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Abstract

This paper presents SCALE, a fully automated transactional clustering framework. The SCALE de-

sign highlights three unique features. First, we introduce the concept of Weighted Coverage Density as a

categorical similarity measure for efficient clustering of transactional datasets. The concept of weighted

coverage density is intuitive and it allows the weight of each item in a cluster to be changed dynamically

according to the occurrences of items. Second, we develop the weighted coverage density measure based

clustering algorithm, a fast, memory-efficient, and scalable clustering algorithm for analyzing transactional

data. Third, we introduce two clustering validation metrics and show that these domain specific clustering

evaluation metrics are critical to capture the transactional semantics in clustering analysis. Our SCALE

framework combines the weighted coverage density measure for clustering over a sample dataset with self-

configuring methods. These self-configuring methods can automatically tune the two important parameters

of our clustering algorithms: (1) the candidates of the best numberK of clusters; and (2) the application

of two domain-specific cluster validity measures to find the best result from the set of clustering results.

We have conducted extensive experimental evaluation using both synthetic and real datasets and our re-

sults show that the weighted coverage density approach powered by the SCALE framework can efficiently

generate high quality clustering results in a fully automated manner.
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1 Introduction

Data clustering is well-known as an important tool in data analysis. It uses data similarity measures to partition

a large dataset into a set of disjoint data clusters such that data points within the clusters are close to each other

and the data points from different clusters are dissimilar from each other in terms of the similarity measure

used. It is widely recognized that numerical data clustering differs from categorical data clustering in terms

of the types of data similarity measures used. Transactional data is a kind of special categorical data, and

typical examples are market basket data, web usage data, customer profiles, patient symptoms records, and

image features. Transactional data are generated by many applications from areas, such as retail industry, e-

commerce, healthcare, CRM, and so forth. The volume of transactional data is usually large. Therefore, there

are great demands for fast and yet high-quality algorithms for clustering large scale transactional datasets.

A transactional dataset consists ofN transactions, each of which contains varying number ofitems. For ex-

ample,t1 = {milk, bread, beer} andt2 = {milk, bread} are three-item transaction and two-item transaction

respectively. A transactional dataset can be transformed to a traditional categorical dataset (a row-by-column

Boolean table) by treating each item as an attribute and each transaction as a row. Although generic categorical

clustering algorithms [5, 11, 6, 15, 14, 16, 20, 22] can be applied to the transformed Boolean dataset, the two

key features of such transformed dataset: large volume and high dimensionality, make the existing algorithms

inefficient to process the transformed data. For instance, a market basket dataset may contain millions of trans-

actions and thousands of items, while each transaction usually contains about tens of items. The transformation

to Boolean data increases the dimensionality from tens to thousands, which poses significant challenge to most

existing categorical clustering algorithms in terms of efficiency and clustering quality.

Recently, a number of algorithms have been developed for clustering transactional data by utilizing specific

features of transactional data, such as LargeItem [29], CLOPE [32], and CCCD [31]. However, all of the

existing proposals suffer from one obvious drawback. All proposed clustering algorithms require users to

manually tune at least one or two parameters of the clustering algorithms in order to determine the number of

clusters to be used by each run of the algorithm, and to find the best clustering result. For example, LargeItem

[29] needs to set the supportθ and the weightw, CLOPE [32] has a repulsion parameterr, and CCCD [31] has

a parameterMMCD as threshold on clusters merging. Unfortunately, the settings of all these parameters are

manually executed and are different from dataset to dataset, making the tuning of these parameters extremely

hard. No existing proposals, to the best of our knowledge, have offered general guideline for adequately setting

and tuning these parameters.

In addition, there lacks of cluster validation methods to evaluate the quality of transactional clustering results.

Because clustering is an unsupervised procedure, cluster validation is an important step to cluster analysis.
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Some generic measures or the interactive visualization method [10] have been developed for clustering numer-

ical data based on statistical and geometrical properties [18]. Paper [24] proposes seeing clustering results as

nodes in a graph, which opens the possibility of applying graph and lattice theory to compare clustering results.

However, enumerating all the possible clusterings is a hard task for clustering large datasets. Due to the lack of

meaningful pair-wise distance function, entropy-based measure has been widely used as a generic measure for

categorical clustering [6, 22, 11]. However, such general metrics may not be effective as far as specific types

of datasets are concerned, such as transactional data. It is recognized that meaningful domain-specific qual-

ity measures are more interesting [21, 18]. Surprisingly, very few of the existing transactional data clustering

algorithms mentioned the clustering validation measure in terms of mining transactions.

In this paper we present a fast, memory-saving, and scalable clustering algorithm that can efficiently handle

large transactional datasets without resorting to manual parameter settings. Our approach is based on two

unique design ideas. First, we introduce the concept of Weighted Coverage Density (WCD) as intuitive cate-

gorical similarity measure for efficient clustering of transactional datasets. The WCD is an improved measure

of Coverage Density (CD) [31] that uses the filled cell percentage on a 2D grid graph to measure the compact-

ness of a group of data. The motivation of using weighted coverage density as our domain-specific clustering

criterion is based on the observation that association rules mining over transactional data is inherently related

to density-based data clustering [19]. Thus we define the weighted coverage density based on the concept of

frequent itemsets [3]. Second, we develop two transactional-data-specific evaluation measures based on the

concepts of large items [29] and coverage density respectively. Large Item Size Ratio (LISR) uses the percent-

age of large items in the clustering result to evaluate the clustering quality. Average pair-clusters Merging Index

(AMI), applies coverage density to indicate the structural difference between clusters.

We design and develop a fully automated transactional clustering framework SCALE, and implement the

weighted coverage density measure based clustering algorithm and the two clustering validity metrics within

SCALE. The SCALE framework performs the transactional data clustering in four steps, and can handle trans-

actional datasets of small, medium, or large in size. In the first step it uses sampling to handle large transactional

dataset, and then performs clustering structure assessment step to generate the candidate best number of clusters

based on sample datasets. The clustering step uses the WCD measure based clustering algorithm to perform

the initial cluster assignment and maximize the WCD measure through the iterative clustering refinement, until

the WCD of the clustering result is not changed or the change is negligibly small. A small number of candidate

clustering results are generated at the end of the clustering step. In the domain-specific evaluation step, we

apply the two domain-specific measures (AMI and LISR) to evaluate the clustering quality of the candidate

results produced and select the best one. We have conducted experimental evaluation using both synthetic and

real datasets. Our results show that the weighted coverage density approach powered by the SCALE framework
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can generate high quality clustering results in an efficient and fully automated manner.

The rest of the paper is organized as follows. Section 2 gives an overview of the SCALE framework. Section

3 details the definitions of key concepts used in our clustering algorithm, the algorithm description and com-

plexity analysis. The two measures AMI and LISR for clustering results evaluation are presented in Section 4.

Our initial experimental evaluation results are reported in Section 5. We briefly introduce the related work in

Section 6 and summarize our contributions in Section 7.

2 Overview of the SCALE Framework

We briefly describe the design of SCALE , a fully automated transactional clustering framework, before we

discuss in detail the design and implementation of our weighted coverage density (WCD) measure based clus-

tering algorithm and the two transactional-data-specific clustering validity metrics. The SCALE framework is

designed to perform the transactional data clustering in four steps as shown in Figure 1.
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Figure 1:The SCALE framework

SCALE uses the sampling step to handle large transactional dataset. Standard sampling techniques are used in

the sampling step to generate some sample datasets from the entire large dataset. The framework assumes the

primary clustering structure (with small number of large clusters) is approximately preserved with appropriate

sample size.

In the clustering structure assessment step, SCALE determines the candidates of significant clustering structure
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and generates the candidate cluster numbers based on sample datasets. In our prototype implementation, the

candidates of critical clustering structure are recommended by the Best K method BKPlot developed at Georgia

Tech [11]. BKPlot method studies the entropy difference between the optimal clustering structures with varying

K and reports only those Ks where the clustering structure changes dramatically between two neighboring

optimal clustering schemes as the candidate best Ks, which greatly reduces the search on parameter space. In

the SCALE prototype, we use a hierarchical algorithm proposed in [11] to generate high-quality approximate

BKPlots, which can capture the candidate best Ks with small errors. The algorithm also generates a hierarchical

clustering tree, where the cluster seeds can be found at different Ks. The clustering structure assessment step

outputs the best Ks and the cluster seeds at the best Ks to the clustering step.

The clustering step applies the WCD measure based clustering algorithm to perform initial cluster assignment.

The initial assessment result is then used to guide the clustering over the entire dataset in an iterative manner

until no transaction is moved from one cluster to another in one pass with respect to maximizing WCD. At the

end of iterative assignment refinement, a small number of candidate clustering results are generated. Now we

use the domain-specific measures (AMI and LISR) to evaluate the clustering quality of the candidate results

produced in the clustering step and select the best one.

3 WCD Clustering

In this section, we present the WCD measure based clustering algorithm for transactional data. The key design

idea of the algorithm is the definition of the “Weighted Coverage Density” based clustering criterion, which

tries to preserve as many frequent items as possible within clusters and controls the items overlapping between

clusters implicitly.

We first introduce the concept of Coverage Density (CD) and Weighted Coverage Density (WCD) as intra-

cluster similarity measures. The coverage density measure approximates the naive uniform item distribution

in the clusters and is primarily used to describe the difference between item distributions, while the weighted

coverage density measure describes the frequent-itemset preferred item distribution in the clusters and is used

in clustering to preserve more frequent itemsets. We then compare CD and WCD based on their connection

to statistical and information theoretic methods. Finally, we define the WCD measure based cluster criterion,

and present an overview of the WCD measure based clustering algorithm, and a complexity analysis of the

clustering algorithm. The WCD clustering algorithm takes a transactional dataset as its input and scans through

the entire dataset and partitions transactions in an iterative process to maximize the overallWCDcriterion.
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3.1 Notations

We first define the notations of transactional dataset and transactional clustering result used in this paper. A

transactional datasetD of sizeN is defined as follows. LetI = {I1, I2, . . . , Im} be a set of items,D be a

set ofN transactions, where transactiontj (1 ≤ j ≤ N ) is a set of itemstj = {Ij1, Ij2, . . . , Ijl}, |tj | = l,

such thattj ⊆ I. A transaction clustering resultCK is a partition ofD, denoted byC1, C2, . . . , CK , where

C1
⋃ · · ·⋃ CK = D, Ci 6= φ,Ci

⋂
Cj = φ, i 6= j.

3.2 Intra-cluster Similarity Measures

In this section we illustrate the concept of Coverage Density (CD) and the concept of Weighted Coverage

Density (WCD) as intra-cluster similarity measures. To provide an intuitive illustration of our development of

these concepts, let us map the transactions ofD onto a 2D grid graph. Let the horizontal axis stand for items

and the vertical axis stand for the transaction IDs, and each filled cell(i, j) represents that the itemi is in the

transactionj. For example, a simple transactional dataset{abcd, bcd, ac, de, def} can be visualized in Figure

2.
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Figure 2:An example 2D grid graph

If we look at the filled area in the graph carefully, two naturally formed clusters appear, which are{abcd, bcd,

ac} and{de, def} indicated by two rectangles in Figure 2. In the original graph there are 16 cells unfilled, but

only 4 in the two partitioned subgraphs. The less the unfilled cells are left, the more compact the clusters are.

Therefore, we consider that the problem of clustering transactional datasets can be transformed to the problem

of obtaining the minimized unfilled number of cells with appropriate number of partitions. Here, if we try to

use bipartite graph based co-clustering method [1, 25, 13, 33, 12] to partition the transactions and the items, the

result is shown by two straight lines in the right most part of Figure 2. Obviously co-clustering will result in the

association loss between itemc and itemd. This is one of the reasons why we define our clustering problem as

row clustering not as co-clustering in our application context. This simple example also shows that it is intuitive
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to visualize the clustering structure of the transactions when they have already been ordered in the specific way

as shown in the left most of Figure 2. Thus how to order and partition the transactional dataset properly is one

of the key issues of our algorithm.

Bearing this intuition in mind, we define the first concept,Coverage Density (CD), for evaluating the compact-

ness of the partitions in terms of the unfilled cells only. In short,CD is the percentage of filled cells to the whole

rectangle area which is decided by the number of distinct items and number of transactions in a cluster.

Given a clusterCk, it is easy and straightforward to compute its coverage density. Suppose the number of

distinct items isMk, the items set ofCk is Ik = {Ik1, Ik2, . . . , IkMk
}, the number of transactions in the cluster

is Nk, the occurrence of itemIkj is occur(Ikj), and the sum occurrences of all items in clusterCk is Sk, then

the Coverage Density of clusterCk is

CD(Ck) =
Sk

Nk ×Mk
=

Mk∑
j=1

occur(Ikj)

Nk ×Mk
. (1)

Intuitively, the coverage density reflects the compactness of a cluster. Generally speaking, the larger the cover-

age density is, the higher the intra-cluster similarity among the transactions within a cluster.

However, theCD metric is insufficient to measure the density of frequent itemset, since in theCD metric each

item has equal importance in a cluster. Namely, if thecell (i, j)’s contributionto the coverage density consists

of transactional contributionTi and theitem contributionWj . In CD, both transactional and item contributions

are uniform, i.e.,Ti = T = 1
Nk

andWj = W = 1
Mk

. CD can be represented asTi ×
Mk∑
j=1

occur(Ikj) ×Wj =

T ×W ×
Mk∑
j=1

occur(Ikj), treating each cell with the same importance as shown in Figure 4(a).

Another problem with theCD metric is the situation where two clusters may have the sameCD but different

filled-cell distributions. Consider the two clusters in Figure 3: is there any difference between the two clusters

that have the sameCD but different filled-cell distributions? This leads us to develop a heuristic rule for

identifying and selecting a better distribution: we consider that a cluster with the coverage density focused on

the high-frequency items is better in terms of compactness than a cluster with the sameCD but the filled-cell

distribution is somewhatscatteredwith respect to all items.

We now introduce the concept ofWeighted Coverage Density (WCD)to serve for this purpose.

Concretely, we put more “weight” on the items that have higher occurrence frequency in the cluster. This

definition implies that the weight of each item is not a fixed one during the clustering procedure and it is

changed along with the change of item distribution of a cluster. Thus, the item contributionWj is no longer

uniform as shown in Figure 4(b). Now, the item contributionWj is defined as the ratio of occurrences of each
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item to the sum of occurrences of all items, namely,

Wj =
occur(Ikj)

Sk
, st.

Mk∑

j=1

Wj = 1. (2)

By Equation (2), and without changing the transactional contributionT , theWeighted Coverage Densityof a

clusterCk can be defined as follows:

WCD(Ck) = T ×
Mk∑

j=1

occur(Ikj)×Wj

=
1

Nk
×

Mk∑

j=1

(occur(Ikj)×
occur(Ikj)

Sk
)

=

Mk∑
j=1

occur(Ikj)2

Sk ×Nk
. (3)

Recall the example in Figure 3, by Equation (3), the weighted coverage density of the cluster on the left is9
15 ,

while the weighted coverage density of the cluster on the right is11
15 . Therefore, the cluster on the right is better,

which is consistent with our heuristic rule.

3.3 Comparing CD and WCD

In the above section we have given the intuitive definition ofCD andWCD. We will show thatCD andWCD

are inherently connected to some important statistical concepts.

Let random variableX represent the frequency of any item, we consider that the occurrences of items in a

clusterCk follows a sample probability density function (PDF) ofX, denoted byf(X). It means that each

valueoccur(Ikj), i.e., the frequency of itemIkj , is a sample of the random variableX. Therefore,CD and
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WCD are strongly related to the first moment (the expectation,E[X] =
Mk∑
j=1

occur(Ikj)/Mk) and the second

moment (E[X2] =
Mk∑
j=1

occur(Ikj)2/Mk), i.e.,

CD(Ck) = T × E[X],

WCD(Ck) = T × α× E[X2],

whereα = Mk/Sk is a constant for the clusterCk. SinceE[X2] = E2[X] + V ar(X), for two clusters that

have the same number of transactions (T),α, andE[X], our clustering criterion of maximizingWCDwill prefer

the cluster having higherV ar(X), i.e., deviating more from the scenario that each item has similar frequency.

We explain the implication of maximizingV ar(X) as follows. Letp(X = Ikj) be the probability of itemIkj

occurring in clusterCk, i.e., occur(Ikj)/Sk. Then,−
Mk∑
j=1

p(X = Ikj) log p(X = Ikj) is the entropy of this

cluster. ForMk number of items, this entropy is maximized when each item frequencyoccur(Ikj) is the same,

i.e.,V ar(X) = 0, the variance of the item occurrences is minimized. However, reversely, we could not say that

maximizingV ar(X) will directly lead to minimizing the entropy of item occurrences. MaximizingV ar(X)

will certainly pull the entropy away from the maximum. On the other hand, although the entropy criterion has

been shown effective in categorical data clustering in general [6, 22, 11], it is not easy to use the entropy of

item frequencies as to use the WCD measure to intuitively interpret our goal of maximizing frequent itemsets.

We will leave the comparison of WCD measure and the item frequency entropy measure in the future work.

3.4 Weighted Coverage Density based Clustering Criterion

We define the WCD-based clustering criterion in this section and outline the design of the WCD measure based

clustering algorithm in the next section.

To define the WCD-based clustering criterion, we also take into account of the number of transactions in each

cluster. For a clustering resultCK = {C1, C2, . . . , CK}, whereK < N , we define the followingExpected

Weighted Coverage Density (EWCD)as our clustering criterion function.

EWCD(CK) =
K∑

k=1

Nk

N
×WCD(Ck)

=
1
N

K∑

k=1

Mk∑
j=1

occur(Ikj)2

Sk
. (4)

An EWCD-based clustering algorithm tries to maximize theEWCDcriterion.
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Let’s give one example to show how the EWCD works. The transactional database is{abc, abcd, abce, bdfg,

dgh, dgi} and its possible clustering schemes are{{abc, abcd, abce, bdfg}, {dgh, dgi}} and {{abc, abcd,

abce}, {bdfg, dgh, dgi}}. Figure 5 shows the distribution of items in the original dataset and the two clustering

schemes.
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Figure 5: 2D grid graphs of original dataset and two clustering schemes

E(1) = 1
6 × (22+22+12+12

6 + 32+42+32+22+12+12+12

15 ) = 0.73333,

E(2) = 1
6 × (12+32+12+32+12+12

10 + 32+32+32+12+12

11 ) = 0.80606.

The resultE(1) < E(2) are consistent with the visual observation. First, the clustering scheme 2 has less

unfilled cells than the scheme 1; second, transaction 4 has more overlapping with the frequent items in scheme

2 than in scheme 1.

However, ifEWCD is used as the only metric in clustering procedure, an exception occurs when the number

of clusters is not restricted - when every individual transaction is considered as a cluster, it will get the max-

imum EWCDover all clustering results. Therefore, the number of clusters needs to be either explicitly given

or implicitly determined by other parameters. To avoid blindly settingk or tuning complicated parameters,

we implement our clustering algorithm using the SCALE framework described in Section 2, where a set of

candidate best number of clusters is suggested by the BKPlot method [11].

3.5 WCD Measure based Clustering Algorithm

The WCD measure based clustering algorithm uses a partition-based clustering approach. It scans the dataset

iteratively to optimally assign each transaction to a cluster in terms of maximizing the EWCD criterion. The

entire procedure of the WCD-based clustering can be divided into three phases: the clustering structure as-

sessment phase, the WCD measure based initial cluster assignment, and the WCD measure based iterative

clustering refinement phase. We call the first phase the WCD clustering preparation step, which can be per-

formed by using an existing algorithm that can find the best K or best candidate Ks. While implementing the
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SCALE, the Best K method (BKPlot) we have developed [11] is used for finding the best candidate number of

clusters. We refer to the second and third phases as the WCD clustering step, which is executed by the WCD

measure based clustering algorithm.

In the initial cluster assignment phase, we take the outputs from the clustering structure assessment phase and

produce an initial assignment using the WCD measure based clustering algorithm. Concretely, the clustering

algorithm takes theK number of clusters and the cluster seeds at the best Ks as inputs to define the initialK

clusters. Each seed represents an initial cluster consisting of a few transactions. Given one of the best Ks,

the WCD-based algorithm performs the clustering over the entire dataset. It reads the remaining transactions

sequentially, and assigns each transaction to one of theK clusters, which maximizes the EWCD of the current

clustering result. Our experiments show that the BKPlot method can efficiently help reduce the search space

and get high quality clustering result.

Since the initial assignment produced in the second phase may not be optimal, in the iterative clustering refine-

ment phase, the cluster assignment is refined in an iterative manner until no more improvement can be made

with respect to WCD on the clustering result. Concretely, the algorithm reads each transaction in a randomly

perturbed order, and check if the original cluster assignment is optimal in the sense that the EWCD metric is

maximized. If it is not optimal, the transaction is moved to currently best fitted cluster, which increases the

amount of EWCD the most. Any generated empty cluster is removed after a move. The iterative phase is

stopped if no transaction is moved from one cluster to another in one pass for all transactions. Otherwise, a new

pass begins. Note that the number of iterations may vary with respect to different random processing sequence

and different clustering structure. It also depends on the number of clusters. According to our experience with

the experiments, lambda is not controllable. For the well structured datasets, lambda is usually two or three.

Lambda becomes larger for larger and noisy datasets.

A sketch of the pseudo code for the WCD measure based clustering algorithm is given in Algorithm 1.

Finding the destination cluster for each transaction is the key step in both phases, which needs to com-

pute/update EWCD for each possible assignment. To avoid unnecessary access and computation, the WCD

clustering algorithm keeps the summary information of each cluster in main memory and updates it after each

assignment. The summary information of clusterCk includes the number of transactionsNk, the number of

distinct itemsMk, the sum occurrences of itemsSk, the sum square occurrences of itemsS2
k =

Mk∑
j=1

occur(Ikj)
2,

the distinct items setIk in clusterCk, and the occurrences of each itemoccur(Ikj).

With the summary information, we are able to incrementally compute EWCD. Concretely, the two functions

DeltaAdd and DeltaRemove can perform the incremental computing by adding one transaction into a cluster or

removing one transaction from it respectively. Since the two functions are similar, we only provide outline of
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Algorithm 1 WCD.main()
Input: Dataset fileD of transactions; Number of clusters K; Initial K seeds
Output: K clusters
/*Phase 1 - Initialization*/
K seeds form the initial K clusters;
while not end of dataset file Ddo

read one transaction t from D;
add t intoCi that maximizes EWCD;
write < t, i > back toD;

end while
/*Phase 2 - Iteration*/
while moveMark = truedo

moveMark = false;
randomly generate the access sequence R;
while has not checked all transactionsdo

read< t, i >;
if movingt to clusterCj increases EWCD andi 6= j then

moveMark=true;
write < t, j > back toD;

end if
end while

end while

the function DeltaAdd in Algorithm 2. Lett.I be the set of items in the transactiont.

Algorithm 2 WCD.deltaAdd(Ck, t)
float deltaAdd (Ck, t)
{

Sk new ←− Sk + |t|;
∆S2

k ←− 0;
for (i = 0; i < |t|; i + +) {

if t.I[i] not exist inIk then
∆S2

k ←− ∆S2
k + 1;

else
∆S2

k ←− ∆S2
k + (occur(Ikj) + 1)2 − occur(Ikj)

2;
}
return ((S2

k + ∆S2
k)/Sk new)− (S2

k/Sk);
}

3.6 Complexity Analysis

The space consumption of WCD measure based clustering algorithm is quite small, since only the summary

information of clusters is kept in memory. LetK stand for the number of clusters, andM stand for the

maximum number of distinct items in a cluster. A totalO(K ×M) space is necessary for the algorithm. For a

typical transactional dataset with up to ten thousand distinct items, several megabytes will be sufficient for the

WCD clustering algorithm.

The most time-consuming part is the update of EWCD to find the best cluster assignment which involves

DeltaAdd and DeltaRemove. Since each DeltaAdd/DeltaRemove costsO(|t|), the time complexity of the

whole algorithm isO(λ×N ×K × |t|) , whereλ is the number of iterations,N is the number of transactions
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in dataset, and|t| is the average length of transaction. Usuallyλ, K and|t| are much smaller thanN , i.e. the

running time is almost linear to the size of datasets. So the WCD measure based clustering algorithm is ideal

for clustering very large transactional datasets.

4 Evaluating Clustering Results

Clustering is an unsupervised procedure trying to optimize certain objective function. This objective function

could be domain-specific, highly complicated, and sometimes even not easy to specify. Typically, there are three

scenarios. 1) In many cases, directly optimizing the objective function is often computationally intractable, and

thus the clustering algorithms are all approximation algorithms. A typical example is entropy-based categorical

clustering algorithms [11, 6, 22]. 2) Sometimes, it is even difficult to define an objective function, which covers

multiple optimization goals. A commonly used approach to this scenario is to first generate the candidate

clustering results with some generic clustering algorithms. The set of candidate results are then evaluated by a

set of domain-specific measures and the optimal one is selected. 3) Most cases are between the above two. A

design strategy has been made in our approach: instead of optimizing the multiple clustering criteria together,

we optimize them in different stages. Concretely, we try to optimize the less costly measure in the costly

clustering stage, which processes the entire large dataset, while other measures including the domain-specific

measures are used later to select one clustering result from a set of candidate results.

We have shown that the criterion functionEWCDcan be directly optimized by the WCD measure based clus-

tering algorithm. With the help of the BKPlot method, we can also determine a set of good candidates for

the best number of clusters. In this section, we propose two quality measures, which are designed for the

domain-specific cluster evaluation of transactional data. We use them to determine the optimal results from the

candidate set.

LISR− measuring the preservation of frequent itemsets

Since one of the popular applications of transactional data clustering is to find localized association rules [2],

we propose a new measure called Large Item Size Ratio (LISR) to evaluate the percentage of Large Items

[29] preserved by clustering. The more large items are preserved, the higher possibility the frequent itemsets

are preserved in the clusters. An item is a “Large Item” when its occurrences in a cluster are above the user-

specified proportion of transactions. We name the user-specified proportion as the minimum supportτ , which is

similar to the concept of “minimum support” in association rules mining. LetIN(x) be the indicator function,
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i.e., if x is true,IN(x) = 1, otherwise,IN(x) = 0. TheLISRcomputing formula is:

LISR(τ) =
K∑

k=1

Nk

N
×

Mk∑
j=1

occur(Ikj)× IN(occur(Ikj) ≥ τ ×Nk)

Sk
(5)

, whereSk stands for the total occurrences of all items in clusterCk. In the above formula, the number of

transactions in each cluster is taken into account in order to reduce the influence of noisy tiny clusters to

the whole clustering result. A largeLISRmeans high concurrences of items and implies the high possibility

of finding more Frequent Itemsets [3] at the user-specified minimum support. In practice, users can provide

different minimum supports they are interested for finding association rules, and then compare theLISRsof

different clustering results to decide which clustering result is the most interesting one.

AMI− measuring inter-dissimilarity of clusters

As we have shown previously, WCD measure evaluates the homogeneity of the cluster and tries to preserve

more frequent itemsets, while CD only evaluates the homogeneity. Below we define a heuristic Clustering

structural difference based on the CD measure, which is shown effective in describing the overall inter-cluster

dissimilarity in experiments.

Given a pair of clustersCi andCj , the inter-cluster dissimilarity between theCi andCj is:

d(Ci, Cj) =
Ni

Ni + Nj
CD(Ci) +

Nj

Ni + Nj
CD(Cj)− CD(Ci

⋃
Cj). (6)

The above Equation tries to compute the percentage of increased unfilled-cells in the new 2D mapping grid

graph after merging two clusters.

Simplifying the above formula, we getd(Ci, Cj) = 1
Ni+Nj

(Si( 1
Mi
− 1

Mij
) + Sj( 1

Mj
− 1

Mij
)), whereMij is the

number of distinct items after merging two clusters and thusMij ≥ max{Mi,Mj}. Because of 1
Mij

≤ 1
Mi

and 1
Mij

≤ 1
Mj

, d(Ci, Cj) is a real number between 0 and 1. Here,Si( 1
Mi

− 1
Mij

) describes the structural

change caused by the clusterCi. Not surprisingly, when two clusters have the same set of items, that is

Mi = Mj = Mij , d(Ci, Cj) is zero. For two very different clusters having little overlapping between the

sets of items, merging them will result in a larged(Ci, Cj). Therefore, we say the above measure evaluates the

structural difference between clusters. Two examples are given to illustrate the above situations in Figure 6 and

Figure 7.

We propose theAverage pair-clusters Merging Index (AMI)to evaluate the overall inter-dissimilarity of a clus-
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Figure 7: two clusters with positive dissimilarity

tering result having K clusters.

AMI =
1
K

K∑

i=1

Di,

Di = Min{d(Ci, Cj), i, j = 1, . . . , K, i 6= j}. (7)

AMI is the average dissimilarity between all clusters. The larger the AMI is, the better the clustering quality.

Some traditional clustering methods try to optimize the clustering validity measure by combining intra-cluster

similarity and inter-cluster dissimilarity [21, 18, 29]. However, this is extremely difficult in practice since we

need some domain-specific weighting parameters to combine the intra-cluster similarity and the inter-cluster

dissimilarity, and the setting of such parameters may differ from dataset to dataset. Thus, in our prototype

implementation of the SCALE framework, we choose to optimize them separately: we optimize the intra-

cluster EWCD measure with the WCD measure based clustering algorithm at the candidate best Ks, and use

the AMI measure to select the best one. Our experiments show that AMI is an effective measure for indicating

the globally distinctive clustering structure. In addition, LISR is used as another domain-specific measure in

the SCALE framework. Our experiments in Section 5 show that the WCD clustering algorithm can generate

high quality results reflecting the domain-specific structure.

5 Experiments

In this section we evaluate the SCALE framework using both synthetic and real datasets. The evaluation is

compared with CLOPE [32], which is a clustering algorithm for transactional data without combining any other

aided methods. The comparison is focused on the following three aspects to see if: 1)the SCALE clustering

structure assessment step helps significantly reducing the time spent on parameter tuning; 2)the SCALE WCD

clustering step is scalable to deal with large transactional data; 3)the SCALE evaluating step outputs high-
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quality clustering results in terms of the domain-specific measures.

Before reporting the results of our experiments, we first introduce the datesets used in the experiments.

5.1 Datasets

Our experiments have used two synthetic datasets:Tc30a6r10002L generated by us andTxI4Dx Seriesgener-

ated by synthetic data generator used in [3]. In addition, we used three real datasets: Zoo and Mushroom from

the UCI machine learning repository1 and Retail [8].

Tc30a6r10002L dataset is generated with a two-layer clustering structure that is clearly verifiable, as shown in

Figure 8. We use the same method documented in [11] to generate the Tc30a6r10002L dataset. We want to use

this synthetic dataset to test how well our WCD approach can perform when the critical clustering structures

of the dataset are determined correctly at the clustering structure assessment step. It has 1000 records, and 30

columns, each of which has 6 possible attribute values. The top layer has 5 clusters with 200 data points in each

cluster, four of which have two overlapping sub-clusters of 100 data points, respectively. In Figure 8, blank

areas represent the same attribute value 0, while non-blank areas are filled with randomly generated attribute

values ranging from 0 to 5. Since it is a generic categorical dataset, the attribute values are converted to items

in order to run the WCD and CLOPE algorithms.
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Figure 8:Structure of two-layer synthetic data

Zoo Real dataset Zoo from the UCI machine learning repository is used for testing the quality of clustering

results. It contains 101 data records for animals. Each data record has 18 attributes (animal name, 15 Boolean

attributes, 1 numeric with set of values [0, 2, 4, 5, 6, 8] and animal type values 1 to 7) to describe the features

of animals. The animal name and animal type values are ignored in our transformed file, while the animal type

also serves as an indication of domain-specific clustering structure.

1http://www.ics.uci.edu/m̃learn/MLRepository.html
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MushroomReal dataset Mushroom from the UCI machine learning repository contains 8124 instances, which

is also used for quality testing. Each data record has 22 categorical attributes (e.g. cap-shape, cap-color, habitat

etc.) and is labeled either “edible” or “poisonous”. The dataset contains 23 species of mushroom according

to the literature. Therefore, we assume the domain-specific clustering structure could possibly have about 23

clusters. We use these knowledge to assess the clustering results and the effectiveness of the domain-specific

measures.

Mushroom100kWe also sample the mushroom data with duplicates to generate the mushroom100k of 100,000

instances as a real dataset for performance comparison with CLOPE.

TxI4Dx SeriesData generator in [3] is used to generate large synthetic transactional datasets for performance

test. We first give the symbols used in order to annotate the datasets. Three primary factors are the average

transaction sizeT , the average size of the maximal potentially large itemsetsI and the number of transactions

D. For a dataset havingT = 10, I = 4 and100K transactions is denoted asT10I4D100K. The number

of items and the number of maximal potentially large itemsets are always set to 1000 and 2000. We generate

5 groups of datasets fromT10I4D100K to T10I4D500K by varying the number of transactions and each

group has 10 randomly generated datasets at same parameters. We also generate 4 groups of datasets from

T5I4D100K to T50I4D500K by setting the average length of transactions as 5, 10, 25 and 50. Also each

group has 10 randomly generated datasets at same parameters.

RetailRetail [8] contains 88162 transactions and 16470 items, which is approximately 5 months receipts being

collected. The average number of distinct items purchased per receipt is 13 and most customers buy between

7 and 11 items per shopping visit. It is used for performance evaluation of our approach on a real large

transactional dataset with large quantity of items.

5.2 SCALE Clustering Structure Assessment

As mentioned before, all existing clustering algorithms require users to manually tune at least one or two pa-

rameters of the clustering algorithms in order to determine the number of clusters and to find the best clustering

result. We call the algorithm running on each set of parameters as a trial clustering procedure and the corre-

sponding clustering result as trial clustering result. It is not certain that how many trails we need in general

to determine a close-to-optimal clustering result with a specific clustering algorithm. However, the number of

trials can be definitely reduced if the clustering assessment can provide reliable information for reducing the

search space over the parameter space. The SCALE framework takes this into consideration and uses our pre-

viously developed method BKPlot to significantly reduce the search space over the number of optimal clusters.

Let’s takeTc30a6r10002L, Zoo andmushroomfor example. After running ACE & BkPlots [11] on these
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datasets, the candidate Ks generated at the clustering structure assessment step are{3, 5, 9} for Tc30a6r10002L,

{2, 4, 7} for Zoo and{2, 4, 6, 15, 19, 22, 29} for Mushroom, which include the optimal domain-specific best

Ks.

In contrast, the user of CLOPE will take much more efforts to find the optimal parameter setting. CLOPE has

a repulsion parameterr, which implicitly controls the number of clusters. Ther is a positive real number from

zero to positive infinite. Since there is no guideline to find the appropriate setting ofr, we usually start from

settingr equal to a random number, such asr = 1.0, then do clustering and evaluate the clustering result to

decide increasing or decreasingr in the next trial. Since there is no rule developed yet for determining the

range of validr and the possible step size, CLOPE will definitely take more trials before we are confident about

the clustering result. For the datasetTc30a6r10002L, we have to try 15 differentr from 1.0 to 2.5 with step

0.1 to find the predefined cluster numbersk = 5 andk = 9. Some close-to-optimal results happen atr = 2.0

andr = 2.4, which have the domain-specific number of clusters. Similarly, if we start withr = 1, the close-to-

optimal results happen at 2.4 for Zoo data, and 2.6 for mushroom data. Without the given hint of the number

of domain-specific number of clusters, we will surely need more trials to determine the best clustering result.

Therefore, the clustering assessment step in the SCALE framework can significantly improve the efficiency of

the entire clustering process for transactional data.

5.3 Performance Study of WCD Clustering

We did performance study of WCD clustering in both synthetic datasets and real datasets to see if WCD clus-

tering is scalable to deal with large transactional datasets. Since WCD clustering is quite memory saving, our

experiments focused on the factors of time complexity. The time complexity of WCD measure based clustering

algorithm isO(λ × N × K × |t|). Since the number of iterations,λ, is not controllable, we study the other

three factors: the number of transactionsN , the number of clustersK, and the average length of transactions

|t|. The experiment results below show that the WCD clustering is scalable to large transactional data in terms

of the related factors.

Performance Evaluation on TxI4Dx SeriesWe first did experiments on 5 groups of T10I4Dx datasets with

different size from 100K to 500K and set the number of clustersK = 10, 50, 100 separately. Each group has

10 randomly generated datasets with the same parameter setting and we average the running time of 10 datasets

as the final running time of each group. Figure 9 and Figure 10 show that the overall cost is almost linear in

terms of the size of dataset and the number K of clusters.

Then we did experiments on another 4 groups of TxI4D100K datasets with different average length of trans-

actions and different number of clusters. Figure 11 shows for small number of clusters (K ≤ 50), the average
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Figure 9:The total running time vs. the size of datasets on
T10I4Dx datasets
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Figure 10:The total running time vs. the number k of clus-
ters on T10I4Dx datasets
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Figure 11:The total running time vs. the average length of
transactions.

length of transactions is approximately linear to the running time, while for largeK, such asK = 100, it

becomes nonlinear. Since we are more interested in the clustering structure with small number of clusters

(K ≤ 50), the WCD measure based clustering algorithm is also scalable to the average length of transactions.

Performance Evaluation on Mushroom100kWe compare the CLOPE and WCD on the running time of

algorithms by varying the number of clusters and by varying the size of dataset.

First, we run CLOPE by varyingr from 0.5 to 4.0 with step value 0.5. The running seconds and the number of

clusters are reported for eachr. The number of clusters is 17, 18, 27, 30, 31, 32, 41 and 64 for differentr values,

respectively. Correspondingly, we run WCD on these numbers of clusters and get WCD running seconds. The

comparison in Figure 12 shows that the cost of WCD is much less than that of CLOPE with respect to the

number of clusters produced.

Second, we run CLOPE on 10%, 50% and 100% size of Mushroom100k withr = 2.0 and get the number K

of clusters are 22, 23, and 30, respectively. Then we run WCD using the same numbers of clusters on the same

set of datasets. The results in Figure 13 show that WCD is also much faster than CLOPE with respect to the
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size of the dataset.
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Figure 12:The total running time of CLOPE and WCD on
Mushroom100k with varying K
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Figure 13:The total running time of CLOPE and WCD on
Mushroom100k with varying size

Performance Evaluation on RetailFinally, we did experiments on Retail dataset by varying the number of
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Figure 14: The average per-iteration time on Retail
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Figure 15: The total running time on Retail

clusters k from 2 to 100. The relationships between k and running time are shown in Figure 14 and Figure 15,

which confirms the previous observations. Since the source code of CLOPE provided by authors cannot deal

with variable length data, we couldn’t compare our approach with CLOPE on Retail.

5.4 Quality of Clustering Results

In this group of experiments, we first use three measures:LISR, AMI and the Expected Entropy [6] to evaluate

the quality of clustering results generated by SCALE and CLOPE. The result shows that the clustering quality

of SCALE is higher than that of CLOPE in terms of the three measures. Apriori [4] is used to collect the

number of frequent items preserved in the clustering results. We show that SCALE can preserve more frequent

items in general.
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We compare the LISR values in Figure 16 at various minimum support values from 0.6 to 1.0 in detail. (The

larger the LISR value is, the better the result is in terms of preserving large items). LISR curves show that

SCALE can preserve more large items than CLOPE especially on higher minimum support.

It is interesting to note thatAMI index is consistent with the best Ks suggested by using BKPlot on some

datasets. Figure 17 and 18 plot theAMI curves with varying K for datasets Tc30a6r1002L and Zoo respec-

tively. The global peak values (K=5 for Tc30a6r10002L and K=7 for Zoo), which indicate the clustering

result with the highest inter-dissimilarity, are among the candidate Ks suggested by BKPlot. The best Ks are

also identical to the predefined number of classes.

We summarize the best results of the two approaches in terms of LISR, AMI, and the classical Expected Entropy

(EE) measure [6], in Table 1. For clear presentation, we briefly describe the definition of Expected Entropy. For

a clustering resultCK = {C1, C2, . . . , CK} of transaction databaseD, supposeNi is the number of transaction

of clusterCi, Mi is the number of distinct item of clusterCi, Iij is the jth item in clusterCi andp(Iij) is the

probability of itemIij , the Expected Entropy of clustering resultCK is:

EE(CK) =
K∑

i=1

Ni

|D| × Entropy(Ci) =
K∑

i=1

Ni

|D| ×
Mi∑

j=1

(−p(Iij) log(p(Iij))). (8)

Table 1 shows that the SCALE clustering results have smaller Expected Entropies than that of CLOPE, which

means the SCALE clustering results have higher intra-cluster similarities.

Table 1: LISR, AMI and Expected Entropy of SCALE and CLOPE clustering results
DataSets approach LISR(τ=0.9) AMI Expected Entropy

Tc30a6r10002L SCALE 0.866867 0.161347 5.319538
CLOPE 0.703273 0.094431 5.472092

Zoo SCALE 0.704827 0.120252 4.281075
CLOPE 0.53651 0.060841 4.399752

mushroom SCALE 0.680278 0.120967 4.872727
CLOPE 0.644397 0.105191 4.876047

Since theLISR measures the preservation of frequent item sets indirectly, we use Apriori to find frequent

itemsets in those clustering results and to see if the clustering results of SCALE have more frequent itemsets

than that of CLOPE. We run frequent itemset mining on mushroom 2-cluster clustering results generated by

SCALE and CLOPE.

Apriori is run on partitioned datasets at support0.9%. With support higher than1% we basically get no frequent

itemsets, while with support< 0.9%, there are too many frequent itemsets generated by both algorithms. For

example, 228 frequent itemsets are found in SCALE partitioned database at support0.7%, while 175 frequent

itemsets are found in CLOPE partitioned database. The actual frequencies of many newly-found frequent

itemsets at support0.7% are very low. Figure 19 shows that much more frequent itemsets can be found in the
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Figure 16:LISR graph
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Figure 17:AMI curve for Tc30a6r10002L
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Figure 18:AMI curve for Zoo

WCD partitioned datasets than in CLOPE partitioned datasets at support0.9%, which is consistent with the

indication ofLISRgraph in Figure 16.

In summary, the experimental results above demonstrate that the LISR and AMI measures can help to find the

clustering structures that are consistent with the documented structures. In general, the SCALE framework can

generate better clustering results than CLOPE, with the additional advantage of no parameter tuning.
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Figure 19:Frequent item-sets distribution at support 0.9%

6 Related Work

A number of algorithms have been developed for categorical data clustering in recent years [5, 11, 6, 15, 14,

16, 20, 22]. Some algorithms have studied distance-like pair-wise similarity measures, such as K-Modes [20]

and ROCK [16]. While it is commonly recognized that a pair-wise similarity (e.g., cosine measure, the Dice

and Jaccard coefficient, etc.) is not intuitive for categorical data, there have been algorithms using similarity

measures for a set of records. The typical set-based similarity measures are based on information theory, such as

expected-entropy in Coolcat [6], MC[22] and ACE[11], mutual information based similarity in LIMBO[5] and

information bottleneck in [28], and minimum description length in Cross Association [9]. These algorithms

have been focused on generic clustering structure of categorical data. However, only a few algorithms are

dedicated to investigating the problems of transactional data clustering [32, 29, 31].

Another observation is that in the existing clustering algorithms, the number of clusters is determined either

explicitly or implicitly through manually tuning of other parameter(s). For example, most data clustering

methods, from the earliest k-modes [20] and ROCK [16] to the latest COOLCAT [6], LIMBO[5] and MC[22],

takek as an input parameter of the algorithm. For algorithms using explicit parameterk, the user needs to

assume the number of clusters at the beginning, which is extremely difficult in practice. Some other clustering

algorithms, such as LargeItem[29], CLOPE[32] and CCCD [31], use one or two implicit input parameters

to control the number of clusters. For implicit parameters, experimental results in [32, 29, 31] demonstrate

the feasibility of using certain parameter setting to find the best K for a specific dataset through brute-force

enumeration of various parameter settings, which is demonstrated by labeled datasets. Unfortunately, since real

datasets for clustering do not have labels, it becomes extremely difficult to tune parameters and validate the

clustering result for a real dataset. Therefore, it is practically important and necessary to develop and apply

generic and domain-specific quality measures in cluster evaluation.
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There are also some works on using bipartite graph theory to cluster transactional data [1, 25, 13, 33, 12]. Clus-

tering algorithms based on partitioning bipartite graph usually generate co-clustering results, where columns

and rows of the dataset are partitioned at the same time. If they are applied to transactional data, items and

transactions are clustered simultaneously, which unnaturally splits the clusters that overlap over a few frequent

items. Furthermore, the graph-based algorithms are often memory and time consuming, and inappropriate for

clustering large transactional datasets.

In recent years, clustering data stream has been received extensive studies. Data stream has the following

features. First, clustering computation works under the limited memory space. Second, the data can only

be accessed one pass or limited passes. Third, the arrival of data must be in order. These features become

the constraints on the design of data stream clustering algorithm. Most of existing data stream clustering

algorithms are extended from the traditional clustering algorithms. For example, the classical K-Means is

extended to clustering binary data stream [27]. Papers [17][7] improve the K-Median algorithm for clustering

numerical data stream. SCLOPE [26] extends the CLOPE algorithm for clustering categorical data streams.

For clustering transactional data stream, [23] incorporates an incremental clustering algorithm into different

data stream model.

Finally, we would like to note that our initial results on the weighted coverage density clustering with small

or medium datasets was reported in [30]. There have been several improvements since our earlier work. First,

we have developed domain specific evaluation metrics to capture domain specific semantics in transactional

clustering analysis. Second, we develop and implement the SCALE framework as a general architecture for

efficient clustering of transactional data of all sizes. Third, we have evaluated the SCALE framework and

the WCD measure based clustering algorithm with the two new metrics with SCALE and demonstrate the

effectiveness of our approach.

7 Conclusion

We have presented SCALE− a fully automated transactional data clustering framework, which eliminates the

complicated parameter setting/tuning required by existing algorithms for clustering transactional data. Con-

cretely, the SCALE framework is designed to perform the transactional data clustering in four consecutive

steps. It uses sampling to handle large transactional dataset, and then performs clustering structure assess-

ment step to generate the candidate “best Ks” based on sample datasets. The clustering step uses the WCD

measure based clustering algorithm to perform the initial cluster assignment and the iterative clustering refine-

ment. A small number of candidate clustering results are generated at the end of the clustering step. In the

domain-specific evaluation step, the two domain-specific measures (AMI and LISR) are applied to evaluate the
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clustering quality of the candidate results produced and select the best one. Two unique features of SCALE are

the WCD clustering algorithm− a fast, memory-saving and scalable method for clustering transactional data,

and two transactional data specific cluster evaluation measures: LISR and AMI. We have reported our experi-

mental evaluation results with both synthetic and real datasets. We show that compared to existing transactional

data clustering methods, clustering under the SCALE framework can generate high quality clustering results in

a fully automated manner with much higher efficiency for wider collections of transactional datasets.

There are some promising directions that can be explored in the future work. First, in our analysis, we have

seen that the WCD measure is indirectly related to the entropy of item frequency. It would be interesting to

perform some experimental comparison between the WCD measure and the entropy measure. Second, in the

SCALE framework, we use the BKPlot method that was designed for categorical data clustering in general. We

think if the characteristics of transactional data are fully explored and utilized as our WCD-based clustering

algorithm does, we can design a better algorithm for determining the best K for transactional data clustering.

Third, transactional data often arrives in the manner of streaming data. It would also be interesting to extend

our work to handle transactional data streams.
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