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Abstract—Location-sensitive information monitoring services In this paper, we introduce SLIM a service for efficiently
are a centerpiece of the technology for disseminating content-ic - monitoring information streams comprised of spatial asl wel
information from massive data streams to mobile users. The key as non-spatial data in a distributed fashion. Users express

challenges for such monitoring services are characterized by the their inf fi ds in t f tial tri hich
combination of spatial and non-spatial attributes being monitored éIr information neeas in terms or spaual triggers whic

and the wide spectrum of update rates. A typical example of such involve spatial and non-spatial predicates. For examplesea
services is “alert me when the gas price at a gas station within may install a trigger of the formfalert when within one

5 miles of my current location drops to $4 per gallon”. Such a mjle of gas station G and the price of gas is bel®4’.
service needs to monitor the gas price changes in conjunction with The cenral server receives location and other data updates

the highly dynamic nature of location information. Scalability of f iblv | b f to det ine th
such location sensitive and content rich information monitoring rom a possibly large number Of sources to determine the

services in the presence of different update rates and monitoring OPpOrtune moment to activate triggers. As opposed to ctirren
thresholds poses a big technical challenge. In this paper, we works which focus on efficient evaluation of different types

present SLIM, a scalable location sensitive information monitor-  of continuous queries (e.g. KNN query, range query) based on
ing service framework with two unique features. First, we make spatial predicates alone ( [3], [4], [5]), we consider a &V

intelligent use of the correlation between spatial and non-spatial L | b £ fi it tribut
attributes involved in the information monitoring service requests receiving a large numboer or location-sensitive attributesn

to devise a highly scalable distributed spatial trigger evaluation Multiple data sources. Introduction of non-spatial prattis
engine. Second, we introduce single and multi-dimensional safe renders existing solutions incapable of handling the mnobl

value containment techniques to efficiently perform selective efficiently. However, it presents an opportunity to perform

distributed processing of spatial triggers to reduce the amount b optimizations beyond those possible with spatial attabut
unnecessary trigger evaluations. Through extensive experimés) alone

we show that SLIM offers high scalability for location-sensitive,
content-rich information monitoring services in terms of the Spatial trigger processing requires meeting three demand-
number of information sources being monitored, number of users ing objectives: (i)high accuracy which ensures no triggers
and monitoring requests. are missed, (ii)server scalability which guarantees that the
information monitoring server scales to a large number of
. INTRODUCTION triggers, growing base of mobile users and a large number
Advancements in wireless communication technology amd data streams, and (iiijnmediate evaluation of updatés
cloud computing are enabling many JIT Web services forder to activate triggers at the earliest possible moment t
delivery of contextual information to mobile users at thghti allow users to react.
time and the right place. Other technological advances likeSolutions in the streaming domain provide optimizations
large-scale deployment of sensor networks and informatigich lead to approximate answers [6] or delayed evaluation
delivery systems have led to the availability of large antsunas in the case of batch processing [7]. Both are unable to meet
of context-aware location-sensitive information. Sucfoiin  our objectives of immediate evaluation with 100% accuracy.
mation is typically delivered in the form of data streamst th&imple solution processes each and every data update wal arri
arrive continuously, rapidly and in real time [1], [2]. A mi® to determine if any triggers are activated. However, this
information monitoring system is characterized by a largeansit processingpproach hurts the scalability of the system.
number of such data streams, some delivering location of_gad shedding approaches [8] drop data updates randomly or
large number of mobile users and others delivering locatiogelectively but cannot guarantee 100% accuracy.
sensitive monitored data. Examples of such location-teesi  our approach takes into account interaction between v&riou
monitored data may include gas prices at gas stations ctraffitributes which facilitates selective update evaluatigainst

conditions at major junctions or pollution levels in diféet jnstalled trigger information, dropping updates which dav
parts of a city. In such an environmespatial triggersprovide

useﬂj”_ means OT allowmg users to express their IOC""Uon'lSLIM is an acronym for _8alable _location-sensitive riformation
specific information needs. Monitoring



zero probability of activating any installed triggertn order HserA @\ Location Data
to achieve 100% accuracy while selectively evaluating data Lg e =A Stream
updates, we introduce the conceptsaffe containmentSafe
value containers are computed for each data attribute iMSLI
allowing the service to drop updates which lie within thedr r
spective safe value containers without evaluation. Adddlly, :
safe value containers are communicated back to relevaat dat | @i
sources, seeking their cooperation in the monitoring m®ce = E ]

Pricing, iT

¥

=
SLIM Service

and allowing for communication cost savings. However, safe
value container computation leads to additional processist

at the server. User | Distance | Price Data Stream*

In order to meet this challenge, we present efficient al- A [Tmile  <$4 e
gorithms for safe value container computation for single- B |2miles |<$42 t, | $46
dimensional and multi-dimensional data. Our experimental C_|Smiles |<$45 t | $43
evaluation shows that server scalability is enhanced pielti Spatial Triggens

times by deployment of safe containment techniques. Mobile Fig. 1: Motivating Example

clients will also benefit in terms of energy and bandwidth—co%nd t
sumption by monitoring their position within their respeet userA cannot be positioned within the spatial trigger region

two-dimensional safe value containers. at these time instants, the location data for the user atthes

The rest of the paper is structured as follows. Section the instants can be dropped. Alternately, the user can save

provides a motivating example. Section Il introduces th(gen energy and bandwidth costs by not sending updates to the

fundgmental _concgpts of _safe:vco_:_wrt]gmmefnt” foII%wEd by dt@%rver at these time instants. Secondly, we observe that the

service overview in Section V. This is followed by a €pricing data at time instartf, does not satisfy the constraint

scription of our safe vglue container computation algamsh ¢ any of the installed triggers. If the server can deteemin

(Section V). An expenmerytal eva}luatlon using a real W,Orl at the pricing data constraint for any of the installedgers

road network is presented in Section VI. Section VI pros'decannot be satisfied &, this update may be dropped. Thirdly,

a brief discussion of related work followed by the conclusioy,, position update for all mobile users at time instantan

in Section VIil. be dropped if the service recognizes the fact that though the
[l. PROBLEM MOTIVATION spatial constraints are satisfied for all the triggers, tha-n

W tivate th timizati cunit ted bS atial constraint cannot be satisfied due to previousnyici
¢ molivate the optimizalion opportuniies presente ata update at),. Lastly, the pricing data update at time

addition of less dynamic non-spatial attributes to the rmfoi stantt, may be dropped, even though it satisfies the non-

mation monitoring problem in mobile services with the aid o patial constraints for the trigger installed by ugrif the

an te>|<|ar(;1ple.t.F|lgtu_re 1 displays n:o:)igeFusﬁ:cnstB and? with server recognizes that none of the users satisfy the spatial
installed spatial tnggers on gas statisn—or TUture reference, ., aints for their respective triggers at this time anst

A BC and Ggre termed asbjectsin th'e system. Each USET\vjith these observations in mind, we define the concepts
specifies spatial as well as non-spatial predicate comditio

) . . ) associated with safe containment followed by an overview of
for her spatial trigger. For example, the spatial trigger fqhe SLIM service
user A requires activation when theser is within one mile '
of the gas station Gand gas price is below$4. Similarly, lIl. SAFE CONTAINMENT
usersB and C specify predicate conditions for their spatial
triggers. Each object in the system will have an associated! e concept of safe containment can be applied to incoming
monitored attribute. For examplel, B and C' have location Updates ensuring that updates with zero probability obatti
as a monitored attribute; whereas gas statibmas the gas ing triggers may be dropped without processing. Otherwise,
price as a monitored attribute. trigger evaluation needs to be performed to determine if any
For the sake of exposition, we assume that the rate @tthe triggers may be activated by an incoming data update.
which the pricing data stream is delivered is half the rate of Definition 1: (Safe Value Containe) A safe value con-
the location data stream. The location data stream conspri§@ineri(o, s) is defined for each objeet for any monitored
of location information between time instarﬂﬁ and ta (at attributess relevant to the objeab. As Iong as the value of
constant interva|) as shown in ﬁgure 1. S|m||ar|y, pr|c|r@:a‘j the monitored attribute lies within its safe value containe
is received at the server at time instatit§t, < ¢, < t3) and#, ~dependant triggers can be activated by updates to thibutri
(t, > t4). A simple approach would process the data updatéalue. For exampley (A, 1) represents the two-dimensional
as and when they are received. However, it is unnecessaryJafe value container for uset (in Figure 1) based on its
the server to process all received data updates. current location/. Similarly, ¢(G,p) represents the single-
Firstly, we observe that usérlies outside the spatial regiondimensional safe value container for the gas statiohased
associated with her installed trigger at time instahts¢, ©n the current value of the monitored attribute, gas ppice

If it was possible for the service to determine that



Definition 2: (Inclusive Trigger Set) When a safe value @‘ T — O
containeri (o, s) overlaps the predicate range of a set of ! ‘m Inigex /
relevant triggers”, 77 is defined as the inclusive trigger set. lior; —

Note that any future data updateés) € (o, s) can still be 4 _Location Data
dropped without trigger processing, however, updatestfoero o

Monitored
attributes may activate an inclusive trigger7’. Section V-A zy A \
Q Set Bitmap > Trigger

exemplifies the concept of inclusive triggers.

. . L Bitmap
The goal of safe containment is to minimize the number Eergnt Inetey
, : ot ; [ USERID | # Set Triggers )| TRIGGERID| S, |S, | S, |S, |S; |
of trigger evaluations performed. ‘We identify the follogin e i AT I e
requirements for safe value container computation. 9804342 2 3876543 1 1 1 1 0
Lightweight ConstructionSafe value container computation 1345098 i cileres )l
needs to be performed for each objeatith respect to moni- Fig. 2: SLIM Service Overview

tored attributess delivering data relevant to the objegtthus
making it imperative that safe value container computaison
performed quickly in order to avoid server overload.

Fast Containment CheckThe containment check needs t
determine if the value of monitored attributedor objecto
at timet, v(s,t), lies within the current safe value container

¥(o, s) of the object. A. Single-Dimensional Safe Value Containers

Maximum ExtentAs long as the attribute value(s,t) lies ! . . . .
g (s,£) We define single-dimensional safe value containgfs s)

within the safe value containef(o, s), the data update canf h obi d single-di ional tored atirib
be dropped. The goal of minimizing the number of triggelpr each objecb and single-dimensional monitored attribute

evaluations can be achieved by maximizing the probabili relevant too. Such safe value containers can be represented
i 1 1 1 1

of the data value staying within the safe value container. ngmg ﬁ tshettof va}lue rangtﬁﬁl,f%, t’ [Lzlezln_] Whe.tf. p= f

example, a safe value container of largest possible aremaro’ such that, as fong as the aflrioute value fies within one o

the current position of a mobile user would allow the user @e value ranges no triggers rele\_/antoto_:an b(_e actlvate_d.
stay within its safe value container for maximum time. igure 3 displays the plot of a single-dimensional attebut
v varying with time ¢. The predicate conditions for three

different installed triggersly, 7> and 73 over the attribute
v are displayed by horizontal lines. We identify three sefgara
This section provides a brief overview of the SLIM servicgases for safe value container computation.
and the data structures maintained at the server (Figure @pnse |: When attribute value lies outside any relevant trigger
The spatial triggers are installed at the server and indextuhge, the safe value container is identified as the r@ingé
using the relevant indexing techniques [9], [10]. We mamtasuch that, no relevant triggers can be activated as longeas th
a main-memory index on the trigger identifiers with eachttribute value lies within this range. Figure 3(a) shows an
trigger being associated with a bitmap. The length of thexample where the value of the attribute at time v(¢1),
bitmap is equivalent to the number of non-spatial data ssurdies in [, h] = [T5.high, T1.low]. This safe value container
delivering information to the service. For a service whias h remains valid till the attribute value lies betwe&nhigh and
one million triggers installed and receives informatioonfr  77.low.
10 different sources, this translates to a 10MB main memo@ase |l: When attribute value lies within a relevant trigger
structure. Bits are set for a data source whose value satisfignge, the bounds of the predicate condition associatdd wit
the corresponding trigger predicates (inclusive triggers the trigger form the safe value container and the trigger
Safe value containers are computed by the trigger proagssi® an inclusive trigger. As long as future attribute values
server and communicated back to the data source. Non4spdiéa within this range no triggers can be activated. However,
data sources deliver data to the trigger processing senhgr oupdates to other relevant attributes may result in activabf
when the current attribute value moves outside the safeevatbie inclusive trigger Figure 3(b) shows an example scenario
container and a new container needs to be computed. Mobilbere the attribute value(tz) lies within the trigger range
clients are not required to report their location unlessritbe- of 77 and the safe value container is identified [ash] =
spatial attribute bitmap is set for at least one relevagyger. [11.low,Ty.high]. Trigger T; is an inclusive trigger in this
This leads to large savings in wireless communication asdenario.
energy costs for mobile clients. The trigger processingiser Case lll: When attribute value lies within multiple trigger
is responsible for informing mobile clients when the bitmapanges, the safe value container is identified asntirimal
is completely set for at least one relevant trigger for thent! intersectionof the trigger ranges and these triggers form the
using theset bitmap count indexhe service returns the safeinclusive trigger setFigure 3(c) shows an example scenario
value container for the mobile client if no spatial predésat where the attribute value(ts) lies within the trigger range of
are satisfied. T, as well asT;. The safe value container is identified[as:]

The next section describes the safe value container com-
putation algorithms which forms the basis for our service
Oscalability.

V. SAFE VALUE CONTAINER COMPUTATION

IV. SLIM SERVICE OVERVIEW
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Fig. 3: Single-dimensional safe value container computation scengjo8ase I: attribute value lies outside any relevant trigger regions, (b)
Case II: attribute value lies inside a relevant trigger region and (c) Ghsatttibute value lies within the intersection of multiple relevant
trigger regions.
= [T3.low, Ty.high]. TriggersT, and T3 form the inclusive Mt) / vi(t,)

. 2 W 2.
trigger set.. _ SR 7 Wi P Y NS DO

We consider two different flavors for safe value containely | v

computation for single-dimensional data: single and mldti wt) A & V) A L
Multiple safe value container computation is more expensiv [~ A L VAR b
compared to single safe value container computation, hesvev o = 0 =

it leads tofewer trigger evaluations compared to single safe
value containers when the rate of change of data values I hig
and update frequency is lows shown in our experiments.Fig- 4: Single Safe Value Container vs. Multiple Safe Value Contain-
We discuss the algorithm for single safe value contain&l®
computation and depict the differences with multiple safgq three cases above.
value containers with the aid of an example (refer to [11]
for details). B. Multi-dimensional Safe Value Containers

Figure 4 displays an example scenario where the sourceData streams may deliver multi-dimensional data instead
generates data update§, ), v(t2) andv(ts) at time instants of single-dimensional data, thus requiring computation of
t1, t2 and t3. Consider the single safe value container imulti-dimensional safe value containers. For exampledtta
Figure 4(a). The data source being considered here delivetitam delivering location updates provides two-dimemadio
data which has high rate of changandlow update frequency data (z,y) denoting the current location of the mobile user.
The valuev(t,) at time instant lies outside the current safeSection Ill defined the requirements for safe value containe
value container. Hence, the safe value container is irsadi characteristics. Multi-dimensional safe value contaneray
and a new safe value container is computed. At time instdtdve some additional requirements likempact representa-
ts, the data value again lies within the safe value containgon. For example, two-dimensional safe value containers for
associated withv(¢1); as this safe value container has beelocation updates need to be communicated back to the mobile
previously invalidated on receiving data updaté,), the user over a wireless channel which may lead to significant
safe value container associated witft,) is recomputed as communication costs and energy consumption on the mobile
the new safe value container at time instaqnt Figure 4(b) client. Additionally, mobile clients need to track theicktion
displays multiple safe value containers, represented byglesh within the safe value container. A rectangular-shaped two-
stripes, which avoid the unnecessary recomputation of safinensional safe value container requires only two points
value containers described in the above scenario. The s/al@igottom-left and top-right) for representation and it isreo
v(t1), v(t2) andu(ts) lie inside one of the multiple safe valueputationally efficient to detect a point inside a rectangie
containers at each time instant. Note that multiple safaevalnow outline the procedure for computation of two-dimenalon
containers can only be computed when current attributeevalsafe value containers. The underlying concepts may beeappli
lies outside all relevant trigger predicate range values. to extend this approach to safe value container computfdion

In order to limit the safe value container computation costsigher dimensions.
we consider a small number of triggers in the vicinity of the We describe a process for two-dimensional safe value con-
current attribute value. The attribute value range is diglid tainer computation similar to skyline point computatior2][1
into a number of blocks and the range bldek ;] within  [13]. The computed skyline points form the corner points
which the current attribute value lies is computed. Next, waf the rectangular safe value container in two-dimensional
retrieve the set of triggerg”’ relevant to objecb intersecting space. In order to reduce the safe value container computati
the range blocKr;, r;,]. If the set of intersecting triggerg’ costs, relevant triggers in the vicinity of the current \alu
is empty, the entire range block is returned as the safe valug, a2) are considered. This is achieved by overlaying a grid
container. Otherwise, we proceed to compute the safe vahtaucture over the two-dimensional space associated wéh t
container dependent on the intersecting trigger bounderas data being delivered by the source. The algorithm accepts
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Fig. 5: Two-dimensional Safe Value Container Computation

the two-dimensional data valye.,a2) and the current two- the set of tension points. Each tension poffif;, where
dimensional grid cell in which the data value resides & € {1,2,3,4} represents the quadrant the point belongs
inputs. The set of triggers intersecting this two-dimenalo to, is assigned the same x-coordinate as the corresponding
grid cell are considered for safe value container compnati candidate pointCq;. Ty; is assigned the same y-coordinate
In case no relevant triggers intersect the grid cell, thérentas that ofCq;_1, or Tg,—1 if Tg; andTg,—; have the same
two-dimensional cell is returned as the safe value containg-coordinate. The y-coordinate @f; is set as either the top
Otherwise, the algorithm proceeds to calculate the safgevabound of the cell or the y-coordinate of a candidate point
container by applying the concept of dominating points ardtersecting the y-axis if any.

skyline computation as mentioned earlier. The set of tension points form the opposite corner (opposite

The algorithm partitions the two-dimensional grid celldnt 0 the origin) of the set of candidaomponent rectangles
four quadrants with(a;,a2) as the origin. We define a setin each_quadraqt. The final safe value container is composed
of candidate pointsand a set oftension pointsfor each of the intersection of the component rectangles from each
quadrant. The candidate point set is the set of points whigHadrant. As opposed to an optimal solution which enumerate
can potentially form a corner point of the rectangular saf¥/e"y possible combination of component rectangles and com
value container. Tension points are obtained from the set R}t€s metrics for each combination thus taking quartic time
candidate points by ensuring that only points that formdatg OUr approach performs greedy decisions. We refer readers
possible rectangular regions not overlapping the spatgibn 0 our technjcal report [14] for a detailed discussion of the
associated with any relevant trigger are selected. various heuristics. _

The set of candidate points is determined as follows. Kijrstl Figure .5 shows an example O.f our sz_;lfe value contal_ner
the spatial region comer for each relevant trigger is setbc computation approach. The candidate point set for the given

as a candidate point in its appropriate quadrant. For trigg scenario is as shown in Figure 5(a). The black dots represent

which do not completely lie inside the grid cell, the inter?he. candldat_e points, whereas the. hollow (.jOtS representa)_m
which are trimmed from the candidate point set as explained

sec_tlon points .Of the cell bogndary :?md _the trigger Spat'gl)ove. Figure 5(b) displays the set of tension points obthin
region are considered as candidate points instead of timeicor, . ; : .
from the candidate point set. Figure 5(c) displays the cempo

202;[2' V‘;Z'ﬁgﬂ?”\,\lﬁéﬂdﬁ tg::e?:?c:h(;et-asxﬁgoggIy,-;:irs troe}]gt nent rectangles formed by selecting a few of the tensiontgoin
patial Teg . - y: . h‘?he final rectangular safe value container is composed out
coordinate axes with origin 4t , a;), we also consider points of these component rectangles. Extension of this appraach t

of intersection of the triggers with the axes as candidabetpo larger dimensional spaces may lead to expensive com tio
The algorithm trims the set of candidate points in the nei_g sz

sten. Firstly. in case multiole candidate points in a A or example, three-dimensional spaces would require the
Step. Y : P e : q processing of relevant points in each octant of the cooteina
intersect the x-axis (or y-axis), all candidate points otian

the point on the x-axis (or y-axis) closest to the origin arS. stem. However, intuitively SLIM will benefit more for high

. . . . . dimensionality data in terms of lower computation costs mvhe
removed from the candidate point set. If no intersectingnisoi y P

. . : ) . compared to the gain in performance experienced for single
are present on the x-axis, the point of intersection of thais- P g P b g

and the cell is added to the candidate point set. Further, \?vrétwo-dlmensmnal data simply due to lower selectivity luét

remove points whictiully dominateany other point from the predicate ranges for the triggers in higher dimensions. Our
candidate set. A poinP, is said to fully dominate poinf; if experimental evaluation is limited to two-dimensional cgm

abs(Pr.z) > abs(Pa.x) andabs(PLy) > abs(Py.y). Finally, and we observe these trends for single-dimensional and two-

the points are sorted according to increasing distanceeok-th dimensional data.

coordinate from the origin. Points with the same x-coortiina VI. EXPERIMENTAL EVALUATION

are arranged in order of decreasing distance of y-coominat | this section, we evaluate the performance of the SLIM

from origin. system to exhibit the benefits of our safe containment tech-
The set of candidate points is then processed to obtaiigues. We benchmark the performance of the SLIM approach
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Fig. 6: Scalability of in-transit processing and random dropping Wity 7. (a) Results with varying grid cell size for two-dimensional

varying fraction of public triggers safe value containers. (b) Results with varying range block size for

. . . . single-dimensional safe value containers.
against three different approaches: in-transit procgsghir)

which processes all data updates in the order of their &rrivaifferent set of attributes monitored at each location téiiest.
random update droppindRND) and the safe value containerThe default trigger information consists of a set of 10,000
approach applied to the spatial attributSF( alone. The triggers with private, shared and public triggers insthlie
INT approach displays the inability of an approach whicthe system determining the number of triggers relevant ¢b ea
processes data on arrival to scale with the increasing nuaibeclient. We consider a dynamically changing trigger set \her
users/triggers in the system. The RND approach displays tfiggers are inserted and deleted periodically.
|nab|I|ty of a rgndom update dropping approach in actl\gatlnB_ Experimental Results
triggers with high accuracy. We study the performance af¢he o ) . )
techniques based on the following metrics: @ymputation ~ 1) Limitations of Other ApproachesThis experiment is
costs These are measured as a combination of trigger evelRSigned to expose the limitations of the in-transit preies
uation costs and safe value container computation costs.2fl random dropping approaches. We vary the fraction of
Communication costsThe system aims at reducing client-toPublic triggers from 0.01 to 0.2 and study the performance
server communication costs, especially in a wireless envir Of the in-transit processing approach (INT) and the random
ment where high communication costs also lead to high enef¢fPPing approach for drop probabilities of 0.2, 0.5 and 0.8
consumption on the mobile client. yigger activation suc- (RND 0.2, RND 0.5, RND 0.8). When the fraction of public
cess rateWe aim to achieve 100% trigger activation succedg9gers is 0.01, we have around 101 relevant triggers per
rate. The sequence of triggers which should be activated &+Pscriber in the system. On increasing this to 0.2, we have
determined by the in-transit processing approach. We takax More than 2000 relevant triggers per subscriber instali¢ioea
real-time processing requirements for this approach irerorcP€rver. _
to determine the trigger activation sequence. Figure 6(a) plots the CPU time for each approach as we
vary the fraction of public triggers. It can be observed fritva

A. Experimental Setup figure that the in-transit approach is not at all scalabledge

We simulate the proposed mobile information monitorinthe lowest fraction of public triggers as it requires ne&0g
system using an event-based simulator. The simulator genainutes of CPU time to process data received over 60 minutes.
ates a trace of vehicles moving on a real-world road netwoRigure 6(b) displays the success rate for each approach and
using maps available from the National Mapping Division aghows that this approach has 100% success rate. Howeer, thi
the U.S. Geological Survey [15]. Vehicles are randomly @thc approach will start dropping updates due to the heavy load on
on the road network, according to traffic densities deteethinthe server. A simple alternative is to randomly drop updates
from the traffic volume data in [16], ensuring appropriatas they are received at the server. Figure 6(a) shows the CPU
traffic densities on different road types. We use a map tifne required for random dropping approaches with differen
Atlanta and surrounding regions, which covers an area aroudrop probabilities. The CPU load reduces as we increase the
1000 km? in expanse, to generate the trace. Our experimentp probability for the random dropping approach. Howgver
use traces generated by simulating vehicle movement forewen with very high drop probability of 0.8 the system is
period of one hour with results averaged over a number of suebt scalable for higher fraction of public triggers. For low
traces. Default values allow us to simulate the movement foaction of public triggers the success rate is unacceptabl
a set of 10,000 vehicles with each vehicle generating lonati(Figure 6(b)); hence, this approach fails spectacularly &o
updates with a period of second. personalized service. Safe value container approaché§/rec

The other part of the simulator models multiple data sourcéise situation by allowing the system to determine and drop
generating data relevant to the locations of interest. Awdef updates which do not activate relevant triggers.
set of 10,000 locations of interest are distributed oveetit@e 2) Determining Range Block Size and Grid Cell Size:
map with multiple hotspots. The data arrival at the inforiorat Figure 7(a) displays the evaluation time and the number of
monitoring server is modeled as a poisson process; heree,ipdate messages received at the server for a location data
interarrival times are exponentially distributed. A maxim stream utilizing the two-dimensional safe value contagoen-
of twenty data sources are considered in the system wittpatation algorithm. A total of 60 million update messages ar
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Fig. 8: Scalability comparison for in-transit, spatial safe value con- (a) (b)

tainer and SLIM with (a) varying number of monitored sources. (

; h lﬁig. 9: Performance comparison of single vs. multiple safe value
varying number of users and triggers.

containers with varying update period.

generated for the duration of this experiment. The figurevsho,, o can meet this criteria and studies the performance of

]tche results f20r evaluat2|on|t|med as vze ;/af:y the g”(:] cell sizg |\ in comparison with in-transit processing (INT) and the
rom 0.1km* to 10km”, plotted on the left y-axis. There aréq,¢o \aiue container approach applied to spatial data alone

two costs involved in the system: two-dimensional safe @a“dSR) As can be seen from Figure 8(a), the SLIM approach
container computation cost and the location update evah‘atoutperforms in-transit processing as well as the SR approac

cost for mobile clients positioned outside their curreri’esaaS we increase the number of monitored sources from 10 to

value container. 20. The SR approach does not handle the increasing number
We can observe from the figure that the safe value contairfir monitored data updates effectively. The SLIM approach
computation cost first slowly decreases as we increase ithe Ghows that interaction of spatial and non-spatial datébattrs
cell size. This is due to lower number of safe value Containﬂj'rther enhances system Sca|ab|||ty SLIM Outperforms in-
computations being performed for larger grid cell sizesttRs transit processing by a margin of around 25 times and the
grid cell size is increased, a larger number of triggers & tf5R approach by a margin of 7-10 times. Due to interaction
vicinity of the user are considered, allowing for compwiati petween attributes from different data sources, the SLIM
of larger safe value containers. This leads to lower numbgpproach exhibits scalability even as we increase the numbe
of messages being processed at the server for larger gtid egldata sources. The SR approach fails to exploit the effects
sizes as mobile clients stay within the safe value contdorer of this interaction between multiple attributes.
longer time periods. The number of messages processed argjgure 8(b) displays the effect of increasing the number of
plotted on the right y-axis. However, with increasing grelic sers and triggers (both from 10,000 to 30,000 with 1% of the
sizes, each safe value container computation becomes M@Rers as public) in the system while keeping the number of
expensive as it considers a larger number of trigger regiongonitored sources constant at 10. Note that location update
For the largest grid cell size of 18m?, each safe value eyaluation costs increase due to larger number of useridor t
container computation is expensive enough to outweigh th@T approach. The SR approach is also scalable here as the
effect of lower number of safe value container computatioRgonitored data evaluation costs remain the same. However it
being performed. The |Ocati0n update eVaIUation COStS'r[ECI requires a |arge number of evaluations to be performed E)r th
with increasing grid cell sizes as fewer number of messagegnitored data updates. SLIM is able to drop a large fraction
are evaluated at the server. The overall computation costs gf the monitored data updates and performs 25-45 timesrbette
lowest for a grid cell size of 2.%:m* as visible from the than the INT approach. SLIM also performs 6-8 times better
figure. Figure 7(b) plots the evaluation times and the numbgfan the SR approach, the margin between the approaches
of messages as we vary the range block size for singlgscreases with increasing number of users and triggers.
dimensional data on the left y-axis. The safe value containe 4) gingle (S) vs. Multiple (M) Safe Value Containefis
computation costs steadily decline as we increase the rarge of experiments provides a comparison of the performance
block size. Again, this is due to fewer number of messaggs the two approaches for safe value container computation
being processed at the server with increasing range blaek skoy single-dimensional data, namely, single and multigées
as plotted on the right y-axis. Larger range block sizeslle 1y container computation. Figure 9(a) displays the remb
to compute safe value containers of larger extent whichsleagy messages processed by each approach as we increase the
to fewer number of data updates being processed at the Sen{BHate period. At high data frequency (low update perida, t
Even though the cost of each safe value container compatatipy; petween the single and multiple approaches is nominal.
increases with increasing range block size, the overa# Sq-‘iowever, as we increase the update period, a significant gap
value container computation costs slowly decline. Dataatgd appears between the number of updates processed by the
evaluation costs also decrease with increasing range blzek 5n5r0aches. This is due to the data valjiesping between
Range block size of 50% has lowest total processing Costshe multiple safe value containers leading to significantly
3) System ScalabilityOur mobile system is designed withlarger number of dropped updates. Figure 9(b) displays the
the goal of achieving 100% trigger activation success ravaluation times for each approach as we vary the average
The following experiment considers only those approachapdate period. Note that the multiple safe value container
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