
encode the temporal patterns of events as well as the
topological relationships among the entities where these
events occur. We present efficient learning algorithms
to extract such signatures from noisy historical event
data. With the help of novel space-time indexing struc-
tures, we show how to perform efficient online signa-
ture matching. We entitle the complete framework Tar
(topologically-aware reasoning) that, to the best of our
knowledge, is the first proposal to utilize topologically-
aware event patterns to perform scalable, yet robust
network root cause reasoning.

We implemented our solution on a large-scale testbed
NMS, and empirically evaluated its efficacy in terms

1The size of this subset depends on factors such as degree
distribution of the network, and is independent of the size
of the entire network.

of diagnosis accuracy, scalability, predictive power, and
error tolerance, demonstrating significant improvement
over its previous counterpart techniques (e.g., reduce
fault diagnosis time from 45 mins to 37 seconds for an
event burst of size 15K).

2. PROBLEM CONTEXT AND SCOPE
This section describes a fundamental yet challenging

task facing network operators when analyzing network
monitoring data in enterprise networks, namely, detect-
ing and localizing potential network faults, which mo-
tivates our study on spatio-temporal patterns.

2.1 Fault Diagnosis in Enterprise Networks
We target large-scale enterprise networks, which usu-

ally involve hundreds of thousands of network entities
(e.g., routers), and are typically managed by a central-
ized management system that collects (local) observa-
tions from network entities at different layers of the pro-
tocol stack. The aim of fault diagnosis is to quickly de-
tect potential faults (e.g., failures of routing protocols or
network equipments) for a given set of symptom events,
and localize the possible network entities responsible for
the faults, such that corrective measures can be directed
at the root cause, as opposed to merely addressing the
immediate symptoms.

Even though operators today have a myriad network
monitoring data at their disposal, it is still non-trivial
to efficiently identify and extract root-cause events from
massive event storms, attributed to the inherent incom-
pleteness and imprecision of the monitoring system, and
the cascading nature of network failures, namely, fail-
ure of a single network entity triggers a large burst of
events from affected entities all over the network (see
example shown in Figure 1). For instance, large net-
works in 2007 are faced with the challenge of monitor-
ing over 100,000 network entities and cope with event
bursts of over 10,000 events per second [17]. Evidently,
scalability and robustness have become two key issues.
The pairwise comparison approaches adopted by most
widely deployed NMSes in enterprise networks, as we
have discussed in Section 1, suffer from both scalability
and robustness issues.

2.2 TAR: Topologically-Aware Reasoning
It is observed, however, that two events may be corre-

lated only if the underlying nodes (at which these events
were triggered) are topologically related.

Example 1. In the network shown in Figure 2, the fail-
ure of router n6 may trigger events at both n4 and n7

since they establish a tunnel containing n6.

Hence, an incoming event needs to be correlated with
only a subset of events that occurred at topologically re-
lated network entities, rather than on the scale of the
entire network. Also, the time of their occurrences tends
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Figure 2: Correlation of topologically relevant events
for root-cause analysis.

to follow the order of fault cascading, within a limited
time window. We hypothesize that a network fault may
be characterized by the spatio-temporal patterns of its
triggered events; leveraging such patterns facilitates ef-
ficient diagnosis. Further, the imprecision and incom-
pleteness of individual events may be overcome by ag-
gregating correlated events, which capacitates us to in-
fer or even predict network faults with high confidence,
in facing of incomplete or imprecise information.

Exploiting such topological and temporal correlation,
however, requires addressing a set of non-trivial chal-
lenges: First, how to select a set of patterns that best
capture the essential spatio-temporal correlation in fault-
triggered network events, from the myriad semantic struc-
tures, especially for complex, multi-layer enterprise net-
works? Second, how to concisely represent such spatio-
temporal patterns? Third, how to efficiently extract
(parameterize) the patterns from noisy historical data?
Finally, how to support scalable online pattern match-
ing against high-volume event streams?

This paper presents the design, implementation and
evaluation of Tar, the first known complete framework
for extracting, indexing and identifying spatio-temporal
patterns in network monitoring data. The cornerstone
of Tar is a class of indexable network signatures that
concisely encode the temporal and topological patterns
of events triggered by a root cause. Tar includes so-
lutions to automatically extract such signatures from
historical datasets and to efficiently match such signa-
tures against high-volume network-event streams.

3. DESIGN OF TAR
This section introduces the basic concepts and no-

tations used throughout the paper, then describes the
design of network signature, fundamental to Tar, and
finally gives an overview of the architecture of Tar.

For simplicity of exposition, we start with single-layer
networks (e.g., L3 layer network), and will discuss the
extension to multi-layer networks in Section 4.4. We
have the following assumptions. The network is mod-
eled as a graph with each node representing a man-
ageable logical entity (“entity” for short) uniting one or
more physical devices (e.g., routers), and each edge cor-
responding to a network link (e.g., BGP peering). Also
we assume the network configurations to be static. The

relationship description

selfing u and itself
neighboring u and v are directly connected

containing
u contains v as a sub-component
(e.g., a router and its interfaces)

down-streaming
u is at v’s down-stream side
(route from sink to u contains v)

tunneling
u is on a tunnel (a special type of
network connection) with v as one end

Table 1: Topological relationships and descriptions (u
and v as two network entities under consideration).

network management system (NMS) consists of a set of
monitoring agents and a sink. Deployed at dispersed
entities, the agents collect and send monitored events

(alarms, performance, alerts) to the sink that is respon-
sible for root cause analysis. Each event is a tuple of
the form 〈v, e, t〉, where v represents the network node
generating the event, e the event type, and t the times-
tamp of the event. Events come in as an online stream.
The goal of Tar can be summarized as: by analyzing
the event stream and exploiting the network topology in-
formation, detect the potential faults and localize their
root-cause entities in real-time.

3.1 Network Signature
The concept of network signature is central to Tar.

In designing network signature, we strive to achieve a
set of objectives: expressive - it should be semantically
rich, capturing both topological and temporal features
of correlated events; compact - yet, it should be struc-
turally simple, thus easy to be matched against incom-
ing events; and indexable - it should be amenable to
indexing, thus can be encoded in space-efficient struc-
tures for online matching.

Intuitively, we construct network signature based on
the following two fundamental observations. First, when
a fault occurs at an entity u, correlated events are typi-
cally triggered at affected entities that are topologically
related to u. Second, the triggered event at an affected
entity v depends on the topological relationship between
u and v, in terms of its event type and time delay.

Example 2. In Figure 2, the failure of n6 may lead to
the event of “OSPF neighbor down” at n3 since n3 is a
direct neighbor of n6, while n4 may observe the event
of “failed connection attempt” since the tunnel between
n4 and n7 involves n6.

We considers a set of relationshipsR = {selfing, neigh-
boring, down/up-streaming, containing/contained, tun-
neling}, with brief descriptions listed in Table 1. Note
that the relationship down/up-streaming is referred from
the view of sink, i.e., u is at v’s down-stream side if the
route from the sink to u contains v. We refer to the set
of entities with a specific relationship r to v as a topo-

set, denoted by N (v, r). Each r ∈ R (except selfing) is
also associated with a reverse relationship, e.g., down-
streaming to up-streaming, denoted by r̄.

Note that in general when a fault occurs, a sequence
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Figure 3: Main architecture of Tar.

of events could be triggered at a specific entity, which
tend to follow certain statistical models (e.g., Markov
chain [18, 19]), which could be manually encoded based
on expert domain knowledge, or learned using tempo-
ral data mining techniques (e.g., [21]), with concrete
techniques orthogonal to the scope of this work; in this
paper, we consider such event sequences as meta-events,
encoded in the set E of known event types.

We consider finite sets of faults F (that may be un-
known, and the concrete faults considered in our im-
plementation is discussed in detail in Section 5), event
types E , and topological relationships R. We define
network signature as below.

Definition 1 (Network Signature). For a specific
fault type f ∈ F , its signature sig(f) is a series of tu-
ples 〈e, r, t, prob(e, r, t|f)〉, where e ∈ E, r ∈ R, t is a
discretized time measure, and prob(e, r, t|f) denotes the
probability of observing an event e at an affected node
with topological relationship r to the faulty node where
f occurs, with time delay t.

fault type relationship event

interface down
tunneling failed connection attempt

neighboring OSPF neighbor down
. . . . . .

Table 2: Signature example.

Example 3. Recall Example 2. We may have the signa-
ture for the fault “interface down” as in Table 2.

This definition is structurally intuitive to interpret in
that it simply encodes the association between a fault
and a set of symptoms; it is yet semantically rich in
that the encoded association includes both the tempo-
ral correlations of symptom events, and the topological
relationships among the entities that generate them.

3.2 High-Level Design
Conceptually, Tar entails three major phases (see

Figure 3): (1) signature extraction, abstracting network
signatures from the (possibly noisy) historical event data
and associated underlying topological information; (2)
indexing, organizing the network signatures and the topo-

logical information of targeted network into space effi-
cient indexing structures; and (3) signature matching,
performing root cause analysis by matching indexed sig-
natures against incoming event streams.

Signature extraction. The main input to this phase
is the (typically noisy) historical network-event data
and the associated network topology information, which
is expected to be comprehensive to cover a large number
of combinations of the variables (e.g., event type, topo-
logical relationship, time delay). Most network moni-
toring infrastructures today can typically provide such
datasets [2, 1]. By applying unsupervised learning tech-
niques (details in Section 4.1), Tar extracts the statis-
tical relationships among the set of relevant variables,
and encode them into a set of network signatures.

Indexing. Leveraging the learned network signatures
requires “compressing” them into indexing structures so
as to support fast lookup queries over spatio-temporal
patterns. Specifically, in the application of fault diag-
nosis, one needs to efficiently correlate symptom events
possibly caused by a common fault, a symptom-event-
to-root-cause lookup structure that encodes inverted sig-
natures is desired. Meanwhile, to determine the topo-
logical correlation amongst a set of events, the under-
lying network topology needs to be frequently queried.
Tar employs a set of novel topology indexing struc-
tures that support efficient spatial intersection queries
(details in Section 4.2).

Signature matching. Equipped with network signa-
tures and topology indices, one is now able to perform
scalable signature matching against high-volume moni-
toring event streams. Intuitively, the matching process
correlates topologically and temporally relevant events,
and reasons about the underlying root cause. We pro-
pose a novel signature matching tree structure to enable
fast fault localization (details in Section 4.3).

4. IMPLEMENTATION
In this section, we describe in detail the implementa-

tion issues of our signature-based fault diagnosis solu-
tion. Further, we discuss how to extend our model to
the case of multi-layer networks.

4.1 Signature Extraction
Before performing signature extraction, it is neces-

sary to prepare the training data from typically noisy
archive data. Here “noise” indicates events irrelevant to
faults (e.g., heartbeat messages) or events with impre-
cise timestamps. We achieve this in two steps: (1) ag-
gregate events into meta-events (a sequence of events at
a specific network entity caused by a single root cause)
by applying the temporal mining algorithm in [21], and
(2) separate meta-events caused by faults from those
triggered by regular network operations, based on their



occurrence frequency and periodicity. Intuitively, events
with extremely low frequency are usually the noise com-
ponents while over-frequent or periodical events typi-
cally correspond to regular network operations.

Let B denote the resulting training data. For clar-
ity of presentation, we assume that each event2 in B
is stored in the form (v, ev, tv) where v is the network
entity generating the event, ev ∈ E the event type, and
tv the timestamp of its occurrence.

The process of signature learning is divided into two
main phases, partitioning and extracting. In partition-
ing, we select a subset of the archive B, B′, such that
the events in B′ are organized into disjoint partitions
{B}, each corresponding to a common root cause with
high probability. We discard the rest events B \ B′ as
noise. In extracting, we summarize from each partition
B a candidate signature P , and cluster the set of can-
didate signatures {P} into the final set of signatures.
For clarity, we conceive a candidate signature P as 3-
dimensional matrix wherein each element P (e, r, t) rep-
resents the likelihood of observing event e at node with
relationship r to the faulty node with time delay t.

We assume a time window ω that specifies the maxi-
mum delay between observing the first and last events
triggered by a single fault. Also all the time measures
have been discretized, and all the timestamps have been
normalized relative to the corresponding time windows.

Algorithm 1: Signature Extraction
Input: event archive B, maximum window size ω

Output: set of network signatures
// partitioning

B′ ← ∅;1
for each subset B of B within ω do2

if cohe(B) > λ then continue;3

if B overlaps with B′ ∈ B′ then4
if cohe(B) ≥ cohe(B′) then continue;5

B′ ← B′ \ {B′} ∪ {B};6

// extracting

for each partition B ∈ B′ do7
{r∗

v}(v,ev)∈B = arg minrv |
T

(v,ev)∈B
N (v, rv)|;8

for each r ∈ R, e ∈ E, and t ∈ ω do9

P (e, r, t) =

P

(v,ev ,tv)∈B 1(r∗v=r̄,ev=e,tv=t)
P

(v′,e
v′ ,t

v′ )∈B
1(r∗

v′=r̄)
;

10

// determining number of faults
|F| = arg min|F| 2|θ| − 2 log[like({P}|θ)];11

apply K-means (K = |F|) clustering to {P};12
set the cluster centers as fault signatures;13

Algorithm 1 sketches our learning algorithm.
(i) In the event archive B, we examine the events

within each time-window ω as a partition B, i.e., the
events in the same partition are possibly triggered by
a single fault. We intend to narrow down the set of
candidate faulty nodes. We achieve this by leveraging
the following observation: for each node v appearing
in an event (v, ev) ∈ B, the faulty node must lie in

2In following, we assume that the meta-events are encode in
the set of known event types E , and do not further distin-
guish the terms “event” and “meta-event”.

one topo-set of v, N (v, rv) (with topological relation-
ship rv); hence, it must also appear in the non-empty
intersection of such topo-sets {N (v, rv)}. We consider
all such non-empty intersections, and pick the minimum
one as the candidate set. The intuition behind is the
minimum explanation principle: the smallest candidate
set is considered to provide the best explanation about
the fault. We can then measure the quality of B using
the size of this minimum candidate set, as formalized
in the metric of coherence:

cohe(B) = min
rv

| ∩(v,ev)∈B N (v, rv)|

s.t. ∩(v,ev)∈BN (v, rv) 6= ∅

We discard those partitions with coherence above a
threshold λ. If two selected partions overlap, we pick
the one with better quality (line 2-6).

(ii) In each selected partition B, for each involved
node v, one identifies the topological relationship r∗v
that leads to the minimum non-empty candidate set.
All the events {〈v, r∗v , ev, tv〉} in B are then used to com-
pute a potential signature P (line 8-10). Note that here
we simply use the frequency of tuples to compute P ,
while a prior distribution can be readily incorporated.

(iii) The number of fault types |F| (which is assumed
unknown) essentially controls the complexity of the sta-
tistical model. We apply the Akaike’s information cri-
terion [3] to select |F|.

Specifically, we assume that the candidate signatures
corresponding to a common fault follow a Gaussian dis-
tribution. The information criterion of a model is given
by: aic(θ) = 2|θ| - 2 log[like({P}|θ)], where |θ| is the
number of parameters to be estimated which captures
its complexity (i.e., expressiveness), and like({P}|θ) is
the likelihood of observing the set of candidate signa-
tures under the model (i.e., fitting to the data). A trade-
off is made between these two terms. The setting of |F|
leading to a minimum aic(θ) is considered optimal.

We apply K-means (with K = |F|) clustering algo-
rithm to the set {P}; the centers of the clusters are re-
garded as the signatures for the |F| faults (line 11-13).
Due to its sensitivity to the initial clustering centers, we
run the clustering algorithm multiple times with ran-
domly selected centers, and average over the results.

4.2 Indexing
Tar attempts to detect and localize faults as follows.

At each affected entity v observing event e at time t,
network-signatures are used to compute the probability
prob(f, r̄|e) (r̄ is the inverse relationship of r) that the
faulty entity incurred the fault f and has a topological
relationship r̄ to v. If this probability is greater than a
system threshold, an evidence 〈f, v, r̄, t〉 is formed, in-
dicating with high confidence that a faulty entity exists
among the set of entities with relationship r̄ to v. All
collected evidences within a time-window are correlated



to gradually narrow down the candidate faulty entity
set and the fault f .

Example 4. Recall Example 2. Assume in Figure 2
n3 observes event “OSPF neighbor down” while n4 ob-
serves event “failed connection attempt”. According to
the signature in Table 2, one can infer that the faulty
node lies in the topo-set with neighboring relationship
to n3 and in the topo-set with tunneling relationship to
n4, which uncovers n6 as the faulty node.

To facilitate signature-based fault diagnosis, Tar em-
ploys two indexing structures: index of signatures for
evidence computation, and index of network topologi-
cal dependency for evidence correlation.

Signature Index We propose an inverted signature
structure Is to support fast symptom-root-cause lookup,
by maintaining the association between symptom events
and possible faults. Recall that the signature of a fault
f is a series of tuples 〈e, r, t, prob(e, r, t|f)〉, where e,
r, and t represent a symptom event, a topological rela-
tionship, and time delay, respectively, and prob(e, r, t|f)
is the probability distribution of observing e at an en-
tity with relationship r to the faulty entity with delay
t. Here we temporarily ignore t, and adopt a marginal
version prob(e, r|f) , because the underlying root cause
is unknown, and the information of absolute time delay
is missing. We will later use the relative time difference
between symptom events to infer potential fault.

Corresponding to each signature, we create an entry
in the index Is: 〈f, r̄, prob(f, r̄|e)〉, where r̄ is the in-
verse relationship of r, and prob(f, r̄|e) is the posterior
probability that f occurs at an entity with topological
relationship r̄ to a given entity observing e. Its compu-
tation is given by:

prob(f, r̄|e) =
prob(e, r|f) · prob(f)

∑
f ′∈F

∑
r′∈R prob(e, r′|f ′) · prob(f ′)

where the prior probability of the occurrence of fault
f , prob(f), can be derived from the overall statistics of
historical event data. At an entity v observing event e,
for each fault f ∈ F , we select the set of topological
relationships Rv that satisfy prob(f, r̄|e) above system
threshold for r̄ ∈ Rv. We term such a tuple 〈f, v, t,Rv〉
as an evidence.

Topology Index The incorporation of network topo-
logical information significantly boosts the precision of
fault diagnosis, by correlating events according to their
underlying topological relationships. Such improvement,
however, requires space-efficient indexing structures that
support fast retrieval of topological relationships among
network entities.

As will be shown shortly, a key operation heavily in-
volved in fault localization is computing the intersec-
tion of two topo-sets, e.g., joining the down-streaming
neighbors of one entity and the direct neighbors of an-

T f2
s

. . .

I1

I2 I3
ρ(L)

ρ(I2) ρ(I3)

T f3
sT f1

s

L {〈v, t,N (v,Rv)〉}

Figure 4: Signature matching tree Ts.

other; hence, for each indexing structure, we are par-
ticularly interested in minimizing the cost of retrieving
(constructing) a topo-set from it. Due to space limi-
tations, we focus our discussion on building indices for
up/down-streaming relationships.

We construct our index based on the following two
observations: (1) the shortest path routes from the sink
to all the entities form a spanning tree rooted at the
sink, i.e., a tree cover of the network; (2) the diameter
φ of a typical management domain (as observed in four
large enterprise networks shown in Figure 1) is about
3-7 hops. Therefore, the set of up-streaming neighbors
(utmost φ) of an entity can be directly cached. We
then traverse the routing tree in level order (breadth-
first), assigning each entity a traversal-order number.
The down-streaming neighbors of a given entity u can
be summarized as φ intervals, {[li, ri]}

φ
i=1, where li (ri)

denotes the order number of its left-most (right-most)
descendent on the ith level below u. Clearly, this struc-
ture achieves retrieval cost of O(φ), since the neighbors
on the same level can be retrieved in one consecutive
chunk, at the storage cost of O(φ) for each entity.

4.3 Signature Matching
With the help of topology indices, in each evidence

〈f, v, t,Rv〉, (v,Rv) can be replaced with the union of
the corresponding topo-sets

⋃
r∈Rv

N(v, r) (N(v,Rv) for
short). We consider two evidences 〈f, t,N(u,Ru)〉 and
〈f ′, t′,N(v,Rv)〉 (possibly) correlated if (1) f = f ′, (2)
the time of their occurrences is within a short window
|t − t′| ≤ ω, and (3) N(u,Ru) ∩ N(v,Rv) 6= ∅. This
concept can be generalized to multiple evidences.

While checking conditions (1) and (2) is fairly straight-
forward, computing the intersection of N(u,Ru) and
N(v,Rv) is costly. The complexity is O(min{|N(u,Ru)|,
|N(v,Rv)|}), even if both sets are stored in a hashing-
table structure. Moreover, following the näıve pairwise
comparison paradigm, each incoming evidence would be
compared with all existing ones to detect relevance, and
thus scales poorly with the event-stream rate.

Signature Matching Tree We devise a novel signa-
ture matching tree Ts that enables efficient correlation
of evidences. Our design follows the one-pass clustering
philosophy [11], which endows Ts with high throughput
and scalability. Figure 4 shows the chief structure of



Ts. It is a hierarchical structure, with the highest level
containing |F| buckets, each corresponding to one fault
type f ∈ F . Within each bucket is a height-balanced
tree T f

s , into which evidences of the form 〈f, t,N(v,Rv)〉
are inserted. Each leaf of T f

s corresponds to a cluster
of relevant evidences; and each non-leaf node represents
the union of all the clusters in its subtree.

For each leaf node (cluster) L containing a set of evi-
dences, we maintain the intersection of their topo-sets,
called its aggregation, ρ(L) =

⋂
〈f,t,N(v,Rv)〉∈L N(v,Rv),

which corresponds to the candidate faulty entity set;
while for each non-leaf node (super cluster) I, we main-
tain the union of the aggregations of all the leaves in its
subtree, ρ(I) =

⋃
L∈I ρ(L).

The signature matching tree Ts supports two basic
operations, insertion and deletion. In insertion, an ar-
riving evidence 〈f, t,N(v,Rv)〉 recursively descends down
T f

s by testing N(v, f,Rv)∩ ρ(I) for each non-leaf I en-
countered, until being clustered into an appropriate leaf
L that can absorb it. If no such leaf exists, a new one
is created which solely contains this evidence; it then
updates the aggregations of the nodes on the path from
the leaf to the root of T f

s . Those evidences with times-
tamps out of the current time window are considered
as expired. In deletion, expired evidences are removed
from the tree, and the aggregations of the nodes on the
paths from the affected leaves to the root are updated
in a bottom-up manner.

4.4 Extension
Now we briefly discuss how to extend our model to

support multi-layer networks. Typically, in a complex
network (e.g., enterprise networks), the monitoring data
is collected at different layers within the protocol stack,
e.g., data may be available from networks entities at L1

layer and L3 layer. Different layers tend to expose fairly
different connectivity structures and relationships. It is
challenging to line up such heterogenous topology in an
consistent manner.

In our current implementation, we employ the con-
cept of composite relationship. Specifically, for two net-
work entities u and v at two different layers, we may
consider u × v as a composite entity if there exists a
mapping u

m
−→ v between them, e.g., a layer L3 entity

and its layer L1 counterpart. Now consider two rela-
tionships u′

r1−→ u and v
r2−→ v′ with u′ at the same layer

as u and v′ at the same layer as v. We define the com-

posite relationship between u′ and v′ as u′
r1,m,r2
−−−−−→ v′.

We can then apply the concept of network signature as
described above.

The drawback of this approach is the increased vari-
able space, which may impose prohibitive overhead on
both learning and applying the network signature model.
For two layers with relationship types R1 and R2, the
cardinality of the set of composite relationships is typ-

attribute description

IPAddress
address of the network entity
generating the event

PollerIPAddress address of the poller/monitor
Event-count sequence number of the event
generic-trap SNMP trap ID
specific-trap enterprise specific SNMP trap ID

Raw Capture Timestamp timestamp of the trap message

Table 3: Attributes of network event.

ically |R1||R2|. Note that, however, the combinatorial
complexity may be largely reduced by domain expertise,
since many composite relationships may be invalid.

5. EMPIRICAL EVALUATION
This section presents an empirical evaluation of the

efficacy of Tar in network fault diagnosis. The experi-
ments are specifically designed to center around the fol-
lowing metrics: (1) the descriptive power of the network
signature model in capturing real network faults; (2) the
effectiveness of the learning algorithm in extracting the
network signatures from historical data; (3) the scalabil-
ity of Tar in detecting and localizing network faults fac-
ing high-volume monitoring data streams; (4) its fault
predictive power by exploiting partial/incremental fault
signature matching; and (5) its robustness against miss-
ing symptom events (e.g., due to packet losses in SNMP
messages transported over UDP, or incomplete moni-
toring caused by configuration errors, etc.) and errors
in the information regarding underlying network topol-
ogy (e.g., due to the staleness in the discovered network
topology). We start with describing the datasets.

5.1 Dataset
Our experiments mainly used two datasets from real-

life network management systems. The first dataset is
an archive of 2.4 million SNMP trap messages collected
from a large enterprise network (spanning 7 ASes, 32
IGP networks, 871 subnets, 1,268 VPN tunnels, 2,068
main nodes, 18,747 interfaces, and 192,000 network en-
tities) over several weeks in 2007. Event attributes of
interest to us are listed in Table 3. The second dataset
is a real European backbone network consisting of 2,383
network nodes (spanning 7 countries, 11 Ases, and over
100,000 entities). Based on its topology, we generate a
synthetic monitoring data stream (with tunable failure
rates) to quantify the efficacy and scalability of Tar.
While the real event dataset collected in 2007 indicates
event bursts (events arriving within a extremely short
time window) of sizes up to 12,000 events, the syn-
thetic dataset (generated by artificially increasing fail-
ure rates) includes event bursts of sizes up to 36,000
events. Our core libraries were implemented using Java.
All experiments were conducted on a Linux workstation
with modest computation power, running 1.6 GHz Pen-
tium IV and 1G memory.

5.2 Descriptive Power



trap id description

28 bsnlpsecEspAuthFailureTrap
79 bsnAPRegulatoryDomainMismatch

102 bsnAPBigNavDosAttack
104 bsnAPContainedAsARogue
124 bsnAPIfDown
130 bsnAPInterferenceProfileFailed
230 bsnTemperatureSensorFailure
378 csiErrorTrap

Table 4: SNMP trap ids (bsn - BackwardSequenceNum-
ber, csi - Cisco SSL VPN Client Interface).

(network entity, event) set support

(x.y.11.3, 124) (x.y.1.10, 124) 0.87
(x.y.8.29, 124) (x.y.9.163, 230) 0.86
(x.y.8.29, 124) (x.y.9.163, 230)

0.78
(x.y.15.1, 378)
(x.y.9.33, 103) (x.y.15.1, 378)

0.75
(x.y.1.10, 230)
(x.y.9.163, 104) (x.y.9.163, 230)

0.61
(x.y.15.1, 378) (x.y.107.1, 102)

Table 5: Topology-agnostic signatures (only masked en-
tity IP-addresses and trap message IDs are shown).

We contrast our fault signature model against a code-
book based model [25], which we refer to as the topology-
agnostic model. The topology-agnostic signature for a
network fault is defined as a set of tuples of the form
(network entity, symptom event), where the network en-
tity is the concrete network node generating the event
and the set of symptom events are shown in Table ??.
A sample of topology-agnostic signature is show in Ta-
ble 5. The co-occurrence of the tuples of a signature
in the event stream indicates the potential occurrence
of the corresponding fault. Note that such signatures
are coupled with concrete network entities, and are thus
inherently deterministic in that the correlation of symp-
tom events are explicitly encoded.

To make the comparison accurate, we apply frequent
pattern mining techniques to learn both topology-aware
and -agnostic signatures. From both synthetic and real
event datasets, we extracted a trace of 40,000 annotated
events (root-cause events are marked with special tags)
with 20,000 events used for extracting network signa-
tures and the rest for measuring the efficacy of both
signature models.

In signature mining, we examine events in a narrow
time window around an annotated fault event, and use
the well-known apriori algorithm to identify event sets
with high co-occurrence frequency across such time win-
dows. This approach extracts event sets that are ob-
served with high support when a fault occurs in the

dataset # signatures time (mins)

real 44 (4,518) 3 (10)
synthetic 92 (12,645) 6 (21)

dataset precision recall

real 0.92 (0.82) 0.91 (0.83)
synthetic 0.88 (0.68) 0.87 (0.70)

Table 6: Comparison of topology-aware and -agnostic
signature models (numbers for topology-agnostic model
are within braces).
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400 450 500 550 600 650 700o
c
c
u

rr
e

n
c
e

meta-event {28, 102, 104, 130} 

400 450 500 550 600 650 700

timestamp (ms)o
c
c
u

rr
e

n
c
e

meta−event {79, 124} 

Figure 6: Occurrences of two sample meta events.

network. The topology-agnostic signature directly en-
codes the association between frequent symptom event
sets and concrete network entities wherein these events
occur; in contrast, our network signature abstracts such
associations based on topological relationships among
network entities, rather than concrete entities.

We compare these two models in terms of signature
size and execution time, with results shown in the up-
per table of Table 6. Evidently, topology-aware model
generates much more concise signatures than topology-
agnostic model, with the size of signature set two or-
ders of magnitude smaller than the latter on both real
and synthetic datasets. This is mainly attributed to
the nature of topology-aware signature: it may encode
multiple topology-agnostic signature instances into one
signature, given that they reflect the same correlation
on the topological relationship level. Also, it is noticed
that topology-aware signature leads to much higher effi-
ciency of signature extraction; this is explained by that
the introduction of topology-awareness significantly re-
duces the search space.

We further apply the extracted signatures to diag-
nose (classify) the faulty events in the test dataset,
with accuracy (precision and recall) shown in the lower
table of Table 6. Evidently, topology-aware signature
demonstrates better descriptive power in capturing the
essential characteristics of network faults. Note that,
however, because of its strong dependency on topologi-
cal information, topology-aware signature is inherently
faced with the challenge of dealing with errors in the
topological information (e.g., missing or stale topologi-
cal information). We will discuss the robustness of Tar
against such errors shortly.

5.3 Learning Effectiveness
We evaluate the effectiveness of the data prepara-

tion phase of our learning algorithm. In data prepa-



ration, we use frequency and periodicity as two criteria
to distinguish fault-caused meta events from the rest.
The normalized histogram of meta-events with respect
to frequency (in logarithmic scale) is depicted in the
left plot of Figure 5, which approximately follows a
power law distribution. It is observe that more than
60% meta-events have fairly low frequency, e.g., below
5, which, as we confirmed by examining the definition of
trap ids, are mainly caused by infrequent network oper-
ations, e.g., the event set {3} represents “the cisco Ne-
tReg server has started on the host from which this noti-
fication is sent”, or certain non-recurrent faults, which
are of modest interest for our purposes of leveraging
existing diagnosis efforts. Meanwhile, the meta-events
with significantly higher support than others are typi-
cally due to regular network operations, e.g., the event
set {102, 104} which appears with support 348 indi-
cates “data from the remote side is available for the
TDM channel”.

The distribution of the periodicity of meta-events is
illustrated in the right plot of Figure 5. Observe that
most of the meta-events demonstrate low deviation of
occurrence intervals, i.e., they are resulted from normal
network operations. We randomly selected two meta-
events {28, 102, 104, 130} and {79, 124} with period-
icity 0.43, and 1.09 (lower periodicity ⇒ more regular),
respectively, and examined their implications. Figure 6
compares their occurrences. From the descriptions of
the traps, it is confirmed that the meta-event {79, 124}
indicates potential network faults, while the meta-event
{28, 102, 104, 130} is caused by regular network oper-
ations, e.g., link mode sniffing.

We then evaluate the effectiveness of the signature
extraction component using the meta-event size his-
togram. More specifically, after applying the unsuper-
vised learning algorithm over the event dataset, by run-
ning Monte Carlo simulation, we derived the histogram
of meta-event size from the learned signatures, and com-
pared it against that extracted from the real data.

The upper plot of Figure 7 illustrates the comparison
of these two histograms (normalization is applied). It is
clear that the distribution of the model-generated data
fits that of the underlying data fairly tightly. Further-
more, we analyzed the distribution of individual events
for real data and model generated data, respectively. As
shown in the lower plot of Figure 7, these two distribu-
tions demonstrate strong consistency, which empirically
proves that our learning model can capture the essential
features of the real data.

5.4 Scalability
Next, we proceed to evaluating the scalability of Tar

against the state-of-the-art approaches used by fault di-
agnosis engines in widely deployed NMSes. These ap-
proaches follow a pairwise event correlation paradigm:
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Figure 7: Histograms of size of meta events and indi-
vidual events in real and model generated data.

the engine maintains a cache of events seen in the re-
cent past. A new event is compared (pairwise) against
all the events in the cache to determine if it can suppress
one or more dependent events in the cache or if it can
be suppressed by any one in the cache; pairwise com-
parisons terminate when the new event gets suppressed.
In such approaches, all symptom events will be eventu-
ally suppressed by the root-cause event (also known as
the failure event). Indeed after processing all the events
in an event burst, the only unsuppressed event in the
cache has to be the root-cause event. Hence, one can
identify root-cause events (and thus diagnose faults) by
filtering unsuppressed events in the cache. Diagnosed
faults are ultimately funneled to network operators for
corrective actions.

However, the pairwise correlation paradigm suffers
from the following drawbacks: (1) the complexity of
comparison grows quadratic in the size of event burst,
(2) caching all the unsuppressed events results in mem-
ory bounded operations (especially, since event burst
sizes of over 10,000 events per second are not uncom-
mon), and (3) it lacks sufficient predictive capabilities
and robustness to missing events (especially, if the event
corresponding to the root cause is missing). More re-
cently, [4] proposed a divide-and-conquer approach to
enhance the scalability of the pairwise event correlation
approach by partitioning a large network into multiple
management domains, each of which are independently
monitored. They proposed a hierarchical event correla-
tion architecture wherein, event correlation is first per-
formed within each management domain; then, a se-
lected subset of events is sent for cross-domain correla-
tion to a super root-cause-analysis engine. In compari-
son, we use CRCA to denote (pairwise) centralized root
cause analysis, and DRCA the distributed version of
the same. Furthermore, we consider a simplified version
of CRCA that ignores down-stream correlation (which
captures the most common types of cascading faults,
and thus requires network-wide event correlation in the
absence of down-stream topology indices).
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Figure 8: Scalability of multiple fault diagnosis approaches with respect to event burst size.
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Figure 9: Prediction accuracy of Tar with respect to
number of observed symptoms (synthetic dataset), and
time to fault occurrence (real dataset).

Figures 8 presents the fault diagnosis response time
of the multiple correlation approaches as a function of
event burst size, using both real and synthetic event
datasets. Figures show the ability of signature-based
correlation approach to scale linearly with burst size;
on the other hand, the pairwise event correlation ap-
proach is of quadratic complexity, and does not scale
well to large-scale networks featuring high-volume event
streams. It is noticed that among them, DRCA demon-
strates better scalability than its centralized counter-
parts; however, it tends to pose much stricter computa-
tion power requirement than Tar, e.g., the memory re-
quired by cross-domain correlation easily hits the bound
of the test platform (which causes the missing numbers
for DRCA on the synthetic dataset).

Nevertheless, we note that the pairwise event correla-
tion approach supports more generic event correlation
than Tar, which only supports topological event corre-
lation. Indeed in the case of network events, an event e1

occurring on node n1 and an event e2 occurring on node
n2 are correlated only if the nodes n1 and n2 are topo-
logically related. Hence, all event correlation rules used
in the context of IP network could be readily translated
into network signatures of Tar.

5.5 Predictive Power
For large communication networks, it is a desired fea-

ture of a fault diagnosis engine to raise certain warning
ahead of the actual occurrence of the fault, i.e., before
fully observing the symptom events, such that the net-
work operators can quickly direct corrective efforts to
the fault before its full-scale cascading.

Figures 9 shows the predictive capability of signature-
based diagnosis approach. These results have been av-
eraged over 121 real faults and 1,000 synthetic faults, re-
spectively. Using a signature matching based approach
allows us to partially match a network-event stream
with a fault signature and predict the fault even before
the failure event is actually observed (or received) by
NMS. In our experiments with both synthetic and real
event datasets, we ensured that the root-cause event (or
the failure event) was withheld from the fault diagnosis
engine, until after the engine predicts the fault.

Using synthetic event dataset, the left plot of Figure 9
shows the accuracy of fault prediction with respect to
the number of observed symptom events. For a total
set of more than 128 symptom events, observing only
15 symptom events gives prediction accuracy close to
1. Using real event dataset, the right plot of Figure 9
shows the fault prediction accuracy as a function of the
time ahead of receiving (or observing) the failure event.
The fitting curve shows that the predictive power grows
exponentially as approaching the failure occurrence. In
most cases (99.99%), it is possible to diagnose the fault
accurately after the failure event is received; however, it
is possible to predict failure about 30 seconds and one
minute before the actual failure event is observed with
accuracy 84% and 66%, respectively.

Predicting failures enables swifter recovery actions,
and thus reduces SLA (service level agreement) viola-
tion costs (e.g., customer VPN tunnel failures). In such
cases, predicting a failure event a couple of seconds in
advance can help us reconfigure MPLS paths between
two customer edge routers that are the end points of
a (probably) faulty VPN tunnel. We also note that
predicting a failure a minute before the actual failure
is observed may be insufficient for other classes of fail-
ures (e.g., BGP route failures due to misconfiguration
of BGP policies, whose ripple effects may propagate all
over the network creating route stabilization problems).

The ability to withhold the failure event and yet di-
agnose the fault clearly shows that Tar can tolerate
missing events (even if the missing event were the fail-
ure event itself). A pairwise event correlation approach
that suppresses symptom events only after observing
the suppressing event cannot tolerate missing root-cause



0  20 40 60 80 100
0  

0.2

0.4

0.6

0.8

1  

missing symptom events (%)

d
ia

g
n

o
s
is

 a
c
c
u

ra
c
y

(synthetic dataset)

0  20 40 60 80 100
0  

0.2

0.4

0.6

0.8

1  

missing symptom events (%)

(real dataset)

Figure 10: Fault diagnosis accuracy of Tar with respect
to varying amount of missing symptom events.

events. In the absence of the root-cause event, several
symptom events will be left unsuppressed; eventually
such symptom events will (incorrectly) be funneled as
failure events to network operators.

5.6 Error Tolerance
Above we have shown partially the robustness of Tar

against missing symptom events. In this set of con-
trolled experiments, we further explore in this direction.
By varying the amount of withheld symptom events,
we simulate random packet losses. The efficacy of fault
diagnosis by Tar with respect to the amount of miss-
ing symptoms (averaged over 121 real faults and 1,000
synthetic faults) is shown in Figure 10. On both syn-
thetic and real event datasets, Tar achieves an accu-
racy above 0.75, under missing 40% percent of symptom
events. The result may seem at first glance in conflict
with that in Figure 9, where Tar demonstrates predic-
tion accuracy close to 1 after observing only 11.7% of
symptoms. However, keep in mind that the symptom
events arriving early at NMS tend to be topologically
close to the faulty entity, thus bearing more information
for fault diagnosis; while in this set of experiment, we
simulate random package losses, irrespective of their ar-
rival order (i.e., the information carried by the events),
which explains the seeming inconsistency.

Figure 11 shows the efficacy of fault diagnosis in fac-
ing errors in the network topology information. We con-
sider two models of topological errors, one by randomly
modifying (adding or deleting) links in the network, and
the other by modifying links according to a preferential
attachment model [6]. As per the preferential attach-
ment model, new links are likely to be added/deleted
between a high degree node and a low degree node (de-
gree of a node denotes the number of its neighbors). In
such a model (which more accurately reflects the growth
of a network and thus attributes to errors in network
topology information [24]), updated links typically af-
fect connectivity to the nodes that are in the periphery
of the network, rather than the core nodes in the net-
work. Such added/deleted network links tend to only
locally affect network relationships; meanwhile, random
addition/deletion of links may affect network relation-
ships at the scale of the entire network itself. Conse-
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Figure 11: Diagnosis accuracy versus errors in topolog-
ical information (introduced via changing links accord-
ing to random or Preferential Attachment model).

quently, Tar performs much better when topology er-
rors are introduced as per the preferential attachment
model than selected randomly.

6. RELATED WORK
Network management techniques have been evolving

rapidly with advance in monitoring infrastructures, and
gradual diversification of monitoring context.

Due to its wide spread availability, low-level metric
data (e.g., network traffic or routing data) has been
providing valuable information for network operators to
monitor underlying network status. A plethora of work
has been focused on static analysis of low-level metric
data for disruption detection and trouble shooting in
communication networks. Examples include analyzing
BGP update messages using clustering to detect net-
work disruption [10, 22], applying multivariate analysis
to routing data to model normal network traffic and de-
tect deviations [15, 12], and using wavelet-based clus-
tering to detect abnormal routing behavior in routing
data [27]. Moreover, disruption detection using histor-
ical metric data has also been an important topic for
computing systems in general [8].

Many of today’s network monitoring infrastructures
can provide high-level, descriptive observations or symp-
toms (events). A line of research efforts have been ded-
icated to fault diagnosis from the set of observed symp-
toms. Existing solutions can be categorized roughly as
expert-system or graph-theoretic techniques. The first
category attempts to imitate the knowledge of domain
experts, with examples including rule-based [23], cased-
based [16], and model-based systems [19]; the second
category relies on a graphical model of the system that
describes the propagation for each specific fault, with
examples as dependency graph [14], codebook [25], and
belief-network [20]. The drawbacks of these techniques
lie in the requirement for accurate dependency informa-
tion amongst network entities (usually not available for
large-scale enterprise networks), and the cost of fault
inference (scale poorly with network size and complex-
ity). In contrast, Tar only requires elementary topo-
logical information and network signatures to support



online fault diagnosis over high-volume event streams.
With the emergence of more complex network con-

texts (e.g., information network, social networks, etc.),
network management is exposed to monitoring data
with increasingly richer semantics (e.g., email, social
media, etc.). It poses great challenge to understand
the information conveyed by monitoring data within the
context of underlying network and yet, offers valuable
insight into global network phenomena. For example,
SybilGuard [26] was proposed to leverage underlying
social network structures in interpreting nodes’ voting
messages, thus defending against Sybil attacks. We con-
sider Tar as an initial effort towards understanding and
modeling the interplay between monitoring data and
underlying network context. Nonetheless, the network
context setting in Tar is still fairly limited, e.g., we only
consider topological relationships among network enti-
ties, and focus on pairwise interactions among them. It
might be part of a temporary solution until more com-
prehensive models are proposed, and it might inform
the design of these models.

7. CONCLUSION
This work advances the state-of-the-art in network

monitoring data analysis by presenting Tar, a general
framework of learning, indexing, and identifying topo-
logical and temporal correlation existing in network-
event data, based on a novel class of network signatures.
We present efficient learning algorithms to extract such
signatures from noisy historical event data, and with the
help of novel indexing structures, we show how to per-
form efficient, online signature matching against high-
volume event streams. While focusing on topological-
temporal patterns only is unlikely to capture the myriad
semantic structures existing in network-event data, we
show that it is a powerful primitive to support a range of
applications. Our experiments of deploying Tar with
a large-scale testbed NMS to perform fault diagnosis
show that Tar is able to perform scalable, yet robust
root cause analysis.
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