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Voting Systems with Trust Mechanisms in Cyberspace:
Vulnerabilities and Defenses
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Abstract—With the popularity of voting systems in cyberspace, there is growing evidence that current voting systems can be
manipulated by fake votes. This problem has attracted many researchers working on guarding voting systems in two areas: relieving
the effect of dishonest votes by evaluating the trust of voters, and limiting the resources that can be used by attackers, such as the
number of voters and the number of votes. In this paper, we argue that powering voting systems with trust and limiting attack resources
are not enough. We present a novel attack named as Reputation Trap (RepTrap). Our case study and experiments show that this
new attack needs much less resources to manipulate the voting systems and has a much higher success rate compared with existing
attacks. We further identify the reasons behind this attack and propose two defense schemes accordingly. In the first scheme, we
hide correlation knowledge from attackers to reduce their chance to affect the honest voters. In the second scheme, we introduce
robustness-of-evidence, a new metric, in trust calculation to reduce their effect on honest voters. We conduct extensive experiments to
validate our approach. The results show that our defense schemes not only can reduce the success rate of attacks but also significantly
increase the amount of resources an adversary needs to launch a successful attack.

Index Terms—Voting system, Trust mechanism, Reputation system, Security.
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1 INTRODUCTION

Research has shown that online user opinions are hav-
ing increasing influence on consumers’ decision-making,
providing incentive for good behaviors and positive im-
pact on market quality [19], [26], [28]. There are various
systems that collect and aggregate users’ opinions. These
opinions are referred to as online voting, rating or review.

In this paper, we use online voting systems to refer to
the services that judge the quality of items based on
users’ opinions1. Here, items can be products, transac-
tions, digital contents, search results, and so on. There
are many popular operational online voting systems. In
Amazon, users give one to five stars to products. Digg
is one popular website for people to discover and share
content on the Internet. The cornerstone function of Digg
allows users to vote a story either up or down. In P2P
file-sharing systems, voting systems are used to identify
whether a file is real or fake [16].

However, the manipulation of voting systems is also
rapidly growing. Examples include buying a joke for a
penny to gain a positive feedback in eBay [18], buying
fake positive review for 65 cents [37], and winning “Best
Producers of Short Content in Twitter” award through
purchasing online votes [38]. The attackers first control
a lot of fake user IDs [4] and then design their strate-
gies carefully to achieve their goals [20], [23], [27]. Re-
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1. Our definition of online voting system is much broader than the
definition used in the election system.

searchers as well as Internet users have already realized
this problem. If fake votes are not under control, they
will damage the fairness and usability of online voting
systems, mislead consumers, and hurt the businesses
hosting voting systems in the long run.

Nowadays, trust mechanism is used as a popular and
yet effective approach to address the fake voting prob-
lem. Various trust schemes have been proposed [3], [6],
[9], [16], [20], [26], [29], [33]. They estimate whether a
user is trustworthy or not, and give low weights to the
votes from less trustworthy users when generating the
final results. These schemes have shown to increase the
robustness of online voting systems.

Another popular approach to defend online voting
systems is to limit the resources that can be used by
attackers. The resources can be the number of user
IDs [4] under an attacker’s control and the maximum
number of votes can be inserted by these user IDs.
Several research efforts [17], [32], [36], [39] have recently
been put forth along this direction.

In this paper, we argue that powering voting systems
with existing trust mechanisms and limiting attack re-
sources are not enough. We present a novel attack that
can manipulate voting systems with limited resources,
analyze the inherent vulnerabilities utilized by this at-
tack, and propose two defense schemes. Concretely, this
paper makes three unique contributions:

First, we introduce an attack model that inspires the
discovery of a new attack, named as Reputation Trap or
RepTrap in short. Compared with existing attacks, Rep-
Trap needs less resource and has higher success rate to
achieve the attack goal. In short, RepTrap formulates and
proposes an strategy to combine and enhance existing
attack models. The basic idea of RepTrap is as follows.
The malicious users first identify a set of high-quality
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unpopular items whose voters also vote for the target
item. Then, the malicious users give a large number of
dishonest votes to these unpopular items such that the
system wrongly believes these items have low quality. As
a result, the votes from the honest users, which disagree
with the item quality from the system’s point of view, are
considered as dishonest, and the trust of the honest users
is reduced. Meanwhile, the trust of the malicious users
is increased. Finally, after increasing their own trust and
reducing the honest users’ trust to certain degree, the
malicious users can successfully attack the target item.

Second, we analyze and identify key factors that facil-
itate RepTrap. These factors include the lack of ground
truth about the quality of the items, availability of
correlation knowledge, attackable unpopular items, and
information shrinking in voting aggregation.

Third, we propose two defense schemes to increase the
difficulty of launching RepTrap successfully. Knowledge
hiding is used to prevent the attackers to find correlation
among items; robustness-of-evidence is introduced as a
new metric to evaluate the difficulty of undermining the
voting system’s judgment on the quality of an item.

We conduct extensive experiments to compare Rep-
Trap with two known types of attacks: bad-mouthing
(referred to as RepBad in this paper) and self-promoting
(referred to as RepSelf in this paper) [8], [20], [27].
We also evaluate the proposed defense schemes under
various attack scenarios. The results show that RepTrap is
much stronger than known attacks in terms of attack success
rate, even when voting systems are powered with existing
trust mechanisms and the attackers can only use limited
resources to conduct the attack. For example, with 5% of
the user IDs controlled by the attacker, RepTrap can
successfully attack the most popular item with more than
90% success rate, whereas the success rate of RepBad and
RepSelf is almost zero. Meanwhile, RepTrap can reduce
the total number of votes from the attacker by more
than 50%. Furthermore, the proposed defense schemes can
successfully reduce the power of RepTrap. Concretely, each
defense scheme alone can reduce the success rate of Rep-
Trap by up to 30% and increase the number of required
malicious votes by up to 50%. The combination of the
two defense schemes is significantly more effective. We
argue that through the in-depth analysis of RepTrap and
the use of the proposed defense schemes, we put the
arms race between attacks and defenses for online voting
systems one step forward.

The rest of the paper is organized as follows. In
Section 2, we present a reference architecture for voting
systems powered with trust mechanisms and review
related work. We develop an attack model and describe
RepTrap in Section 3. We analyze the reasons behind
RepTrap in Section 4 and develop defense schemes in
Section 5. We report our experimental results in Section
6 and conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK
In this section, we first present a reference architecture
for voting systems with trust mechanisms. We then build

Fig. 1. Item-user graph in a voting system

a concrete system of majority voting with beta function
trust mechanism. This system will serve as the platform
for presenting RepTrap in later sections. At the end of
this section, we review the related work.

2.1 Voting systems with trust mechanisms
In a voting system, there are items whose quality should
be identified by the system and users who can vote on
the items. The basic function in a voting system is users
giving votes to items, which can be described by an item-
user graph as illustrated in Figure 1. Each vertex on the
left hand side represents an item. Each vertex on the right
hand side represents a user. An edge between an item
and a user means that this user votes on this item. To
simplify the discussion, we assume that both the quality
of items and the the votes of users are binary.

As discussed before, trust mechanisms are used to deal
with dishonest votes. Figure 2 shows the architecture of
voting systems with trust mechanisms.

• Raw voting data is collected from the users.
• Item quality is calculated based on voting values

and user trust. The algorithm that calculates item
quality is referred to as IQ Algorithm.

• User trust is calculated based on users’ votes and
item quality. Briefly speaking, if a user’s voting
values disagree (or agree) with the item quality
identified by the IQ Algorithm, this user’s trust
value would be reduced (or increased). The algo-
rithm that calculates user trust is referred to as UT
Algorithm.

2.2 Majority voting system with beta function trust
mechanism
With the reference architecture, we present a majority
voting system with beta function trust mechanism for
P2P file-sharing networks. This system will be used to
demonstrate the attack and defense ideas as well as
experimental results in later sections. We should note
that the application can be easily extended to others.

In a P2P file-sharing network, the items are the files.
After a user downloads a file, he/she can vote whether
the quality of the file is real (’1’) or fake (’0’). The voting
system collects the votes and calculates file quality, de-
scribing the system’s judgment on whether a file is real
or fake.

For voting systems, one of the most popular designs
is based on majority rule [1]. That is, the decision made
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Fig. 2. Architecture of voting systems with trust mechanisms

by the system should agree with the majority’s opinion.
Specifically, for each item, let n0 denote the number of
users who vote 0 and n1 denote the number of users who
vote 1. The decision is 0 if n0 > n1 and 1 if n0 < n1.

For trust mechanisms, one of the most popular design
is based on beta function. It first counts the number of
honest and dishonest behaviors a user has conducted,
and then calculates the trust value with beta function [3].
If we combine them together, the system is as follows.

• Item quality algorithm: Let U1
k and U0

k denote
the set of users who vote item Ik with 1 and 0,
respectively. The trust value of user uj is denoted
by T (uj). Then, the quality of item Ik, denoted by
Q(Ik), is calculated with majority voting as

Q(Ik) =

{

1 if G(Ik) ≥ B(Ik),

0 if G(Ik) < B(Ik).
(1)

where

G(Ik) =
∑

uj∈U1

k

T (uj) ; B(Ik) =
∑

ui∈U0

k

T (ui). (2)

In this calculation, the system utilizes trust values
as weight factors, and compares the summation of
the weights of the users who vote 0 and that of the
users who vote 1.

• User trust algorithm: When a vote is given to item
Ik by user uj , if the vote value is the same as the
item quality Q(Ik) identified by the item quality
algorithm, this vote is considered as an honest vote.
Otherwise, it is considered as a dishonest vote. For a
user uj , the system calculates the number of honest
votes given by this user, denoted by H(uj), and
the number of dishonest votes given by this user,
denoted by D(uj). The trust value of user uj is
calculated with beta function [3] as:

T (uj) =
H(uj) + 1

H(uj) + D(uj) + 2
. (3)

User trust and item quality is calculated in an iterative
way as follows.

1) For each user uj , initialize T (uj) as 0.5.
2) For each item Ij , update G(Ij) and B(Ij) using (2),

and calculate Q(Ij) using (1).
3) For each user uj , update H(uj) and D(uj), and

calculate T (uj) using (3).
4) If T (uj) for any user uj changes in step 3, go to

step 2; else END.

2.3 Related work
Online voting systems have been adopted in many real-
life systems, including Google, Digg, eBay, Amazon,
IMDB and so on. Most of them simply present raw
data or conduct straightforward aggregation (e.g. the
average voting scores). Two types of attacks have been
identified in current online voting systems. In the first
type of attacks, an attacker can register many user IDs
[4] and then manipulate the quality of the target item by
inserting dishonest votes directly. This is often referred to
as the bad-mouthing attack [20] [27], and we use RepBad
to denote this attack.

Trust mechanisms are developed to defeat the bad-
mouthing attack by calculating and utilizing the trust
values of the voters. Reputation and trust have been
well studied in P2P area. Representative schemes include
EigenTrust [6] for reputation management in P2P net-
works, PET [15] for reputation and risk evaluation in P2P
resource sharing, Credence [16] for identifying fake files
in P2P file-sharing systems, PeerTrust [12] for supporting
reputation-based trust for P2P electronic communities,
PowerTrust [29] and GossipTrust [33] for trust aggrega-
tion in P2P networks. Ooi et al. [5] examined the issue
of managing trust in P2P systems. Vu and Aberer [30]
proposed a probabilistic framework in the computation
of quality and trust in decentralized systems. Damiani
et al. [9] proposed digital reputations that can be seen as
the P2P counterparts of client-server digital certificates.
Sensoy et al. [22] proposed an ontology-based service
representation and selection approach. Khambatti et al.
[11] proposed a role-based trust model for P2P commu-
nities and dynamic coalitions. Fan et al. [14] proposed
a reputation system based on exponential smoothing
that can serve as a sustained incentive mechanism for
the sellers. A good survey about trust and reputation
systems for online service provision can be found in
[26] and a comparison of different rating aggregation
algorithms can be found in [31]. In addition, a lot of
work [13], [21], [24], [25] has discussed trust negotiation
as an approach for establishing trust in open systems.

Though trust mechanisms make an adversary’s attack
more difficult to succeed, these mechanisms do not pre-
vent the attackers to misuse and abuse the trust evalua-
tion schemes. For example, the attackers can strategically
give honest votes to the items they are not interested
in for the purpose of boosting their trust value, before
giving dishonest votes to the items they really want to
attack. This is the second type of attacks and it is often
referred to as self-promoting [27] or reputation recovery
[20]. In this paper, we use RepSelf to denote it.

To counter RepSelf, the key is an effective identity
management scheme to prevent Sybil attack [4]. It means
limiting the resources can be used by the attackers. Two
kinds of defense schemes are designed. The first kind is
trying to introduce a process to judge whether a user is
a human or a machine. In this process, a task which is
easy to human but hard to machine is introduced, such
as the reCAPTCHA. The second kind is based on the



4

structure of social trust graph. The assumption is that
though the attackers could control a lot of fake IDs, it
is hard for them to build the correlation —which is cut
in the graph— from the bad clique to the good group.
Some latest work includes SybilGuard [17], SybilLimit
[32], Sybil-Resilient [36], and Self-Certification [39].

In this paper we argue that simply combining existing
trust mechanisms with the techniques of limiting attack-
ers’ resources is insufficient. We present a new attack,
named as RepTrap, which is much stronger than exist-
ing known attacks. We further study the vulnerabilities
of online voting systems under RepTrap and possible
defense schemes.

3 REPUTATION TRAP ATTACK
In this section, we formalize our problem and present
an attack model. Afterward, we propose RepTrap with
case studies and formal attack procedure.

3.1 Problem formulation
The goal of attackers is to manipulate the system’s
judgment on the quality of certain items. These items
form the target set, represented as ST . Without loss of
generality, we assume that the true quality of these items
is high, and attackers want the system to mark them as
low quality.

Notations in this section are as follows.

• The items are denoted by I1, I2, ... , In, where n is
the number of items. Let Q(Ij) denotes the quality
of item Ij identified by the system. Its value is either
0 or 1.

• There are NH honest users, denoted by Ui, i =
1, · · · , NH . There are NM malicious users, denoted
by Xi, i = 1, · · · , NM .

• Vote allocation of honest users, denoted by VH, is an
NH by n matrix. Its element is denoted by V (Ui, Ij),
the voting value given by user Ui to item Ij . Here,
V (Ui, Ij) = 1 if Ui votes ’1’ to Ij ; V (Ui, Ij) = −1
if Ui votes ’0’ to Ij ; V (Ui, Ij) = 0 if Ui does not
give vote to Ij . Obviously, if Ui has voted on Ij ,
|V (Ui, Ij)| = 1; otherwise |V (Ui, Ij)| = 0.

• Vote allocation of malicious users, denoted by VM, is
defined in a similar way. Its element is V (Xi, Ij),
takes value 1, 0, or -1, describing the voting
value given by Xi to item Ij . The total num-
ber of votes from malicious users is KM =
∑NM

i=1

∑n

j=1 |V (Xi, Ij)|.

The attackers would like to achieve their goal using
minimal resources, and the resources are represented
by NM and KM . In most cases, the number of mali-
cious users is fixed. Thus, we formulate the problem
as minimizing the number of malicious votes (i.e. NM ),
given KM , n, ST , and VH, under the constraint that the
items in the target set (ST ) is marked as low quality. In
particular,

Inputs: NM , n, ST ,VH

Outputs: VM

The optimization problem:

min
VM

NM
∑

i=1

n
∑

j=1

|V (Xi, Ij)| (4)

under constraint:

Q(ST ) = 0 (5)

This problem does not have closed form solution. To
find the optimal VM, we need to determine the values of
n·NM elements of VM. Since each element has 3 possible
values, the computation complexity to enumerate all the
state space is O(3n·NM ). However, practical systems often
contains a large number of items (n) and the number of
malicious users (NM ) can range from a few tens to a
few hundreds, it is impossible to enumerate all of them.
Therefore, a heuristic algorithm will be developed in
Section 3.4.

In some other scenarios, the attackers’ goal may be
minimizing the number of malicious IDs involved with
limited number of malicious votes. In these scenarios, we
formulate another optimization problem as minimizing
NM , given KM , n, ST , and VH, under the constraint that
Q(ST ) = 0. This optimization problem can be solved
through a binary search as long as the problem in (4)
is solved. Let Nmax

M denote the maximum number of
malicious users that could be controlled by the attacker.
The solution is as follows.

1) Rleft = 0, Rright = Nmax
M

2) Solve (4) by setting NM = ⌊
Rleft+Rright

2 ⌋. Assume
the solution requires the malicious users to insert
K∗

M malicious votes.

3) If K∗

M > KM , Rleft = ⌊
Rleft+Rright

2 ⌋ and Goto step
2.

4) If Rleft = Rright, Output NM and End.

5) Rright = ⌊
Rleft+Rright

2 ⌋ and Goto step 2.

The computation complexity of conducting the binary
search is O(log(Nmax

M )×cost of solving (4)).

3.2 Attack description model
From the previous analysis, we know that it is impos-
sible to enumerate all possible attack strategies. This
motivates us to propose an attack description model to
launch the attack heuristically. In this model, we classify
all the items in the system into 4 categories.

• Target set (ST ) contains the items that are the
attacker’s targets. In other words, the attacker’s goal
is to make the system falsely identify the quality of
the items in ST .

• Honest set (SH ) contains the items that receive
honest votes from malicious users.

• Dishonest set (SD) contains the items that do not
belong to ST and receive dishonest votes from ma-
licious users.

• Unrelated set (SU ) contains all the items that do not
receive votes from malicious users.

To launch an attack on ST , the attacker needs to (1)
specify SH and SD, and (2) choose the malicious user IDs
that will vote on the items in ST , SH and SD. This model
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can easily describe the two known attacks. When ST 6= φ,
SD = φ and SH = φ, it describes RepBad in which the
attackers only give dishonest votes to ST ; when ST 6= φ,
SD = φ and SH 6= φ, it describes RepSelf in which the
attackers will first give honest votes to SH to gain trust
and then give dishonest votes to ST .

Based on this attack description model, we naturally
ask a question: is there any benefit for the attacker to vote
on SD? This question leads to the discovery of RepTrap,
which has non-empty SD and is more powerful than the
existing attacks.

3.3 Case studies
To illustrate the basic idea of RepTrap and compare the
effectiveness of various attacks, we present a detailed
example in a simple scenario.

3.3.1 A simple scenario
We create a scenario with 5 items: I1, I2, I3, I4, and I5,
and 5 honest users: u1, u2, u3, u4, and u5. All the items
have high quality and therefore all the honest users vote
’1’. Here, u1 gives five votes; while u2, u3, u4 and u5 each
gives two votes. The relationship between the items and
the users is illustrated in Figure 1.

When there are no malicious users, we calculate the
trust values of users with equations in Section 2.2 as

T (u1) = 0.86; T (u2) = T (u3) = T (u4) = T (u5) = 0.75.

The item quality is calculated as

Q(I1) = Q(I2) = Q(I3) = Q(I4) = Q(I5) = 1.

So the system marks all the items as high quality.

3.3.2 Goal of attacker
In this case study, the attacker’s goal is to make the
system mark ST = {I1} as a low quality item while
minimizing the attack effort.

The attack effort is described by two values (NM ,KM ),
the number of malicious users and the total number of
malicious votes respectively. For the attacker, acquiring
user IDs is usually more difficult than providing votes,
since there are techniques to defend against creating
multiple fake IDs [17], [32], [36]. Therefore, reducing NM

has higher priority than reducing KM . Thus, the attacker
first minimizes NM , and then minimize KM given the
minimal NM .

From equation (1), we know the Ik is marked as low
quality when G(Ik) < B(Ik). So if the summation of trust
values of malicious users, who vote on Ik with ’0’, is
larger than G(Ik), the system will mark Ik as low quality.
So the attack goal is translated to finding a specific way
to insert malicious votes such that (1) NM is minimized
and (2) KM is minimize given the minimal NM under
the constraint that G(I1) < B(I1).

3.3.3 Comparison among different attack strategies
In the simple scenario described in Section 3.3.1, when
there is no attack, G(Ik), referred to as hardness value, is
calculated by equation (2) as

G(I1) = 3.86; G(I2) = 2.36; G(I3) = 1.61;

G(I4) = 1.61; G(I5) = 0.86.

TABLE 1
Trust values and hardness values change in RepTrap

Initial After After After After
state 1st 2nd 3rd 4th

round round round round
T (u1) 0.86 0.71 0.57 0.43 0.29
T (u2) 0.75 0.75 0.75 0.75 0.50
T (u3) 0.75 0.75 0.75 0.50 0.50
T (u4) 0.75 0.75 0.50 0.50 0.50
T (u5) 0.75 0.75 0.75 0.75 0.50
T (X1) 0.50 0.67 0.75 0.80 0.83
T (X2) 0.50 0.67 0.75 0.80 0.83
T (X3) 0.50 0.50 0.67 0.67 0.75

∑

3

i=1
T (Xi) 1.50 1.84 2.17 2.27 2.41

G(I1) 3.86 3.71 3.32 2.93 2.29
G(I2) 2.36 2.21 2.07 1.93 #
G(I3) 1.61 1.46 1.32 # #
G(I4) 1.61 1.46 # # #
G(I5) 0.86 # # # #

RepBad: In RepBad, the trust for each malicious user
is 0.5, and the hardness of I1 is 3.86. Since 3.86/0.5 =
7.72, at least 8 malicious users are needed to successfully
attack ST = {I1}. In this case, the attack effort is (NM =
8,KM = 8).
RepSelf: In RepSelf, the malicious users first provide
honest votes to the items that are not the target of the
attack. In this example, they can provide honest votes to
I2, I3, I4 and I5, and accumulate their trust value up to
(4 + 1)/(4 + 2) = 0.83. Since 3.86/0.83 = 4.65, at least 5
malicious users are needed.

Not all 5 malicious users need to provide 4 honest
votes. After enumerating all the possible ways to per-
form self-promoting, we find that the malicious users
need to provide at least 18 votes. Specifically,

• Two malicious users provide honest votes to I2 and
I3, and their trust values become 2+1

2+2 = 0.75.
• Three malicious users provide honest votes to I2, I3

and I4, and their trust values become 3+1
3+2 = 0.80.

Next, the 5 users vote ’0’ to I1, B(I1) is calculated
as B(I1) = 0.75 × 2 + 0.80 × 3 = 3.90 > 3.86 = G(I1).
Then, the attack goal is achieved with 5 users, 13 votes
to SH = {I2, I3, I4}, and 5 votes to ST = {I1}. The attack
effort is (NM = 5,KM = 18).
RepTrap: In RepTrap, the attacker puts some high
quality items in SD, then provides a sufficient number of
dishonest votes to these items such that these items are
marked as low quality. If an item in SD is falsely marked
by the system, this item is turned into a “trap”. Since
the system thinks the attacker’s dishonest votes agree
with the item quality and the honest votes from honest
users disagree with the item quality, the trust values of
the malicious users will be increased whereas the trust
values of honest users will be reduced.

It is difficult to find the optimal way to conduct
RepTrap. Instead, we show one method to successfully
attack I1 with the attack effort (NM = 3,KM = 13).

1) The initial trust values of the three malicious users
are 0.5. Since 0.5×2 = 1 is larger than G(I5) = 0.86,
they can turn I5 into a trap by providing two
dishonest votes to I5. This has three consequences.
First, the trust of two malicious users increases
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to 1+1
1+2 = 0.67. Second, the trust of honest user

u1 is reduced to 4+1
5+2 = 0.71. Third, G(I1), G(I2),

G(I3), and G(I4) which depend on the trust of u1,
are reduced. The results are shown in the second
column in Table 1, where we use X1, X2, and X3

to denote the three malicious users.
2) After the first step, the malicious users can turn

I4 into a trap, since the summation of their trust
values is larger than G(I4), i.e. 0.67×2+0.5 > 1.46.
Then, the trust of the malicious users are increased
to 2+1

2+2 = 0.75 or 1+1
1+2 = 0.67, and the trust of the

honest user u1 and u4 is reduced. G(I1), G(I2) and
G(I3), which depend on the trust of u1 or u4, are
also reduced. See the third column in Table 1.

3) Two of the malicious users further turn I3 into a
trap, since 0.75×2 = 1.5 is larger than G(I3) = 1.32.
Then, the trust of the malicious users is increased
to 0.8 or 0.75, the trust of u1 and u3 is reduced, and
G(I1) and G(I2) continue to drop.

4) Three malicious users turn I2 into a trap. Then, the
trust of malicious users becomes 0.83 or 0.75, the
trust of u1 becomes 0.29 and the trust of u2, u3, u4

and u5 becomes 0.5. G(I1) is reduced to 2.29.
5) Finally, the summation of the malicious users’ trust

becomes 0.83×2+0.75 = 2.41, which is larger than
G(I1) = 2.29. This means that the attacker can suc-
cessfully attack I1. In total, the malicious users give
13 votes, including 10 votes to SD = {I2, I3, I4, I5}
and 3 votes to ST = {I1}.

In this case study, RepTrap reduces the requirement on
the number of malicious users by 63% when compared
with RepBad, and by 40% when compared with RepSelf.
RepTrap also requires 28% less votes than RepSelf. To
achieve the same attack goal, RepTrap needs much less
attack resources than the known attacks.

3.4 RepTrap attack procedure
From the case studies, we know that the basic idea of
RepTrap is to reduce the trust of honest users, who
vote on the target items, by undermining the system’s
estimation on item quality. We develop a formal procedure
to conduct RepTrap in this subsection. We first introduce
some important concepts.

• To make the presentation clearer, we make the
following assumptions: the target set ST contains
only one item, denoted by IT ; all the items are high
quality items; the honest users will always give the
honest votes, so all their votes will be ’1’.

• The item set of user ui, denoted by Sitem(ui), con-
tains the items receiving votes from ui.

• The user set of item Ik, denoted by Suser(Ik), con-
tains the users voting on Ik.

• The correlation between item Ik1
and item Ik2

, de-
noted by C(Ik1

, Ik2
), is defined as

C(Ik1
, Ik2

) = |Suser(Ik1
)
⋂

Suser(Ik2
)| . (6)

Thus, the correlation between Ik and the target IT

is C(Ik, IT ).

• The correlated set, denoted by Scor contains the items
whose correlation with the target set is non-zero, i.e.
Scor = {Ik, ∀k s.t. C(Ik, IT ) > 0}.

• The uncorrelated set, denoted by Suncor contains the
items whose correlation with the target set is zero,
i.e. Suncor = {Ik, ∀k s.t. C(Ik, IT ) = 0}.

• The ability of attacker, denoted by AX , is defined as
AX =

∑NM

i=1 T (Xi), which is the summation of trust
values of all malicious users.

• TRAP(Ik) means the process that the malicious users
provide dishonest votes to make Ik into a trap.

• HONEST(Ik) means the process that the malicious
users provide honest votes to Ik to gain trust.

Procedure 1 Procedure of RepTrap Attack

1: Calculate C(Ik, IT ) for k = 1 to n
2: Construct Scor and Suncor

3: Calculate AX

4: Calculate G(Ik) for k = 1 to n
5: if AX > G(IT )
6: TRAP(IT )
7: EXIT with success
8: for Ik ∈ Scor

9: if AX > G(Ik)
10: TRAP(Ik)
11: Remove Ik from Scor

12: goto step 3
13: for Ik ∈ Suncor

14: if AX > G(Ik)
15: TRAP(Ik)
16: Remove Ik from Suncor

17: goto step 3
18: for Ik ∈ Suncor

19: HONEST(Ik)
20: Remove Ik from Suncor

21: goto step 3
22: for Ik ∈ Scor

23: HONEST(Ik)
24: Remove Ik from Scor

25: goto step 3
26: EXIT with failure

The RepTrap attack procedure is shown in Procedure
1. This procedure can be roughly divided into four parts.
In the first part (step 1-4), the attacker calculates initial
values. In the second part (step 5-7) the attacker checks
whether it can successfully attack the target item. In the
third part (step 8-17), the attacker finds the item that
should be turned into a trap (i.e. construct SD) by first
check the correlated set and then check the uncorrelated
set. Obviously, turning an item in the correlated set is
more beneficial than turning an item in the uncorrelated
set because the former can reduce the trust of honest
users who also votes on the target item. In the forth
part (step 18-25), when the ability of attacker (AX ) is
not sufficient to create any more traps but the attack
goal is not achieved yet, the attacker conducts simple
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self-promoting. That is, the attacker constructs SH by
giving honest votes first to uncorrelated items and then
to correlated items. This may allow them to increase AX .
Finally, when they cannot do anything, they will exit
with failure.

Next, we examine the computation complexity of
Procedure 1. For Step 1, the computation complexity is
O(n · |IT | · v), where n is the number of items associated
with the attack, |IT | is the number of target items, and
v is the average number of voters for one item. Note
that |IT | often equals to 1. Step 3 to step 25 is a loop
with computation complexity O(n · r), where r is the
number of the rounds. Particularly, in each round of the
loop, the computation complexity is O(n) since all items
are checked to make the decision for the next action.
The number of rounds (r) depends on the hardness of
IT . From experiments we find that r is normally within
[10, 30]. Therefore, when the numbers of items and
users increase, the term n and v dominate. The overall
complexity of Procedure 1 is O(n · v).

Since a real system has a large number of items, it
is necessary for the attacker to reduce the computation
complexity. The most effective way is to reduce n by only
examining a small portion of the items for the attack. For
example, if the target item is a TV, the attacker may only
examine the items in electronics category.

It is important to point out that this is a simple
procedure for illustrating the basic idea of RepTrap.
We will formulate an “optimal” way to insert votes for
malicious users in the next subsection.

3.5 Details of RepTrap
Since procedure 1 only simply illustrates the basic idea
of RepTrap, we propose a heuristic trap selection + vote
allocation procedure to search for the best way to conduct
RepTrap in this subsection.

Trap Selection
In Procedure 1, the attacker randomly selects one item

in the correlated set to turn it into a trap. However, we
notice that the attacker should select an item that (1) has
larger impact on the target set if it is turned into a trap
and (2) requests less attack effort to be turned into a trap.

The first condition can be described by a higher cor-
relation value between this item and the target, and the
second condition can be described by a lower hardness
value. Therefore, we define

W (Ij , IT ) = C(Ij , IT )/G(Ij) (7)

and modify step 9 in Procedure 1 as

9: select Ik that maximizes W (Ij , IT ) among
all items whose hardness values are smaller
than AX .

Details of TRAP(Ik)
After selecting the item Ik to be turned into a trap,

the attacker needs to determine which malicious users
provide dishonest votes. The basic method is asking all
the malicious users to insert dishonest votes. However
we can improve this procedure as follows.

From the calculation of the beta function trust value,
we know that the gradient of the increase of a user’s
trust value becomes smaller as this user conducts more
and more good behaviors. For example, when the system
observes a user with no dishonest votes and t honest
votes, the trust value is 2/3 for t = 1, 3/4 for t = 2,
and 4/5 for t = 3. Thus, the trust value gained for one
additional honest vote is 3/4 − 2/3 = 0.08 when t = 2,
and 4/5 − 3/4 = 0.05 when t = 3.

Based on this observation, we order the malicious
users according to their trust values from low to high
as Xt1 ,Xt2 , · · · ,XtNM

. Then, we select the malicious
users {Xt1 ,Xt2 , · · · ,Xts

} to provide dishonest votes to
Ik, such that

{

∑s

i=1 T (Xti
) > G(Ik) · (1 + δ),

∑s−1
i=1 T (Xti

) ≤ G(Ik) · (1 + δ),
(8)

where δ is called the hardness margin. The hardness mar-
gin leads to an overestimation of the required dishonest
votes, which has two usages. First, even if the attackers
cannot infer the trust of users or the hardness of the
items accurately, the overestimated value will ensure
successful trap creation. Second, with overestimating
honest votes, the trap will not be overturned (i.e. marked
as high quality by the system) even if some honest users
insert honest votes during the trap creation process.
From our experiments, we find that a choice of δ = 0.2
could maximize the success rate.

Details of HONEST(Ik)
In Procedure 1, when malicious users cannot create

more traps but the attack goal has not been achieved,
the malicious users will vote honestly to promote their
trust. This is represent by HONEST (Ik).

In particular, in step 18 and step 22, the attacker
randomly select an item Ik in uncorrelated or correlated
set, respectively. Then, when HONEST (Ik) is called, all
the malicious users will provide an honest vote to Ik to
increase their trust.

4 VULNERABILITIES ANALYSIS
The simulation results in Section 6 will show the effec-
tiveness of RepTrap. For instance, with 5% of the user
IDs controlled by the attacker, RepTrap can successfully
attack the most popular item with more than 90% success
rate, whereas the success rates of RepBad and RepSelf
are almost zero. Meanwhile, RepTrap can reduce the
total number of votes from the attacker by more than
50%. Why is RepTrap so effective? Can we defeat it?
In this section, we will study the fundamental reasons
that facilitate RepTrap. In the next section, we will study
possible defense schemes.

4.1 Factors affecting RepTrap
Compared with RepBad and RepSelf, the advantages
of RepTrap come from the usage of SD to reduce the
hardness of the targets. Specifically, if we can reduce
the hardness of the target from G(IT ) to p · G(IT ), we
can roughly reduce the minimum number of malicious
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users needed by 1−p. When we use the same number of
malicious users, we can reduce the number of malicious
votes needed. So the effect of RepTrap heavily depends
on p. Several factors could affect the p value:

1) No ground truth: There is no ground truth about
the quality of the items, so the system can only
judge the behaviors of the users according to the
estimated item quality which may be manipulated.
This is the basic requirement of RepTrap. If the
system know the ground truth, the attacker will
not be able to make any traps and p = 1.

2) Correlated items: In order to reduce the hardness
of the targets, the attackers should find the items
correlated with the target. The more they can find,
the more they may reduce the hardness of the
targets. In most practical systems, the attacker can
gain a large amount of information about who give
what votes to which items. This knowledge enables
the attacker to find the correlation between items.

3) Attackable items: The correlated items is useless for
the attackers to reduce the hardness of the targets if
the attackers can not make them into trap. It means
that the attackers could only make the items with
few voters into trap as they usually only control
limited number of malicious voters. However, in
almost all practical systems, the popularity of items
follows a power-law distribution [2]. That is, there
are a large number of items with only a few votes.
Therefore, even with a smaller number of malicious
users, the attacker can turn these unpopular items
into traps.

We cannot change the first factor, since if we can get
ground truth by other methods, we would not need
voting system to identify the quality of an item. We
cannot change the third factor either, since the system
has no control on the popularity of items. Thus, to
defense against RepTrap, we have to target the second
factor − the correlation of items. In Section 5.1, we will
develop the first defense scheme based on this factor.

4.2 Information shrinking
We have identified that trust evaluation algorithms can
be an enabling factor for RepTrap. In this subsection, we
reveal the fundamental reason why attackers can take
advantage of the trust evaluation algorithms.

Let us examine a simple example. We assume that
there is an organization with three divisions. There are
20, 40 and 50 staff members in each division, respec-
tively. When the organization needs to make a decision,
each division makes its decision by performing majority
voting inside the division, and then the organization
performs majority voting based on the decisions from
the divisions. That is, if two or more than two divisions’
decision is “yes”, the final decision is “yes”. ask the
question: what is the minimal number of staff members
needed to control the final decision? The answer is 32,
with 11 people in the first division and 21 people in the
2nd division to control the decision of the two divisions.

It means that 11+21
20+40+50 = 29% of the staff members,

which is the minority, can control the final decision, even
if the organization uses majority voting in each level.

The reason for this kind of phenomena is that there is
rich information about the votes of an item. However the
voting system will shrink the information into a binary
value. In the previous example, the division with 20 staff
members is treated equally with the division with 50
staff members. So when the organization makes the final
decision, it only considers the binary results from each
division and shrinks all the other information, this opens
the door for the attackers to manipulate the results with
minority even when we use majority voting in each step.

In trust evaluation algorithms, all users’ voting in-
formation for each item shrinks into a binary value to
represent its quality. So user trust is only calculated with
two values: the number of honest votes (H(ui)) and the
number of dishonest votes (D(ui)). It treats the item with
a small number of votes equally to the items with a large
number of votes. In other words, a vote to a popular
item and a vote to an unpopular item carry the same
weight in the trust calculation. This gives the attacker an
opportunity to take advantage of the lost information to
make a powerful attack. In Section 5.2, we will develop
the second defense scheme based on this observation.

5 DEFENSE SCHEMES
We develop two types of defense schemes: knowledge
hiding and robustness-of-evidence, which targets the “corre-
lated item” and “information shrinking” enabling factors
of RepTrap respectively.

5.1 Defense: knowledge hiding
From the discussion in Section 4.1, we know that the
effect of RepTrap heavily depends on the number of
correlated attackable items that could be found. Specifi-
cally, in the heuristic trap selection procedure, attackers
need to know the item-user graph (i.e. who give what
votes to which). As the first step toward defense, the
system can hide the IDs of voters for each item. This
defense is referred as DefenseKH in the rest of the paper.
Without this knowledge, attackers cannot easily calculate
C(Ij , IT ) and W (Ij , IT ).

The cost of DefenseKH is its potential negative impact
on users’ satisfaction. For example, hiding the user IDs
could hurt the users’ incentive to contribute. In this
paper, our investigation will focus on the technical con-
sequence of DefenseKH .

When DefenseKH is used, attackers can modify the
trap selection procedure based on |Suser(Ik)|, defined as
the number of users who vote Ik. Larger is |Suser(Ik)|,
more honest users will be affected if Ik is turned into
a trap. Note that |Suser(Ik)| cannot be hidden in any
practical systems. Otherwise, the basic functionality of
the system will be damaged. With the knowledge of
|Suser(Ik)|, attackers can modify the RepTrap procedure
by changing equation (7) into

W (Ij , IT ) = |Suser(Ij)|.
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We should note that without knowing the user IDs
who vote on each item, the attackers cannot calculate
G(Ij) directly. But they can estimate this value as

G(Ij) ≈ Tave · |S
user(Ij)|,

where Tavg is the average trust value of users in the
system. Because we have hardness margin (δ) when we
use G(Ij) in equation (8), so the attackers can make the
trap successfully most of the time.

5.2 Defense: robustness-of-evidence
As discussed in Section 4.2, when we calculate the
quality of an item with voting system, we only retain
one binary to indicate its quality. So when we convert
the users’ voting history into two numbers: H(ui) and
D(ui), too much information is lost. Let’s compare the
following two cases:

• evidence1: ui’s vote disagrees with Q(Ik1), and Ik1
receives total 1000 votes;

• evidence2: ui’s vote disagrees with Q(Ik2), and Ik2
receives total 10 votes.

In the existing method, evidence1 and evidence2 are
treated equally. Both are the evidence that ui provides
a dishonest vote. However, evidence2 is less robust than
evidence1. Attackers can easily manipulate Q(Ik2) and
generate false evidence since its number of votes is small.

In this work, we introduce the concept of robustness-
of-evidence (RE), which describes how difficult it is to
manipulate an evidence. If an evidence is more robust
than another evidence, it should have more impact on
the user’s trust, because this evidence is less likely to be
manipulated.

Recall that the effectiveness of RepTrap is closely
related to the parameter p, which is defined in Section
4.1 and describes how much the attacker can reduce the
hardness of the targets to. If we give lower (or higher)
weight to the evidence that are more (or less) likely to
be manipulated by the attacker, the trust value of honest
users will not drop greatly even if the attackers create
traps successfully. Thus, this defense can improve p, and
therefore reduce the effectiveness of RepTrap.

It is not straightforward to calculate RE. The calcula-
tion needs to consider not only the voting system, but
also possible attacks against RE calculation itself. As the
first step toward understanding the usefulness of RE, we
identify three properties that RE functions should have
and provide a specific RE function. The design of RE
functions deserve more investigation in future work.

From the illustration of the previous example, the
RE value related to item Ik, denoted by R(Ik), should
be a function of the number of voters for this item
(i.e.|Suser(Ik)|). This function should satisfy a few prop-
erties.

• The item with more voters should have a larger RE
value than the item with less voters.

• The item with much more voters should not over-
whelm the items with less voters.

• The increase of the robustness should not be lin-
ear. For example, the difference between 10 and 20
voters should be larger than the difference between
1000 and 1010 voters.

In this work, we calculate R(Ik) as

R(Ik) = log2(|S
user(Ik)|) (9)

Then, we use the RE value as the weight factors in trust
calculation. In particular, when the system thinks that ui

provided one honest (or dishonest) vote to item Ik, the
system will count this evidence with R(Ik) as weight.
Let Sagr(ui) denotes the set of items of which ui’s votes
agree with the quality and Sdis(ui) denotes the set of
items of which ui’s vote disagree with the quality, the
calculate of H(Ik) and D(Ik) are as follows.

H(ui) =
∑

Ik∈Sagr(ui)

R(Ik) (10)

D(ui) =
∑

Ik∈Sdis(ui)

R(Ik) (11)

This defense scheme also affects the strategies to
launch RepSelf and RepTrap. Without the robustness-of-
evidence scheme, the malicious users give honest votes
to randomly selected non-target items, for the purpose of
gaining trust. When the robustness-of-evidence scheme
is used, the malicious users can gain trust faster and
easier by giving honest votes to popular items, because
the popular items yield larger robustness scores. Thus,
we introduce the modified RepSelf and RepTrap at-
tacks. When malicious users need to give honest votes
to gain trust, they will vote the item that receives the
largest number of votes among all the available items. In
performance evaluations, we will use modified RepSelf
and RepTrap to replace original RepSelf and RepTrap,
whenever robustness-of-evidence scheme is used.

6 EXPERIMENT
To demonstrate the consequence of RepTrap and defense
schemes, we implement these approaches in the con-
text of a P2P file-sharing network and evaluate their
impact and performance in varying circumstances. In
this section, we first describe the experiment setup,
then compare several attack methods as well as several
defense schemes and investigate the joint effect of attacks
and defenses, and finally discuss the effect of ground
truth and the correlation in real systems.

6.1 Experiment description
The user behavior model and file popularity model used
in our simulation is similar to the models in [7]. That is, a
user’s download behaviors follow a Poisson process. The
download frequency of different users follows a power-
law distribution. The popularity of the files, i.e. the
number of downloads of files, follows another power-
law distribution.

In our configuration, there are 1000 honest users and
100 files in the system. The power-law parameter of
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download frequency is set as α = 0.999. That is, the
download frequency of uj is T · αj−1, which is also
the arrival rate of the Poisson process that governs the
download behaviors. Obviously, T and α determine the
total number of honest votes within a given time. In
experiments, we first set the total number of honest
votes, and then derive the proper T used to gener-
ate user download behaviors. The votes from honest
users are randomly assigned to the files according to
file popularity distribution. The power-law parameter
of file popularity is set as 0.99. These parameters are
chosen to make sure that the least active users will
download at least one file and the least popular file will
be downloaded by at least one user.2

Without loss of generality, we assume that good users
always provide honest votes after successful downloads.
Each user cannot vote more than once for one file. The
voting system described in Section 2.2 is adopted.

To evaluate the strengthen of attacks, we compare
RepTrap with two other schemes: RepBad and Rep-
Self, which have been described in Section 2.3 and
3.3.3. Briefly speaking, with RepBad, each malicious
user provides an dishonest vote to the target file. With
RepSelf, malicious users first provide honest votes to
randomly selected files that are not target. After they
have gained enough trust, they provide dishonest votes
to the target file. As we have discussed in Section 5.2,
when DefenseRE is used, we will use modified RepSelf
and RepTrap in evaluations. Otherwise, we use original
RepSelf and RepTrap. After testing the effect of RepTrap
for several times, we find that δ = 20% is a proper choice.
Due to space limit, we move the discussion on δ to future
work.

To evaluate the impact of defense schemes, we com-
pare four systems: original design of majority rule based
system with beta trust function; the system with knowl-
edge hiding defense (i.e.DefenseKH ), the system with
robustness-of-evidence defense (i.e. DefenseRE), and
the system with both DefenseKH and DefenseRE .

In the performance evaluation, we pay attention to the
following four values: the number of honest users (NH ),
the total number of votes from the honest users (VH ), the
number of malicious users (NM ), and the total number of
votes from the malicious users (KM ). Here, the first two
values describe the strength of honest users. Increasing
these two values will increase the difficulty of attacks.
In this work, we fix NH as 1000 and change VH . The
other two values describe the attack resources. In the
simulation, NM changes from 20 to 50.

Evaluation will be conducted in two scenarios. In the
first scenario, the number of malicious users is fixed but
they can insert as many votes as possible to achieve the
attack goal. In this scenario, we measure the attack success
rate, denoted by Rsus and defined as the probability that

2. We have conducted experiments with different power-law pa-
rameters and find that the results are similar. Varying the power-law
parameters will not change our conclusion on the relative performance
of different attacks and defense schemes.
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Fig. 4. Average number of votes needed from malicious users

the attack goal is achieved. For each configuration, we
first generate an item-user graph randomly by following
the power-law distributions discussed before. Specially
the system will first run without malicious users until
the total number of votes from honest users reaches
a threshold (e.g. 3000), we then use RepBad, RepSelf
and RepTrap to insert malicious votes respectively to
see whether they can achieve the attack goal in such
case. We run this process for 1000 times (with a different
item-user graph each time) to estimate the attack success
rate. We also measure the average KM value, which is
the average number of votes needed from the malicious
users to achieve the attack goal. The attack that has
higher attack success rate and/or smaller average KM

is a more powerful attack.
In the second scenario, we limit the number of ma-

licious users as well as the maximum number of votes
for malicious users. That is, NM and KM cannot exceed
certain thresholds. In this scenario, the performance
measure will be the attack success rate.

6.2 RepTrap attack
In this set of experiments, we evaluate RepTrap, by com-
paring it with the known RepBad and RepSelf attacks,
without considering the proposed defense schemes.

Figure 3(a) and 3(b) are for the experiments when the
target file is the 1st and the 20th popular file, respectively.
The attack goal is to make the system mark the target
file as low quality. As mentioned earlier, the attack does
not start at the beginning. The horizontal axis is KH ,
the total number of honest votes in the system when the
malicious users start to attack. The vertical axis is the
attack success rate Rsus. In this experiment, the number
of malicious users is 50 (i.e. NM = 50), and the malicious
users can insert as many votes as they want. Since each
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Fig. 5. Effectiveness of RepTrap with defense schemes

malicious user can vote one file at most once, they may
not achieve the attack goal even if they can insert many
votes, especially when there are already a large number
of honest votes in the system. Therefore, the success rate
is a decreasing function of KH .

It is clearly seen that RepTrap is the strongest and Rep-
Bad is the weakest. With a given KH , RepTrap has much
larger chance to be successful than RepBad and RepSelf. As
shown in Figure 3(a), when attacking the 1st popular file,
RepBad can only be successful when KH < 3500, RepSelf
can be successful when KH < 4000, and RepTrap can be
successful when KH < 5800. RepSelf has better success
rate than RepBad because malicious users in RepSelf
can improve their own trust. The proposed RepTrap is
much stronger than RepSelf because the malicious users
in RepTrap can increase their own trust and reduce the
honest users’ trust at the same time. For example, when
RepSelf has 10% success rate, RepTrap has 100% success
rate in both Figure 3(a) and Figure 3(b). When RepTrap
still has 90% success rate, both of RepBad and RepSelf
has almost zero success rate.

Next, we examine the average number of votes needed
from malicious users to attack successfully. Since the KM

value in RepBad equals to the number of malicious users,
which is 50 in this case, we only compare RepTrap and
RepSelf in this experiment.

Figure 4(a) and 4(b) show the average KM value v.s.
KH when the target is the 1st and the 20th popular files,
respectively. Compared with RepSelf, RepTrap needs
much less votes from malicious users. For example, in
Figure 4(a), when the number of votes from the honest
users is 4000, RepTrap can achieve the attack goal by
inserting on average 500 votes, whereas the RepSelf
needs to insert on average 2500 (4 times more) votes to
achieve the same attack goal. When the number of votes
from the honest users is more than 4000, the RepSelf
cannot be successful no matter how many votes it inserts.
This is why the curves stop at KH = 4000 in Figure
4(a). We can conclude from Figure 4 that compared with
RepSelf, RepTrap can reduce more than 50% of votes
most of the time, which means that RepTrap requires
much less attack resources than RepSelf.

In all above experiments, we see that attacking the
1st popular file is more difficult (i.e. lower Rsus and
higher KM value) than attacking the 20th popular file

as it has more honest votes. In both cases, RepTrap
has significant advantage from the attacker’s point of
view. Due to space limitation, we will only show the
results of attacking the 1st popular file in the rest of the
experiments since the results for other files are similar.

6.3 Defense
In this section, we examine the effectiveness of the
proposed defense schemes. In particular, we evaluate
Rsus and average KM value in four scenarios: (1) Rep-
Trap without defense, (2) RepTrap with DefenseKH , (3)
RepTrap with DefenseRE , and (4) RepTrap with both
DefenseKH and DefenseRE .

Figure 5(a) shows the attack success rate (Rsus) and
Figure 5(b) shows the number of votes needed from
malicious users (KM ) to attack successfully, as functions
of the number of votes from honest users (KH ). In
this experiment, the number of malicious users is 30
(i.e. NM = 30). The following observations are made.
First, both defense schemes can reduce the attack success
rate Rsus and increase the cost of attack represented
by KM . Second, in Figure 5(a), DefenseKH is more
effective when KH < 2200, DefenseRE is more effective
when 2200 < KH < 3000, and their effects become
the same when KH > 3000. Third, DefenseKH is more
effective to increase the average KM . Forth, combining
the two defense schemes leads to better defense. For
example, with KH = 2750, the success rate for RepTrap
is 72%. DefenseKH alone reduces the success rate to
60%, and DefenseRE alone reduces the success rate to
46%. When both defense schemes are used, the success
rate is reduced to 20%. Meanwhile, when both defense
schemes are used, the average KM value is increased
from 900 to 2000, which corresponds to 122% increase.
Here, DefenseKH alone increases KM by 87%, and
DefenseRE alone increase KM by 48%. In summary,
each defense scheme can reduce the attack success rate
by up to 30% and increase attack cost by up to 50%.

The reason behind these observations is that with
DefenseKH , the traps created by attackers may not be
highly correlated with the target file. The DefenseRE

reduces malicious users’ capability of reducing honest
users’ trust from creating traps. Both schemes reduce the
effectiveness and increase the cost of RepTrap. Further-
more, the ideas behind these two defense schemes are
complementary. Thus, two schemes can be used together
to achieve better defense effect.

6.4 Joint effect of attacks and defenses
In this section, we investigate the attack success rate
under different combinations of attack and defense
schemes. In this comprehensive investigation, we change
all key parameters, including the number of attackers
(NM ), the maximum number of votes for malicious users
(KM ), and the number of votes from honest users (KH ).

We have seen that the proposed defense schemes can
reduce the power of RepTrap. How do they affect Rep-
Bad and RepSelf? It is obvious that knowledge hiding
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(a) S1: RepSelf+No Defense

2000 2500 3000 3500

100

200

300

400

500

M
ax

im
um

 n
um

be
r o

f v
ot

es
 fo

r m
al

ic
io

us
 u

se
rs

Number of votes from honest users

0
0.2
0.4
0.6
0.8
1

(b) S2: RepTrap+No Defense
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(c) S3: RepTrap+ DefenseKH
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(d) S4: RepSelf+ DefenseRE
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(e) S5: RepTrap+ DefenseRE
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(f) S6: RepTrap+Both defenses

Fig. 6. Attack success rate when varying the number of KH and the maximum number of KM

does not affect RepBad or RepSelf. The robustness-of-
evidence scheme doest not affect RepBad, but could
change the malicious users’ behaviors in RepSelf as we
have discussed in Section 5.2.

In the experiments, we will compare 6 scenarios:
(S1) RepSelf with no defense, (S2) RepTrap with no
defense, (S3) RepTrap with DefenseKH , (S4) RepSelf
with DefenseRE , (S5) RepTrap with DefenseRE , (S6)
RepTrap with both DefenseKH and DefenseRE .

In Figure 6, the x-axis is the number of votes from
honest users (KH ), the y-axis is the maximum number of
votes for malicious users (KM ), the darkness represents
the success rate (Rsus). In this experiment, the target file
is the 1st popular file and there are 50 malicious users.
To quickly grab the information in these figures, one can
look at the dark area and the light area. A strong attack
will generate bigger dark area and smaller light area. A
good defense will reduce dark area and increase light
area.

The following observations are made. First, there ex-
ists a critical value such as 300 votes in S2. When KM

is smaller than this critical value, Rsus is determined
by KH . When KM is larger than this critical value,
Rsus starts to increase with KM . The reason is that
both RepSelf and RepTrap need many additional votes
to manipulate trust or make traps, and this can only
be achieved if they can insert enough votes. Thus, the
attacks become more effective when KM is greater than
the critical value. Second, by comparing S1 and S2, we
see that RepTrap yields higher Rsus (i.e. bigger dark area
and smaller light area) than RepSelf, especially for larger
KM values. Third, by comparing S2, S3 and S5, we see
that both defense schemes work. They reduce the dark
area and increase the critical value (i.e. 350 votes in S3

and 380 votes in S5). Adding S6 to the comparison, we
see that the joint effect of two defense schemes is better.
They greatly reduce Rsus. Finally, by comparing S1 and
S4, we see that DefenseRE also works for RepSelf.

Figure 7 shows Rsus for varying attack resources,
described by the number of malicious users (NM , x-axis)
and then by the maximum number of votes for malicious
users (KM , y-axis). The number of votes from honest
users is fixed as 2500. The darkness means the attack
success rate. So the darker of the figure, the stronger of
the attack in this scenario. One can first look at the lines
separating different gray-scale areas. We can see that the
attack resources required to achieve the same Rsus in
different situations.

First, in all figures, the attack becomes stronger when
NM and/or KM increase. When KM is smaller than a
critical value, the Rsus is mainly determined by NM . This
is similar to the observation in Figure 6. The underlying
reasons are similar too. Second, RepTrap requests much
less attack resources than RepSelf (compare S1 with S2).
Third, both defense schemes can increase the required
attack resources for achieving the same Rsus (compare
S2, S3, and S5), whereas the combination of two defense
methods greatly increases required NM and KM values
(see S6). Finally, by comparing (S1) and (S4), we see that
DefenseRE works for RepSelf too.

6.5 The effect of ground truth
Some systems know the ground truth of certain items, by
hiring professional reviewers or identifying pre-trusted
users. In such systems, the real quality of some items is
known. Let G denote the ground truth percentage, defined
as the percentage of items whose true quality is known
by the system. We then compare RepSelf and RepTrap
with different G values.
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(a) S1: RepSelf+No Defense
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(b) S2: RepTrap+No Defense
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(c) S3: RepTrap+ DefenseKH
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(d) S4: mRepSelf+ DefenseRE

20 30 40 50

100

200

300

400

500

M
ax

im
um

 n
um

be
r o

f v
ot

es
 fo

r m
al

ic
io

us
 u

se
rs

Number of malicious users

0
0.2
0.4
0.6
0.8
1

(e) S5: RepTrap+ DefenseRE
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(f) S6: RepTrap+Both defenses

Fig. 7. Attack success rate when varying the number of NM and the maximum number of KM
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Fig. 8. Success rate under different ground truth percentage

Figure 8 shows the attack success rates under different
knowledge of the ground truth. There are 1000 honest
users, 100 items, and 30 malicious users. The x-axis
means the number of honest votes in the system and
the y-axis means the attack success rate. The five curves
are the results of RepSelf and RepTrap with different
ground truth percentage. When G = 0.75, it means that
the system knows the real quality of 75% of the items and
the attackers can only try to turn around the quality of
the remaining 25% items. As expected, when the system
knows more about the ground truth of the items (G
increases), the success rate of the attack is reduced. This
is because there are less items could be used to reduce
the trust of honest users. However, RepTrap is still much
more powerful than RepSelf, it can increase the success
rate by 20% even when the system knows the real quality
of 50% of items.

6.6 Correlation in real systems
RepTrap exploits correlation between items. An interest-
ing question to ask is how much correlation exists in real
systems. To demonstrate that items in real systems are
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Fig. 9. Correlation between items in MovieLen dataset

indeed correlated, we analyze the MovieLen dataset3. It
contains 100,000 ratings for 1682 movies from 943 users.

In this experiment, we define that two items are
correlated if they have at least k common voters. An item
is called x%-correlated if it is correlated to at least x%
of all other items. Let P cor(x) denote the percentage of
items that are x%-correlated. Higher is the P cor(x) value,
higher is the correlation between the items.

In Figure 9, the y-axis is P cor(x) and the x-axis is the
x − correlated value. The three curves are for k=1, k=5,
and k=10, respectively. The results show that there is a
lot of correlation between items. Let us take k = 5 for
example (see red round curve), when the x-axis value is
0.6, the y-axis is 0.2. It means that 60% of items are 20%-
correlated. That is, each of those items shares no less than
5 common voters with at least 20% of all other items.
When k = 10 (see blue triangle curve), 40% of items are
20%-correlated. Therefore, for a particular victim item, it
is highly likely that the attacker can find many correlated
items to conduct RepTrap.

3. http://www.movielens.org/
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7 CONCLUSION AND DISCUSSION

Safe guarding online voting systems is gaining increas-
ing attention in many e-Commerce and e-Business ap-
plications. In this paper, we study the vulnerabilities
and countermeasures of voting systems with existing
trust mechanisms. Comparing with the state of art re-
search in literature, we make three unique contributions.
First, we present RepTrap, which is more powerful than
existing known attacks such as RepBad and RepSelf.
Concretely, RepTrap significantly increases the attack
success rate and reduces the resources required from
the attackers. For example, when evaluated in a P2P
file-sharing system, RepTrap can successfully attack the
most popular item with more than 90% success rate,
whereas RepBad and RepSelf can never succeed under
the same conditions. Furthermore, RepTrap only needs
to control 5% of the users IDs to accomplish the attack,
and reduces the total number of votes from attackers
by more than 50% compared to RepSelf. These results
demonstrate that the existing defense schemes, including
adding trust mechanisms and increasing the cost of
inserting user IDs and votes, are not sufficient against
sophisticated attacks. Second, we have identified four
key factors that facilitate RepTrap: the lack of ground
truth, availability of correlation knowledge, power-law
item popularity distribution, and information shrinking.
Third but not the least, we have developed two defense
schemes, knowledge hiding and robustness-of-evidence,
to constrain the effect of attacks and significantly in-
crease the difficulty of launching an successful attack.
Our experimental results demonstrate that each defense
scheme can reduce the attack success rate by up to 30%
and increase the cost of attack by up to 50% and the
effect of combining the two defense schemes is much
more significant under various scenarios.

We are continuing our efforts in understanding poten-
tial attacks and developing more robust defense schemes
for guarding online voting systems. First, we are inter-
ested in understanding the parameters that are critical
in terms of tuning the efficiency and effectiveness of our
defense schemes. Second, we are interested in further
improving the robustness and attack resilience of our
defense schemes. Third, we are interested in studying
the effect of different attack models under different trust
frameworks and scenarios.
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