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Abstract—Monitoring global states of a distributed cloud application is a critical functionality for cloud datacenter management. State

monitoring requires meeting two demanding objectives: high level of correctness, which ensures zero or low error rate, and high

communication efficiency, which demands minimal communication cost in detecting state updates. Most existing work follows an

instantaneous model which triggers state alerts whenever a constraint is violated. This model may cause frequent and unnecessary

alerts due to momentary value bursts and outliers. Countermeasures of such alerts may further cause problematic operations. In this

paper, we present a WIndow-based StatE monitoring (WISE) framework for efficiently managing cloud applications. Window-based

state monitoring reports alerts only when state violation is continuous within a time window. We show that it is not only more resilient to

value bursts and outliers, but also able to save considerable communication when implemented in a distributed manner based on four

technical contributions. First, we present the architectural design and deployment options for window-based state monitoring with

centralized parameter tuning. Second, we develop a new distributed parameter tuning scheme enabling WISE to scale to much more

monitoring nodes as each node tunes its monitoring parameters reactively without global information. Third, we introduce two

optimization techniques, including their design rationale, correctness and usage model, to further reduce the communication cost.

Finally, we provide an in-depth empirical study of the scalability of WISE, and evaluate the improvement brought by the distributed

tuning scheme and the two performance optimizations. Our results show that WISE reduces communication by 50-90 percent

compared with instantaneous monitoring approaches, and the improved WISE gains a clear scalability advantage over its centralized

version.

Index Terms—State monitoring, datacenter, cloud, distributed, aggregation, tuning.
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1 INTRODUCTION

CLOUD datacenters represent the new generation of
datacenters that promote on-demand provisioning of

computing resources and services. Amazon’s Elastic Com-
puter Cloud (EC2) [1] is an example of such cloud
datacenters. A typical cloud application in such cloud
datacenters may spread over a large number of computing
nodes. Serving cloud applications over multiple networked
nodes also provides other attractive features, such as
flexibility, reliability, and cost-effectiveness. Thus, state
monitoring becomes an indispensable capability for achiev-
ing on-demand resource provisioning in cloud datacenters.
However, the scale of cloud datacenters and the diversity of
application specific metrics pose significant challenges on
both system and data aspects of datacenter monitoring for a
number of reasons.

First, the tremendous amount of events, limited re-

sources and system failures often raise a number of system-

level issues in datacenter monitoring:

. Event capturing. Applications, OS, servers, network
devices can generate formidable amount of events,
which makes directly storing and searching these
events infeasible. To address this issue, Bhatia et al. [2]
proposed Chopstix, a tool that uses approximate data
collection techniques to efficiently collect a rich set of
system-wide data in large-scale production systems.

. Resource consumption. Servers usually have limited
resources available for monitoring. Assigning mon-
itoring tasks and organizing monitoring overlays
without considering this fact may lead to unreliable
monitoring results. Jain et al. [3] proposed a self-
tuning monitoring overlay to trade precision and
workload. Mengy et al. [4] studied the problem of
monitoring network construction for multiple mon-
itoring tasks without overloading member hosts.

. Reliability. Failures of server, network links can lead to
inconsistent monitoring results. Jain et al. [5] intro-
duced and implemented a new consistency metric for
large-scale monitoring. The new metric indicates the
precision of monitoring results, and thus, can identify
inconsistent results caused by system failures.

Second, large-scale monitoring often involves processing
large amount of monitoring data in a distributed manner.
Such computing paradigm also introduces several chal-
lenges at the data management level:

. Distributed aggregation. The ability of summarizing
information from voluminous distributed moni-
tored values is critical for datacenter monitoring.
Previous work proposed several efficient algorithms
for different aggregation over distributed stream
values. Babcock and Olston [6] studied the problem
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of monitoring top-k items over physically distrib-
uted streams. Olston et al. [7] introduced an
efficient algorithm for computing sums and counts
of items over distributed streams. As its distinct
feature, the proposed algorithm can achieve effi-
ciency by trading precision for communication
overhead. Cormode et al. [8] proposed an approach
for approximate quantile summaries with provable
approximation guarantees over distributed streams.

. Shared aggregation. Different monitoring tasks may
share some similarities. Running similar tasks in an
isolated manner may lead to unnecessary resource
consumption. Krishnamurthy et al. [9] developed
techniques for binding commonalities among mon-
itoring queries and sharing work between them.

In this paper, we study state monitoring at cloud
datacenters, which can be viewed as a cloud state manage-
ment issue, as it mainly involves collecting local state
information and evaluating aggregated distributed values
against predefined monitoring criteria. A key challenge for
efficient state monitoring is meeting the two demanding
objectives: high level of correctness, which ensures zero or
very low error rate, and high communication efficiency,
which requires minimal communication cost in detecting
critical state violation.

1.1 State Monitoring

Despite the distributed nature of cloud-hosted applications,
application owners often need to monitor the global state of
deployed applications for various purposes. For instance,
Amazon’s CloudWatch [10] enables users to monitor the
overall request rate on a web application deployed over
multiple server instances. Users can receive a state alert
when the overall request rate exceeds a threshold, e.g., the
capacity limit of provisioned server instances. In this case,
users can deploy the web application on more server
instances to increase throughput.

As another example, service providers who offer soft-
ware-as-a-service to organizations often need to perform
distributed rate limiting (DRL) to restrict each organization
to use the software within its purchased level (e.g., 100
simultaneous sessions). Because software services are
usually deployed over distributed servers in one or multi-
ple datacenters, they require DRL to check if the total
number of running sessions from one organization at all
servers is within a certain threshold.

We refer to this type of monitoring as state monitoring,
which continuously evaluates if a certain aspect of the
distributed application, e.g., the overall request rate,
deviates from a normal state. State monitoring is widely
used in many applications. Examples also include:

Example 1. Traffic engineering: monitoring the overall
traffic from an organization’s subnetwork (consists of
distributed hosts) to the Internet.

Example 2. Quality of service: monitoring and adjusting the
total delay of a flow which is the sum of the actual delay

in each router on its path.

Example 3. Fighting DoS attack: detecting DoS attack by
counting SYN packets arriving at different hosts within a
subnetwork.

Example 4. Botnet detection: tracking the overall simulta-
neous TCP connections from a set of hosts to a given
destination.

State monitoring in datacenters poses two fundamental
requirements. First, given the serious outcome of incorrect
monitoring results, state monitoring must deliver correct
monitoring results [11]. A false state alert in the previous
CloudWatch example would cause provisioning of new
server instances which is clearly unnecessary and expen-
sive. Missing a state alert is even worse as the application
gets overloaded without new server instances, which
eventually causes potential customers to give up the
application due to poor performance. This correctness
requirement still holds even if monitored values contain
momentary bursts and outliers.

Second, communication related to state monitoring
should be as little as possible [12], [13], [14]. Data centers
usually run a large number of state monitoring tasks for
application and infrastructure management [1]. As mon-
itoring communication consumes both bandwidth and
considerable CPU cycles [4], state monitoring should
minimize communication. This is especially important for
infrastructure services such as EC2, as computing resources
directly generate revenues.

One intuitive state monitoring approach is the instanta-
neous state monitoring, which triggers a state alert
whenever a predefined threshold is violated. This ap-
proach, though makes algorithm design easy, idealizes real
world monitoring scenarios. As unpredictable short-term
bursts in monitored values are very common for Internet
applications [15], [16], [17], instantaneous state monitoring
may cause frequent and unnecessary state alerts. In the
previous example, momentary HTTP request bursts trigger
unnecessary state alerts whenever their rates exceed the
threshold. Furthermore, since state alerts usually invoke
expensive countermeasures, e.g., allocating and deploying
new web server instances, unnecessary state alerts may
cause significant resource loss. Surprisingly, we find most
of the existing work to date [18], [7], [19], [20], [21], [22]
deals only with this type of state monitoring.

1.2 Overview of Our Approach

In this paper, we introduce the concept of window-based
state monitoring and devise a distributed WIndow-based StatE
monitoring (WISE) framework for cloud datacenters. Win-
dow-based state monitoring triggers state alerts only when
observing continuous state violation within a specified time
window. It is developed based on the widely recognized
observation that state violation within a short period may
simply indicate the dynamics of the runtime system and it
does not necessarily trigger a global state violation. Thus,
with the persistence checking window, window-based state
monitoring gains immunity to momentary monitoring value
bursts and unpredictable outliers.

In addition to filtering unnecessary alerts, window-based
state monitoring explores monitoring time windows at
distributed nodes to yield significant communication
savings. Although the window-based state monitoring
approach was first introduced in [23], the focus of our
earlier results was mainly on the basic approach to
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window-based state monitoring with centralized parameter
tuning to demonstrate and evaluate its advantage in
monitoring cost saving compared to instantaneous state
monitoring. In this paper, we identify that this basic
approach to window-based state monitoring may not scale
well in the presence of lager number of monitoring nodes.
We present an improved window based monitoring
approach that improves our basic approach along several
dimensions. First, we present the architectural design of the
WISE system and its deployment options (Section 3.1).
Second, to address the scalability issue of the basic WISE,
we develop a distributed parameter tuning scheme to
support large scale distributed monitoring (Section 5.4).
This distributed scheme enables each monitoring node to
search and tune its monitoring parameters in a reactive
manner based on its observations of state update events
occurred, without requiring global information. It enables
WISE to scale to a much larger number of nodes compared
with the centralized scheme. Third, we design two concrete
optimization techniques, aiming at minimizing the com-
munication cost between a coordinator and its monitoring
nodes. The first optimization is dedicated to enhance the
effectiveness of the global pull procedure at the coordinator
by reducing the communication cost for global pulls, while
ensuring the correctness of the monitoring algorithm. The
second optimization aims at reducing unnecessary global
polls by reporting more information of local violations at
monitoring nodes (Section 6). Finally, we have conducted
extensive empirical studies on the scalability of the
distributed parameter tuning scheme compared to the
centralized scheme appeared first in [23], and evaluated
the effectiveness of both the distributed WISE solution and
the two optimization techniques, compared to the basic
WISE approach (Section 7.2).

In summary, this paper makes three unique contribu-
tions. First, WISE employs a novel distributed state
monitoring algorithm that deploys time windows for
message filtering and achieves communication efficiency
by intelligently avoiding collecting global information.
More importantly, it also guarantees monitoring correct-
ness. Second, WISE uses a distributed parameter tuning
scheme to tune local monitoring parameters at each
distributed node and uses a sophisticated cost model to
carefully choose parameters that can minimize the commu-
nication cost. As a result, this scheme scales much better
than the centralized scheme presented in [23]. Last but not
the least, we develop a set of optimization techniques to
optimize the performance of the fully distributed WISE.

We conducted extensive experiments over both real world
and synthetic monitoring traces, and show that WISE incurs
a communication reduction from 50 to 90 percent compared
with existing instantaneous monitoring approaches and
simple alternative window based schemes. We also compare
the original WISE with the improved WISE on various
aspects. Our results suggest that the improved WISE is more
desirable for large-scale datacenter monitoring.

1.3 Outline

The rest of this paper is organized as follows: Section 2
introduces the preliminaries and defines the problem of
window-based state monitoring. Section 3 gives an overview

of our approach. Section 4 presents the detail of the WISE

monitoring algorithm. Section 5 describes our scalable

parameter setting scheme. We discuss optimization techni-

ques to further improve the performance of WISE in Section 6.

Section 7 presents the experimental evaluation. Section 8

discusses the related work. We conclude the paper in Section 9

with a summary and an outline of our future work.

2 PRELIMINARIES

We consider a state monitoring task involving a set N of

nodes where jNj ¼ n. Among these n nodes, one is selected

to be a coordinator which performs global operations such

as collecting monitored values from other nodes and

triggering state alerts. For a given monitoring task, node i

locally observes a variable vi which is continuously updated

at each time unit. The value of vi at time unit t is viðtÞ and

we assume viðtÞ is correctly observed. When necessary, each

monitor node can communicate with the coordinator by

sending or receiving messages. We consider that commu-

nication is reliable and its delay is negligible in the context

of datacenter state monitoring. As communication cost is of

concern, we are interested in the total number of messages

caused by monitoring. We also consider the size of

messages in our experiment.
A state monitoring task continuously evaluates a certain

monitored state is normal or abnormal. Similar to previous

work [18], [7], [19], [20], [21], [22], we distinguish states based

on sum aggregate of monitored values. For instance, we

determine whether a web application is overloaded based on

the sum of HTTP request rates at different hosts. We use sum

aggregates because they are widely applied and also simplify

our discussion, although our approach supports any aggre-

gate that linearly combines values from nodes.

2.1 The Instantaneous State Monitoring

The instantaneous state monitoring model [18], [7], [19],

[20], [21], [22] detects state alerts by comparing the current

aggregate value with a global threshold. Specifically, given

viðtÞ; i 2 ½1; n� and the global threshold T , it considers the

state at time t to be abnormal and triggers a state alert ifPn
i¼1 viðtÞ > T , which we refer to as global violation.
To perform instantaneous state monitoring, the line of

existing work decomposes the global threshold T into a set

of local thresholds Ti for each monitor node i such thatPn
i¼1 Ti � T . As a result, as long as viðtÞ � Ti; 8i 2 ½1; n�, i.e.,

the monitored value at any node is lower or equal to its

local threshold, the global threshold is satisfied becausePn
i¼1 viðtÞ �

Pn
i¼1 Ti � T . Clearly, no communication is

necessary in this case. When viðtÞ > Ti on node i, it is

possible that
Pn

i¼1 viðtÞ > T (global violation). In this case,

node i sends a message to the coordinator to report local

violation with the value viðtÞ. The coordinator, after

receiving the local violation report, invokes a global poll

procedure where it notifies other nodes to report their local

values, and then determines whether
Pn

i¼1 viðtÞ � T . The

focus of existing work is to find optimal local threshold

values that minimize the overall communication cost.
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2.2 The Window-Based State Monitoring

As monitored values often contain momentary bursts and
outliers, instantaneous state monitoring [16] is subject to
cause frequent and unnecessary state alerts, which could
further lead to unnecessary countermeasures. Since short
periods of state violation are often well acceptable, a more
practical monitoring model should tolerate momentary
state violation and capture only continuous one. Therefore,
we introduce window-based state monitoring which trig-
gers state alerts only when the normal state is continuously
violated for L time units.

We study window-based state monitoring instead of
other possible forms of state monitoring for two reasons.
First, we believe continuous violation is the fundamental
sign of established abnormality. Second, window-based
state monitoring tasks are easy to configure, because the
window size L is essentially the tolerable time of abnormal
state, e.g., degraded service quality, which is known to
service providers.

2.3 Problem Definition

Our study focuses on finding efficient ways to perform
distributed window-based state monitoring, as this problem
is difficult to solve and, to the best of our knowledge, has not
been addressed before. Formally, we define the distributed
window-based state monitoring problem as follows:

Problem Statement 1. Given the threshold T , the size L of the
monitoring window, and n monitor nodes with values
viðtÞ; i 2 ½1; n� at time t, devise an algorithm that triggers
state alerts only when

Pn
i¼1 viðt� jÞ > T; 8j 2 ½0; L� 1� at

any t while minimizing the associated communication cost.

Solving this problem, however, is challenging, as it
requires careful handling of monitoring windows at
distributed nodes to ensure both communication efficiency
and monitoring correctness. Simple solutions such as
applying modified instantaneous monitoring approaches
either fail to minimize communication or miss state alerts.
We next present a motivating example to show the reason
as well as some insights into the solution.

Fig. 1 shows a snippet of HTTP request rate traces
collected from two web servers in a geographically
distributed server farm [24], where time is slotted into 5-
second units. Let us first consider an instantaneous
monitoring task which triggers state alerts when the sum
of request rates at two servers exceeds T ¼ 600. For
simplicity, we assume server A and B have the same local

thresholds T1 ¼ T2 ¼ T=2 ¼ 300, as indicated by dashed
lines. A local violation happens when a bar raises above a
dashed line, as indicated by bars with red borders.

In the example, servers A and B report local violation,
respectively, at time unit 2, 4, 6, 14, 15, and time unit 3-7,
which generates 10 messages. When receives local violation
reports, the coordinator invokes global polls at time unit 2, 3,
5, 7, 14, 15 to collect values from the server that did not report
local violation. No global poll is necessary at time unit 4 and
6 as the coordinator knows local values of both servers from
their local violation reports. Each global poll includes one
message for notification and one message for sending back a
local value, and all global polls generate 6� 2 ¼ 12 mes-
sages. Thus, the total message number is 10þ 12 ¼ 22.

2.3.1 Applying Instantaneous Monitoring

Now we perform window-based state monitoring to
determine whether there exists continuous global violation
against T lasting for L ¼ 8 time units. We start with the most
intuitive approach, applying the instantaneous monitoring
algorithm. Specifically, a monitor node i still evaluates
whether viðtÞ > Ti and reports local violation to the
coordinator if it is true. The coordinator then invokes a
global poll to determine if

P
viðtÞ > T . The only difference is

that the coordinator triggers state alerts only when obser-
ving continuous global violation of 8 time units. As a result,
the communication cost is the same as before, 22 messages.
Note that 22 messages are generated for only two monitor
nodes and all messages have to be processed by the
coordinator. Our experiment suggests that the total message
number in this scheme grows quickly with increasing
monitor nodes. This can cause significant bandwidth and
CPU cycle consumption at the coordinator, which limits the
scalability of monitoring.

2.3.2 Saving Communication at the Coordinator

In fact, invoking a global poll for every local violation is not
necessary. Since state alerts require continuous global
violation, the coordinator can delay global polls unless it
observes eight continuous time units with local violation.
When it observes a time unit t with no local violation, it can
clear all pending global polls, as the violation is not
continuous, and thus, avoids unnecessary communication.
This modified scheme avoids all six global polls, as no local
violation exists at time units 8 and 16. Therefore, by
avoiding unnecessary communication at the coordinator
side, the total message number is reduced to 10.

2.3.3 Saving Communication at Monitor Nodes

Reducing communication at monitor nodes is relatively
more difficult. One may propose to let each node report the
beginning and the end of a continuous local violation period,
instead of reporting for each time unit with local violation.
This scheme, which we refer to as double-reporting, saves
three messages on server B by reporting at times 3 and 7, but
performs poorly (eight messages) on server A as each
violation period costs two messages, even when it is short
(e.g., time units 2, 4, and 6). The total message number is still
10. One may also suggest monitor nodes to report only the
end of violation period for less communication. This end-
reporting scheme, however, fails to ensure monitoring
correctness. Assume server A observes local violation
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throughout time units 2-10 and
P
viðtÞ > T; 8t 2 ½2; 10�. The

coordinator inevitably fails to trigger a state alert at time unit
9 without knowing that server A has started to observe local
violation at time unit 2.

2.3.4 Insights and Challenges

One solution is to lower the granularity of local violation
reporting, as approximate information on local violation is
often adequate to rule out state alerts. Monitor nodes, after
reporting one local violation, can employ message filtering
time windows with predefined lengths to suppress sub-
sequent local violation reporting messages. For instance,
assume both servers A and B use 5-time-unit filtering
windows. Server A reports local violation at time unit 2,
and then enters a filtering window, during which it avoids
to report at time units 4 and 6. Similarly, it reports at time 14
and server B reports once at time 3. At the coordinator side,
as filtering windows span 5 time units, the worst case that
one reported local violation could imply is a local violation
period of 5 time units. Thus, the worst case scenario
indicated by the three reports is global violation in time
units 2-7 and 14-18, which suggests no state alert exists. The
resulting message number is 3, a 86.36 percent communica-
tion reduction over 22 messages.

While the above approach seems promising, devising a
complete solution requires answers to several fundamental
questions. Example questions include how to process
reported local violation and filtering windows at the
coordinator side to guarantee monitoring correctness?
how to tune monitoring parameters, e.g., local threshold
and filtering window size, at each node to achieve
minimum communication? and how to optimize different
subroutines ( e.g., global poll) to further reduce commu-
nication cost? In addition, datacenter monitoring often
requires many tasks, and each task could potentially
involve hundreds, even thousands, of monitor nodes. Thus,
it is also important to address questions such as what
architecture should WISE employ to support such deploy-
ment, and how to achieve high scalability for tasks with
many monitor nodes? In the subsequent sections, we
present the design and development of WISE, a system
that performs accurate and efficient window-based state
monitoring over a network of distributed monitor nodes.

3 WISE MONITORING SYSTEM

We present an overview of the WISE monitoring system in
this section. We first introduce the architecture and
deployment of WISE, and then, describe important compo-
nents of WISE.

3.1 Architecture and Deployment

The WISE monitoring system takes the description of
window-based monitoring tasks as input, continuously
watches the state changes over the nodes being monitored,
and triggers alerts when the state change meets the
specified threshold. The description of a window-based
monitoring task specifies the following five conditions:

1. the metric to be monitored at a node (e.g., incoming
HTTP request rates),

2. the set of nodes associated with the monitoring
task (N),

3. the global value threshold (T),
4. the monitoring time window (L), and
5. the countermeasures to take when a state alert is

triggered.

The left side of Fig. 2 illustrates a sketch of the architectural
design of the WISE system and a deployment example of
monitoring tasks. Given a set of monitoring tasks, the
system first scans for identical monitoring tasks and
removes duplicated ones. It then deploys monitoring tasks
on their associated nodes. During the monitoring process,
the system collects reported state alerts from deployed
monitoring tasks and processes these alerts according to
specified countermeasures. It also watches machine failures
that may impact deployed monitoring tasks. For instance, if
one machine becomes unavailable, it identifies monitoring
tasks involved with the machine and marks the correspond-
ing monitoring results as unreliable to prevent false positive
or negative results.

The deployment example in Fig. 2 shows four monitor-
ing tasks running over 12 hosts. One host may be involved
with multiple monitoring tasks. The deployment may
involve load balancing and monitoring network construc-
tion [4]. For example, the system may choose hosts involved
with few monitoring tasks to be coordinators as coordina-
tors consume more CPU and bandwidth resources com-
pared with monitor nodes. In the rest of this paper, we
focus on developing efficient schemes for a single monitor-
ing task. We leave other problems such as multitask
optimization as our future work.

3.2 WISE Monitoring Approach

We now focus on the three technical developments that
form the core of the WISE monitoring approach: the WISE
monitoring algorithm, the monitoring parameter tuning
schemes, and performance optimization techniques. The
right side of Fig. 2 shows a high level view of the WISE
monitoring approach.
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3.2.1 The Monitoring Algorithm

The idea behind the WISE monitoring algorithm is to report
partial information on local violation series at the monitor
node side to save communication cost. The coordinator then
uses such partial information to determine whether it is
possible to detect state alerts. The coordinator collects
further information only when the possibility of detecting
state alerts cannot be ruled out.

Specifically, the monitor node side algorithm employs
two monitoring parameters, the local threshold Ti and the
f i l ter ing window size pi. When detec ts loca l
violation(viðtÞ > Ti), a monitor node i sends a local violation
report and starts a filtering window with size pi during
which it only records monitored values and does not send
violation reports.

The coordinator considers a reported local violation at
node i as possible continuous local violation spanning pi
time units, since it does not know the complete violation
information within the corresponding filtering window. It
then “merges” possible continuous local violation reported
from different nodes into a potential global continuous
violation against T , namely skeptical window. The skeptical
window holds a nature invariant that no state alert is
necessary as long as the length of the skeptical window
does not exceed L. The coordinator continuously maintains
the skeptical window and tries to rule out the possibility of
state alerts based on this invariant. It invokes a global poll
to collect complete violation information only when the
length of the skeptical window exceeds L.

Intuition. The WISE monitoring algorithm makes two
effects to achieve communication efficiency. One is to avoid
unnecessary global polls by optimistically delaying global
polls, because later observed time units with no local
violation indicate that previous global violation is not
continuous. The other is to avoid frequent local violation
reporting with monitor node side filtering windows.
Filtering windows, when their sizes are properly tuned
(Section 5), can save significant communication from
frequently reporting local violation without noticeably
diminishing the chance of ruling out state alerts and
avoiding global polls. In addition, it ensures monitoring
correctness as it always considers the worst case based on
received partial information.

3.2.2 Scalable Parameter Tuning

State monitoring environments are usually heavily diversi-
fied. They may involve monitoring tasks with very different
monitoring threshold T and time window L, as well as
heterogeneous monitored value distributions across differ-
ent nodes. As a result, monitoring parameters, i.e., Ti and pi,
should be properly tuned toward the given monitoring task
and monitored value patterns for the best communication
efficiency. For instance, if a given state monitoring task tries
to capture a very rare event, monitor nodes should employ
large filtering windows to deliver coarse information to
maximally save communication. As another example, if a
node often observes higher monitored values compared
with other nodes, it should be assigned with relatively
higher Ti accordingly.

To provide such flexibility, we proposed a centralized
parameter tuning scheme in the original conference paper.
The centralized tuning scheme runs at the coordinator and
setting the parameters for all monitor nodes based on

collected information on monitored value distribution. The
centralized parameter tuning scheme has one drawback
that it requires collecting of global information and per-
forms intensive computation on the coordinator. Given the
scale of datacenter monitoring and the exponential increas-
ing nature of search space, the centralized tuning scheme
may cause significant resource consumption on the co-
ordinator and fail to find good parameters.

To address this issue, we develop a distributed para-
meter tuning scheme that avoids centralized information
collecting and parameter searching. The distributed scheme
runs at each monitor node. Each node tunes its local
monitoring parameters based on observed events in a
reactive manner. This scheme may produce slightly less
efficient parameters compared with those generated by the
centralized scheme because it tunes parameters based on
local information. Nevertheless, its features such as avoid-
ing searching the entire solution space and limited inter-
node communication make it a desirable parameter tuning
scheme for large-scale monitoring tasks.

3.2.3 Performance Optimization

In addition to improve the basic WISE approach with
distributed parameter tuning, we also devise two novel
performance optimization techniques, the staged global poll
and the termination message, to further minimize the
communication cost between a coordinator node and its
monitoring nodes.

The staged global poll optimization divides the original
global poll process into several stages. Each stage tries to
rule out or confirm state alerts based on a fraction of
monitored values that would be collected by the original
global poll. Since later stages can be avoided if a previous
stage can decide whether a state alert exists, the staged
global poll reduces considerable communication. The
termination message based optimization deals with “over-
reported” local violation periods, which only contain little
local violation and may increase the chance of invoking
global poll. It tries to remove “over-reported” local violation
periods by sending an extra message at the end of a filtering
window to indicate real local violation.

In this paper, we not only provide the algorithmic design
but also provide correctness analysis and usage model for
both techniques.

4 THE MONITORING ALGORITHM

We present the detail of WISE monitoring algorithm in this
section. In addition, we also explain why WISE monitoring
algorithm guarantees monitoring correctness and theoreti-
cally analyze its communication efficiency.

4.1 Algorithm Description

WISE monitoring algorithm consists of two parts, the monitor
node side algorithm and the coordinator side algorithm:

4.1.1 The Monitor Node Side

A monitor node i reports partial information of local
violation based on two monitoring parameters, local
threshold Ti and filtering window size pi. Local thresholds
of different nodes satisfy

Pn
i¼1 Ti � T . This restriction

ensures the sum of monitored values at all nodes does not
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exceed T if each value is smaller than its corresponding
local threshold.

The filtering window size is the time length of a filtering
time window and is defined over ½0; L�. Specifically,
filtering windows are defined as follows:

Definition 1. A filtering window � of node i is pi continuous
time units during which node i does not send local violation
reports even if it observes viðtÞ > Ti where t is a time unit within
� . In addition, we use j� j to represent the remaining length of a
filtering window � , tsð�Þ, and teð�Þ to denote the start time and
the end time of � . If pi ¼ 0, tsð�Þ ¼ teð�Þ, and j� j ¼ 0.

When a node i detects viðtÞ > Ti at time unit t and if it is
currently not in a filtering window (j� j ¼ 0), it sends a local
violation report to the coordinator, and then enters a
filtering window by setting j� j ¼ pi. During a filtering
window (j� j > 0), it does not report local violation and
decreases j� j by 1 in every time unit. Node i starts to detect
and report violation again only after j� j ¼ 0. For now, we
assume Ti and pi are given for each node. We will introduce
techniques for selecting proper values for Ti and pi later.

4.1.2 The Coordinator Side

The coordinator side algorithm “reassembles” potential
periods of local violation indicated by local violation reports
into a potential period of continuous global violation, which
we refer to as the skeptical window. The skeptical window
essentially measures the length of the most recent contin-
uous global violation in the worst case. The coordinator
considers reported local violation from node i as continuous
local violation lasting pi time units, i.e., assuming filtering
windows fully filled with local violation. It concatenates
reported filtering windows that overlap in time into the
skeptical window, which is defined as follows:

Definition 2. A skeptical window � is a period of time
consisting of most recent overlapped filtering windows related
to reported local violation since last global poll. Initially, the
size of a skeptical window j�j is 0. Given a set of filtering
windows TT ¼ f�iji 2 ½1; n�g observed at time t, � can be
updated as follows:

tsð�0Þ  
tsð�Þ; teð�Þ � t;
t; otherwise;

�
ð1Þ

teð�0Þ  
tþ max

8�i2TT
fteð�Þ � t; j�ijg; teð�Þ � t;

max
8�i2TT
ft; teð�iÞg; otherwise;

8<
: ð2Þ

where �0 is the updated skeptical window, tsð�Þ and teð�Þ are
the start and the end time of a window. In addition,
j�j ¼ teð�Þ � tsð�Þ þ 1. In our motivating example, servers A
and B with pA ¼ pB ¼ 5 report local violation at times 2 and
3, respectively. The corresponding skeptical window covers
both filtering windows as they overlap, and thus, spans
from times 2 to 7. Fig. 3 shows an illustrative example of
skeptical windows.

When t� tsð�Þ ¼ L, it indicates that there may exist
continuous local violation for the last L time units (which
could lead to continuous global violation of L time units).
Thus, the coordinator invokes a global poll to determine

whether a state alert exists. The coordinator first notifies all
nodes about the global poll, and then, each node sends its
buffered viðt� jÞ; j 2 ½0; t0�, where 0 < t0 � L, to the coordi-
nator in one message. Here, t0 depends on how many past
values are known to the coordinator, as previous global
polls and local violation also provides past vi values. After a
global poll, if the coordinator detects continuous global
violation of L time units, i.e.,

Pn
i¼1 viðt� jÞ > T; 8j 2 ½0;

L� 1�, it triggers a state alert and set j�j ¼ 0 before
continuing. Otherwise, it updates � according to received
vi. Clearly, the computation cost of both monitor node and
coordinator algorithms is trivial.

Filtering windows greatly reduce communication on local
violation reporting, but may also cause overestimated local
violation periods at the coordinator when filtering windows
cover time units with no local violation. This, however, rarely
leads to less chance of ruling out global polls and noteworthy
increased cost in global polls. First, state alerts are usually
rare events. With filtering windows, the coordinator still
finds enough “gaps,” i.e., time units with no local violation,
between reported filtering windows before skeptical window
size grows to L. Second, the parameter tuning schemes we
introduce later set proper filtering window sizes so that the
saving in local violation reporting always exceeds the loss in
global polls. Last but not the least, we also develop a staged
global poll procedure in Section 6 which significantly reduces
communication cost in global polls.

4.2 Correctness

The WISE monitoring algorithm guarantees monitoring
correctness because of two reasons. First, the coordinator
never misses state alerts (false negative), as the skeptical
window represents the worst case scenario of continuous
global violation. Second, the coordinator never triggers false
state alerts (false positive) as it triggers state alerts only after
examining the complete local violation information. Theorem
1 presents the correctness guarantee of the WISE algorithm.

Theorem 1. Given a monitoring task ðT; L;NÞ, the WISE
algorithm triggers a state alert at time unit t if and only ifPn

i¼1 viðt� jÞ > T; 8j 2 ½0; L� 1�.
Proof. In a filtering window of a node i, there may exist

multiple periods of continuous local violation. We use
p
01
i ; p

02
i ; . . . ; p

0k
i to denote these periods of local violation

where k 2 ½1; pi�. Let p
0max
i ¼ maxfp01i ; p

02
i ; . . . ; p

0k
i g be the

longest local violation period. Clearly, the filtering
window �i(j�ij ¼ pi) contains p

0max
i , i.e., �i starts at least

as early as p
0max
i and ends at least as late as p

0max
i does. We

denote this inclusion relation as pi � p
0max
i .

If constraints on T and L are violated, then there exists
at least one series of local violation periods which
overlap with each other and the total length of the
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overlapped period is L. For any one of such series p
0	
i ,

consider any one of its local violation periods p0i. If p0i is
within one filtering window of node i, we have pi � p0i. If
p0i spans multiple filtering windows, denoted as p	i , it is
not hard to see p	i � p0i. Since it is the same for all p0i, all
associated filtering windows, P 	i , must satisfy P 	i � p

0	
i .

As a result, a global poll is invoked no later than the state
alert. The global poll sets � to the length of observed p

0	
i .

Similarly, subsequent global polls will keep increasing �
to the length of observed p

0	
i until the last global poll

which triggers the state alert at time t. The other
direction can be proved in a similar way. tu

4.3 Communication Efficiency

Consider a state monitoring task with nðn > 1Þ monitor
nodes. Assume each Ti is perfectly tuned in the sense that
one local violation occurs if and only if a global violation
exists. Clearly, this is almost impossible in reality, as local
violation does not always lead to global violation and global
violation may correspond to multiple local violation. We
use these “perfectly” tuned Ti to obtain the optimal
performance of the instantaneous monitoring algorithm,
so that we can study the lower bound of communication
saving of the WISE algorithm. In addition, as Zipf
distribution is often observed in distributed monitoring
values [25], we assume the number of continuous local
violation across nodes follows a Zipf distribution. Specifi-
cally, the probability of detecting continuous local violation
of i time units is Prðx ¼ iÞ ¼ 1

HLþ1

1
iþ1 , where HLþ1 is the

ðLþ 1Þth Harmonic number defined by HLþ1 ¼
PLþ1

j¼1
1
j .

Using Zipf distribution here is to simplify our analysis. In
reality, continuous local violation needs not to follow this
distribution. Furthermore, let the communication cost of
local violation be 1 and that of global polls be n.

Theorem 2. Given the above settings, let CI be the communica-
tion cost of running the instantaneous monitoring algorithm
with perfectly tuned Ti, and let CW be the communication cost
of running the WISE algorithm, which uses the same Ti and
simply sets pi ¼ 1. The resulting gain in communication cost,
given by gain ¼ CI

CW
, is nð1� 1

logðLþ1ÞÞ=ð1þ n�2
logðLþ1ÞÞ.

Proof. Since each local violation causes one global poll in the
instantaneous triggering algorithm, we have CI ¼ n �PL

i¼1 Prðx ¼ iÞ ¼ n� n
logðLþ1Þ . The communication cost of

WISE consists of two parts, one is local violation, the other
is global poll. Thus, CW ¼

PL
i¼1 Prðx ¼ iÞ þ L � ðn� 1Þ �

Prðx ¼ LÞ. Therefore, the gain of using WISE is

gain ¼ CI
CW
�
n� n

logðLþ1Þ

1þ n�2
logðLþ1Þ

2 ½1; nÞ:

ut

The above theorem suggests that WISE yields more gain
given larger L and n. For instance, when L ¼ 15, gain � 3n

nþ3 ,
the gain approximates to 3 when n is large enough. This
implies that WISE scales well, which is confirmed by our
experiment results. Furthermore, gain is a theoretical bound
derived with the unoptimized WISE algorithm. The actual
gain is generally better (50 to 90 percent reduction in
communication cost) with parameter tuning and optimized
subroutines.

5 SCALABLE PARAMETER TUNING

The performance of WISE monitoring algorithm also
depends on the setting of local monitoring parameters,
i.e., Ti and pi. To achieve the best communication efficiency,
local monitoring parameters need to be tuned according to
the given monitoring task and monitored value distribu-
tions. In the original conference paper, we proposed a
centralized parameter tuning scheme which searches for the
best parameters based on a sophisticated cost model. This
scheme works well when the number of monitor nodes is
moderate. However, datacenter environments often involve
monitoring tasks running on a large number of nodes. The
centralized scheme suffers from scalability issues in such
large-scale monitoring tasks. First of all, the parameter
space increases exponentially when the number of monitor
nodes increases. As a result, the searching process of the
centralized scheme may take considerable time to complete.
Second, the centralized scheme requires the coordinator to
collect monitored value distribution from all monitor nodes,
which puts heavy burden on the coordinator node,
especially with large-scale monitoring tasks.

To address these issues, we propose a scalable parameter
tuning scheme which runs distributedly at each monitor
node, and avoids searching in the entire parameter space
and centralized data collection. In the rest of the section, we
present detail of this distributed parameter tuning scheme.

5.1 Modeling Communication Cost

To begin with, we first introduce a cost model which can
predict the communication cost of WISE monitoring
algorithm given a set of monitoring parameters and the
monitored value distribution. This model is frequently used
for the development of our parameter tuning schemes.

5.1.1 Cost Analysis

Communication in the WISE algorithm consists of local
violation reporting and global polls. We use Cl and PlðiÞ to
denote the communication cost of sending a local violation
report and the probability of sending it at one time unit on
node i. Since a local violation report is of fixed size, we set
Cl to 1. PlðiÞ is the probability of viðtÞ > Ti and no local
violation occurs during last pi time units, because otherwise
node i is in a filtering window during which it suppresses
all violation reports.

Estimating the communication overhead for global polls
is relatively complicated. To ease our discussion, we first
define independent and continuous global polls:

Definition 3. Given a global poll g occurring at time t, if there is
no other global poll that occurs during time ½t� Lþ 1; t� 1�,
we say this global poll is an independent global poll.
Otherwise, let g0 be a global poll that happens during
½t� Lþ 1; t� 1�, we say g0 and g overlap with each other,
denoted as gÐ g0. In addition, given a set of global polls,
G ¼ g1; g2; . . . ; gk, we refer G as a continuous global poll if
8g 2 G; 9g0 2 G; gÐ g0 and 8g0 that g0 Ð g; g0 2 G.

Fig. 4 shows an example of independent and continuous
global polls. Intuitively, independent global polls are
separated global polls which collect vi values for L time
units. Continuous global polls are adjoined global polls that
each may collect vi values for less than L time units, except

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011



the first one. In the following discussion, we refer a global

poll which collects values for j time units as a j-windowed

global poll. Clearly, j ¼ L for a independent global poll and

j > L for a continuous global poll. We use Cj
g to represent

the cost associated with a j-windowed global poll. Since a j-

windowed global poll requires all nodes to upload their vi
values of previous j time units, Cj

g ¼ n � j. In addition, we

define Pj
g be the probability of a j-windowed global poll,

since the probability of a global poll is also related to j.
Given the above settings, the communication cost of the

WISE algorithm can be estimated as follows:

C ¼
Xn
i¼1

ClPlðiÞ þ
X1
j¼L

Cj
gP

j
g : ð3Þ

Note that C is essentially the expectation of communica-

tion cost for any time unit. Based on this cost function, we

now define our parameter tuning problem as follows:

Problem Statement 2. Given the global threshold T , monitoring

window size L, and n monitor nodes, determine the values of

Ti; pi; 8i 2 ½1; n� so that the total communication cost C, given

by (3), is minimized.

5.1.2 Determining Event Probabilities

We next present further detail on predicting the commu-

nication cost of WISE algorithm based on the cost function

given by (3). Clearly, we need to determine the probability

of local violation events, PlðiÞ, and the probability of global

poll violation events, Pj
g , in order to compute C. Recall that

PlðiÞ is the probability that a local violation occurs at time t

and no local violation occurs during last pi time units. Let

V t
i be the event of a violation on node i at time t, and

correspondingly, V t
i be the event of no violation on node i at

time t. We have

PlðiÞ ¼ P
\pi
k¼1

V t�k
i

" #
� P
�
V t
i

�
: ð4Þ

Compared with ClPlðiÞ, computing the cost for global

polls is more complicated, as it depends on the states of

monitor nodes.Pj
g is the probability that the size of a skeptical

window equals to j. It is also the probability that at least one

filtering window exists for each of the past j time units. Let

Wt represents the event of at least one filtering window

existing at t. Since Wt is independent among different t , we

have, Pj
g ¼ P ½

Tj�1
k¼0 W

t�k� ¼ ðP ½Wt�Þj. Denoting P ½Wt� by Pw,

the cost of global polls is
P1

j¼L C
j
gP

j
g ¼ n

P1
j¼L j � Pj

w.
The sum part of the result is a variant of infinite

geometric series, which can be solved via Taylor expansion.
By solving this series, we have

CgðPwÞ ¼
X1
j¼L

Cj
gP

j
g ¼ n

LPL
w � ðL� 1ÞPLþ1

w

ð1� PwÞ2
:

As the cost for global polls can be considered as a

function of Pw, we use CgðPwÞ to denote the cost of global

polls. The value of Pw can be computed as

Pw ¼ 1� P
\n
i¼1

\pi
k¼1

V t�k
i

" #
: ð5Þ

This is because the probability of Wt is the probability of at

least one node existing in its filtering window at time t. Up

to this point, the only thing left unknown in both (4) and (5)

is the probability of V t
i , which depends on values of Ti, pi

and the distribution of vi. To further compute PlðiÞ and Pw,

we need to distinguish two types of stream values vi. One is

time independent values where vi observed at the current

moment is independent from those observed previously.

The other type, time dependent values means vi observed at

the current moment is dependent from previous values. We

next discuss the computation of PlðiÞ and Pw in both cases.
Time independent vi assumes vi in different time units is

i.i.d. In this case, P ½V t
i � and P ½V t�1

i � are independent. Thus,

(4) can be written as

PlðiÞ ¼ ðP ½vi � Ti�Þpið1� P ½vi � Ti�Þ: ð6Þ

Similarly, (5) now can be written as

Pw ¼ 1�
Yn
i¼1

ðP ½vi � Ti�Þpi : ð7Þ

Based on (6) and (7), we only need the value of P ½vi � Ti�
to compute PlðiÞ and Pw. To obtain P ½vi � Ti�, each node

maintains a histogram of the values that it sees over time as

HiðxÞ; x 2 ½0; T �, where HiðxÞ is the probability of node i

observing vi ¼ x. Given HiðxÞ, P ½vi � Ti� ¼
PTi

x¼0 HiðxÞ.
Time dependent vi. We choose discrete-time Markov

process, i.e., Markov chain, for modeling time dependent

values, since it is simple and has been proved to be

applicable to various real world stream data. Under this

model, the values of future vi and past vi are independent,

given the present vi value. Formally, P ½viðtþ 1Þ ¼
xjviðtÞ ¼ xt; . . . ; við1Þ ¼ x1� ¼ P ½viðtþ 1Þ ¼ xjviðtÞ ¼ xt�. For

simplicity, we use vi and v0i to denote the present value and

the value of the previous time unit, respectively. Assuming

vi is time dependent, (4) and (5) can be written as

PlðiÞ ¼ P ½vi � Ti�ðP ½vi � Tijv0i � Ti�Þ
pi�1

P ½vi > Tijv0i � Ti�;
ð8Þ

Pw ¼ 1�
Yn
i¼1

P ½vi � Ti�ðP ½vi � Tijv0i � Ti�Þ
pi�1: ð9Þ

To compute PlðiÞ and Pw, each monitor node maintains a

set of transition probabilities P ½vi ¼ xjv0i ¼ x0� where x 2
½0; T �. Given these transition probabilities,
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P ½vi � Ti� ¼
XT
y¼0

XTi
x¼0

P ½vi ¼ xjv0i ¼ y�;

P ½vi � Tijv0i � Ti� ¼
XTi
y¼0

XTi
x¼0

P ½vi ¼ xjv0i ¼ y�; and

P ½vi >Tijv0i � Ti� ¼ 1� P ½vi � Tijv0i � Ti�:

Interestingly, looking for the best values for Ti and pi is
essentially finding the best trade-off between local violation
and global polls which leads to the minimal communication
cost. When increasing (decreasing) Ti, we reduce (increase)
PlðiÞ which causes local violation to reduce (increase).
However, larger (smaller) Ti also leads to larger (smaller)
Pw which in turn increases (decreases) CgðPwÞ. It is also the
same case for increasing or decreasing pi.

5.2 Centralized Parameter Tuning

The centralized parameter tuning scheme is an intuitive
development based on the above cost model. To determine
best values for Ti and pi, the centralized scheme adopts an
EM-style local search scheme which iteratively looks for
values leading to less cost. This scheme starts with two sets
of initial values for Ti and pi. Iteratively, it fixes one set of
parameters and performs hill climbing to optimize the other
set of parameters until reaching local minimum. It then
fixes the optimized set and tunes the other one. It repeats
this process until no better solution is found. To avoid local
minimum, we run the scheme multiple times with different
initial Ti and pi values, and choose the best results.

5.3 Drawbacks of Centralized Tuning

The centralized scheme can find good local monitoring
parameter values which minimizes communication given
small number of monitor nodes. However, we find that
this scheme suffers from scalability issues when this
condition is not met.

First, as the centralized scheme holistically setting
parameter for all nodes, the search space grows exponen-
tially as the number of monitor nodes increases. Conse-
quently, the search time of the centralized scheme also
grows tremendously. Furthermore, when the number of
monitor nodes is large, the search process causes significant
consumption of CPU cycles at the coordinator, which could
interfere with other jobs running on the coordinator node.
One trade-off technique we apply to lower computation
complexity is to reduce the search space by increasing the
step size while performing hill climbing. This technique
enables the centralized scheme to work with relatively large-
scale monitoring tasks at the cost of less efficient parameters.

Second, the coordinator running the centralized scheme
needs to collect the information of monitored value distribu-
tion, i.e., histograms in the time independent case and
transition probabilities in the time dependent case, from all
monitor nodes. This type of global information collecting is
clearly not scalable and may consume considerable resources
at the coordinator side. To address these issues, we propose a
distributed parameter tuning scheme which allows each
node to locally tune its monitoring parameters with minimal
internode communication.

5.4 Distributed Parameter Tuning

The distributed parameter tuning scheme relieves the
coordinator of the computation and communication bur-

den by letting each node tune its monitoring parameters in
a reactive manner based on events it observes. The main
challenge in distributed parameter tuning is to effectively
search for the best parameters at each monitor node
without acquiring global information. We next describe
detail of this scheme.

For ease of discussion, we use Xi to denote the
probability of not having local violation at node i for both
time dependent and independent vi by defining Xi as
following:

Xi ¼
P ½vi � Tijv0i � Ti� if time dependent;
P ½vi � Ti� if time independent:

�

By introducing Xi, (3) can be written as follows:

C ¼
Xn
i¼1

ClX
pi�1
i ð1�XiÞ þ Cg 1�

Yn
i¼1

Xpi
i

 !
:

Since Xi is the probability of no local violation, we assume
Xi � ð1�XiÞ for reasonable monitoring applications. Thus,

C �
Xn
i¼1

ClX
pi
i þ Cg 1�

Yn
i¼1

Xpi
i

 !
:

Furthermore, Let �Xi � minfXij8i 2 ½1; n�g, where � can be
predefined by user based on observed distribution, we have

C �
Xn
i¼1

ClX
pi
i þ Cgð1� ð�XiÞnpiÞ:

Let Yi ¼ Xpi
i and �i ¼ �npi , this relation can be written as

C �
Xn
i¼1

ClYi þ Cg
�
1� �iY n

i

�
: ð10Þ

Thus, instead of directly tuning values for Ti and pi, we
can optimize values for Yi. In fact, Yi can be considered as the
area of a 2D “suppression window” at node i. The height of
the window is controlled by Xi, which is determined by Ti,
and the length of the window is controlled by pi.

The distributed scheme adjusts Yi at the monitor nodes
based on their observed local violation reports and global
poll events. Each local violation report from node i indicates
that the area of the suppression window of node i is
possibly lower than the optimum. Similarly, each global
poll suggests the area of the suppression window is
possibly higher than the optimum. Algorithm 1 shows the
detail of the reactive scheme.

Algorithm 1. The Distributed Reactive Scheme

�:� Invoked whenever received an event E

1: if E ¼ local violation then

2: Yi  �Yi with probability minð1; 1
�i
Þ

3: else {E ¼ global poll}

4: Yi  Yi
� with probability minð1; �iÞ

5: end if

Choosing a proper value for �i is critical for the reactive
scheme to converge. Similar to the observation made in
[22], the key point to achieve convergence is to make the
scheme moves toward the optimal Yi and stays at the
optimal Yi values once it reaches them. Assume the value of
Yi is not optimal, then either Yi < Y opt

i , which leads to
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PlðYiÞ > PlðY opt
i Þ and PwðY Þ < PwðY optÞ, or Yi > Y opt

i , which
leads to PlðYiÞ < PlðY opt

i Þ and PwðY Þ > PwðY optÞ, where Y opt
i

is the optimal Yi, Y and Y opt stand for all Yi and all Y opt
i ,

respectively. In the first case, we have

PlðYiÞ
PwðY Þ

>
PlðY opt

i Þ
PwðY optÞ :

By setting �i ¼ PwðY optÞ
PlðY opt

i Þ
, we have �iPlðYiÞ > PwðY Þ, which

means the value of Yi decreases. Similarly, we can see that

the value of Yi increases when Yi > Y opt
i . Thus, the reactive

scheme reaches stable state when

PlðYiÞ
PwðY Þ

¼ PlðY opt
i Þ

PwðY optÞ :

While estimating the exact Y opt
i is infeasible, we can still

approximate this value by minimizing the upper bound of
C based on (10). More importantly, such computation can
be done distributedly at each monitor node, as the right
hand side of the equation can be divided into n items and
each is only related to node i itself. Once each monitor node
obtains its Y opt

i , it sends this value to the coordinator. The
coordinator gathers Y opt

i for all nodes and sends these
values to all nodes. Each node then can compute its �i based
on the received Yi values.

One remaining question is which component, Ti or pi, to

change when Yi is updated. We develop the following

heuristics to handle this problem. When Yi is updated, node

i first computes the new T 0i (p
0
i) for the updated Yi by using

old pi(Ti). With probability minf1;�max
Ti

1
T 0i�Ti
g, where �max

Ti

is the maximum step length for updating Ti, it updates pi if

p0i � L. If pi is not updated, it updates Ti if T 0i � T . The

rationale is that Ti is restricted by the global threshold T ,

and thus, is updated only when the change is small.
To ensure correctness, when node i updates Ti, it sends T 0i

and p0i to the coordinator. If T 0i < Ti, the coordinator updates
its slack S  Ti � T 0i . Otherwise, the coordinator approves
the update if S � ðT 0i � TiÞ. When S < ðT 0i � TiÞ, it notifies
the node to update its T 0i to S if S > 0. If S ¼ 0, it notifies the
node to update pi instead. Note that the above messages sent
from monitor nodes can be combined with local violation
reports or global poll messages, as an update is necessary
only when a local violation or a global poll occurs.

6 PERFORMANCE OPTIMIZATION

The performance of WISE can be further optimized by
improving the implementation of its major subroutines. In
this section, we describe two interesting optimization
techniques of this kind, one for enhancing the global poll
procedure at the coordinator side and the other for
improving local violation reporting procedure at the
monitor node side.

6.1 Staged Global Polls

In the global poll procedure we introduced earlier, each
node i sends its buffered viðt� jÞ values, where j 2 ½0; L�,
to the coordinator for state alert verifying. However, as the
coordinator, more often than not, does not need all
buffered values from all nodes to determine whether a
state alert exists, such a global poll procedure usually
causes unnecessary communication.

To further reduce the communication cost for global polls
while still ensure the correctness of the monitoring algo-
rithm, we propose a novel staged global poll procedure as an
optimization technique. The staged global poll procedure
divides the original global poll process into three stages. In
each stage, only part of the viðt� jÞ; j 2 ½0; L� values are
transmitted. In addition, if an early stage already rules out or
triggers a state alert, then the rest of the stages can be
avoided. Even if all stages are required, the new procedure
transmits the same amount of vi data as the original one.

Stage one. Node i only sends those viðt� jÞ values that
satisfies viðt� jÞ � Ti. Once received all the data, the
coordinator tries to rule out the state alert by looking for a
time unit t0 in which viðt0Þ � Ti; 8i 2 ½1; n�. If such a time
unit is found, it suggests that there exists at least one gap,
i.e., a slot without violations, between local violations, and
thus, the state alert can be ruled out.

Stage two. If such gaps are not found, the global poll
process enters the second stage, where it tries to confirm the
existence of a state alert without invoking further commu-
nication. Specifically, the coordinator computes a partial
slack S0ðtÞ ¼

P
i2GðtÞ Ti � viðtÞ, where GðtÞ ¼ fijviðtÞ < Tig

for all time units associated with the global poll. This partial
slack S0ðtÞ is essentially the sum of “space,” Ti � viðtÞ at
nodes not having local violation at time t. In addition, let
O ¼ ftjS0ðtÞ � jN �GðtÞjg where N is the set of all monitor
nodes and N �GðtÞ is the set of nodes having local
violations at time t. Note that jN �GðtÞj is the lower bound
of the sum of “overflow,” viðtÞ � Ti at nodes having local
violation at time t. The coordinator then triggers a state alert
if O ¼ ;, because a state alert must exist if the sum of
“space” is smaller than the sum of “overflow” for all time
units associated with the global poll.

Final stage. If the second stage does not trigger a state
alert, the third, also the last, stage begins, in which the
coordinator notifies all nodes that detected local violation at
time units t 2 O (can be inferred based on data received in
the first stage) to send the rest of their unsent vi data. Once
the data are received, the coordinator triggers a state alert if
S0ðtÞ < �ðtÞ for all t associated with the global poll, where
�ðtÞ ¼

P
i2N�GðtÞ viðtÞ � Ti, it terminates the global poll

procedure otherwise.
The correctness proof of the staged global poll is

straightforward. The first stage rules out state alerts
according to a sufficient condition of not having state alerts,
i.e., the existence of “gaps.” The second stage triggers state
alerts according to a sufficient condition of having state
alerts, i.e., the sum of “space” is smaller than the sum of
“overflow” at all times units. Finally, the last stage collects
all buffered values from all nodes, and thus, can always
make correct decisions.

The staged global poll reduces significant amount of
communication cost compared with the original global poll,
as witnessed by our experiment results. The first and the
second stages has the capability of ruling out or triggering
state alerts with only a subset of buffered values in most
cases. In the worse case, the staged global poll transmits the
same amount of buffered values as the original global poll
does, since the last stage only collects previously uncol-
lected values.

6.2 Termination Messages

In the original WISE algorithm, when a monitor node enters
a filtering window, it no longer reports any local violation
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until it leaves the window. Although the coordinator
assumes the node is experiencing local violations through-
out its filtering window, it may not be true, as vi may drop
below Ti before the filtering window ends. While this
scheme is very communication efficient, it also reduces the
chance of ruling out global polls, as filtering windows may
“exaggerate” the length of real local violation period and
overlap with each other undesirably.

Based on this observation, we optimize the violation
reporting procedure by letting node send a termination
message which contains the information of unviolated time
units at the end of a filtering window when it helps the
coordinator to avoid global polls. While this modified
scheme introduces extra communication at the end of
filtering windows, the corresponding termination message,
when properly generated, may avoid unnecessary global
polls, and thus, reduces the total communication cost.

Specifically, a termination message of node i contains
sequence numbers of time units during which viðtÞ � Ti.
The sequence number here is associated with the previous
violation report sent by node i, and thus, is defined over
ð0; pi � 1�. When receiving a termination message mt of a
filtering window � , the coordinator first updates � by
removing the time units contained in mt, and then, use the
updated filtering window to calculate its skeptical window.

Due to lack of global information, it is difficult for a
monitor node to locally determine whether a termination
message would help the coordinator to discover gaps
between filtering windows. Clearly, always sending termi-
nation messages at the end of filtering window is not
efficient. A termination message is beneficial only when the
corresponding filtering window contains sufficient unvio-
lated time units, because the more unviolated time units
one termination message contains, the more likely the
coordinator can avoid global polls. Therefore, we use jmtj

pi
,

where jmtj is the number of time units in the termination
message mt, to measure the likeliness of mt can reveal gaps
in the skeptical window. In our experiment, we restrict that
a node i sends a termination message only when jmtj

pi
� 0:75.

By introducing this restriction, only nodes that observe
adequate number of unviolated time units within its
filtering windows send out termination messages.

7 EXPERIMENTAL EVALUATION

We performed extensive experiments over both real world
and synthetic traces to evaluate WISE. First, we evaluate the
basic WISE with centralized parameter tuning. Our empiri-
cal study shows several important observations:

. WISE achieves a reduction from 50 to 90 percent in
communication cost compared with instantaneous
monitoring algorithm [22] and simple alternative
schemes.

. The centralized parameter tuning scheme effectively
improves the communication efficiency.

. The optimization techniques further improve the
communication efficiency of WISE.

Second, we evaluate the scalability of the WISE system with
respect to different design choices and optimizations,
especially we compare WISE equipped with the two
optimizations with the basic WISE, and compare the

improved WISE, powered by the distributed parameter
tuning scheme, with the basic WISE using centralized
tuning. We highlight the experimental results we observed
as follows:

. WISE scales better than the instantaneous algorithm
in terms of communication overhead. It scales even
better with the distributed parameter tuning scheme.

. While the distributed parameter tuning scheme
performs slightly worse than the centralized scheme,
it scales better, and thus, is suitable for large scale
distributed systems.

. The two optimization techniques continue to con-
tribute additional communication saving when run-
ning with the distributed parameter tuning scheme.

7.1 Experiment Settings

We consider our simulation scenario as detecting DDoS
attacks for a set of distributed web servers. Each server is
equipped with a monitoring probe. In addition, a centra-
lized monitoring server watches the total number of HTTP
requests received at different web servers. When the total
number of requests continuously stays above a predefined
threshold T for L time units, the monitoring server triggers
a state alert.

We compare communication efficiency and scalability of
the WISE algorithm, the instantaneous monitoring algo-
rithm, and simple alternative window-based schemes. We
choose the nonzero slack instantaneous monitoring algo-
rithm [22] for comparison, as it is the most recent
instantaneous monitoring approach and is reported to
achieve significant communication reduction (�60%) over
previous approaches. The nonzero slack algorithm employs
a local value threshold at each monitor node and reports
local violation whenever the local value exceeds the local
value threshold. It uses a set of optimization techniques to
set optimal local threshold values so that

P
Ti � T > 0,

a.k.a the slack may be positive.
We also use several simple alternative window based

state monitoring schemes as evaluation baseline. These
schemes include the aforementioned “double reporting”
scheme and WISE with naive parameter setting. Monitor
nodes running the double reporting scheme report both
the beginning and the end of a local violation period and
the coordinator delays the global poll until necessary. The
naive parameter setting simply sets Ti ¼ T

n and pi ¼
maxfLn ; 2g for node i.

We measure communication cost by message volume (the
total size of all messages) and message number. By default,
we use message volume for comparison. In addition, we
categorize messages into data messages and control mes-
sages. Data messages are those containing monitored values,
e.g., local violation reports. The size of data message is m
where m is the number of values encapsulated in the
message. Control messages refer to all the other messages
and their size is 1.

Our trace-driven simulator runs over two data sets. One
data set, WorldCup, contains real world traces of HTTP
requests across a set of distributed web servers. The trace
data come from the organizers of the 1998 FIFA Soccer
World Cup [24] who maintained a popular website that
was accessed over 1 billion times between April 30 and July
26, 1998. The website was served to the public by 30 servers
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distributed among four geographic locations around the
world. Thus, the traces of WorldCup provide us a real-
world, large-scale distributed data set. In our experiments,
we used the server log data consisting of 57 million page
requests distributed across 26 servers that were active
during that period. We set the length of time unit to
1 minute and invoke a reconfiguration every 1,000 time
units. Although results presented here are based on a 24-
hour time slice (from 22:01:00 June 6th GMT to 22:00:00
June 7th GMT) of the system log data, we conducted a
series of experiments over log data that spanned different
days and different hours of day and we observed very
similar results.

The other data set, Synthetic, contains randomly gener-
ated traces that give us the freedom of evaluating
parameters cannot be controlled in real world traces. For
instance, we can increase the number of monitor nodes
from 20 to 5,000 for scalability evaluation. We first generate
a trace of aggregate values and then distribute values to
different nodes based on Uniform or Zipf distributions.
Unless otherwise specified, the number of nodes is 20 and
Uniform distribution is applied. To track data distribution,
we use equidepth histograms at each monitor node and we
also employ exponential aging on histograms to make it
reflecting recent observed values more prominently than
older ones. For both data sets, the parameter reconfigura-
tion interval is 1,000 time units.

7.2 Results

7.2.1 Comparison of Communication Efficiency

Figs. 5 and 6 compare the communication overhead of
WISE enhanced by centralized tuning (WISE-Cen) with that
of the instantaneous monitoring algorithm(Instantaneous),
the double reporting scheme (Double Report) and WISE
with naive parameter setting (WISE-Naive) for the World
Cup data set and Synthetic data set. We vary T and L in a
way that the total length of global violation takes up from 0
to 50 percent of the total trace length. By default, we set

T ¼ 2;500ð20Þ and L ¼ 15ð10Þ for the WorldCup (Synthetic)
data set.

Fig. 5a shows the total message volume generated by
WISE is nearly a magnitude lower than that of the
instantaneous approach. Double Report and WISE-Naive,
while outperform the instantaneous approach as they delay
global polls, generate more traffic compared with WISE.
Double Report suffers from frequent reporting for short
violation periods, especially when T is small. WISE-Naive
fails to achieve better efficiency because it does not explore
different value change patterns at different nodes. Note that
parameter setting schemes using the time independent
model (Ind) performs slightly better than those using time
dependent one (Dep). However, as the time dependent
model associates higher communication and computation
cost, the time independent model is more desirable.

In Fig. 5b, while the instantaneous approach is not
benefited from large values of L, the WISE algorithm pays
less and less communication overhead as L grows, since
nodes increase filtering window sizes and the coordinator
rules out more global polls with increasing L. Figs. 5c and
5d show similar results for the Synthetic data set.
Furthermore, as Fig. 6 shows, WISE achieves even better
efficiency advantage in terms of message number, as global
polls in WISE collects multiple values, instead of a single
value in the instantaneous approach. Thus, WISE is even
more favorable when per message payload is insensitive to
message sizes.

7.2.2 Effect of Optimization Techniques

Figs. 7a and 7b show effect of termination messages (T) and
staged global polls (S) in terms of communication reduction,
where the Y -axis is the percentage of message volume saved
over the instantaneous scheme for the WorldCup data set. In
Fig. 7a, the WISE monitoring algorithm achieves 60 to
80 percent saving after optimization. However, the saving of
unoptimized ones reduces as T grows because of two
reasons. First, the instantaneous scheme also causes less
communication as T grows. Second, with growing T , the
portion of global poll communication increases (as suggested

MENG ET AL.: STATE MONITORING IN CLOUD DATACENTERS 13

Fig. 5. Comparison of communication efficiency in terms of message
volume.

Fig. 6. Comparison of communication efficiency in terms of message
number.



later by Fig. 13a) due to reduced local violation, and the
original global poll is very expensive. Termination messages
achieve relatively less saving compared with staged global
polls. In Fig. 7b, the saving increases whenL grows, as larger
L leads to larger pi. Figs. 7c and 7d show similar results for
the Synthetic data set.

7.2.3 Communication Cost Breakup Analysis

Fig. 8 shows communication cost breakup of WISE with
centralized tuning, where communication overhead is
divided into three parts: local violation reporting, global
polls, and control. The first part is the overhead for value
reporting in local violations, i.e., messages sent by nodes
during local violations. The second part is the overhead for
value reporting in global polls, which consists of messages
with buffered stream values sent by nodes during global
polls and notification messages from the coordinator. All the
rest of the messages, most of which generated by the
parameter tuning scheme, are classified as control messages.
Furthermore, the left bar in each figure shows the percentage
of different types of communication in message volume, and
the right bar measures the percentage in message number.

In Fig. 8a, as T grows, the portion of global poll
communication steadily increases, as local violation occurs
less frequently. The portion of control communication also
increases, due to the reduction of local violation reporting
and global polls. Similarly, Fig. 8b observes the growth of
the global poll portion along with increasing L, as nodes
increase pi to filter more reports. Figs. 8c and 8d provide
similar results for the Synthetic data set.

7.2.4 Scalability

Figs. 9a and 9b evaluate the communication saving for
WISE with centralized tuning. For World Cup data set, we
distributed the aggregated requests randomly to a set of 20
to 160 monitor nodes by Uniform and Zipf distributions.
For the Synthetic data set, we increased the number of
nodes from 20 to 5,000 nodes. When a uniform distribution
was used, every node received a similar amount of

requests. When a Zipf distribution was assumed, a small
portion of the nodes received most of the requests. For Zipf
distribution, we chose a random Zipf exponent in the range
1.0-2.0. Same as before, we measure communication cost in
both message volume and message number.

In Figs. 9a and 9b, the saving of WISE increases up to
over 90 percent when the node number increases, which
indicates that WISE scales better than the instantaneous
approach. Interestingly, WISE performs better when Zipf
distribution is used, because the parameter tuning scheme
can set higher Ti and pi to nodes observing higher values,
which avoids considerable local violation and global polls.
Again, WISE achieves higher advantage in communication
reduction when we measure communication cost in number
of messages generated, as global polls in WISE collect
values in multiple time units.

7.2.5 Distributed Tuning versus Centralized Tuning

We now compare distributed tuning and centralized
tuning in several different aspects. Fig. 10 compares the
communication efficiency achieved by the centralized
tuning scheme and the distributed one. The centralized
parameter tuning scheme (Cen) generally performs slightly
better than the distributed one (Dis) does, as the
centralized scheme has the complete value distribution
information. Note that the distributed scheme works as
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good as the centralized scheme when T is relatively low,
because violation is so frequent that there is little space for
parameter optimization. When T increases, the centralized
scheme starts to find better parameters than the distributed
scheme does.

Another interesting observation is that the distributed
scheme actually performs better than the centralized scheme
when L is relatively large. As the centralized scheme
overestimates the communication overhead for global polls,
it tends to assign small values to pi. The distributed scheme
does not suffer from this problem as it can reactively increase
pi when it observes more local violations than global polls. As
later proved in Fig. 13b, the centralized scheme pays much
more local communication overhead than the distributed
scheme does.

Fig. 11 compares the effectiveness of the two optimiza-
tion techniques when WISE is tuned by the centralized
scheme and the distributed one, respectively. In general,
staged global poll and termination message work with both
tuning schemes, although staged global poll achieves more
communication reduction. Furthermore, as the distributed
scheme tends to use larger pi, WISE with distributed tuning
encounters more global polls. Consequently, the staged
global poll often gains more communication reduction
when works with the distributed tuning scheme.

Fig. 13 presents cost break (message volume) with
centralized tuning scheme (left bar) and distributed tuning
scheme (right bar). In Figs. 13a and 13b, the centralized
scheme has a relatively larger portion of local violation
overhead, as it overestimates the communication cost for
global poll. In both figures, the distributed scheme pays
more overhead in control, because it requires communica-
tion when adjusting local threshold Ti. Figs. 13c and 13d
provide similar results for the Synthetic data set.

Figs. 12a and 12b compare the scalability of centralized
and distributed tuning schemes. The distributed scheme
performs even better than the centralized scheme when the
number of nodes is large. This is because we restrict the
computation time used by the centralized scheme given a

large number of nodes, which degrades its performance.
Note that although computation and communication
burden of the coordinator is not taken into account in the
above results, it could cause serious workload imbalance
between monitor nodes. For instance, in our experiment the
CPU time consumed by the coordinator running the
centralized scheme is an order of magnitude more than
that consumed by a monitor node under typical settings.
Therefore, the distributed tuning scheme is a desirable
alternative as it provides comparable communication
efficiency and better scalability.

8 RELATED WORK

Distributed data stream monitoring has been an active
research area in recent years. Researchers have proposed
algorithms for the continuous monitoring of top-k items [6],
sums and counts [7], and quantiles [8], problems addressed
by these work are quite different from ours. While these
work study supporting different operators, e.g., top-k and
sums, over distributed data streams with guaranteed error
bounds, we aim at detecting whether an aggregate of
distributed monitored values violates constraints defined in
value and time.

Recent work [18], [20], [19], [21], [22] on the problem
of distributed constraint monitoring proposed several
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algorithms for communication efficient detection of
constraint violation. They study a different problem by
using an instantaneous monitoring model where a state
alert is triggered whenever the sum of monitored values
exceeds a threshold. By checking persistence, the win-
dow-based state monitoring model we study gains
immunity to unpredictable bursty behavior and momen-
tary outlier data [15], and provides more space for
improving communication efficiency. In addition, the
instantaneous model is a special case of ours when L ¼ 1.

The early work [18] done by Dilman and Raz propose a
Simple Value scheme which sets all Ti to T=n and an
Improved Value which sets Ti to a value lower than T=n.
Jain et al. [26] discuss the challenges in implementing
distributed triggering mechanisms for network monitoring
and they use local constraints of T=n to detect violation. The
more recent work of Sharfman et al. [20] represents a
geometric approach for monitoring threshold functions.
Keralapura et al. [19] propose static and adaptive algorithms
to monitor distributed sum constraints. Agrawal et al. [21]
formulate the problem of selecting local constraints as an
optimization problem which minimizes the probability of
global polls. Kashyap et al. [22] propose the most recent
work in detecting distributed constraint violation. They use
a nonzero slack scheme which is close to the idea of
Improved Value scheme in [18]. They show how to set local
thresholds to achieve good performance. We choose this
nonzero slack scheme for comparison purpose.

The work that is perhaps closest to ours is that of Huang
et al. [16]. They consider a variant of the instantaneous
tracking problem where they track the cumulative amount
of “overflows” which is maxf0;

P
i vi � Tg. This work

makes two assumptions which may not be true: 1) All local
threshold values are equal, and 2) local values follow a
Normal distribution. In addition, it is unclear if the
computed local thresholds in [16] optimize total commu-
nication costs. WISE employs a sophisticated cost model to
estimate the total communication overhead and optimizes
parameter setting based on this estimation. Furthermore,

while [16] allows missed detections, WISE guarantees
monitoring correctness.

Compared with our earlier results reported in [23], this
paper makes four new developments. First, we present the
architectural design and deployment options for a WISE-
enabled monitoring system. Second, we develop a novel
distributed parameter tuning scheme that offers consider-
able performance improvement in terms of the scalability of
the WISE framework. Third, we develop two concrete
optimization techniques to further reduce the communica-
tion cost between a coordinator and its monitoring nodes.
We show that both techniques guarantee the correctness of
monitoring. Finally, we conduct a series of new experiments
with a focus on how the distributed parameter tuning
scheme and the two optimization techniques contribute to
the enhancement of the scalability of WISE.

9 CONCLUSIONS AND FUTURE WORK

The increasing use of consolidation and virtualization is
driving the development of innovative technologies for
managing cloud applications and services. We argue that
state monitoring is one of the crucial functionalities for on-
demand provisioning of resources and services in cloud
datacenters. We have presented a distributed approach for
WIndow-based StatE monitoring. In contrast to the instan-
taneous state monitoring model which triggers state alert
whenever a constraint is violated, the window-based state
monitoring reports alerts only when state violation is
continuous within a specified time window. Our formal
analysis and experimental evaluation of WISE demonstrate
that window-based state monitoring is not only more
resilient to temporary value bursts and outliers, but also
able to save considerable communication when implemen-
ted in a distributed manner. To achieve efficiency, WISE
utilizes the window based monitoring algorithm, parameter
tuning schemes, and optimized monitoring subroutines to
minimize monitoring related communication at three
different levels. Experimental results show that WISE
achieves significant communication reduction (50-90 per-
cent) compared with instantaneous monitoring approaches
and simple alternative schemes.

Our work on application state monitoring in cloud
datacenters continues along several directions. In this work,
we focus on how to efficiently monitor the window-based
state violation for one application running over a collection
of distributed computing nodes. Another interesting chal-
lenge in state monitoring for cloud datacenters is to study
the problem of efficient scheduling of multiple application
state monitoring tasks by optimizing resource utilization
and minimizing the amount of duplicate processing and
messaging. In addition, performing failure-resilient state
monitoring is another interesting yet challenging problem.
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