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Abstract—Location-sensitive information monitoring services
are a centerpiece of the technology for disseminating content-rich
information from massive data streams to mobile users. The key
challenges for such monitoring services are characterized by the
combination of spatial and non-spatial attributes being monitored
and the wide spectrum of update rates. A typical example of such
services is “alert me when the gas price at a gas station within
5 miles of my current location drops to $4 per gallon”. Such a
service needs to monitor the gas price changes in conjunction with
the highly dynamic nature of location information. Scalability of
such location sensitive and content rich information monitoring
services in the presence of different update rates and monitoring
thresholds poses a big technical challenge. In this paper, we
present SLIM, a scalable location sensitive information monitor-
ing service framework with two unique features. First, we make
intelligent use of the correlation between spatial and non-spatial
attributes involved in the information monitoring service requests
to devise a highly scalable distributed spatial trigger evaluation
engine. Second, we introduce single and multi-dimensional safe
value containment techniques to efficiently perform selective
distributed processing of spatial triggers to reduce the amount of
unnecessary trigger evaluations. Through extensive experiments,
we show that SLIM offers high scalability for location-sensitive,
content-rich information monitoring services in terms of the
number of information sources being monitored, number of users
and monitoring requests.

I. I NTRODUCTION

Advancements in wireless communication technology and
cloud computing are enabling many JIT Web services for
delivery of contextual information to mobile users at the right
time and the right place. Other technological advances like
large-scale deployment of sensor networks and information
delivery systems have led to the availability of large amounts
of context-aware location-sensitive information. Such infor-
mation is typically delivered in the form of data streams that
arrive continuously, rapidly and in real time [1], [2]. A mobile
information monitoring system is characterized by a large
number of such data streams, some delivering location of a
large number of mobile users and others delivering location-
sensitive monitored data. Examples of such location-sensitive
monitored data may include gas prices at gas stations, traffic
conditions at major junctions or pollution levels in different
parts of a city. In such an environment,spatial triggersprovide
useful means of allowing users to express their location-
specific information needs.

In this paper, we introduce SLIM1, a service for efficiently
monitoring information streams comprised of spatial as well
as non-spatial data in a distributed fashion. Users express
their information needs in terms of spatial triggers which
involve spatial and non-spatial predicates. For example, auser
may install a trigger of the form“alert when within one
mile of gas station G and the price of gas is below$4” .
The central server receives location and other data updates
from a possibly large number of sources to determine the
opportune moment to activate triggers. As opposed to current
works which focus on efficient evaluation of different types
of continuous queries (e.g. kNN query, range query) based on
spatial predicates alone ( [3], [4], [5]), we consider a service
receiving a large number of location-sensitive attributesfrom
multiple data sources. Introduction of non-spatial predicates
renders existing solutions incapable of handling the problem
efficiently. However, it presents an opportunity to perform
optimizations beyond those possible with spatial attributes
alone.

Spatial trigger processing requires meeting three demand-
ing objectives: (i)high accuracy, which ensures no triggers
are missed, (ii)server scalability, which guarantees that the
information monitoring server scales to a large number of
triggers, growing base of mobile users and a large number
of data streams, and (iii)immediate evaluation of updatesin
order to activate triggers at the earliest possible moment to
allow users to react.

Solutions in the streaming domain provide optimizations
which lead to approximate answers [6] or delayed evaluation
as in the case of batch processing [7]. Both are unable to meet
our objectives of immediate evaluation with 100% accuracy.A
simple solution processes each and every data update on arrival
to determine if any triggers are activated. However, thisin-
transit processingapproach hurts the scalability of the system.
Load shedding approaches [8] drop data updates randomly or
selectively but cannot guarantee 100% accuracy.

Our approach takes into account interaction between various
attributes which facilitates selective update evaluationagainst
installed trigger information, dropping updates which have

1SLIM is an acronym for Scalable Location-sensitive Information
Monitoring



zero probability of activating any installed triggers. In order
to achieve 100% accuracy while selectively evaluating data
updates, we introduce the concept ofsafe containment. Safe
value containers are computed for each data attribute in SLIM
allowing the service to drop updates which lie within their re-
spective safe value containers without evaluation. Additionally,
safe value containers are communicated back to relevant data
sources, seeking their cooperation in the monitoring process
and allowing for communication cost savings. However, safe
value container computation leads to additional processing cost
at the server.

In order to meet this challenge, we present efficient al-
gorithms for safe value container computation for single-
dimensional and multi-dimensional data. Our experimental
evaluation shows that server scalability is enhanced multiple
times by deployment of safe containment techniques. Mobile
clients will also benefit in terms of energy and bandwidth con-
sumption by monitoring their position within their respective
two-dimensional safe value containers.

The rest of the paper is structured as follows. Section II
provides a motivating example. Section III introduces the
fundamental concept of safe containment followed by the
service overview in Section IV. This is followed by a de-
scription of our safe value container computation algorithms
(Section V). An experimental evaluation using a real world
road network is presented in Section VI. Section VII provides
a brief discussion of related work followed by the conclusion
in Section VIII.

II. PROBLEM MOTIVATION

We motivate the optimization opportunities presented by
addition of less dynamic non-spatial attributes to the infor-
mation monitoring problem in mobile services with the aid of
an example. Figure 1 displays mobile usersA, B and C with
installed spatial triggers on gas stationG. For future reference,
A, B, C and Gare termed asobjectsin the system. Each user
specifies spatial as well as non-spatial predicate conditions
for her spatial trigger. For example, the spatial trigger for
user A requires activation when theuser is within one mile
of the gas station Gand gas price is below$4. Similarly,
usersB and C specify predicate conditions for their spatial
triggers. Each object in the system will have an associated
monitored attribute. For example,A, B andC have location
as a monitored attribute; whereas gas stationG has the gas
price as a monitored attribute.

For the sake of exposition, we assume that the rate at
which the pricing data stream is delivered is half the rate of
the location data stream. The location data stream comprises
of location information between time instantst1 and t4 (at
constant interval) as shown in figure 1. Similarly, pricing data
is received at the server at time instantst′

2
(t2 < t′

2
< t3) andt′

4

(t′
4
> t4). A simple approach would process the data updates

as and when they are received. However, it is unnecessary for
the server to process all received data updates.

Firstly, we observe that userA lies outside the spatial region
associated with her installed trigger at time instantst1, t2

Fig. 1: Motivating Example

and t4. If it was possible for the service to determine that
userA cannot be positioned within the spatial trigger region
at these time instants, the location data for the user at these
time instants can be dropped. Alternately, the user can save
on energy and bandwidth costs by not sending updates to the
server at these time instants. Secondly, we observe that the
pricing data at time instantt′

2
does not satisfy the constraint

for any of the installed triggers. If the server can determine
that the pricing data constraint for any of the installed triggers
cannot be satisfied att′

2
, this update may be dropped. Thirdly,

the position update for all mobile users at time instantt3 can
be dropped if the service recognizes the fact that though the
spatial constraints are satisfied for all the triggers, the non-
spatial constraint cannot be satisfied due to previous pricing
data update att′

2
. Lastly, the pricing data update at time

instant t′
4

may be dropped, even though it satisfies the non-
spatial constraints for the trigger installed by userC, if the
server recognizes that none of the users satisfy the spatial
constraints for their respective triggers at this time instant.
With these observations in mind, we define the concepts
associated with safe containment followed by an overview of
the SLIM service.

III. SAFE CONTAINMENT

The concept of safe containment can be applied to incoming
updates ensuring that updates with zero probability of activat-
ing triggers may be dropped without processing. Otherwise,
trigger evaluation needs to be performed to determine if any
of the triggers may be activated by an incoming data update.

Definition 1: (Safe Value Container) A safe value con-
tainerψ(o, s) is defined for each objecto for any monitored
attributess relevant to the objecto. As long as the value of
the monitored attribute lies within its safe value container no
dependant triggers can be activated by updates to this attribute
value. For example,ψ(A, l) represents the two-dimensional
safe value container for userA (in Figure 1) based on its
current locationl. Similarly, ψ(G, p) represents the single-
dimensional safe value container for the gas stationG based
on the current value of the monitored attribute, gas pricep.



Definition 2: (Inclusive Trigger Set) When a safe value
containerψ(o, s) overlaps the predicate range of a set of
relevant triggersT I , T I is defined as the inclusive trigger set.
Note that any future data updatesv(s) ∈ ψ(o, s) can still be
dropped without trigger processing, however, updates for other
attributes may activate an inclusive trigger∈ T I . Section V-A
exemplifies the concept of inclusive triggers.

The goal of safe containment is to minimize the number
of trigger evaluations performed. We identify the following
requirements for safe value container computation.
Lightweight Construction: Safe value container computation
needs to be performed for each objecto with respect to moni-
tored attributess delivering data relevant to the objecto, thus
making it imperative that safe value container computationis
performed quickly in order to avoid server overload.
Fast Containment Check: The containment check needs to
determine if the value of monitored attributess for object o
at time t, v(s, t), lies within the current safe value container
ψ(o, s) of the object.
Maximum Extent: As long as the attribute valuev(s, t) lies
within the safe value containerψ(o, s), the data update can
be dropped. The goal of minimizing the number of trigger
evaluations can be achieved by maximizing the probability
of the data value staying within the safe value container. For
example, a safe value container of largest possible area around
the current position of a mobile user would allow the user to
stay within its safe value container for maximum time.

IV. SLIM SERVICE OVERVIEW

This section provides a brief overview of the SLIM service
and the data structures maintained at the server (Figure 2).
The spatial triggers are installed at the server and indexed
using the relevant indexing techniques [9], [10]. We maintain
a main-memory index on the trigger identifiers with each
trigger being associated with a bitmap. The length of the
bitmap is equivalent to the number of non-spatial data sources
delivering information to the service. For a service which has
one million triggers installed and receives information from
10 different sources, this translates to a 10MB main memory
structure. Bits are set for a data source whose value satisfies
the corresponding trigger predicates (inclusive triggers).

Safe value containers are computed by the trigger processing
server and communicated back to the data source. Non-spatial
data sources deliver data to the trigger processing server only
when the current attribute value moves outside the safe value
container and a new container needs to be computed. Mobile
clients are not required to report their location unless thenon-
spatial attribute bitmap is set for at least one relevant trigger.
This leads to large savings in wireless communication and
energy costs for mobile clients. The trigger processing service
is responsible for informing mobile clients when the bitmap
is completely set for at least one relevant trigger for the client
using theset bitmap count index. The service returns the safe
value container for the mobile client if no spatial predicates
are satisfied.

Fig. 2: SLIM Service Overview

The next section describes the safe value container com-
putation algorithms which forms the basis for our service
scalability.

V. SAFE VALUE CONTAINER COMPUTATION

A. Single-Dimensional Safe Value Containers

We define single-dimensional safe value containersψ(o, s)
for each objecto and single-dimensional monitored attribute
s relevant too. Such safe value containers can be represented
using a set of value ranges[L1

1
, H1

1
], ..., [L1

p, H
1

p ] where p≥
1, such that, as long as the attribute value lies within one of
the value ranges no triggers relevant too can be activated.
Figure 3 displays the plot of a single-dimensional attribute
v varying with time t. The predicate conditions for three
different installed triggersT1, T2 and T3 over the attribute
v are displayed by horizontal lines. We identify three separate
cases for safe value container computation.
Case I: When attribute value lies outside any relevant trigger
range, the safe value container is identified as the range[l, h],
such that, no relevant triggers can be activated as long as the
attribute value lies within this range. Figure 3(a) shows an
example where the value of the attribute at timet1, v(t1),
lies in [l, h] = [T3.high, T1.low]. This safe value container
remains valid till the attribute value lies betweenT3.high and
T1.low.
Case II: When attribute value lies within a relevant trigger
range, the bounds of the predicate condition associated with
the trigger form the safe value container and the trigger
is an inclusive trigger. As long as future attribute values
lie within this range no triggers can be activated. However,
updates to other relevant attributes may result in activation of
the inclusive trigger. Figure 3(b) shows an example scenario
where the attribute valuev(t2) lies within the trigger range
of T1 and the safe value container is identified as[l, h] =
[T1.low, T1.high]. Trigger T1 is an inclusive trigger in this
scenario.
Case III: When attribute value lies within multiple trigger
ranges, the safe value container is identified as theminimal
intersectionof the trigger ranges and these triggers form the
inclusive trigger set. Figure 3(c) shows an example scenario
where the attribute valuev(t3) lies within the trigger range of
T2 as well asT3. The safe value container is identified as[l, h]
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Fig. 3: Single-dimensional safe value container computation scenarios.(a) Case I: attribute value lies outside any relevant trigger regions, (b)
Case II: attribute value lies inside a relevant trigger region and (c) Case III: attribute value lies within the intersection of multiple relevant
trigger regions.

= [T3.low, T2.high]. TriggersT2 and T3 form the inclusive
trigger set.

We consider two different flavors for safe value container
computation for single-dimensional data: single and multiple.
Multiple safe value container computation is more expensive
compared to single safe value container computation, however,
it leads tofewer trigger evaluations compared to single safe
value containers when the rate of change of data values is high
and update frequency is lowas shown in our experiments.
We discuss the algorithm for single safe value container
computation and depict the differences with multiple safe
value containers with the aid of an example (refer to [11]
for details).

Figure 4 displays an example scenario where the source
generates data updatesv(t1), v(t2) andv(t3) at time instants
t1, t2 and t3. Consider the single safe value container in
Figure 4(a). The data source being considered here delivers
data which has ahigh rate of changeandlow update frequency.
The valuev(t2) at time instantt2 lies outside the current safe
value container. Hence, the safe value container is invalidated
and a new safe value container is computed. At time instant
t3, the data value again lies within the safe value container
associated withv(t1); as this safe value container has been
previously invalidated on receiving data updatev(t2), the
safe value container associated withv(t1) is recomputed as
the new safe value container at time instantt3. Figure 4(b)
displays multiple safe value containers, represented by shaded
stripes, which avoid the unnecessary recomputation of safe
value containers described in the above scenario. The values
v(t1), v(t2) andv(t3) lie inside one of the multiple safe value
containers at each time instant. Note that multiple safe value
containers can only be computed when current attribute value
lies outside all relevant trigger predicate range values.

In order to limit the safe value container computation costs,
we consider a small number of triggers in the vicinity of the
current attribute value. The attribute value range is divided
into a number of blocks and the range block[rl, rh] within
which the current attribute value lies is computed. Next, we
retrieve the set of triggersT ′ relevant to objecto intersecting
the range block[rl, rh]. If the set of intersecting triggersT ′

is empty, the entire range block is returned as the safe value
container. Otherwise, we proceed to compute the safe value
container dependent on the intersecting trigger bounds as for
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Fig. 4: Single Safe Value Container vs. Multiple Safe Value Contain-
ers

the three cases above.

B. Multi-dimensional Safe Value Containers

Data streams may deliver multi-dimensional data instead
of single-dimensional data, thus requiring computation of
multi-dimensional safe value containers. For example, thedata
stream delivering location updates provides two-dimensional
data (x, y) denoting the current location of the mobile user.
Section III defined the requirements for safe value container
characteristics. Multi-dimensional safe value containers may
have some additional requirements likecompact representa-
tion. For example, two-dimensional safe value containers for
location updates need to be communicated back to the mobile
user over a wireless channel which may lead to significant
communication costs and energy consumption on the mobile
client. Additionally, mobile clients need to track their location
within the safe value container. A rectangular-shaped two-
dimensional safe value container requires only two points
(bottom-left and top-right) for representation and it is com-
putationally efficient to detect a point inside a rectangle.We
now outline the procedure for computation of two-dimensional
safe value containers. The underlying concepts may be applied
to extend this approach to safe value container computationfor
higher dimensions.

We describe a process for two-dimensional safe value con-
tainer computation similar to skyline point computation [12],
[13]. The computed skyline points form the corner points
of the rectangular safe value container in two-dimensional
space. In order to reduce the safe value container computation
costs, relevant triggers in the vicinity of the current value
(a1, a2) are considered. This is achieved by overlaying a grid
structure over the two-dimensional space associated with the
data being delivered by the source. The algorithm accepts
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Fig. 5: Two-dimensional Safe Value Container Computation

the two-dimensional data value(a1, a2) and the current two-
dimensional grid cell in which the data value resides as
inputs. The set of triggers intersecting this two-dimensional
grid cell are considered for safe value container computation.
In case no relevant triggers intersect the grid cell, the entire
two-dimensional cell is returned as the safe value container.
Otherwise, the algorithm proceeds to calculate the safe value
container by applying the concept of dominating points and
skyline computation as mentioned earlier.

The algorithm partitions the two-dimensional grid cell into
four quadrants with(a1, a2) as the origin. We define a set
of candidate pointsand a set oftension pointsfor each
quadrant. The candidate point set is the set of points which
can potentially form a corner point of the rectangular safe
value container. Tension points are obtained from the set of
candidate points by ensuring that only points that form largest
possible rectangular regions not overlapping the spatial region
associated with any relevant trigger are selected.

The set of candidate points is determined as follows. Firstly,
the spatial region corner for each relevant trigger is selected
as a candidate point in its appropriate quadrant. For triggers
which do not completely lie inside the grid cell, the inter-
section points of the cell boundary and the trigger spatial
region are considered as candidate points instead of the corner
points which fall outside the grid cell. Secondly, for trigger
spatial regions which intersect the x-axis or y-axis of the
coordinate axes with origin at(a1, a2), we also consider points
of intersection of the triggers with the axes as candidate points.
The algorithm trims the set of candidate points in the next
step. Firstly, in case multiple candidate points in a quadrant
intersect the x-axis (or y-axis), all candidate points other than
the point on the x-axis (or y-axis) closest to the origin are
removed from the candidate point set. If no intersecting points
are present on the x-axis, the point of intersection of the x-axis
and the cell is added to the candidate point set. Further, we
remove points whichfully dominateany other point from the
candidate set. A pointP1 is said to fully dominate pointP2 if
abs(P1.x) > abs(P2.x) andabs(P1.y) > abs(P2.y). Finally,
the points are sorted according to increasing distance of the x-
coordinate from the origin. Points with the same x-coordinate
are arranged in order of decreasing distance of y-coordinate
from origin.

The set of candidate points is then processed to obtain

the set of tension points. Each tension pointTQi, where
Q ∈ {1, 2, 3, 4} represents the quadrant the point belongs
to, is assigned the same x-coordinate as the corresponding
candidate pointCQi. TQi is assigned the same y-coordinate
as that ofCQi−1, or TQi−1 if TQi andTQi−1 have the same
x-coordinate. The y-coordinate ofTQ1 is set as either the top
bound of the cell or the y-coordinate of a candidate point
intersecting the y-axis if any.

The set of tension points form the opposite corner (opposite
to the origin) of the set of candidatecomponent rectangles
in each quadrant. The final safe value container is composed
of the intersection of the component rectangles from each
quadrant. As opposed to an optimal solution which enumerates
every possible combination of component rectangles and com-
putes metrics for each combination thus taking quartic time,
our approach performs greedy decisions. We refer readers
to our technical report [14] for a detailed discussion of the
various heuristics.

Figure 5 shows an example of our safe value container
computation approach. The candidate point set for the given
scenario is as shown in Figure 5(a). The black dots represent
the candidate points, whereas the hollow dots represent points
which are trimmed from the candidate point set as explained
above. Figure 5(b) displays the set of tension points obtained
from the candidate point set. Figure 5(c) displays the compo-
nent rectangles formed by selecting a few of the tension points.
The final rectangular safe value container is composed out
of these component rectangles. Extension of this approach to
larger dimensional spaces may lead to expensive computations.
For example, three-dimensional spaces would require the
processing of relevant points in each octant of the coordinate
system. However, intuitively SLIM will benefit more for higher
dimensionality data in terms of lower computation costs when
compared to the gain in performance experienced for single
or two-dimensional data simply due to lower selectivity of the
predicate ranges for the triggers in higher dimensions. Our
experimental evaluation is limited to two-dimensional spaces
and we observe these trends for single-dimensional and two-
dimensional data.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the SLIM
system to exhibit the benefits of our safe containment tech-
niques. We benchmark the performance of the SLIM approach
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Fig. 6: Scalability of in-transit processing and random dropping with
varying fraction of public triggers

against three different approaches: in-transit processing (INT)
which processes all data updates in the order of their arrival,
random update dropping (RND) and the safe value container
approach applied to the spatial attribute (SR) alone. The
INT approach displays the inability of an approach which
processes data on arrival to scale with the increasing number of
users/triggers in the system. The RND approach displays the
inability of a random update dropping approach in activating
triggers with high accuracy. We study the performance of these
techniques based on the following metrics: 1)Computation
costs. These are measured as a combination of trigger eval-
uation costs and safe value container computation costs. 2)
Communication costs. The system aims at reducing client-to-
server communication costs, especially in a wireless environ-
ment where high communication costs also lead to high energy
consumption on the mobile client. 3)Trigger activation suc-
cess rate. We aim to achieve 100% trigger activation success
rate. The sequence of triggers which should be activated are
determined by the in-transit processing approach. We relaxthe
real-time processing requirements for this approach in order
to determine the trigger activation sequence.

A. Experimental Setup

We simulate the proposed mobile information monitoring
system using an event-based simulator. The simulator gener-
ates a trace of vehicles moving on a real-world road network
using maps available from the National Mapping Division of
the U.S. Geological Survey [15]. Vehicles are randomly placed
on the road network, according to traffic densities determined
from the traffic volume data in [16], ensuring appropriate
traffic densities on different road types. We use a map of
Atlanta and surrounding regions, which covers an area around
1000km2 in expanse, to generate the trace. Our experiments
use traces generated by simulating vehicle movement for a
period of one hour with results averaged over a number of such
traces. Default values allow us to simulate the movement of
a set of 10,000 vehicles with each vehicle generating location
updates with a period of1 second.

The other part of the simulator models multiple data sources
generating data relevant to the locations of interest. A default
set of 10,000 locations of interest are distributed over theentire
map with multiple hotspots. The data arrival at the information
monitoring server is modeled as a poisson process; hence, the
interarrival times are exponentially distributed. A maximum
of twenty data sources are considered in the system with a

(a) (b)

Fig. 7: (a) Results with varying grid cell size for two-dimensional
safe value containers. (b) Results with varying range block size for
single-dimensional safe value containers.

different set of attributes monitored at each location of interest.
The default trigger information consists of a set of 10,000
triggers with private, shared and public triggers installed in
the system determining the number of triggers relevant to each
client. We consider a dynamically changing trigger set where
triggers are inserted and deleted periodically.

B. Experimental Results

1) Limitations of Other Approaches:This experiment is
designed to expose the limitations of the in-transit processing
and random dropping approaches. We vary the fraction of
public triggers from 0.01 to 0.2 and study the performance
of the in-transit processing approach (INT) and the random
dropping approach for drop probabilities of 0.2, 0.5 and 0.8
(RND 0.2, RND 0.5, RND 0.8). When the fraction of public
triggers is 0.01, we have around 101 relevant triggers per
subscriber in the system. On increasing this to 0.2, we have
more than 2000 relevant triggers per subscriber installed at the
server.

Figure 6(a) plots the CPU time for each approach as we
vary the fraction of public triggers. It can be observed fromthe
figure that the in-transit approach is not at all scalable even for
the lowest fraction of public triggers as it requires nearly200
minutes of CPU time to process data received over 60 minutes.
Figure 6(b) displays the success rate for each approach and
shows that this approach has 100% success rate. However, this
approach will start dropping updates due to the heavy load on
the server. A simple alternative is to randomly drop updates
as they are received at the server. Figure 6(a) shows the CPU
time required for random dropping approaches with different
drop probabilities. The CPU load reduces as we increase the
drop probability for the random dropping approach. However,
even with very high drop probability of 0.8 the system is
not scalable for higher fraction of public triggers. For low
fraction of public triggers the success rate is unacceptable
(Figure 6(b)); hence, this approach fails spectacularly for a
personalized service. Safe value container approaches rectify
the situation by allowing the system to determine and drop
updates which do not activate relevant triggers.

2) Determining Range Block Size and Grid Cell Size:
Figure 7(a) displays the evaluation time and the number of
update messages received at the server for a location data
stream utilizing the two-dimensional safe value containercom-
putation algorithm. A total of 60 million update messages are
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Fig. 8: Scalability comparison for in-transit, spatial safe value con-
tainer and SLIM with (a) varying number of monitored sources. (b)
varying number of users and triggers.

generated for the duration of this experiment. The figure shows
the results for evaluation time as we vary the grid cell size
from 0.1km2 to 10km2, plotted on the left y-axis. There are
two costs involved in the system: two-dimensional safe value
container computation cost and the location update evaluation
cost for mobile clients positioned outside their current safe
value container.

We can observe from the figure that the safe value container
computation cost first slowly decreases as we increase the grid
cell size. This is due to lower number of safe value container
computations being performed for larger grid cell sizes. Asthe
grid cell size is increased, a larger number of triggers in the
vicinity of the user are considered, allowing for computation
of larger safe value containers. This leads to lower number
of messages being processed at the server for larger grid cell
sizes as mobile clients stay within the safe value containerfor
longer time periods. The number of messages processed are
plotted on the right y-axis. However, with increasing grid cell
sizes, each safe value container computation becomes more
expensive as it considers a larger number of trigger regions.
For the largest grid cell size of 10km2, each safe value
container computation is expensive enough to outweigh the
effect of lower number of safe value container computations
being performed. The location update evaluation costs decline
with increasing grid cell sizes as fewer number of messages
are evaluated at the server. The overall computation costs are
lowest for a grid cell size of 2.5km2 as visible from the
figure. Figure 7(b) plots the evaluation times and the number
of messages as we vary the range block size for single-
dimensional data on the left y-axis. The safe value container
computation costs steadily decline as we increase the range
block size. Again, this is due to fewer number of messages
being processed at the server with increasing range block size,
as plotted on the right y-axis. Larger range block sizes allow us
to compute safe value containers of larger extent which leads
to fewer number of data updates being processed at the server.
Even though the cost of each safe value container computation
increases with increasing range block size, the overall safe
value container computation costs slowly decline. Data update
evaluation costs also decrease with increasing range blocksize.
Range block size of 50% has lowest total processing costs.

3) System Scalability:Our mobile system is designed with
the goal of achieving 100% trigger activation success rate.
The following experiment considers only those approaches
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1 1.749 1.749 0

2 1.643 1.640 0.18

5 1.666 1.638 1.56

10 1.622 1.558 3.95

20 1.490 1.403 5.84
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Fig. 9: Performance comparison of single vs. multiple safe value
containers with varying update period.

which can meet this criteria and studies the performance of
SLIM in comparison with in-transit processing (INT) and the
safe value container approach applied to spatial data alone
(SR). As can be seen from Figure 8(a), the SLIM approach
outperforms in-transit processing as well as the SR approach
as we increase the number of monitored sources from 10 to
20. The SR approach does not handle the increasing number
of monitored data updates effectively. The SLIM approach
shows that interaction of spatial and non-spatial data attributes
further enhances system scalability. SLIM outperforms in-
transit processing by a margin of around 25 times and the
SR approach by a margin of 7-10 times. Due to interaction
between attributes from different data sources, the SLIM
approach exhibits scalability even as we increase the number
of data sources. The SR approach fails to exploit the effects
of this interaction between multiple attributes.

Figure 8(b) displays the effect of increasing the number of
users and triggers (both from 10,000 to 30,000 with 1% of the
triggers as public) in the system while keeping the number of
monitored sources constant at 10. Note that location update
evaluation costs increase due to larger number of users for the
INT approach. The SR approach is also scalable here as the
monitored data evaluation costs remain the same. However it
requires a large number of evaluations to be performed for the
monitored data updates. SLIM is able to drop a large fraction
of the monitored data updates and performs 25-45 times better
than the INT approach. SLIM also performs 6-8 times better
than the SR approach, the margin between the approaches
decreases with increasing number of users and triggers.

4) Single (S) vs. Multiple (M) Safe Value Containers:This
set of experiments provides a comparison of the performance
of the two approaches for safe value container computation
for single-dimensional data, namely, single and multiple safe
value container computation. Figure 9(a) displays the number
of messages processed by each approach as we increase the
update period. At high data frequency (low update period), the
gap between the single and multiple approaches is nominal.
However, as we increase the update period, a significant gap
appears between the number of updates processed by the
approaches. This is due to the data valuesjumping between
the multiple safe value containers leading to significantly
larger number of dropped updates. Figure 9(b) displays the
evaluation times for each approach as we vary the average
update period. Note that the multiple safe value container



approach does not perform significantly worse than the single
safe value container approach, although the container com-
putation times for this approach are a little higher. Similar
results are experienced as we increase the rate of change of
data values [11].

VII. R ELATED WORK

An event-based location reminder system has been advo-
cated by many human computer interaction projects [17],
[18], [19]. In the realm of information monitoring, event-based
systems have been developed to deliver relevant information
to users on demand [20]. The SLIM system also needs to
deal with the complexity of monitoring continuously changing
data from multiple data sources in order to trigger relevant
alerts in a non-intrusive manner. [21] provides a brief survey
on continuous distributed monitoring. Different flavors of
monitoring distributed data have been proposed [22], [23] but
none aim to utilize interaction between multiple attributes.
In the field of location-based queries, periodic reevaluation
approach is commonly used for continuous monitoring of
moving objects [24], [25]. The SLIM system differs from this
work in two aspects. Firstly, our installed spatial triggers do
not demand periodic evaluation or reevaluation like continuous
queries; instead they require one-shot evaluation which should
result in a notification being sent to the user when the
trigger activation conditions are satisfied. Secondly, unlike the
SLIM system, none of the previous work explores interaction
between different attributes for information processing in mo-
bile systems. Streaming data processing optimizations include
batch processing methods [7] or approximation processing [6]
to handle the large amounts of data. Fortunately, our problem
defines a finite number of objects for which an infinite amount
of continuously evolving information is being delivered. This
makes it possible to store data corresponding to each object
in the form of its safe value container.

VIII. C ONCLUSION

We have presented the SLIM service as an efficient solution
for the mobile information monitoring problem in presence
of non-spatial attributes. This paper makes three important
contributions towards efficiently solving the informationmon-
itoring problem in presence of spatial as well as non-spatial
attributes. First, we show that the addition of less dynamic
non-spatial attributes to the mobile information mix provides
opportunities to enhance system scalability beyond what is
possible with spatial attributes alone. Second, we use safe
containment which allows us to perform selective processing
of data updates by seeking cooperation from data sources in
the information monitoring process but provides savings in
communication costs. Last but not the least, we conduct ex-
tensive experimental evaluation for a real world road network-
based simulator which shows that our approach makes the
service scalable.
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