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Abstract—Virtualization is a key technology for cloud based data 
centers to implement the vision of infrastructure as a service (IaaS) 
and to promote effective server consolidation and application 
consolidation. However, current implementation of virtual machine 
monitor does not provide sufficient performance isolation to 
guarantee the effectiveness of resource sharing, especially when the 
applications running on multiple virtual machines of the same 
physical machine are competing for computing and communication 
resources. In this paper, we present our performance measurement 
study of network I/O applications in virtualized cloud. We focus our 
measurement based analysis on performance impact of co-locating 
applications in a virtualized cloud in terms of throughput and 
resource sharing effectiveness, including the impact of idle instances 
on applications that are running concurrently on the same physical 
host. Our results show that by strategically co-locating network I/O 
applications, performance improvement for cloud consumers can be 
as high as 34%, and the cloud providers can achieve over 40% 
performance gain. 
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I. INTRODUCTION 
Cloud computing is changing the way that IT industry 

operates and its corresponding profit model by providing the IT 
infrastructure and software as chargeable services delivered 
over the Internet. Virtual machine monitors (VMMs) are 
popular in cloud environment within the service-delivery 
industry. The promise of virtualization technology for server 
consolidation and application consolidation is to run multiple 
services on a single physical machine (host) while allowing 
independent configuration of operating systems, software, and 
device drivers. Virtualization helps to achieve greater system 
utilization, and at the same time lowering total cost of 
ownership, responding more effectively to changing business 
conditions in enterprise, government and organizations.  

However, current implementation of VMMs does not 
provide sufficient performance isolation to guarantee the 
effectiveness of resource sharing, especially when the 
applications running on multiple virtual machines (VMs) of the 
same physical machine are competing for computing and 
communication resources [11, 14, 16, 20]. As a result, both 
cloud consumers and cloud providers may suffer from 
unexpected performance degradation in terms of efficiency and 
effectiveness of application execution or server consolidation.   

In this paper we focus on performance measurement and 
analysis of network I/O applications (network-intensive 
applications) in a virtualized cloud. To maximize the benefit 
and effectiveness of server consolidation and application 
consolidation, we argue that it is important to conduct in-depth 
performance measurements for applications running on 

multiple VMs hosted on a single physical machine. Such 
measurements can offer deeper understanding of the key 
factors for effective resource sharing among applications 
running in virtualized cloud environments. We focus on 
network I/O applications in the measurement study because 
network intensive applications are known to be the dominating 
workloads in cloud-based data centers today, as evidenced by 
Amazon EC2 [22], Google AppEngine [23].  

We concentrate our measurement study to two categories of 
server and application scheduling problems. The first category 
aims at addressing issues related to managing idle instances. 
When a domain is said to be idle, it means that there is no other 
runnable processes and the OS is executing idle-loop. Through 
this group of experimental study, we show the impact of 
running idle guest domains on system performance. We believe 
that the findings from this experimental study can help cloud 
service providers to effectively manage virtual machines to 
better meet consumers’ demand, and at the same time, it can 
also provide useful insights to cloud consumers to manage idle 
instances more effectively for seamlessly scaling their 
applications.  

The second focus of our performance study is to understand 
the performance impact of co-locating applications in a 
virtualized cloud in terms of throughput performance and 
resource sharing effectiveness. Through in-depth measurement 
analysis, we can better understand the set of key factors that 
can maximize the physical host capacity and the application 
performance running on individual VMs. 

In summary, through this measurement study we show that 
it is important to understand the fundamental resource usage 
model and performance issues for concurrent I/O applications 
running in virtualized cloud. In addition, we show that the 
ability of exploring and quantifying the performance gains and 
losses relative to different configurations in guest domains and 
applications can provide valuable insights for cloud service 
providers and could consumers. Furthermore, our measurement 
analysis also reveals that applications should be arranged 
carefully and smartly to minimize unexpected performance 
degradation and maximize desired performance gains. 

The remaining of this paper is structured as follows. We 
describe research related to our study in Section 2. In Section 3 
and Section 4, we present our experiments and analyze the 
results. Section 5 summarizes our results and presents 
conclusions. 

II. OVERVIEW AND BACKGROUD 
In this section we first briefly review Xen [1], especially 

some features and implementation details of Xen, which are 
important backgrounds for our performance analysis and 



measurement study. Then we briefly review the related work in 
the literature and outline our basic methodology for conducting 
performance measurement and analysis of network I/O 
applications in virtualized cloud environments.   

A. Xen I/O Mechanism 
Xen is an x86 VMM (hypervisor) developed based on 

paravirtualization [1]. VMM interfaces between the virtual 
machine tier and the underlying physical machine resources. At 
boot time, an initial domain, called Domain0, is created and 
serves as the privileged management domain, which uses the 
control interface to create and terminate other unprivileged 
domains (guest domains), and manages the CPU scheduling 
parameters and resource allocation policies.   

In Xen [1], Domain0 also serves as a driver domain by 
containing: (1) unmodified Linux drivers for I/O devices, (2) 
network bridge for forwarding packets to guest domains, and 
(3) netback interface to each guest domain. Devices can be 
shared among guest operating systems running in guest 
domains, denoted as Dom1, Dom2, …, Domn (n>1). A guest 
domain implements a virtual network interface controller driver 
called netfront to communicate with corresponding netback 
driver in Domain0. Xen processes the network I/O requests 
through the event channel mechanism and the page flipping 
technique. For example, consider the guest domain which is 
receiving a network packet, whenever a network packet arrives, 
the hardware raises an interrupt. The hypervisor intercepts the 
interrupt and then initializes a virtual interrupt through the 
event channel to inform the driver domain of the arrival of the 
packet. When the driver domain is scheduled to run, it sees the 
I/O event notification. The device driver in the driver domain 
fetches the packet and delivers it to the network bridge. The 
network bridge inspects the header of the packet to determine 
which netback to send to. After the network packet is put into 
proper netback driver, the network driver notifies the 
destination guest domain with a virtual interrupt through the 
event channel, and it encapsulates the network packet data into 
the form of memory pages. Next time when the guest domain is 
scheduled to run, the guest domain sees the notification. Then 
the memory page containing the network packet data in the 
netback driver is exchanged with an unused page provided by 
the destination guest OS through the network I/O channel. This 
process is called memory page flipping, which is designed to 
reduce the overhead caused by copying I/O data across 
domains. The procedure is reversed for sending packets from 
the guest domains via the driver domain [1, 4, 9, 10, 16, 19].  

B. Credit Scheduler 
Xen [1] employs the credit scheduler to facilitate load 

balancing on symmetric multiprocessing (SMP) host. The non-
zero cap parameter specifies the maximum percentage of CPU 
resources that a virtual machine can get. The weight parameter 
determines the credit associated with the VM. According to the 
remaining amount of credits of each VCPU, its states can be: 
under (-1) and over (-2). If the credit is no less than zero, then 
the VCPU is in the under state, otherwise, it’s in the over state. 
Each physical CPU checks VCPUs in the following steps 
before it goes into idle: First, it checks its running queue to find 
out the ready VCPU which is in the under state, then it will 
check other physical CPU’s running queue to fetch VCPU that 
is in the under state. After that the scheduler will execute the 

VCPU in the over state in its own running queue from 
beginning. It will never go to idle states before it finally checks 
other physical CPU’s running queue to see whether there exists 
runnable VCPU in the over state. To alleviate the high I/O 
response latency, the credit scheduler introduces the boost state 
to prompt the I/O processing priority. An idle domain can enter 
the boost state when it receives a notification over the event 
channel and it is previously in the under state, resulting in high 
scheduling priority [3, 6, 10, 16].  

C. Related Work 
Over the last few years, a fair number of research and 

development efforts have been dedicated to the enhancement of 
virtualization technology. Most of the efforts to date can be 
classified into two categories: (i) performance monitoring and 
enhancement of VMs on a single physical machine, and (ii) 
performance evaluation, enhancement, and migration of VMs 
running on multiple physical hosts. We below provide a brief 
summary about the research conducted. We can characterize 
this line of research in two directions. On one hand, a number 
of research projects have been devoted to performance 
monitoring tools for VMM and VMs, represented by the 
monitoring tools [3, 4, 7, 12, 15] for Xen [1, 5]. On the other 
hand, a fair amount of work has been conducted on varying 
CPU scheduler configurations [3, 9, 10, 15] or network I/O 
related parameter tuning [12, 13, 19], such as network bridging, 
TCP Segmentation Offload (TSO).   

Concretely, some previous study has shown that 
performance interference exists among multiple virtual 
machines running on the same physical host due to the shared 
use of computing resources [15, 18, 20] and the implicit 
resource scheduling of different virtual machines done by 
VMM in privileged driver domain [11]. For example, in the 
current Xen implementation, all the I/O requests have to be 
processed by the driver domain, and Xen does not explicitly 
differentiate the Domain0 CPU usage caused by I/O operations 
for each guest domain. The lacking of mechanism for Domain0 
to explicitly separate its usage contributes to the unpredictable 
performance interference among guest domains [8].  

D. Basic Methodology and Performance Metrics 
Experimental Setup. All experiments were conducted on 

an DELL Precision Workstation 530 MT with dual 1.7 GHz 
Intel Xeon processors, 1 GB ECC RAM, Maxtor 20 GB 7200 
RPM IDE disk and 100Mbps network connection. We used the 
Ubuntu 8.0.4 distribution and Xen 3.2 with the default credit 
scheduler. The physical machine hosts multiple virtual 
machines. Each VM is running Apache web server to process 
web requests from remote clients. Each client generates file 
retrieval requests for a particular virtual machine such that the 
clients will not become the bottlenecks. Each connection issues 
one file request by default. A control node coordinates 
individual clients and collects profiling data. The web server 
performance is measured as a maximum achievable number of 
connections per second when retrieving files of various sizes. 
We use httperf [14] to send client requests for web document of 
size 1kB, 10kB, 30kB, 50kB or 70kB. Authors of [4, 18] 
showed that web server performance is CPU bound under a 
mix of small size files, and is network bound under a mix of 
large files. The criteria for small or large files depend on the 



capacity of the machine. For our experimental setup, files with 
size larger than 10K are network bounded.  

Performance Metrics. The following metrics are used in 
our measurement study. They are collected using Xenmon [7] 
and Xentop [24]. 
• Server throughput (#req/sec). It quantitatively measures 

the maximum number of successful requests served per 
second when retrieving web documents.  

• Normalized throughput. We typically choose one 
measured throughput as our baseline reference throughput 
and normalize the throughputs of different configuration 
settings in order to make adequate comparison.  

• Aggregated throughput (#req/sec). We use aggregated 
throughput as a metric to measure the impact of using 
varying number of VMs on the aggregated throughput 
performance of a physical host. 

• CPU time per execution (μs/exe). It is a performance 
indicator that shows the average obtained CPU time in 
microseconds (μs) during each run of the given domain.  

• Execution per second (#exe/sec). It measures the number 
of guest domains being scheduled to run on a physical 
CPU during one unit time. 

• CPU utilization (%). To understand the CPU resource 
sharing across VMs running on a single physical machine, 
we measure the average CPU utilization of each VM, 
including Domain0 CPU usage and guest domain CPU 
usage respectively. 

• Network I/O per second (kByte/sec). We measure the 
amount of network I/O traffic in kB per second, transferred 
to/from a remote web server for the corresponding 
workload.  

• Memory pages exchange per second (pages/sec). We 
measure the number of memory pages exchanged per 
second in the I/O channel. It indicates how efficient the 
I/O processing is.  

• Memory pages exchange per execution (pages/exe). This 
metric is a performance indicator that shows the average 
memory pages exchanged during each run of the given 
domain.  

E. Measurement Study: Objectives and Methodology 
In a virtualized cloud environment, cloud providers 

implement server consolidation by slicing each physical 
machine into multiple virtual machines (VMs) based on server 
capacity provisioning demands. Cloud consumers may reserve 
computing resources through renting VMs from cloud 
providers. However, there has not been much dedicated study 
on the ways that multiple VMs hosted on the same physical 
machine may impact on the performance of the applications 
running on them, including when some of these VMs are idle, 
some are running CPU intensive workloads or I/O intensive 
applications.  

With this problem in mind, we design our measurement 
study on the following two important issues: (i) understanding 
the impact of idle instances on application performance; (ii)   

understanding the impact of co-locating applications in a 
virtualized cloud in terms of throughput performance and 
resource sharing effectiveness. Through in-depth measurement 
analysis of these issues, we can better understand the set of key 
factors that can maximize the physical host capacity and the 
application performance. In addition, cloud service providers 
can provide more effective management of virtual machines to 
better meet consumers’ demand, and at the same time, cloud 
consumers can utilize the insights gained from this study to 
manage and scale their applications more effectively.  

III. DEALING WITH IDLE INSTANCES 
Consider a set of n (n>0) VMs hosted on a physical 

machine, at any point of time, a guest domain (VM) can be in 
one of the following three states: (i) execution state, namely the 
guest domain is currently using CPU; (ii) runnable state, 
namely the guest domain is on the run queue, waiting to be 
scheduled for execution on the CPU; and (iii) blocked state, 
namely the guest domain is blocked and is not on the run 
queue. A guest domain is called idle when the guest domain is 
executing idle-loop, i.e., there is no VM that is not blocked and 
not idle. 

In this group of experiments, we intent to study the 
following two issues: First, we want to understand the 
advantage and drawbacks of keeping idle instances from the 
perspective of both cloud providers and cloud consumers.  
Second, we want to measure and understand the start-up time 
of creating one or more new guest domains on a physical host, 
its impact on existing applications, and the key factors impact 
the application performance and new domain start-up time.  

We setup the first set of experiments in two steps.  First, we 
use one single guest domain, denoted as Domain1, to serve all 
http requests. We stress Domain1 with as high workload as 
possible to find out its service limit. Then, we varied the 
number of idle guest domains in addition to Domain1 from 
zero to three. Note that, the Apache web server starts 
automatically in the idle domain to simulate the situation that 
an instance which has been booted up can respond to requests 
immediately. This is a more practical way to simulate the real 
world scenario. Table I shows the results of four experimental 
setups. Domain1 is running I/O application in high workload 
rate, with zero, one, two, or three other VMs in idle execution 
state. Each setup records the maximum achievable throughputs 
for all five I/O applications (1kB, 10kB, 30kB, 50kB and 
70kB). 

TABLE I.  MAXIMUM THROUGHPUT FOR DOMAIN1 [#REQ/SEC] 

App. (# of guest domains, # of idle domains) 
(1,0) (2,1) (3,2) (4,3) 

1kB 1070 1067 1040 999 
10kB 720 717 714 711 
30kB 380 380 380 380 
50kB 230 230 230 230 
70kB 165 165 165 165 

 
 



 
Figure 1.  CPU time per execution [μs/exe] for 
1kB application under 1 VM and 4 VMs with 3 
idle VMs setups  

Figure 2.  Exeution counts per second for 1kB 
application under 1 VM and 4 VMs with 3 idle 
VMs setups  

Figure 3.  Throughputs for 1kB and 70kB 
applications and startup time [s] of one and two 
new guest domains.  

We observe some interesting facts from Table I. First, there 
is no visible performance impact of keeping the idle domain(s) 
running when the running domain are serving 30kB, 50kB and 
70kB applications, because their performance are network 
bounded. Second, the worst performance degradation occurs in 
the 1kB application, which is CPU bound. Compared with the 
single VM setup where the highest throughput value achieved 
is 1070 #req/sec, we see about 6% performance degradation 
when the number of guest domains is four (999 #req/sec). It is 
apparent that adding idle guest domains induced overhead 
which can impact the performance of CPU intensive 
applications in the running domain.  

Figure 1 and Figure 2 present more detailed measurements 
of performance impact of idle instances, which helps us to 
quantitatively characterize the overhead occurred for 1kB 
application. We measured the CPU time per execution as well 
as the number of execution counts per second with one VM and 
four VMs with three idle setups for 1kB application. From 
Figure 1 and Figure 2, we make two observations. First, on 
average, each of the three idle guest domains can get about 
250μs for each run, which is about only 10% of the CPU time 
of Domain0 for each execution. Second, comparing 4 VMs 
with 3 idle VMs setup with single VM setup, we see the CPU 
time for each run is dropped from 2464�μs to 2407�μs in 
domain0 and from 2130μs to 2046�μs in domain1, and 
similarly, the execution count per second is dropped from 
400,000 to 300,000 in domon1, though the execution count per 
second in domain0 sees a slight increase. The drop in CPU 
time per execution and execution per second is primarily due to 
the following two factors: (1) the execution of timer tick for the 
idle guest domain and the context switch overhead, and (2) the 
processing of network packets such as address resolution 
protocol (ARP) packets, which causes I/O processing in guest 
domain.  

Now we report the second set of experiments in this group. 
In this set of experiments, we want to study how CPU intensive 
applications and network I/O intensive applications may impact 
the throughput performance when an idle instance is present. 
We also want to understand the startup time for creating one or 
more new guest domains on demand and the other factors that 
may impact such start-up time. We adopted the methodology as 
follows. Domain1 is serving the 1kB or 70kB applications 
alone. Then we create one or two idle instances. Figure 3 
records the fluctuations in Domain1’s throughput and startup 
time for the idle guest domains. It shows the throughput for 
running Domain1 alone (Exp1), running Domain1 with startup 
one VM on demand (Exp2), and running Domain1 with startup 
two VMs on demand (Exp3), respectively. In this set of 

experiments, the request rate is fixed at 900 requests/second for 
the 1kB application or 150 requests/second for the 70kB 
application, both of which are approaching 90% of maximum 
throughput values given in Table I. The primary y-axis is the 
normalized throughput with 900 successful requests/sec for 
1kB application or 150 #req/sec for 70kB application as 
baseline. The second y-axis denotes the start-up time (sec) for 
one, two or three VMs. Note that the circles in Exp1 denote the 
startup time for one single instance without running Domain1.   

Figure 3 shows three interesting observations. First, on 
demand start-up of guest domains has severe short term impact 
on the performance of running domain no matter what type of 
application is hosted by it. This is because starting up a VM 
instance is I/O intensive, in our experiment, it means to create 
one 2GB guest domain instance. As the measurement results 
showed, to start up a new VM, the average CPU consumption 
is about 20%. The peak CPU consumption to finish this task 
can be as high as 75%. In addition, it requires about 900 virtual 
block device read operations and about 200 virtual block 
device write operations. These I/O related activities to start-up 
new domains cannot be finished without the presence of 
Domain0, which plays a key role in processing Domain1’s web 
workloads. Our second observation is that the 70kB application 
suffers less in terms of start-up time than the 1kB application. 
This is because the performance of the 70kB application is 
network bounded, and it consumes less CPU, which alleviates 
the CPU contention. In our case, it will consume about 90% 
CPU resources in addition to about 5400 memory page 
exchanges per second between Domain0 and Domain1 to serve 
the 900 requests/sec for 1kB application. In contrast, only 60% 
CPU resource is reserved to serve 150 requests/sec for the 
70kB application. Furthermore, for the 1kB application, the 
startup time for creating two guest domains in Exp3 grows 
from 47 sec in Exp1 to 75 sec, which is about 1.5 times bigger. 
In contrast, for 70kB application, the difference in start-up time 
from creating two VMs to one VM is relatively smaller. This 
shows that the start-up time for creating new VMs on demand 
is related to both the type of resource-bound applications in the 
running domain and the number of new VMs being created. 
Given the CPU and disk I/O demands involved in creating new 
domains, both CPU intensive or disk I/O intensive applications 
in running domain will cost more start-up time than network 
I/O bounded applications. Finally, our third observation is that 
the duration of performance degradation experienced due to 
creating new VMs on demand is typically bounded within 100 
seconds in our experiments. Our experience shows that, the 
experienced duration of performance degradation is related 
with the machine capacity, the workload level in the running 
domain, and the number of new VM instances to start up.   



 

Figure 4.  Normalized throughput, CPU 
utilization and Network I/O between Domain1 
and Domain2, both with identical 1kB 
application at 50% workload rate 

Figure 5.  Average throughput [#req/sec] per 
guest domain, with both guest domains running 
identical application at the same workload rate 

Figure 6.  CPU usage for Domain0, aggregated 
CPU usage for guest domains, and percentage of 
idle CPU [%] 

 
Figure 7.  Domain1 throughput when Domain1 
is serving 1kB appliaction and Domain2 is 
serving 1kB to 70kB applications 

Figure 8.  Domain2 throughput when Domain1 
is serving 1kB application and Domain2 is 
serving 1kB to 70kB applications 

Figure 9.  Aggregated throughput ratio for 
Domain1 and Domain2 across five applied 
workload rates 

IV. IMPACT OF NEIGHBOR APPLICATION 
In a virtualized cloud, some resources like CPU, memory 

are sliced across multiple VMs, whereas other resources like 
the network and the disk subsystem are shared among multiple 
VMs. We design three groups of experiments to perform an 
extensive measurement study on performance impact of co-
locating applications with different resource usage patterns and 
different number of VMs. The first group and the second group 
of experiments focus on performance impact of running 
applications with different resource usage patterns. To isolate 
the number of factors that impact on the impact of co-locating 
patterns of applications, we choose the five I/O applications of 
1kB, 10kB, 30kB, 50kB and 70kB in our experiments, but 
divide the experiments into two steps. In the first group, we 
run identical application on all VMs for all five applications. In 
the second step we study the slightly more complex scenarios 
where different applications are running on different VMs. In 
the third group of experiments, we study the problem of 
distributing workloads among multiple VMs.  

A. Co-locating Identical Applications 
In this group of experiments, we design two guest domains, 

Domain1 and Domain2, both serve identical web requests 
issuing at the same workload rates. In this simplified scenario, 
our experimental results show that when two identical I/O 
applications are running together, the credit scheduler can 
approximately guarantee their fairness in CPU slicing, network 
bandwidth consumption, and the resulting throughput.   

Figure 4 shows the experimental results for two VMs when 
both are serving 1kB applications with 50% workload rate. We 
measured throughput, CPU utilization, Network I/O. For 
example, Domain1 consumes 36.1% CPU resources while 
Domain2 consumes 36.8% CPU resources. The throughputs 
and network bandwidths for Domain1 and Domain2 are: 480 
#req/sec and 487 #req/sec, 609 kByte/sec and 622 kByte/sec 

respectively. We present these three metrics in normalized 
values to show their similarities. For each metrics pair, we use 
the value for Domain1 as the comparative baseline. In Figure 4 
the difference between the measurement in VM1 and the 
measurement in VM2 is trivial and can be ignored.  

Figure 5 measures the average throughput of Domain1 and 
Domain2 for all five I/O applications. We observe that (1) all 
the applications arriving at the peak performance under applied 
workload of 50% or 60%, (2) there is crucial difference 
between small-sized file application and large-sized file 
application. For small-sized file application such as 1kB and 
10kB, obvious performance degradation can be observed at 
workload rates higher than 50% or 60%. However, this is not 
the case for large-sized file applications. The significant skew 
happened in the 1kB application because: (1) its performance 
is bounded by the CPU resources, (2) the guest domain spends 
much more time to deal with the fast arrival of network 
packets when the workload rate is high, (3) compared with the 
single domain experiment for all five applications shown in 
Table I, the overhead has increased due to the network 
bridging happened in Domain0, and the context switch.  

Figure 6 measures the CPU usages for 1kB and 70kB 
applications under varying workload rates. We add up CPU 
used by Domain1 and Domain2 together since the results in 
Figure 4 indicate that Domain1 and Domain2 always get 
almost the same amount of CPU allocation. Figure 6 shows:  
under the same workload rate, the guest domain CPU usage for 
1kB file is  much larger than that of the 70kB application, 
despite the fact that the memory page exchange rate for 1kB 
file is much less than that of the 70kB application. This is 
because the CPU consumed to process network requests is 
mainly composed of two major components: the time spent in 
establishing TCP connections, and the time spent in 
transporting web file content. Furthermore, the connection 
phase demands significantly more CPU resources than the 
transportation phase.  



 
Figure 10.  CPU utilization for Domain1 is 
serving 1kB with Domain2 is serving 1kB to 
70kB when the applied workload is 100% 

Figure 11.  Aggregated Network I/O when 
Domain1 is serving 1kB application and 
Domain2 is serving 1kB to 70kB applications  

Figure 12.  Maximum aggregated throughput 
ratio for all combinations with respect to dual 
guest domain tests 

B. Co-locating Different Applications 
From experimental results in the previous subsection, we 

know that when two applications are identical, then 
approximate fairness can be obtained by using the default 
credit scheduler in Xen. Thus the main factors that impact the 
performance of applications co-located on the same physical 
host are applied workload rates and resource usage patterns of 
applications. In this subsection we examine the performance 
for guest domains when they are serving different applications 
as this is more likely to happen in real world scenario. We 
simulate two cloud consumers, one is using Domain1 and 
serving the 1kB application, the other is using Domain2, 
running the application, which is by design varying from 1kB 
to 70kB.  

Figure 7 and Figure 8 measure the throughputs for 
Domain1 and Domain2 under the 70% workload respectively. 
We observe two interesting facts: (1) although Domain1 
always serves the 1kB file, its performance highly depends on 
the application running in its neighbor Domain2. For example, 
in the 1kB and 70kB combination (661 reqs/sec for 1kB) 
compared with in the 1kB and 1kB combination (494 reqs/sec 
for 1kB), the performance difference can be 34%. (2) The 
highest throughput points occurring in Figure 7 and Figure 8 
show considerably different tendencies. Take the 1kB and 
70kB application combination as an example, for the two guest 
domains, the highest throughput points come out under 
different applied workloads: the highest point for the 1kB file 
appears at 70% workload rate, while it comes at 100% 
workload for the 70kB application. Clearly, this phenomenon is 
due to the resource usage pattern of 1kB and 70kB applications, 
1kB is CPU bounded and 70kB is network bounded.  

Figure 9 measures the aggregated throughput ratio as a 
function of workload rate. We use the maximum throughput of 
single VM for five applications in the first column of Table I as 
the baseline to get individual throughput ratio for each guest 
domain under each specific workload. For example, the 
throughput for Domain1 is 661 #req/sec under 70% workload, 
thus the throughput ratio is about 62% (i.e., 661/1070). 
Similarly we have the aggregated throughput ratio of 130% for 
the 70kB application. From the results for five combinations of 
neighboring applications in Figure 9, we  observe that the best 
co-locating case is the 1kB and 70kB combination with 
aggregated throughput ratio of 1.3, and the worst case is the 
1kB and 1kB combination with aggregated throughout ratio of 
0.92, The performance difference could be more than 40% 
( (1.3-0.92)/0.92=41%).  

Figure 10 measures the CPU usages of Domain0, Domain1, 
and Domain2 for five different combinations of applications. 

We make three interesting observations from this set of 
experiments: (1) The decrease in Domain2 CPU usage is 
expected when the application in Domain2 is resized from 1kB 
to 70kB and from CPU-intensive to network intensive 
application.  (2) The increase in Domain0 CPU utilization is 
expected when the neighbor application combination is 
changed  from 1kB and 1kB to 1kB and 70kB, this is because 
for the 70kB application, the large amount of data transferred 
cause higher consumption of the device driver in Domain0. (3) 
The increase in Domain1 CPU utilization is also expected since 
it explains the performance improvement occurred for the 1kB 
application in Figure 7, when domain2 is changing to pairing 
with 70kB network bounded application, allowing the released 
CPU in domain2 to be utilized by the CPU intensive 1kB 
application in domain1.  

Figure 11 plots the aggregated network I/O consumption as 
a function of workload rates across five different combinations 
of neighboring applications. We observe that the 1kB and 70kB 
application combination consumes the highest network 
bandwidth. This experimental result is consistent with the 
results in Figure 9 and Figure 10. For the 1kB and 70kB 
application combination, while the majority of requests (80%) 
processed are the 1kB file retrieval requests (see domain1 CPU 
utilization for 1kB&70kB), the majority of network bytes 
consumed (94%) are due to transferring the 70k file objects.  

Figure 12 shows the maximum aggregated throughput ratio 
for all the possible combinations with two guest domains and 
five applications of different file sizes. Our goal for this 
experiment is to comprehensively examine the performance 
impact of different types of application combinations. This is a 
super set of the experiments in Figure 9 where five 
combinations are examined. We draw three insights from 
Figure 12: (1) If we co-locate two CPU intensive applications, 
such as 1kB and 10kB combination, then the performance of 
both applications will suffer. (2) If we choose the network 
intensive application combinations such as 30kB and 50kB, 
then each will equally contribute 50% of the aggregated 
throughput performance, and there is no performance 
degradation. (3) The best co-locating strategy is to use the CPU 
intensive and network intensive application combination, 
which always achieves strikingly high aggregated throughput.  

C. Co-locating Applications among Multiple VMs  
We have studied the impact of co-locating applications on 

two guest domains hosted on a single physical node. In this 
section we dedicate our measurement study to examine the 
impact of multiple VMs on application co-location strategy.  

Our first set of experiments is designed by varying the 
number of guest domains from one to six and each guest  



 
Figure 13.  Average CPU utilization for each VM 
when varying the number of VMs from one to 
six, each is serveing 10% workload rate 

Figure 14.  CPU usage by one and two guest 
domains with varying workload rates 

Figure 15.  CPU usage for one, two, three, four 
and six guest domains with 120% workload rate 

                                         
Figure 16.  Aggregated throughput ratio for one, two, four and six VMs, half 
serving 1kB files, the other half serving 70kB files. 

Figure 17.  Throughputs for one, two, three, four guest domains with repsect 
to  with repsect to five applications 

domain serves 10% applied workload. Total workload rate can 
be calculated by multiplying the number of guest domains with 
the applied workload rate. Using 10% workload applied to each 
guest domain guarantees no severe resource contention will 
occur. Figure 13 shows when there are six guest domains 
running, the CPU time spent (9.8%) to process the same 
amount of I/O data (10% workload per guest domain) equals to 
1.5 times of the CPU time spent (6.9%) in the single guest 
domain case. This group of experiments intends to show that 
compared with single guest domain case, when multiple guest 
domains are running, the context switches among the guest 
domains will lead to more frequent cache miss and TLB miss 
[12], which will result in more CPU time consumption in 
serving the same data. The cost of VM context switches is 
typically proportional to the number of guest domains hosted 
on a physical machine.  

For the second set of experiments, we fix the total workload 
rates to 20%, 40%, 60%, 80% and 100%. The 1kB and 70kB 
application are chosen as they are the two representative 
applications. Figure 14 shows the CPU utilization measured for 
both driver domain and guest domain under two types of 
virtual machine configurations: single VM and two VMs. For 
example, 01k-1VM-Dom0 denotes the measurement of dom0 
CPU utilization for 1kB application running on a single VM. 
01k-2VM-Dom0 denotes the measurement of dom0 CPU 
utilization for 1kB application running on two VMs. 01k-2VM-
Dom1+Dom2 measures the combined CPU usage of both 
Domain1 and Domain2 for 1kB application. Two VCPUs are 
configured for each guest domain. When two guest domains 
are running, six VCPUs are waiting for being scheduled into 
the physical CPUs, compared with four VCPUs in single guest 
domain case. Frequent context switches incur undesirable 
cache miss and TLB miss. For the two guest domain 
experiments, Domain0 has to deal with both the context switch 
and the scheduling overhead, also the network bridging 
overhead is raised due to transferring packets to individual 
guest domains. Thus Domain0 gets larger fraction of CPU 
resources for the two guest domain setting. This set of 

experimental results also shows that the CPU usage in the guest 
domain increases sharply as the workload rate approaches 
100%.   

Figure 15 shows the CPU usages under high contention 
situation. We varied the total workload rates to 120%. As seen 
from the figure, when the number of guest domains grows from 
one to six, the CPU share for Domain0 reduces at a more 
gradual rate for the 70kB application (32.5% to 31.3%). In 
contrast, when the number of guest domains is changed to six, 
the CPU utilization at Domain0 for the 1kB application is 
reduced from 33.8% to 18.6%. For the 1kB application, the 
significant reduction in Domain0 CPU utilization indicates the 
growing CPU contention due to the continuous growth in the 
guest domain CPU usages. The credit scheduler tries to fairly 
share CPU slices among domains including Domain0. 

Figure 16 measures the impact of the number of guest 
domains on aggregated throughput ratio with half of guest 
domains serving the 1kB application and the other half serving 
the 70kB application. We use the maximum throughput of 
single VM for five applications in the first column of Table I as 
the baseline to get individual throughput ratio for each guest 
domain. The first observation is: The configuration for two 
guest domains outperforms than other configurations. When 
the number of guest domains switches to four or six, the 
aggregated throughput ratios reduce to one. This means: when 
the number of guest domains expended beyond some value, 
which is four in our case, the overhead raised by hosting 
multiple guest domains depletes the benefits of the best 
combination. Compared to the six guest domain case (1.01), 
the best case (1.31) when there are two guest domains shows 
about 30% performance gains.  

Figure 17 measures the maximum overall throughput 
performance for five applications, each is distributed on 
multiple guest domains. This set of experiments shows how the 
application characteristics combined with the number of guest 
domains together may affect the overall throughput 
performance. For the 10kB application, the maximum 
aggregated throughput is 608 #req/sec when two guest domains 



are running, compared with 720 #req/sec achieved in one guest 
domain experiment, showing 15% performance decline. When 
three guest domains are present, the aggregated throughput is 
652 #req/sec. When compared with one single guest domain 
case, 10% performance decline has shown. The slight 
throughput increase for the case of four guest domains is due to 
the global load balancing capabilities of the credit scheduler [3].  

V. CONCLUSIONS 
To maximize the benefit and effectiveness of server 

consolidation and application consolidation in virtualized cloud 
environments, we argue that it is important to conduct in-depth 
performance measurements for applications running on 
multiple VMs hosted on a single physical machine. Such 
measurements can provide quantitative and qualitative analysis 
of performance bottlenecks that are specific to virtualized 
environments, offering deeper understanding of the key factors 
for effective resource sharing among applications running in 
virtualized cloud environments. We have presented our 
performance measurement study of network I/O applications in 
virtualized cloud environments. We focus our measurement 
based analysis on performance impact of co-locating 
applications in a virtualized cloud in terms of throughput 
performance and resource sharing effectiveness, including the 
impact of idle instances on applications that are running 
concurrently on the same physical host, and how different CPU 
resource scheduling and allocation strategies, and different 
workload rates may impact the performance of a virtualized 
system.  

In this work, we showed that by strategically co-locating 
network I/O applications together, considerable performance 
gain could be obtained. However, we did not show how to 
utilize this strategy to help decision making in the cloud. In the 
future, we plan to utilize our findings as knowledge base to 
facilitate the scheduling in the cloud. Another limitation of this 
research work is we conducted our experiments on Xen 
platform. We are going to repeat some of these experiments in 
other virtual machine monitors. 
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