
Efficient Data Partitioning Model
for Heterogeneous Graphs in the Cloud

Kisung Lee
Georgia Institute of Technology

kslee@gatech.edu

Ling Liu
Georgia Institute of Technology

lingliu@cc.gatech.edu

ABSTRACT
As the size and variety of information networks continue to
grow in many scientific and engineering domains, we wit-
ness a growing demand for efficient processing of large het-
erogeneous graphs using a cluster of compute nodes in the
Cloud. One open issue is how to effectively partition a large
graph to process complex graph operations efficiently. In
this paper, we present VB-Partitioner − a distributed data
partitioning model and algorithms for efficient processing of
graph operations over large-scale graphs in the Cloud. Our
VB-Partitioner has three salient features. First, it introduces
vertex blocks (VBs) and extended vertex blocks (EVBs) as
the building blocks for semantic partitioning of large graphs.
Second, VB-Partitioner utilizes vertex block grouping algo-
rithms to place those vertex blocks that have high corre-
lation in graph structure into the same partition. Third,
VB-Partitioner employs a VB-partition guided query parti-
tioning model to speed up the parallel processing of graph
pattern queries by reducing the amount of inter-partition
query processing. We conduct extensive experiments on
several real-world graphs with millions of vertices and bil-
lions of edges. Our results show that VB-Partitioner signif-
icantly outperforms the popular random block-based data
partitioner in terms of query latency and scalability over
large-scale graphs.

Categories and Subject Descriptors
H.3.0 [Information Storage and Retrieval]: General

General Terms
Algorithms

Keywords
big data processing, heterogeneous graph, partitioning,
cloud computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503302

1. INTRODUCTION
Many real-world information networks consist of mil-

lions of vertices representing heterogeneous entities and
billions of edges representing heterogeneous types of re-
lationships among entities, such as Web-based networks,
social networks, supply-chain networks and biological net-
works. One concrete example is the phylogenetic forests
of bacteria, where each node represents a genetic strain of
Mycobacterium tuberculosis complex (MTBC) and each
edge represents a putative evolutionary change. Process-
ing large heterogeneous graphs poses a number of unique
characteristics in terms of big data processing. First, graph
data is highly correlated and the topological structure of
a big graph can be viewed as a correlation graph of its
vertices and edges. Heterogeneous graphs add additional
complexity compared to homogeneous graphs in terms of
both storage and computation due to the heterogeneous
types of entity vertices and entity links. Second, queries
over graphs are typically subgraph matching operations.
Thus, we argue that modeling heterogeneous graphs as
a big table of entity vertices or entity links is ineffective
for parallel processing of big graphs in terms of storage,
network I/O and computation.

Hadoop MapReduce programming model and Hadoop
Distributed File System (HDFS) are among the most pop-
ular distributed computing technologies for partitioning big
data processing across a large cluster of compute nodes
in the Cloud. HDFS (and its attached storage systems)
is excellent for managing the big table data where row
objects are independent and thus big data can be simply
divided into equal-sized blocks (chunks) which can be stored
and processed in parallel efficiently and reliably. However,
HDFS is not optimized for storing and partitioning big
datasets of high correlation, such as large graphs [17, 15].
This is because HDFS’s block-based partitioning is equiv-
alent to random partitioning of big graph data through
either horizontal vertex-based partitioning or edge-based
partitioning depending on whether the graph is stored
physically by entity vertices or by entity links. Therefore,
data partitions generated by such a random partitioning
method tend to incur unnecessarily large inter-partition
processing overheads due to the high correlation and thus
the need for high degree of interactions among partitions in
responding to a graph pattern query. Using such random
partitioning method, even for simple graph pattern queries,
the processing may incur unnecessarily large inter-partition
join processing overheads due to the high correlation among
partitions and demand multiple rounds of data shipping

across partitions hosted in multiple nodes of a compute
cluster in the Cloud. Thus, Hadoop MapReduce alone is
neither adequate for handling graph pattern queries over
large graphs nor suitable for structure-based reasoning on
large graphs, such as finding k-hop neighbors satisfying
certain semantic constraints.

In this paper, we present a vertex block-based partition-
ing and grouping framework, called VB-Partitioner, for scal-
able and yet customizable graph partitioning and distributed
processing of graph pattern queries over big graphs. VB-
Partitioner supports three types of vertex blocks and a suite
of vertex block grouping strategies, aiming at maximizing
the amount of local graph processing and minimizing the
network I/O overhead of inter-partition communication dur-
ing each graph processing job. We demonstrate the effi-
ciency and effectiveness of our VB-Partitioner by developing
a VB-partition guided computation partitioning model that
allows us to decompose graph pattern queries into desired
vertex block partitions that are efficient for parallel query
processing using a compute cluster.

This paper makes three novel contributions. First, we
introduce vertex blocks and extended vertex blocks as the
building blocks for partitioning a large graph. This vertex
block-based approach provides a foundation for scalable and
yet customizable data partitioning of large heterogeneous
graphs by preserving the basic vertex structure. By scalable,
we mean that data partitions generated by VB-Partitioner
can support fast processing of big graph data of different
size and complexity. By customizable, we mean that one
partitioning technique may not fit all. Thus VB-Partitioner
supports three types of vertex blocks and is by design adap-
tive to different data processing demands in terms of explicit
and implicit structural correlations. Second, we develop a
suite of vertex block grouping algorithms which enable effi-
cient grouping of those vertex blocks that have high correla-
tion in graph structure into one VB partition. We optimize
the vertex block grouping quality by maximizing the amount
of local graph processing and minimizing the inter-partition
communication during each graph processing job. Third,
to further utilize our vertex block-based graph partitioning
approach, we introduce a VB-partition guided computation
partitioning model, which allows us to transform graph pat-
tern queries into vertex block-based graph query patterns.
By partitioning and distributing big graph data using vertex
block-based partitions, powered by the VB-partition guided
query partitioning model, we can considerably reduce the
inter-node communication overhead for complex query pro-
cessing because most graph pattern queries can be evaluated
locally on a partition server without requiring data shipping
from other partition nodes. We evaluate our data parti-
tioning framework and algorithms through extensive experi-
ments using both benchmark and real datasets with millions
of vertices and billions of edges. Our experimental results
show that VB-Partitioner is scalable and customizable for
partitioning and distributing big graph datasets of diverse
size and structures, and effective for processing real-time
graph pattern queries of different types and complexity.

2. OVERVIEW

2.1 Heterogeneous Graphs
We first define the heterogeneous graphs as follows.

Definition 1. (Heterogeneous Graph) Let V be a count-

v3

v12

v4

v1 v2

v5

v10

v9

v14
v13

v7 v8

v6
v11

l1

l1

l1

l1
l1

l1

l2

l3

l4

l3

l4

l3

l6

l6
l6

l3

l8

l7
l9

l9

l8

l4

l11

l3
l10 l6

l5

l1

Figure 1: Heterogeneous graph

ably infinite set of vertex names, and ΣV and ΣE be a fi-
nite set of available types (or labels) for vertices and edges
respectively. A heterogeneous graph is a directed, labeled
graph, denoted as G = (V,E,ΣV ,ΣE , lV , lE) where V is a
set of vertices (a finite subset of V) and E is a set of directed
edges (i.e., E ⊆ V ×ΣE × V). In other words, we represent
each edge as a triple (v, l, v′) which is a l-labeled edge from
v to v′. lV is a map from a vertex to its type (lV : V → ΣV)
and lE is a map from an edge to its label (lE : E → ΣE).

Fig. 1 shows an example of heterogeneous graphs. For ex-
ample, there are several l1-labeled edges such as (v3, l1, v1),
(v4, l1, v1) and (v13, l1, v12). Homogeneous graphs are spe-
cial cases of heterogeneous graphs where vertices are of the
same type, such as Web pages, and edges are of the same
type, such as page links in a Web graph. In a heterogeneous
graph, each vertex may have incoming edges (in-edges) and
outgoing edges (out-edges). For example, in Fig. 1, vertex
v7 has 3 out-edges and 4 in-edge (i.e., 7 bi-edges).

Definition 2. (Out-edges, In-edges and Bi-edges) Given a
graph G = (V,E,ΣV ,ΣE , lV , lE), the set of out-edges of
a vertex v ∈ V is denoted by E+

v = {(v, l, v′)|(v, l, v′) ∈
E}. Conversely, the set of in-edges of v is denoted by
E−v = {(v′, l, v)|(v′, l, v) ∈ E}. We also define bi-edges of
v as the union of its out-edges and in-edges, denoted by
E±v = E+

v ∪ E−v .

Definition 3. (Path) Given a graphG = (V,E,ΣV ,ΣE , lV ,
lE), an out-edge path from a vertex u ∈ V to an-
other vertex w ∈ V is a sequence of vertices, de-
noted by v0, v1, . . . , vk, such that v0 = u, vk = w,
∀m ∈ [0, k − 1] : (vm, lm, vm+1) ∈ E. Conversely, an
in-edge path from vertex u to vertex w is a sequence
of vertices, denoted by v0, v1, . . . , vk, such that u = v0,
w = vk, ∀m ∈ [0, k − 1] : (vm+1, lm, vm) ∈ E. A bi-edge
path from vertex u to vertex w is a sequence of vertices,
denoted by v0, v1, . . . , vk, such that u = v0, w = vk,
∀m ∈ [0, k − 1] : (vm, lm, vm+1) ∈ E or (vm+1, lm, vm) ∈ E.
The length of the path v0, v1, . . . , vk is k.

Definition 4. (Hop count) Given a graph G = (V,E,ΣV ,
ΣE , lV , lE), the out-edge hop count from a vertex u ∈ V
to another vertex w ∈ V , denoted by hop+(u,w), is the
minimum length of all possible out-edge paths from u to w.
We also define the out-edge hop count from u to an out-edge
(w, l, w′) of w, denoted by hop+(u,wlw′), as hop+(u,w)+1.
The hop count hop+(u,w) is zero if u = w and ∞ if there is
no out-edge path from u to w.

The in-edge and bi-edge hop counts are similarly defined
using the in-edge and bi-edge paths respectively.

?x ?y

l1

Q1: (?x, l1, ?y)

v3 v7

?l

Q2: (v3, ?l, v7)

v8

?c

?x

?b l1

l3

l6

Q3: (?x, l1, v8),

(?x, l6, ?b), (?x, l3, ?c)

?x

?z ?y

?a

l1

l3 l6

l4

Q4: (?x, l3, ?z),

(?x, l6, ?y), (?z, l4, ?y),

(?z, l1, ?a)

Figure 2: Graph pattern query graphs

2.2 Operations on Heterogeneous Graphs
Graph pattern queries [7] are subgraph matching problems

and are widely recognized as one of the most fundamental
graph operations. A graph pattern is often expressed in
terms of a set of vertices and edges such that some of them
are variables. Processing of a graph pattern query is to find
a set of vertex or edge values on the input graph which can
be substituted for the variables while satisfying the structure
of the graph pattern. Therefore, processing a graph pattern
query can be viewed as solving a subgraph matching problem
or finding missing vertex or edge instantiation values in the
input graph.

A basic graph pattern is an edge (v, l, v′) in which any
combination of the three elements can be variables. We rep-
resent variables with a prefix “?” such as ?x to differentiate
variables from the instantiation of vertex names and edge
labels.

A graph pattern consists of a set of basic graph patterns.
If there is a variable shared by several basic graph patterns,
the returned values for the variable should satisfy all the ba-
sic graph patterns which include the variable. For example,
a graph pattern {(?x, l1, v8), (?x, l6, ?a), (?x, l3, ?b)} re-
quests those vertices that have l1-labeled out-edge to v8 and
also l6-labeled and l3-labeled out-edges. It also requests the
connected vertices (i.e., ?a and ?b) linked by the out-edges.
This type of operations is very common in social networks
when we request additional information of users satisfying
a certain condition such as {(?member, affiliation,GT),
(?member, hometown, ?city), (?member, birthday, ?date)}.
Another graph pattern {(?x, l3, ?z), (?x, l6, ?y), (?z, l4, ?y),
(?z, l1, ?a)} requests all vertices such that each vertex x
has any l3-labeled (to z) and l6-labeled (to y) out-edges
and there is any l4-labeled edge from z to y and z has any
l1-labeled out-edge. This type of operations is also common
in social networks when we want to find friends of friends
within k-hops satisfying a certain condition. We formally
define the graph pattern as follows.

Definition 5. (graph pattern) Let Vvar and Evar be
countably infinite sets of vertex variables and edge variables
respectively. Given a graph G = (V,E,ΣV ,ΣE , lV , lE), a
graph pattern is Gq = (Vq, Eq,ΣVq ,ΣEq , lVq , lEq) where
Vq ⊆ V ∪ Vvar and Eq ⊆ Vq × (ΣE ∪ Evar)× Vq.

For example, {(?member, work, ?company), (?member,
friend, ?friend), (?friend, work, ?company), (?friend,
friend, ?friend2)} requests, for each user, friends of her
friends who are working in the same company with her.
Fig. 2 gives four typical graph pattern queries (selection by
edge, selection by vertices, star join and complex join).

master

slave 1

slave 2

.

.

.

slave n

Partition

Local Graph

Processing

Engine

Graph Partitioner

Extended Vertex Block Generator

Extended Vertex Block Allocator

Query Execution Engine

Query Analyzer Distributed Query

Executor Query Decomposer

NameNode JobTracker

DataNode

TaskTracker

Figure 3: System Architecture

2.3 System Architecture
The first prototype of our VB-Partitioner framework is im-

plemented on top of a Hadoop cluster. We use Hadoop
MapReduce and HDFS to partition heterogeneous graphs
and manage distributed query execution across a cluster
of Hadoop nodes in the Cloud. Fig. 3 shows a sketch of
the system architecture. Our system consists of one master
node and a set of slave nodes. When we execute a graph
partitioning or distributed query processing algorithm using
Hadoop, the master node serves as the NameNode of HDFS
and the JobTracker of Hadoop MapReduce. Similarly, the
slave nodes serve as the DataNodes of HDFS and the Task-
Trackers of Hadoop MapReduce.
Graph Partitioner. Many real-world big graphs exceed
the performance capacity (e.g., memory, CPU) of a single
node. Thus, we provide a distributed implementation of our
VB-Partitioner on a Hadoop cluster of compute nodes. Con-
cretely, we first load the big input graph into HDFS and thus
the input graph is split into large HDFS chunks and stored
in a cluster of slave nodes. Extended vertex block gen-
erator generates vertex block or extended vertex block for
each vertex in the input graph stored in HDFS using Hadoop
MapReduce. Extended vertex block allocator performs
two tasks to place each vertex block to a slave node of the
Hadoop cluster: (i) It employs a vertex block grouping al-
gorithm to assign each extended vertex block to a partition;
(ii) It assigns each partition to a slave node, for example
using a standard hash function, which will balance the load
by attempting to assign equal number of partitions to each
slave node. On each slave node, a local graph processing
engine is installed to process graph pattern queries against
the partitions locally stored on the node. We provide more
detail on our graph partitioning algorithms in Section 3.
Query Execution Engine. To speed up the processing
of graph pattern queries, we first categorize our distributed
query execution into two types: intra-partition processing
and inter -partition processing. By intra-partition process-
ing, we mean that a graph query Q can be fully executed
in parallel on each slave node without any cross-node coor-
dination. The only communication cost required to process
Q is for the master node to dispatch Q to each slave node.
If no global sort of results is required, each slave node can
directly (or via its master to) return its locally generated re-
sults. Otherwise, either the master node or an elected slave
node will be served as the integrator node to merge the par-
tial results received from all slave nodes to generate the final

v12 v13

v7
l1

l3
l6

v3 v4

v7 v8

l3

l4 l4

l3 v12 v13

v7 l1

l3

l6
v7 v8

v7 v8

v3 v4

v7

l3

l4 l4

l3

Out-edge vertex block

In-edge vertex block

Bi-edge vertex block

Figure 4: Different vertex blocks of v7

sorted results of Q. By inter -partition processing, we mean
that a graph query Q as a whole cannot be executed on
any slave node, and thus it needs to be decomposed into
a set of subqueries such that each subquery can be evalu-
ated by intra-partition processing. Thus, the processing of
Q requires multiple rounds of coordination and data trans-
fer across a set of slave nodes. In contrast to intra-partition
processing, the network I/O (communication) cost can be
extremely high, especially when the number of subqueries is
not small and the size of intermediate results to be trans-
ferred across the cluster of slave nodes is large.

For a given graph query Q, query analyzer analyzes Q
to see whether Q can be executed using intra-partition pro-
cessing. If Q can be executed using intra-partition process-
ing, Q is directly sent to distributed query executor. Other-
wise, query decomposer is invoked to split Q into a set of
subqueries such that each subquery can be executed using
intra-partition processing. Distributed query executor
is in charge of executing Q using intra-partition or inter-
partition processing by coordinating slave nodes. We will
explain our distributed query processing in detail in Sec-
tion 4.

3. VB-PARTITIONER: DESIGN FRAMEWORK
The VB-Partitioner framework for heterogeneous graphs

consists of three phases. First, we build a vertex block for
each vertex in the graph. We guarantee that all the infor-
mation (vertices and edges) included in a vertex block will
be stored in the same partition and thus on the same slave
node. Second, for a section of vertices, we expand their
vertex blocks (VBs) to the extended vertex block (EVBs).
Third but not the least, we employ a VB grouping algorithm
to assign each VB or EVB to a vertex block-based partition.
We below describe each of the three phases in detail.

3.1 Vertex Blocks
A vertex block consists of an anchor vertex and its con-

nected edges and vertices. To support customizable and ef-
fective data partitioning, we introduce three different vertex
blocks based on the direction of connected edges of the an-
chor vertex: 1) out-edge vertex block 2) in-edge vertex block
and 3) bi-edge vertex block. Fig. 4 shows out-edge, in-edge
and bi-edge vertex blocks of vertex v7 in Fig. 1 respectively.
We formally define the concept of vertex block as follows.

Definition 6. (Vertex block) Given a graph G =
(V,E,ΣV ,ΣE , lV , lE), out-edge vertex block of an
anchor vertex v ∈ V is a subgraph of G which con-
sists of v and all its out-edges, denoted by V B+

v =
(V +

v , E
+
v ,ΣV +

v
,Σ

E+
v
, l

V +
v
, l

E+
v

) such that V +
v = {v} ∪

{v+|v+ ∈ V, (v, l, v+) ∈ E+
v }. Similarly, in-edge vertex

block of v is defined as V B−v = (V −v , E−v ,ΣV−v
,Σ

E−v
, l

V−v
, l

E−v
)

such that V −v = {v} ∪ {v−|v− ∈ V, (v−, l, v) ∈ E−v }.
Also, bi-edge vertex block of v is defined as V B±v =
(V ±v , E±v ,ΣV±v

,Σ
E±v

, l
V±v

, l
E±v

) such that V ±v = {v} ∪
{v±|v± ∈ V, (v, l, v±) ∈ E+

v or (v±, l, v) ∈ E−v }.

Each vertex block preserves the basic graph structure of
a vertex and thus can be used as an atomic unit (building
block) for graph partitioning. By placing a vertex block
into the same partition, we can efficiently process all basic
graph pattern queries using intra-partition processing, such
as selection by edge or by vertex, because it guarantees that
all vertices and edges required to evaluate such queries are
located in the same partition. Consider the graph pattern
query Q2 (v3, ?l, v7) in Fig. 2. We can process the query
using intra-partition processing regardless of the type of the
vertex block. If we use out-edge (or in-edge) vertex blocks
for partitioning, it is guaranteed that all out-edges (or in-
edges) of v3 (or v7) are located in the same partition. It
is obviously true for bi-edge vertex blocks because it is the
union of in-edge and out-edge vertex blocks.

It is worth noting that each partitioning scheme based on
each of the three types of vertex blocks can be advantageous
for some queries but fail to produce the results of queries
effectively. Consider Q3 {(?x, l1, v8), (?x, l6, ?a), (?x, l3, ?b)}
in Fig. 2. It is guaranteed that all out-edges of any vertex
matching ?x are located in the same partition if we use out-
edge vertex blocks. This enables the query evaluation using
intra-partition processing because only out-edges of ?x are
required. However, if we use in-edge vertex blocks, we can
no longer evaluate Q3 solely using intra-partition processing
because we can no longer guarantee that all out-edges of any
vertex matching ?x are located in the same partition.

ConsiderQ4 {(?x, l3, ?z), (?x, l6, ?y), (?z, l4, ?y), (?z, l1, ?a)}
in Fig. 2. We cannot process Q4 using intra-partition pro-
cessing because there is no vertex (or vertex variable) which
can cover all edges in the query graph using its out-edges,
in-edges or even bi-edges. For example, if we consider
bi-edge vertex block of ?z, it is clear that there is one
remaining edge ((?x, l6, ?y)) which cannot be covered by the
vertex block. This motivates us to introduce the concept of
extended vertex block.

3.2 Extended Vertex Blocks
The basic idea of the extended vertex block is to include

not only directly connected edges of the anchor vertex but
also those within k-hop distance from the anchor vertex.
Concretely, to construct the extended vertex block of an
anchor vertex, we extend its vertex block hop by hop to
include those edges (and their vertices) that are reachable
within k hops from the anchor vertex. For example, from
the out-edge vertex block of v7 in Fig. 4, its 2-hop (k=2)
extended vertex block will add the out-edges of v8, v12 and
v13.

One of the most significant advantages of k-hop extended
vertex blocks is that most graph pattern queries can be ex-
ecuted using intra-partition processing without any coordi-
nation with another partition. However, when k is too large
relative to the size of the graph, extended vertex blocks can
be costly in terms of the storage cost on each node. In other
words, even though we remove inter-partition communica-
tion cost, the slow local processing on each large partition
may become the dominating factor for the query processing.

v12

v13

v7 l1

l3
l6

v7 v8

v10
l1 l8

v5

v14

v11

l4

l7 l9

l4

l11

Extended out-edge vertex block

v7 v8

v3

v4

v7

l3

l4 l4

l3

v9
l6

l6

Extended in-edge vertex block

v12 v13

v7
l1

l3
l6

v3 v4

v7 v8

l3

l4 l4

l3

v1

v6

l1

l6

l1

l6

l1

l1

v10

v11
l3

l8

v5

v9

v14

l7
l9

l4

l11

l6

Extended bi-edge vertex block

Figure 5: 2-hop extended vertex blocks of v7

To tackle this problem, we introduce a k-hop extended
vertex block in which the extension level is controlled by
the system parameter k. As a base case, the 1-hop extended
vertex block of an anchor vertex is the same as its vertex
block. The k-hop extended vertex block of an anchor ver-
tex includes all vertices and edges in its (k-1)-hop extended
vertex block and additional edges (and their vertices) which
are connected to any vertex in the (k-1)-hop extended vertex
block.

We also define three different types of the k-hop extended
vertex block based on the direction of expanded edges: 1)
k-hop extended out-edge vertex block; 2) k-hop extended
in-edge vertex block and 3) k-hop extended bi-edge vertex
block. Fig. 5 shows the different types of 2-hop extended
vertex block for v7. Dotted edges indicate the newly added
edges from the corresponding vertex block.

3.3 VB-based Grouping Techniques
After we obtain a vertex block or an extended vertex block

of each vertex in the input graph, we enter the second phase
of VB-Partitioner. It strategically groups a subset of VBs and
EVBs into a VB-partition by employing our vertex block-
based grouping algorithms such that highly correlated VBs
and EVBs will be placed into one VB-partition. We remove
any duplicate vertices and edges within each VB-partition.

When assigning each VB or EVB to a partition, we need
to consider the following three factors for generating efficient
and effective partitions: (i) The generated partitions should
be well balanced; (ii) The amount of replications should be
small; and (iii) The formation of VB-partitions should be
fast and scalable. First, balanced partitions are important
for efficient query processing because one big partition, in
the imbalanced partitions, can be a bottleneck and increase
the overall query processing cost. Second, we need to re-
duce the number of replicated vertices and edges to con-
struct smaller partitions and thus support faster local query
processing in each partition. Since an edge (and its vertices)
can be included in several extended vertex blocks, we need to
assign those extended vertex blocks sharing many edges to
the same partition to reduce the number of replicated edges
and vertices. Third but not the least, we need to support
fast partitioning for frequently updated graphs. Since one
partitioning technique cannot fit all, we propose three differ-
ent grouping techniques in which each has its own strength
and thus can be accordingly selected for different graphs and
query types.

Hashing-based VB Grouping. The hashing-based
grouping technique assigns each extended vertex block
based on the hash value of the block’s anchor vertex name.

This partitioning technique generates well-balanced par-
titions and is very fast. However, the hashing-based VB
grouping is not effective in terms of managing and reducing
the amount of vertex and edge replication because the
hashing-based algorithm pays no attention on the correla-
tion among different VBs and EVBs. If we can develop a
smart hash function that is capable of incorporating some
domain knowledge about vertex names, we can reduce the
number of replicated edges. For example, if we know that
vertices sharing the same prefix (or suffix) in their name are
closely connected in the input graph, we can develop a new
hash function, which uses only the prefix (or suffix) of the
vertex names to calculate the hash values, and assign the
vertices sharing the common prefix (or suffix) to the same
partition.

Minimum cut-based VB Grouping. The minimum
cut-based grouping technique utilizes the minimum cut
graph partitioning algorithm, which splits an input graph
into smaller components by minimizing the number of edges
running between the components. After we run the graph
partitioning algorithm for an input graph by setting the
number of components as the number of partitions, we can
get a list which has the assigned component id for each
vertex. Since the algorithm assigns each vertex to one
component and there is an one-to-one mapping between
components and partitions, we can directly utilize the
list of components by assigning each VB or EVB to the
partition corresponding to the assigned component of its
anchor vertex. This grouping technique is very good for
reducing the number of replicated edges because we can
view the minimum cut algorithm as grouping closely lo-
cated (or connected) vertices in the same component. Also,
because another property of the minimum cut algorithm is
to generate uniform components such that the components
are of about the same size, this grouping technique can
also achieve a good level of balanced partitions. However,
the uniform graph partitioning problem is known to be
NP-complete [6]. It often requires a long running time
for VB-grouping due to its high time complexity. Our
experiments on large graphs in Section 5 show that the
minimum cut-based VB grouping is practically infeasible
for large and complex graphs.

High degree vertex-based VB Grouping. This
grouping approach is motivated for providing a better
balance between reducing replication and fast processing.
The basic idea of this grouping algorithm is to find some
high degree vertices with many in-edges and/or out-edges
and place the VBs or EVBs of those nearby vertices of
each high degree vertex in the same partition of the high
degree vertex. By focusing on only high degree vertices,
we can effectively reduce the time complexity of grouping
algorithm and better control the degree of replications.

Concretely, we first find some high degree vertices whose
number of connected edges is larger than a system-supplied
threshold value δ. If we increase the δ value, a smaller num-
ber of vertices would be selected as the high degree vertices.

Second, for each high degree vertex, we find a set of ver-
tices, called dependent vertices, which are connected to the
high degree vertex by one hop. There are three types of
dependent vertices for each high degree vertex (out-edge,
in-edge or bi-edge). If the high degree vertex has an out-
edge EVB, then we find its dependent vertices by following
the in-edges of the high degree vertex. Similarly, we check

the out-edges and bi-edges of the high degree vertex for ex-
tended in-edge and bi-edge vertex blocks respectively.

Third, we group each high degree vertex and its dependent
vertices to assign them (and their extended vertex blocks)
to the same partition. If a vertex is a dependent vertex of
multiple high degree vertices, we merge all its high degree
vertices and their dependent vertices in the same group. By
doing so, we can prevent the replication of the high degree
vertices under 2-hop extended out-edge vertex blocks. If 3-
hop extended out-edge vertex blocks are generated, we also
extend the dependent vertex set of a high degree vertex by
including additional vertices which are connected to any de-
pendent vertex by one hop. We can repeatedly extend the
dependent vertex set for k > 3. To prevent from generating
a huge partition, we exclude those groups, whose size (the
number of vertices in the group) is larger than a threshold
value, when we merge groups. By default, we divide the
number of all vertices in the input graph by the number
of partitions and use the result as the threshold value to
identify such huge partitions.

Finally, we assign the extended vertex blocks of all ver-
tices in a high-degree group to the same partition. For each
uncovered vertex which is not close to any high degree ver-
tex, we simply select a partition having the smallest size and
assign its extended vertex block to that partition.

4. DISTRIBUTED QUERY PROCESSING
For a given graph pattern query Q, the first step is to

analyze Q to determine whether Q can be executed using
intra-partition processing or not. If yes, Q is directly sent
to the query execution step without invoking the query de-
composition step. Otherwise, we iteratively decompose Q
into a set of subqueries such that each subquery can be exe-
cuted using intra-partition processing. Finally, we generate
execution plans for Q (intra-partition processing) or for its
subqueries (inter-partition processing) and the query result
by executing the plans using the cluster of compute nodes.

4.1 Query Analysis
In query analysis step, we need to determine whether a

query Q needs to be sent to the query decomposer or not.
The decision is primarily based on eccentricity, radius and
center vertex in the context of graph.

Definition 7. (Eccentricity) Given a graphG = (V,E,ΣV ,
ΣE , lV , lE), the out-edge eccentricity ε+ of a vertex v ∈ V
is the greatest out-edge hop count from v to any edge in G
and formally defined as follows:

ε+(v) = max
(w,l,w′)∈E

hop+(v, wlw′)

The in-edge eccentricity ε− and bi-edge eccentricity ε± are
similarly defined. The eccentricity of a vertex in a graph can
be thought of as how far a vertex is from the vertex most
distant from it in the graph.

Definition 8. (Radius and Center vertex) Given a graph
G = (V,E,ΣV ,ΣE , lV , lE), the out-edge radius of G, de-
noted by r+(G), is the minimum out-edge eccentricity of
any vertex v ∈ V and formally defined as follows:

r+(G) = min
v∈V

ε+(v)

The out-edge center vertices of G, denoted by CV +(G),
are the vertices whose out-edge eccentricity equals to the

?x

?z ?y

?a

l1

l3 l6

l4

2

∞ ∞

∞

?x

?z ?y

?a

l1

l3 l6

l4

∞ ∞

∞

∞ ?x

?z ?y

?a

l1

l3 l6

l4

2

2 2

3

out-edge in-edge bi-edge

Figure 6: Query Analysis

out-edge radius of G and formally:

CV +(G) = {v|v ∈ V, ε+(v) = r+(G)}

The in-edge radius r−(G), in-edge center vertices
CV −(G), bi-edge radius r±(G) and bi-edge center ver-
tices CV ±(G) are similarly defined.

Assuming that the partitions are constructed using k-hop
extended vertex blocks, for a graph pattern query Q and its
query graph GQ, we first calculate the radius and the center
vertices of the query graph based on Definition 8. If the
partitions are constructed using extended out-edge (in-edge
or bi-edge) vertex blocks, we calculate r+(GQ) (r−(GQ) or
r±(GQ)) and CV +(GQ) (CV −(GQ) or CV ±(GQ)). If the
radius is equal to or less than k, then the query Q as a whole
can be executed using the intra-partition processing. This is
because, from the center vertices of GQ, our k-hop extended
vertex blocks guarantee that all edges that are required to
evaluate Q are located in the same partition. In other words,
by choosing one of the center vertices as an anchor vertex,
it is guaranteed that the k-hop extended vertex block of the
anchor vertex covers all the edges in GQ given that the ra-
dius of GQ is not larger than k. Therefore we can execute Q
without any coordination and data transfer among the par-
titions. If the radius is larger than k, we need to decompose
Q into a set of subqueries.

Fig. 6 presents how our query analysis step works under
three different types (out-edge, in-edge and bi-edge) of ex-
tended vertex blocks for graph pattern query Q4 in Fig. 2.
The eccentricity value of each vertex is given next to the
vertex. Since the out-edge radius of the query graph is
2, we can execute the query using intra-partition process-
ing if the partitions are constructed using k-hop extended
out-edge vertex blocks and k is equal to or larger than 2.
However, the in-edge radius of the query graph is infinity
because there is no vertex which has at least one in-edge
path to all the other vertices. Therefore, we cannot execute
the query using intra-partition processing if the partitions
are constructed using extended in-edge vertex blocks.

4.2 Query Decomposition
To execute a graph pattern query Q using inter-partition

processing, it is necessary to slit Q into a set of subqueries in
which each subquery can be executed using intra-partition
processing. Given that using Hadoop and HDFS to join the
partial results generated from the subqueries, we need to
carefully decompose Q in order to minimize the join pro-
cessing cost. Since we use one Hadoop job to join two sets
of partial results and each Hadoop job has an initialization
overhead of about 10 seconds regardless of the input data
size, we decompose Q by minimizing the number of sub-
queries. To find such decomposition, we use an intuitive
approach which first checks whether Q can be decomposed
into two subqueries such that each subquery can be evalu-
ated using intra-partition processing. To check whether a

?x

?z ?y

?a

l1

l3

l4

?x

?y

l6

(a) from ?z

?x

?z ?y

l3 l6

?z ?y

?a

l1 l4

(b) from ?x

Figure 7: Query decomposition (bi-edge)

subquery can be executed using intra-partition processing,
we calculate the radius of the subquery’s graph and then
perform the query analysis steps outlined in the previous
section. We repeat this process until at least one satisfying
decomposition is found.

Concretely, we start the query decomposition by putting
all vertices in the query graphGQ ofQ into a set of candidate
vertices to be examined in order to find such a decomposi-
tion having two subqueries. For each candidate vertex v,
we draw the k-hop extended vertex block of v in GQ, as-
suming that the partitions are constructed using k-hop ex-
tended vertex blocks. For the remaining edges of GQ, which
are not covered by the k-hop extended vertex block of v,
we check whether there is any other candidate vertex whose
k-hop extended vertex block in GQ can fully cover the re-
maining edges. If there is such a decomposition, we treat
each subgraph as a subquery of Q. Otherwise, we increase
the number of subqueries by one and then repeat the above
process until we find a satisfying decomposition. If we find
more than one satisfying decompositions having the equal
number of subqueries, then we choose the one in which the
standard deviation of the size (i.e., the number of edges)
of subqueries is the smallest, under the assumption that a
small subquery may generate large intermediate results. We
leave as future work the query optimization problem where
we can utilize additional metadata such as query selectivity
information.

For example, let us assume that the partitions are con-
structed using 1-hop extended bi-edge vertex blocks and thus
graph pattern query Q4 in Fig. 2 cannot be executed using
intra-partition processing. To decompose the query, if we
start with vertex ?z, we will get a decomposition which con-
sists of two subqueries as shown in Fig.7(a). If we start
with vertex ?x, we will also get two subqueries as shown
in Fig.7(b). Based on the smallest subquery standard devi-
ation criterion outlined above, we choose the latter because
two subqueries are of the same size.

5. EXPERIMENTAL EVALUATION
In this section, we report the experimental evaluation re-

sults of our partitioning framework for various heteroge-
neous graphs. We first explain the characteristics of datasets
we used for our evaluation and the experimental settings.
We divide the experimental results into four categories: (i)
We show the data partitioning and loading time for dif-
ferent extended vertex blocks and grouping techniques and
compare it with the data loading time in a single server. (ii)
We present the balance and replication level of gener-
ated partitions using different extended vertex blocks and
grouping techniques. (iii) We conduct the experiments on
query processing latency using various types of graph

pattern queries. (iv) We also evaluate the scalability of our
partitioning framework by increasing the dataset size and
the number of servers in the cluster.

5.1 Datasets
To show the working of our partitioning framework for

various graphs having totally different characteristics, we
not only use three real graphs but also generate three
graphs from each of two different benchmark generators.
As real graphs, we choose DBLP [1] containing biblio-
graphic information in computer science, Freebase [2]
which is a large knowledge base and DBpedia [4] having
structured information from Wikipedia. As benchmark
graphs, we choose LUBM and SP2Bench, which are widely
used for evaluating RDF storage systems, and generate
LUBM2000, LUBM4000, LUBM8000 using LUBM
and SP2B-100M, SP2B-200M and SP2B-500M us-
ing SP2Bench. As a data cleaning step, we remove any
duplicate edges using one Hadoop job for each dataset.
Table 1 shows the number of vertices and edges and the
average number of out-edges and in-edges of the datasets.
Note that the benchmark datasets, generated from the
same benchmark generator, have almost the same average
number of out-edges and in-edges regardless of the dataset
size. Fig. 8 shows the out-edge and in-edge distribution
of the datasets. In the x-axis of the figures, we plot the
number of out-edges (or in-edges) and in the y-axis we plot
the percentage of vertices whose number of out-edges (or
in-edges) is equal to or less than this number of out-edges
(or in-edges). For example, about 85%, 97% and 89% of
vertices have 25 or less out-edges on DBLP, Freebase and
DBpedia respectively. Note that the benchmark datasets,
generated from the same benchmark generator, have almost
the same out-edge and in-edge distribution regardless of
the dataset size. We omit the results of LUBM8000 and
SP2B-500M because each has almost the same distribution
with datasets from the same benchmark generator.

Table 1: Datasets
Dataset #vertices #edges avg. avg.

#out #in
DBLP 25,901,515 56,704,672 16.66 2.39

Freebase 51,295,293 100,692,511 4.41 2.11
DBpedia 104,351,705 287,957,640 11.62 2.82

LUBM2000 65,724,613 266,947,598 6.15 8.27
LUBM4000 131,484,665 534,043,573 6.15 8.27
LUBM8000 262,973,129 1,068,074,675 6.15 8.27
SP2B-100M 55,182,878 100,000,380 5.61 2.11
SP2B-200M 111,027,855 200,000,007 5.49 2.08
SP2B-500M 280,908,393 500,000,912 5.31 2.04

5.2 Setup
We use a cluster of 21 nodes (one is the master node) on

Emulab [20]: each has 12 GB RAM, one 2.4 GHz 64-bit
quad core Xeon E5530 processor and two 7200 rpm SATA
disks (250GB and 500GB). The network bandwidth is about
40 MB/s. When we measure the query processing time, we
perform five cold runs under the same setting and show the
fastest time to remove any possible bias posed by OS and/or
network activity.

As a local graph processing engine, we install RDF-3X ver-
sion 0.3.5 [18], on each slave server, which an open-source
RDF management system. We use Hadoop version 1.0.4
running on Java 1.6.0 to run our graph partitioning algo-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of out-edges (log)

DBLP

Freebase

Dbpedia

(a) Out-edge distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of out-edges (log)

LUBM2000

LUBM4000

SP2B_100m

SP2B_200m

(b) Out-edge distribution

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 100 10000 1000000 100000000

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of in-edges (log)

DBLP

Freebase

Dbpedia

(c) In-edge distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 100 10000 1000000 100000000

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of in-edges (log)

LUBM2000

LUBM4000

SP2B_100m

SP2B_200m

(d) In-edge distribution

Figure 8: Out-edge and In-edge Distribution

rithms and join the intermediate results, generated by sub-
queries, during inter-partition processing. For comparison,
we also implement random partitioning. To implement the
minimum-cut based VB grouping technique, we use graph
partitioner METIS version 5.0.2 [5] with its default config-
uration.

To simplify the name of our extended vertex blocks
and grouping techniques, we use [k]-[out|in|bi]-

[hash|mincut|high] as our naming convention. For
example, 1-out-high indicates the high degree vertex-based
technique with 1-hop extended out-edge vertex blocks.

5.3 Partitioning and Loading Time
We first compare the partitioning and loading time of our

framework with that on a single server. Fig. 9 shows the
partitioning and loading time of LUBM2000 and DBLP for
different extended vertex blocks and grouping techniques.
The loading time indicates the loading time of RDF-3X.
The single server approach has only the loading time be-
cause there is no partitioning. To support efficient partition-
ing, we implement the extended vertex block construction
and grouping using Hadoop MapReduce in the cluster of
nodes. Since the hashing-based grouping technique simply
uses a hash function (By default, we use the hash function
of Java String class) to assign each extended vertex block to
a partition, we incorporate the grouping step into the con-
struction step and thus there is no grouping time for those
using the hashing-based grouping technique. The grouping
time of the minimum cut-based grouping technique includes
both the input conversion time (from RDF to METIS in-
put format) and METIS running time. We also implement
the input conversion step using Hadoop MapReduce in the
cluster of nodes for efficient conversion.

Fig. 9(a) clearly shows that we can significantly reduce
the graph loading time by using our partitioning framework,
compared to using only single server. The only exception is
when we use the minimum cut-based grouping technique in
which we need to convert the datasets into the METIS in-
put formats, as shown in Fig. 9(b). The conversion time
depends on not only the dataset size but also the structure
of the graph. For example, the conversion times of DBLP
and Freebase are about 7.5 hours and 35 hours respectively,

0

2000

4000

6000

8000

10000

12000

si
n

g
le

ra
n

d
o

m

h
a

sh

m
in

cu
t

h
ig

h

h
a
sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a
sh

m
in

cu
t

h
ig

h

1-out 1-in 1-bi 2-out 2-in

T
im

e
(s

ec
o

n
d

s)

Loading Grouping EVB construction

(a) LUBM2000

1

10

100

1000

10000

100000

si
n

g
le

ra
n

d
o

m

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

1-out 1-in 1-bi 2-out 2-in

T
im

e
(s

ec
o
n

d
s

-
lo

g
sc

a
le

) Loading Grouping EVB construction

(b) DBLP

Figure 9: Partitioning and Loading Time

which are much longer than 50 minutes of DBpedia even
though DBpedia has much more edges. We think that this
is because DBLP and Freebase include some vertices hav-
ing a huge number of connected edges. For example, there
are 4 and 6 vertices having more than one million in-edges
on DBLP and Freebase respectively. Also note that the
minimum cut-based grouping technique couldn’t work on
LUBM4000, LUBM8000 and SP2B-500M because METIS
failed due to the insufficient memory on a single machine
with 12 GB RAM. This result indicates that the minimum
cut-based grouping technique is infeasible for some graphs
having a huge number of vertices and edges and/or complex
structure.

5.4 Balance and Replication level
To show the balance of generated partitions in terms of

the number of edges, we use the relative standard devia-
tion expressed as a percentage, defined as the ratio of the
standard deviation to the mean (and then multiplied by
100 to be expressed as a percentage). A higher percent-
age means that the generated partitions are less balanced.
Fig. 10 shows the relative standard deviation for different
extended vertex blocks and grouping techniques. As we ex-
pect, the hashing-based grouping technique generates the
most balanced partitions for most cases. Especially, using
extended out-edge vertex blocks, the hashing-based tech-
nique constructs almost perfectly balanced partitions. It is
interesting to note that, the hashing-based technique using

?x

v1

?z ?y

v3 v2

Q2

?x

v1 ?z

?y

v3 v2

Q8

?x

v1

?z ?y

v3 v2

Q9

?x

v1

?y v2

v3

Q7

?x

v1

?y

v3 v2

Q12

?x v1 ?y v2
Q11

Figure 12: Benchmark query graphs

extended in-edge vertex blocks generates less balanced parti-
tions than that using out-edge EVBs. This is because there
are some vertices having a huge number of in-edges (e.g.,
more than one million in-edges) as shown in Fig. 8(c) and
Fig. 8(d). Therefore, partitions including the extended ver-
tex blocks of such vertices will have much more edges than
the others. We omit the results of LUBM4000, LUBM8000,
SP2B-500M and SP2B-500M because each has almost the
same relative standard deviation with the dataset from the
same benchmark generator.

To see how many edges are replicated, Fig. 11 shows the
total number of edges of all the generated partitions for dif-
ferent extended vertex blocks and grouping techniques. As
we expect, the minimum cut-based grouping technique is
the best in terms of reducing the replication. Especially,
when we use 2-hop out-edge EVBs, the minimum cut-based
grouping technique replicates only a small number of edges.
However, for the other vertex blocks, the benefit of the min-
imum cut-based grouping technique is not so significant if
we consider its overhead as shown in Fig. 9. Also recall that
the minimum cut-based grouping technique fails to work on
LUBM4000, LUBM8000 and SP2B-500M because METIS
failed due to the insufficient memory.

5.5 Query Processing
Since LUBM provides 14 benchmark queries, we utilize

them to evaluate query processing in the partitions gener-
ated by our partitioning framework. Among 14 queries, two
queries (Q6 and Q14) are basic graph pattern queries (i.e.,
only one edge in their query graph) and 6 queries (Q1, Q3,
Q4, Q5, Q10 and Q13) are star-like queries in which all the
edges in their query graph are out-edges from one vertex
variable. Fig. 12 shows the graph pattern query graphs for
the other queries. We omit the edge label because there is
no edge variable.

Fig. 13 shows the query processing time of all 14 bench-
mark queries for different extended vertex blocks and group-
ing techniques on LUBM2000. For brevity, we omit the
results of using 1-hop and 2-hop extended in-edge vertex
blocks because they are not adequate for the benchmark
queries due to many leaf-like vertices which have only one in-
edge and no out-edge. All partitioning approaches using 1-
hop out-edge EVBs, 1-hop bi-edge EVBs and 2-hop out-edge
EVBs ensure intra-partition processing for the basic graph
pattern queries (Q6 and Q14) and star-like queries (Q1, Q3,
Q4, Q5, Q10 and Q13). Among the remaining queries (Q2,
Q7, Q8, Q9, Q11 and Q12), no query can be executed using
intra-partition processing over 1-hop extended out-edge and
bi-edge vertex blocks. On the other hand, 2-hop out-edge

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

 single random 1-out-hash 1-bi-hash 2-out-hash

(a) Effects of different extended vertex blocks

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q
u

er
y

 P
ro

ce
es

in
g
 t

im
e

in
 s

ec
 2-out-hash 2-out-mincut 2-out-high

(b) Effects of different grouping techniques

Figure 13: Query Processing Time on LUBM2000

EVBs guarantee intra-partition processing for all the bench-
mark queries except Q7 in which 2-hop extended out-edge
vertex block of ?x cannot cover the edge from v2 to ?y.

The result clearly shows the huge benefit of intra-partition
processing, compared to inter-partition processing. For ex-
ample, for Q2, the query processing time over 2-hop out-
edge EVBs is only 4% of that over 1-hop out-edge EVBs as
shown in Fig. 13(a). That is two orders of magnitude faster
than the result on a single server. If we use inter-partition
processing, it is much slower than using intra-partition pro-
cessing due to the initialization overhead of Hadoop and
large size of intermediate results. For example, the size of
the intermediate results for Q7 over 2-hop out-edge EVBs
is 1.2 GB which is much larger than the final result size of
907 bytes. The result for Q7 also shows the importance of
the number of subqueires in inter-partition processing. The
query processing over 2-hop out-edge EVBs, which consists
of 2 subqueries, is only 65% of that over 1-hop out-edge
EVBs, which consists of 3 subqueries, even though the par-
titions generated using 2-hop out-edge EVBs are much larger
as shown in Fig. 11(a). For star query Q1, Q3, Q4, Q5 and
Q10 having very high selectivity (i.e., the result size is less
than 10kb), the query processing is usually fast (less than
2 seconds) in the partitions generated by our framework.
However, it is slight slower than the query processing on a
single server because there is some overhead on the master
node which sends the query to all the slave nodes and merges
the partial results received from the slave nodes. When we
measure the query processing time on a single server, there is
no network cost because queries are requested and executed
in the same server.

Fig. 13(b) shows the effect of different grouping techniques
using the same extended vertex blocks (i.e., the guarantee of
intra-partition processing is the same). The result indicates
that the query processing depends on the replication level

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(a) LUBM2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

hash mincut high

(b) SP2B-200M

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(c) DBLP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(d) Freebase

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(e) DBpedia

Figure 10: Balance of generated partitions

0

100

200

300

400

500

600

700

800

900

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

) hash mincut high

(a) LUBM2000

0

50

100

150

200

250

300

350

400

450

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

) hash mincut high

(b) SP2B-200M

0

20

40

60

80

100

120

140

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

)

hash mincut high

(c) DBLP

0

40

80

120

160

200

240

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

)

hash mincut high

(d) Freebase

0

200

400

600

800

1000

1200

1400

1600

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

)

hash mincut high

(e) DBpedia

Figure 11: Replication level

0

50

100

150

200

LUBM2000 LUBM4000 LUBM8000

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(a) 1-out-hash

0

10

20

30

40

50

60

LUBM2000 LUBM4000 LUBM8000

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(b) 2-out-hash

Figure 14: Scalability with varying dataset size

of the generated partitions. The query processing in the
partitions generated using the minimum cut-based group-
ing technique is usually faster because the minimum cut-
based technique generate smaller partitions than the others
as shown in Fig. 11.

5.6 Scalability
To evaluate the scalability of our partitioning framework,

we report the query processing results with varying dataset
size in Fig. 14. For brevity, we choose one basic graph pat-
tern query (Q6), one star-like query (Q5) and one complex
query (Q2). The increase of the query processing time for
Q6 is almost proportional to the dataset size and there is
only slight increase for Q5 because its results are the same
regardless of the dataset size. For Q2, there is only slight
increase over 2-hop out-edge EVBs (Fig. 14(b)). However,
there is a considerable increase over 1-hop out-edge EVBs
because much more intermediate results are generated, com-
pared to the increase of the final results.

Fig. 15 shows the results of another scalability experi-
ment with varying numbers of slave nodes from 5 to 20 on
LUBM2000. Note that the results on 1 server represent
the query processing time without our partitioning and the
query processing times are displayed as log scale. There is
almost no big decrease for Q5 because it is already a fast
query on 5 servers. We can see the considerable reduction
of query processing time for Q2 and Q6 with an increasing
number of servers, primarily due to the reduced partition
size. However, as shown in the results of Q2 over 1-hop

1

10

100

1000

1 server 5 servers 10 servers 20 servers

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(a) 1-out-hash

1

10

100

1000

1 server 5 servers 10 servers 20 servers

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(b) 2-out-hash

Figure 15: Scalability with varying server size

out-edge EVBs (Fig. 15(a)), there would be a point where
adding more servers does not improve the query processing
time any more because the transfer time of lots of results to
the master node is unavoidable.

6. RELATED WORK
To process large graphs in a cluster of compute nodes,

several graph computation models based on vertex centric
approaches have been proposed in recent years, such as
Pregel [17] and GraphLab [16]. Also, GraphChi [15] has
been proposed to process large graphs on a single computer
in reasonable time. Even though they can efficiently process
some famous graph operations, such as page rank and
shortest paths, they are not adequate for general graph pat-
tern queries (i.e., subgraph matching) in which fast query
processing (sometimes a couple of seconds) is preferred by
evaluating small parts of input graphs. This is primarily
because their approaches are based on multiple iterations
and optimized for specific graph operations in which all (or
most) vertices in a graph participate in the operations. Our
partitioning framework focuses on efficient and effective
partitioning for processing general graph pattern queries on
large heterogeneous graphs.

Graph partitioning has been extensively studied in sev-
eral communities for several decades [12, 9, 13, 14]. A typi-
cal graph partitioner divides a graph into smaller partitions
that have minimum connections between them, as adopted
by METIS [12, 14, 5] or Chaco[9, 3]. Various efforts in graph
partitioning research have been dedicated to partitioning a

graph into similar sized partitions such that the workload
of servers hosting these partitions will be more or less bal-
anced. We utilize the results of one famous graph partitioner
(METIS) to implement one of our grouping techniques to
group our extended vertex blocks.

In recent years, a few techniques have been proposed to
process RDF graphs in a cluster of compute nodes. [19,
11] directly store RDF triples (edges) in HDFS as flat text
files to process RDF queries. [8] utilizes HBase, a column-
oriented store modeled after Google’s Bigtable, to store and
query RDF graphs. Because general file system-based stor-
age layers, such as HDFS, are not optimized for graph data,
their query processing is much less efficient than those using
a local graph processing engine, as reported in [10]. Also,
because their query processing heavily depends on multiple
rounds of inter-machine communication, they usually incur
long query latencies. [10] utilizes the results of an exist-
ing graph partitioner to partition RDF graphs and stores
generated partitions on RDF-3X to process RDF queries lo-
cally. As we reported in Sec. 5, running an existing graph
partitioner has a large amount of overhead for huge graphs
(or graphs having complex structure) and may not even be
practically feasible for some large graphs.

7. CONCLUSION
We have presented VB-Partitioner − a distributed data

partitioning model and algorithms for efficient processing of
queries over large-scale graphs in the Cloud. This paper
makes three original contributions. First, we introduce the
concept of vertex blocks (VBs) and extended vertex blocks
(EVBs) as the building blocks for semantic partitioning of
large graphs. Second, we describe how VB-Partitioner uti-
lizes vertex block grouping algorithms to place those vertex
blocks that have high correlation in graph structure into the
same partition. Third, we develop a VB-partition guided
query partitioning model to speed up the parallel process-
ing of graph pattern queries by reducing the amount of inter-
partition query processing. We evaluate our VB-Partitioner
through extensive experiments on several real-world graphs
with millions of vertices and billions of edges. Our results
show that VB-Partitioner significantly outperforms the pop-
ular random block-based data partitioner in terms of query
latency and scalability over large-scale graphs.

Our research effort continues along several directions. The
first prototype implementation of VB-Partitioner is on top of
Hadoop Distributed File System (HDFS) with RDF-3X [18]
installed on every node of the Hadoop cluster as the local
storage system. We are interested in replacing RDF-3X by
TripleBit [21] or GraphChi [15] as the local graph store to
compare and understand how different choices of local stores
may impact on the overall performance of our VB-Partitioner.
In addition, we are working on efficient mechanisms for de-
ploying and extending our VB-Partitioner to speed up the
set of iterative graph algorithms, including shortest paths,
PageRank and random walk-based graph clustering. For ex-
ample, Pregel [17] can speed up the set of graph computa-
tions that are centered on out-vertex blocks such as shortest
path discovery, and GraphChi [15] can speed up those itera-
tive graph computations that rely on in-vertex blocks, such
as PageRank and triangle counting. We conjecture that our
VB-Partitioner can be effective for a broader range of iter-
ative graph operations. Furthermore, we are also working
on extending Hadoop MapReduce programming model and

library to enable fast graph operations, ranging from graph
queries, graph reasoning to iterative graph algorithms.

8. ACKNOWLEDGMENTS
This work is partially supported by grants from NSF Net-

work Science and Engineering (NetSE) and NSF Trustwor-
thy Cyberspace (SaTC), an IBM faculty award and a grant
from Intel ISTC on Cloud Computing. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect those of the National Science Foundation and our in-
dustry sponsors.

9. REFERENCES
[1] About FacetedDBLP. http://dblp.l3s.de/dblp++.php.

[2] BTC 2012 Dataset.
http://km.aifb.kit.edu/projects/btc-2012/.

[3] Chaco: Software for Partitioning Graphs.
http://www.sandia.gov/ bahendr/chaco.html.

[4] DBpedia 3.8 Downloads.
http://wiki.dbpedia.org/Downloads38.

[5] METIS. http://www.cs.umn.edu/˜metis.

[6] K. Andreev and H. Räcke. Balanced graph
partitioning. In Proceedings of the sixteenth annual
ACM symposium on Parallelism in algorithms and
architectures, SPAA ’04, pages 120–124, New York,
NY, USA, 2004. ACM.

[7] P. Barceló, L. Libkin, and J. L. Reutter. Querying
graph patterns. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’11, pages 199–210, New
York, NY, USA, 2011. ACM.

[8] C. Franke, S. Morin, A. Chebotko, J. Abraham, and
P. Brazier. Distributed Semantic Web Data
Management in HBase and MySQL Cluster. In
Proceedings of the 2011 IEEE 4th International
Conference on Cloud Computing, CLOUD ’11, pages
105–112, Washington, DC, USA, 2011. IEEE
Computer Society.

[9] B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. In Proceedings of the 1995
ACM/IEEE conference on Supercomputing,
Supercomputing ’95, New York, NY, USA, 1995.
ACM.

[10] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. Proceedings of the
VLDB Endowment, 4(11):1123–1134, 2011.

[11] M. Husain, J. McGlothlin, M. M. Masud, L. Khan,
and B. M. Thuraisingham. Heuristics-Based Query
Processing for Large RDF Graphs Using Cloud
Computing. IEEE Trans. on Knowl. and Data Eng.,
23(9):1312–1327, Sept. 2011.

[12] G. Karypis and V. Kumar. Analysis of multilevel
graph partitioning. In Proceedings of the 1995
ACM/IEEE conference on Supercomputing,
Supercomputing ’95, New York, NY, USA, 1995.
ACM.

[13] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irregular graphs. In
Proceedings of the 1996 ACM/IEEE conference on
Supercomputing, Supercomputing ’96, Washington,
DC, USA, 1996. IEEE Computer Society.

[14] G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In Proceedings of
the 1998 ACM/IEEE conference on Supercomputing,
Supercomputing ’98, pages 1–13, Washington, DC,
USA, 1998. IEEE Computer Society.

[15] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
large-scale graph computation on just a PC. In
Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation,
OSDI’12, pages 31–46, Berkeley, CA, USA, 2012.
USENIX Association.

[16] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: a framework for machine learning and
data mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference

on Management of data, SIGMOD ’10, pages 135–146,
New York, NY, USA, 2010. ACM.

[18] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. The VLDB
Journal, 19(1), Feb. 2010.

[19] K. Rohloff and R. E. Schantz. Clause-iteration with
MapReduce to scalably query datagraphs in the
SHARD graph-store. In Proceedings of the fourth
international workshop on Data-intensive distributed
computing, DIDC ’11, pages 35–44, New York, NY,
USA, 2011. ACM.

[20] B. White and et al. An integrated experimental
environment for distributed systems and networks. In
Proceedings of the 5th symposium on Operating
systems design and implementation, OSDI ’02, pages
255–270, 2002.

[21] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
TripleBit: a Fast and Compact System for Large Scale
RDF Data. Proceedings of the VLDB Endowment,
6(7), 2013.

