
ServiceTrust: Trust Management in Service Provision Networks

Zhiyuan Su*+ Ling Liu+ Mingchu Li* Xinxin Fan*+ Yang Zhou+
*Software school, Dalian university of Technology, Dalian, China

+College of computing, Georgia Institute of Technology, Atlanta, GA, USA
suzhiyuan2006@gmail.com, lingliu@cc.gatech.edu, mingchul@dlut.edu.cn, xinxinyuanfan@mail.dlut.edu.cn, yzhou86@gatech.edu

Abstract—Service provision networks are popular platforms for
decentralized service management. eBay and Amazon are two
representative examples of enabling and hosting service
provision networks for their customers. Trust management is a
critical component for scaling service provision networks to
larger set of participants. This paper presents ServiceTrust, a
quality sensitive and attack resilient trust management facility
for service provision networks. ServiceTrust has three unique
features. First, it encapsulates quality-sensitive feedbacks by
multi-scale rating scheme and incorporates the variances of
user's behaviors into the local trust algorithm. Second,
ServiceTrust measures the similarity of two users' feedback
behavior and aggregate the local trust values into the global
trust algorithm by exploiting pairwise feedback similarity
scores to weight the contributions of local trust values towards
the global trust of a participant. Finally, pairwise feedback
similarity weighted trust propagation is utilized to further
strengthen the robustness of global trust computation against
malicious or sparse feedbacks. Experimental evaluation with
independent and colluding attack models show that
ServiceTrust is highly resilient to various attacks and highly
effective compared to EigenTrust, one of the most popular and
representative trust models to date.

Keyword-trust management, multi-scale rating, trust
propagation, similarity, attack-resilient

I. INTRODUCTION
Service oriented computing refers to architectures,

platforms and technologies of packaging and delivering
computing capabilities that are common to multiple domain
problems as services. In the last decade, we have witnessed
the evolution of service provision platforms from in-house to
cloud and from centralized client-server model to service
provision network model. A unique feature of a service
provision network is to allow every participant to be service
provider and service consumer at the same time and to bridge
between service consumers and service providers on demand.
For example, when purchasing a product from Amazon or
eBay, a ranked list of sellers is offered to the users as service
providers. This ranking is based primarily on consumers’
feedback ratings obtained through their prior transaction
experiences with the service providers. Thus, such rankings
can serve as valuable references for those users who have no
prior experience with or no prior knowledge about the
providers. Although the service provision network model
offers the opportunities for consumers to be connected to
unfamiliar service providers and for providers to reach a
larger and growing customer base, the opportunity to interact
with unknown providers also opens doors for potential risks
of dishonest ratings and malicious manipulations.

Introducing the trust management into a service provision
network system has proved to be an effective way to improve

the trustworthiness of the system, as evidenced in eBay and
Amazon. Trust is regarded by many as one of the most
important measures for sharing information and developing
new consumer-provider relationships. Trust management has
attracted active research in several areas of computer science,
such as peer to peer systems, sensor networks, social
networks, eCommerce, mobile computing systems and
applications, to name a few. Most of the trust models are
based on per-transaction feedbacks. Thus the trust of a
provider is computed in two steps: First, for each pair of
provider and consumer, a local trust is computed by
aggregating the set of feedback ratings provided by the
consumer who has had transactions with the provider. Second,
a global trust of a provider is computed based on the set of
local trusts this provider has received from the consumers in
the service provision network.

Existing trust management models differ from one another
in three aspects: (i) how the users’ feedback ratings are
aggregated in computing the trust of providers, (ii) how
resilient the local and global trust computation is against
dishonest feedbacks and malicious manipulations, and (iii)
how trust is computed in the presence of sparse feedbacks and
cold start. For example, different methods are used to
aggregate feedback ratings, ranging from simple algorithmic
aggregation methods such as those used in eBay to more
complex feedback aggregation methods based on statistical
significance, such as naïve Bayesian with majority voting,
Bayesian belief networks, eigenvector and so forth.
Unfortunately, most of the existing approaches have been
developed independently and little efforts have been made to
compare and understand the relative strength and inherent
vulnerabilities of different approaches. Concretely, how
dishonest feedbacks and sparse feedbacks may impact on the
effectiveness of the existing trust models? How the cold start
(new comers) problem is handled, and how robust and
resilient the existing trust models are and whether the
proposed trust model will remain to be effective in the
presence of some known attacks. We believe that answers to
these questions are critical to critical for building an attack
resilient trust management for service provision networks.

Based on these observations, we present ServiceTrust, an
attack resilient trust management scheme for service
provision networks. ServiceTrust offers two distinct
capabilities for establishing and managing trust in a service
provision network. First, with multi-scale service level
agreements (SLAs) becoming pervasively employed in
evaluating quality of services today, ServiceTrust provides a
quality-sensitive aggregation method to encapsulate multi-
scale feedback ratings as a generalization of binary feedback
rating scheme. Thus, the local trust computed based on multi-
scale ratings is more sensitive to quality differentiation and
more resilient to colluding attacks. Second, ServiceTrust

enhances the attack resilience of global trust computation
through two steps: (i) ServiceTrust introduces the pairwise
feedback similarity as a measure of feedback quality, aiming
at preventing the detrimental effects of dishonest feedbacks
and malicious manipulation of feedback ratings on the
validity of global trust value of a participant. (ii) ServiceTrust
computes the global trust of a participant by utilizing the trust
propagation kernel powered with the feedback similarity
based propagation control. This capability enables us to
effectively discredit those participants who are strategically
malicious and to control the amount of trust propagating from
a good participant to a malicious participant. We have
conducted an extensive experimental evaluation to show the
effectiveness and efficiency of ServiceTrust. To the best of
our knowledge, ServiceTrust is the first to exploit multi-scale
rating similarity based trust propagation to provide attack
resilience in trust management for service provision networks.

II. RELATED WORK
Reputation management often refers to trust management

in a large social network of participants where trust of a
member participant is computed based on the feedback
ratings he or she receives from the rest of the participants. An
overview of some key issues in reputation management is
given in [8]. Trust metrics on graphs were given [1]. The
notion of transitive trust, though initially presented in [1], was
made popular by EigenTrust [6] through the use of Eigen
vector [7] based propagation kernel. The feedback credibility
concept and its role for defending against dishonest feedbacks
is first introduced in PeerTrust[11]. In addition, [11] also
describes the roles of transaction context may play in making
trust model more resilient to attacks. Trust relationships in
Web-based social networks are studied in [2,4,5,9]. [10]
proposed a fuzzy logic based aggregation method to compute
trust. [12] utilizes contextual similarity to evaluate trust in
eCommerce environment. The contribution of this work is
two folds. First, we analyze the vulnerability of existing trust
models in the presence of dishonest feedbacks, sparse
feedbacks, colluding behaviors. Second, we show through the
development of ServiceTrust how to utilize pairwise feedback
similarity during the aggregation of local trust assessments of
all participants in an efficient and robust manner.

III. BACKGROUND AND OVERVIEW

A. Reference Trust Model
In a service provision network of N participants, each

participant can be a service provider and also a service
consumer. Thus the relationship between any two pair of
participants simulates the peer to peer relationship.

When a peer Pi acting as a provider to respond to a service
request from another peer Pj, the receiving peer Pj is allowed
to enter a feedback rating on Pi in terms of the quality of the
service provided by Pi. We refer to this as a per-transaction
based feedback.

1) Computing local trust by aggregating feedbacks
Let (,)tr i j denote the feedback rating from peer i to peer j

where i,j ∈[1,…,N] and tr(i,j) is initialized to zero. Using a
binary rating scheme, when a peer i competes a transaction

with another peer j at time t, then peer i may rate the
transaction it has with peer j as positive by tr(i, j, t) = 1or
negative by tr(i, j, t) = −1 . Let (,)sat i j denote the total
number of satisfactory transactions between peer i to peer j,
and (,) denote the number of unsatisfactory
transactions between peer i to peer j. We define (,)

unsat i j
s i j as the

aggregation of all feedback ratings from peer i to peer j,
namely, (,)(,) (,)s i j sat i j unsat i j= − . Clearly, (,)s i j is a
positive integer if there are more positive feedback ratings
and negative otherwise.

Now we compute the local trust based on s(i,j), denoted
by cij. We need to normalize the local trust values into the
range of [0,1] in order to make the comparison meaningful
between peers with high volume of transactions and peers
with low volume of transactions. For example, we can define
cij by normalizing (,)s i j using the maximum satisfactory
score from all participants who have had the direct
transactional experiences with peer i as follows:

max((,), 0)

max((,), 0)
j

j

s i j

s i j
max((,

j
s i

therwise

),if j
c

p o

0) 0

ij

≠
=

⎧
⎪
⎨
⎪⎩

∑

1/

0 j

∑
 (1)

| | j

P if P

otherw ise
p

∈
=
⎧
⎨
⎩

0

k
it

t 1

i ∑

In Formula (1), P denotes a set of pre-trusted seed participants
(pre-trusted peers). We use the pre-trusted seed peers to
bootstrap the system initially and to allow new comers to be
linked to some existing participants in the network.

2) Computing global trust by trust propagation kernel
Let n denote the total number of participants in our service

network system. We define C = [as a matrix of n rows by

n columns. Let denote the initial global trust value of peer

i. We have t =1/n.

]ijc
0

it

i

= c
ji

j=1

n

n

Let denote the k-hop global trust value of peer i. We

have = c
ji
t

i

0

j=1

n∑ . Let t

denote the global trust vector of size n at kth iteration (1<k<n).
The general formula for computing the global trust vector at
the (k+1) iteration is:

k = ()t1
k ,..., ti

k ,..., tn
k

t
k+1 = CT t k (2)

Thus we have t . The trust vector = (C
T

)
m t 0 t will

converge to the left principal eigenvector of C if m is large
enough [6,7]. For each element of this global trust vector, ti , it
quantifies how much trust the system as a whole places on the
participant i.

Recall the cold start problem in terms of new comers or
participants with no feedback ratings from others, we address
this problem by utilizing a set P of pre-trust seed peers as the
bootstrap peers. Any participant that does not know whom to
trust can always trust one of the pre-trust peers with a
probability of 1/|P|. Thus, we can also initialize the golbal
trust verctor t by some distribution over pre-trust peers, 0 p

e.g., 1/|P|. Furthermore, we need to handle malicious
collectives who aim at manipulating the system by giving
each other high local trust values and giving all others low
local trust values in an attempt to gain high global trust values.
A common way to break the collectives is by having each
participant placing some trust on pre-trust seed peers that are
definitely not a part of the collectives. This will avoid getting
stuck within a malicious collective.

With these observations in mind, we revise formula (2) by
formula (3). Let be the probability of a participant choosing
to trust only some pre-trusted peers. The revised formula for
computing the global trust vector of size n at (k+1)th round of
iterations is:

a

t k+1 = (1− a)CT t k + ap (3)
This formula implies that a peer i's global trust at (k+1)th

iteration can be defined by the sum of the local trust values
that other peers have given to i, weighted by their global trust
values obtained at the kth iteration, namely

1

1 1 2 2(1)(...)k k k k

i i i ni nt c t c t c t ipα α+ = − + + + + (4)
 This reference trust model is known as EigenTrust [6].
Before analyzing the inherent vulnerabilities of this trust
model, we first present the common attack models used in
this paper.

B. Threat models
In the service provision domain, the following threat

models are frequently used to characterize different forms of
malicious behaviors.
Threat model A (Independently Malicious)

Malicious users always provide inauthentic services when
selected as service providers. Malicious peers always value
inauthentic services instead of authentic services.

As malicious participants never provide authentic (good)
services, they do not expect getting a good rating from non-
malicious participants.
Threat model B (Malicious Collectives)

Malicious participants always provide inauthentic (bad)
services when selected as a service provider. In addition,
malicious peers form a malicious collectives by giving a high
local trust value, say 1, to another malicious peer in the
network, leading to a malicious chain of mutually high local
values. This malicious collective chain traps non-malicious
participants to enter the collective and once a good peer has
entered, it will be hard to exit and the global trust value of the
good peer will be exploited to boost the global trust values of
all peers in the malicious collectives.
Threat model C (Malicious Collectives with Camouflage)

In this type of attack, malicious entities provide an
inauthentic service in %f when selected as a service
provider. At the same time malicious peers form a malicious
collective as describe in the threat model B.

Under this threat model, malicious peers attempt to get
positive ratings from some good peers in the network by
providing good services sometimes, i.e., when .
Consequently, malicious peers in the collective could get
higher global trust values.

0f >

Threat model D (Malicious spies)

Malicious participants are strategically organized into two
groups. One group of malicious peers (type D) try to act as
normal users in the system in an attempt to increase their
global trust values by only providing good services but
provide dishonest feedback ratings. The type D peers act like
spies and use their high trust values to boost the trust values
of another group of malicious peers (type B) who only
provide bad (inauthentic) services when selected as service
providers.

There are other types of threat models, such as multiple
independent or colluding malicious colletives, which can be
represented as a generalized form of the four attack models.
Other type of attacks, such as Sybil attacks, can be regulated
through some cost based enforcement, such as enforcing the
network ID of a participant correspond to a hash value of the
peer's unique ID in real life, e.g., drive license number. Often,
Sybil attack is used in conjunction with one of the above four
threat models. Thus we argue that a highly effective trust
model for the service provision networks should be resilient
to all of the above four threat models.

C. Trust based service selection models
There are four known service selection schemes:

Random selection. When trust is not supported, a service
requestor often randomly selects one provider in the list of
matching providers as her preferred provider.

Threshold-based random selection. A requestor
randomly select a provider from the subset of providers in
the matching list, whose trust values are higher than a given
threshold value.

Deterministic selection. A requestor only selects the
provider with the highest global trust value among the list of
matching providers as her preferred provider. The problem
with this approach is the potential of overloading the
providers with high trust values.

Probabilistic-based selection. A requestor chooses each
matching provider i as its preferred provider with probability

assuming that there are M matching providers

that can provide the requested service. In order to give the
newcomers a chance to be selected, we can complement the
trust enabled probabilistic selection by allowing a peer j with
zero trust value to be selected at a system defined maximum
probability, say 10% [6].

ti / t jj=1

M∑

D. Vulnerabilities in the Reference Model
Although EigenTrust by design has incorporated several

decisions to increase its attack resilience, which is also the
main factors for its high popularity and citation in the
literature, EigenTrust has reported [6] that there are some
inherent vulnerabilities.

Figure 1 shows that EigenTrust is effective in the presence
of varying percentage of malicious peers up to 70% in Threat
models A and B where malicious peers either are
independently malicious or form a malicious chain of high
feedback ratings. However, EigenTrust performs poorly when
malicious peers are up to 50% or more in Threat model C. For
threat model D, EigenTrust performs worse than non-trust
case when the type D peers reach 50% or more of the

malicious collective. These experiments used the identical
setup as in [6]. In Threat models A and B, the total number of
participants is 63, with 3 pre-trust peers. In Threat model C,
there are 73 participants in the network, including 20
malicious ones, 3 pre-trust ones and 50 good peers. In Threat
model D, there are 103 total participants with 40 malicious
participants, which are divided into two groups (type B and
type D), 3 pre-trust peers and 60 good peers.

Figure 1. Robustness and Vulnerabilities of EigenTrust model

Now we analyze the vulnerabilities inherent in the
EigenTrust model and illustrate why these vulnerabilities
cause EigenTrust to perform poorly compared to non-trust
case when the malicious participants strategically collude
with one another (Threat models C and D). First, the feedback
aggregation formula (1) is more vulnerable when type D
malicious peers exist since it fails to distinguish good
participants from type D spy peers. Thus, the system fails to
recognize the dishonest feedbacks given by type D peers,
which harms the good peers and increases type B malicious
peers’ local trust values. This is one of the most important
reasons that EigenTrust fails when 50% or more malicious
collectives with camouflage in Figure 3(c) (Threat model C).
Second, the formula (3) for computing global trust vector
uses a weighted trust propagation model where the local
trusts received by peer i from other peers, say j, are weighted
by the global trust value of peer j. This leads to unexpected
vulnerability when encountering some sophisticated attacks.
Consider Threat model D, type D disguised peers accumulate
high global trust values by acting as spy and utilize their high
global trust values to boost the global trusts of all type B
malicious peers in the collective. This can easily subvert the
system as the number of spy peers increases, as shown in
Figure 3(d). Figure 4 shows the global trust values of all
participants. We observe that except the 3 pre-trust peers, the
global trust values of malicious peers are higher than good
ones, even when the good peers are 60% and malicious peers
are 40% with 30% type D and 10% type B malicious peers.

IV. SERVICETRUST
This section presents the design of ServiceTrust. The

design of ServiceTrust should embrace a number of design
objectives with respect to performance, ease of maintenance,
privacy and attack resilience. First, the system should by
design scale to large number of participants in terms of trust
computation, storage requirement and communication
complexity of the system. This scalability requirement
demands high performance system level facilities that can
minimize computational complexity and communication
overhead for trust management. Second, the system should
maintain and respect the anonymity of participants’ trust
values. Third, the system should not rely on central authority
for maintenance and should be self-configuring, self-policing
and self-healing. For example, the enforcement of per-
transaction based feedback rating and real-world ID based
identifier generation should be exercised without central
authority. Finally, the system should be robust and attack
resilient with respect to failure and malicious manipulations
of colluding collectives.

(a)Threat Model A (b)Threat Model B

A. Multi-scale Rating Scheme
Multi-scale rating scheme has been widely adopted in

many real world eCommerce recommendation systems, such
as Amazon, eBay, to provide high quality and fine grain
recommendations. We believe that by replacing binary rating
with multi-scale rating in ServiceTrust, we can potentially
increase the attack resilience by employing quality sensitive
metrics to differentiate dishonest ratings by malicious
participants from feedback ratings by non-malicious
participants. For example, by enabling a peer i to rate another
peer j using a scale of 5 or 10, the feedback ratings can be
more accurately reflect the actual quality difference regarding
the service received by peer i from peer j. In the rest of the
paper, the following scale will be used by peer i to rate peer j
regarding the quality of the transaction service provided by
peer j to peer i.

(c)Threat Model C (d)Threat Model D

1

0

1

(,) 2

3

4

5

b a d

n o r a t i n g

n e u t r a l

t r i j f a i r

g o o d

v e r y g o o d

e x c e l l e n t

−

=

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

 (5)

B. Local trust computation by multi-scale ratings
Recall the vulnerability analysis in Section 3, the feedback

rating aggregation scheme used in EigenTrust [6] has a
number of inherent vulnerabilities. Thus the design of
ServiceTrust follows a number of objectives: (i) malicious
peers should not accumulate positive ratings from good users
by simply performing well in some transactions while
providing dishonest feedbacks, such as type D peers in Threat
model D or camouflage peers in Threat model C. This implies
that ServiceTrust needs to provide capability of identifying
such malicious behaviors. (ii) A peer who wants to get a good
local trust value from other peers must provide consistently
good enough services. Also peers who always get high scale
ratings, such as 5 or 4 score in the multi-scale rating scheme

(4) should have higher local trust values than those with
always low feedback ratings of 1 or 2. (iii) Malicious
behavior, be it a bad service or dishonest feedback rating,
should be punished, in the sense that the trust of a peer is hard
to build but can drop sharply once detected being malicious.

With these design goals in mind, we propose to compute
the local trust value that peer i has for peer j by using their
rating variance. Concretely,. let J denote the set of
participants that i gives rating to. We define s(i, j) as follows:

(,) (,)((,) (,))
 (,) ! 0

m ax ((,)) (,)
(,)

(,)((,) (,))

m ax ((,))

k

v i j i j sa t i j u n sa t i j
if v i j

tr i J v k j
s i j

i j sa t i j un sa t i j
o th erw ise

tr i J

μ

μ

−
=

=
−

⎧
⎪⎪
⎨
⎪
⎪⎩

∑

In Formula (6), denotes the variance of all the

ratings that i gives j. Usually, the smaller is, the more
stable j’s service is, which means that j should have relatively
higher local trust. v i is computed as follows:

(6)

(,)v i j

(,)j

(,)v i j

21
(,) ((,) (,))

ll
i j tr i j i j

m
ν μ= × −∑ (7)

In Formula (7), we assume that there are m transactions in
one spectacular interval. is the lth transaction’s rating
value that i gives to j.

(,)ltr i j
(,)i jμ is the mean value of all the

ratings that i gives to j. (,)i jμ is defined as follows:

1

1
(,) (,)

m

l

l

i j tr i j
m

μ
=

= × ∑ (8)

To ensure the local trust value that peer i has for peer j,
denoted by cij is in the range of [0,1], we normalize s(i,j) as
follows:

m ax ((,) , 0)
m a x ((,) , 0) 0

m a x ((,) , 0)
j

jij

j

s i j
i f s i j

s i jc

p o th e r w ise

≠
=

⎧
⎪
⎨
⎪⎩

∑
∑

p j =
1/ | P | if j ∈ P
0 otherwise

⎧
⎨
⎩

C. Global trust computation by trust propagation
In addition to measure pairwise multi-scale rating

similarity by variance and mean based normalization, we also
measure the rating similarity between two peers based on how
they rate another participant. The former allows us to assign
higher local trust values to peers that have more similar rating
behavior. The latter enables us to distinguish those
strategically malicious participants from good peers, because
such malicious peers provide satisfactory transactions to get
high feedback ratings but provide dishonest feedbacks in an
attempt to subvert the system. Therefore, in ServiceTrust, we
advocate to incorporate the pairwise feedback similarity into
the trust aggregation algorithm. The basic motivation for
using feedback similarity weighted trust propagation metric is
to differentiate the positive ratings generated by good peers
from malicious peers acting as spies. We capture the pairwise
feedback similarity in terms of both positive feedback
similarity and negative feedback similarity, denoted by
pos_sim(i,j) and neg_sim(i,j) respectively.

Positive similarity. Let pos_comm(i,j) denote the subset
of common participants that both i and j have given positive

ratings. We propose a similarity function based on the
Normalized Euclidean Distance(NED) as follows:

2

_ (,)

| (,)|

1

| _ (,) |

((,) (,))

1_ (,)

(,) (,) / | (,) |

(,) (,) / | (,) |

| _ |

0

max())

 k pos comm i j

R i k

m
m

m
m

pos comm i j

i k j k

pos sim i j

i k tr i k R i k

j k tr j k R j k

pos comm

otherwise

S

μ μ

μ

μ

∈

=

=

−

−=

=

=

>

×

⎧
⎪⎪
⎨
⎪
⎪⎩

∑

∑ （

（

| (,)|

1

max())
R j k

S×∑

0

 (9)

(,)R i k is the total number of transactions happened between
peers i and k. (,)i kμ is the normalized mean rating value that
i gives to k after (,)R i k transactions. max_mean(S) denotes
the maximum mean rating value of the entire service network.

Negative similarity. Let neg_comm(i,j) denote the subset
of common users that both i and j have rated. This measures
the negative similarity in terms of the number of peers that
peer i and peer j have opposite mean rating values.

_ (,)

((,), (,))

1 | _ (,)|_ (,)

1 if (,) (,) 0
((,), (,))

0 if (,)

| _ (,) |

0

 k neg comm i j

count i k j k

neg comm i jneg sim i j

i k j k
count i k j k

i k

neg comm i j

otherwise

μ μ

μ μ
μ μ

μ

∈
−

=

× ≤
=

×

>
⎧
⎪
⎨
⎪⎩

∑

{ (,) 0j kμ >

0
(10)

The feedback similarity between two users depends on the
historical transaction information. Thus (,)i kμ is the average
rating value between i and k after certain number of
transactions. We define sim(i,j) as the final similarity value
between i and user j after we get the neg_sim(i,j) and
pos_sim(i,j).
Let wn be the weight of negative similarity and wp be the
weight of positive similarity.

(,) _ (,) _ (,)n psim i j w neg sim i j w pos sim i j= × + ×

()R i

(11)Let denote the set of peers that have transactions
with peers i. We can compute the similarity weighted local
trust that i places on j, denoted by scij as follows:

scij = cij × (sim(i, j) / sim(i,k)
k∈R (i)∑) .

To facilitate the comparison of different local trust values,
we normalize scij by as follows: ijl

()

m ax(, 0)

m ax(, 0)

0

ij

ikij k R i

sc

scl
∈

=

⎧
⎪
⎨
⎪
⎩

∑
 (12)

Let denote the local trust matrix of size n by n and []ijL l=

t k+1 denote the global trust value vector of size n to be
computed at (k+1)th round of iterations. We define
t k+1 = (1− a)LT t k + ap , where a is the probability of a user
knows none and thus relies on the pre-trusted peers. We can
expand t k+1 as follows:

1

1 1 2 2(1)(...)k k k k

i i i ni nl l lt t t t ipα α+ = − + + + + (13)

V. EXPERIMENTAL EVALUATION
This section evaluates the performance of ServiceTrust by

comparing it with EigenTrust and Non_Trust service
provision network system under the four attack models.

A. Experimental Setup
We simulate service provision networks of varying sizes

by building a decentralized file sharing service network where
peers can request files from other peers in the network (as
service consumer) or respond to file download requests from
others (as service provider). To make sure that a peer i can
enter a feedback to another peer j only when peer i has
received a service provided by peer j, we create a Gnutella-
like peer to peer file sharing network by interconnecting peers
using a power-law network (resemble to a real world p2p
network). A query issued by any peer will be propagated by
iteratively broadcast hop by hop over the chosen hop-count
horizon of the network, say 7 hop-horizon.

Nodes in each service network consists of three types:
pre-trust nodes whose initial global trust is greater than zero,
normal nodes who participate the network for download and
upload services, and malicious nodes who are the adversaries
attempting to degrade or destroy the quality and performance
of the service network system.

We use a probabilistic content distribution model where
each peer initially select a number of content categories and
share files only in these categories. Within one content
category files have different popularizes following Zipf
distribution. Files are assigned to peers probabilistically at
initialization time based on file popularity and the content
categories the peer plans to share.

The simulation of the service network dynamics is done
through simulation cycles. Each cycle consists of multiple
query cycles. In each query cycle peers can probabilistically
choose to ask queries or forward queries or respond to queries.
The number of queries issued for different file download
services are also based on Zipf distribution. After issuing a
query peer waits for response. Upon obtaining a list of
providers that responded to the query, the peer select one
provider from the list and starts downloading the file. The
selection process will be repeated until a user has received an

satisfied service. We choose the probabilistic-based selection
as the selection method. At the end of each simulation cycle,
the local and global trust values are computed. We run each
experiment several times and the results of all runs are
averaged. The performance metrics used in this paper include
the number of inauthentic file downloads (unsatisfactory
services) v.s. the number of authentic file downloads
(satisfactory services). If the global trust values accurately
reflect each peer’s actual behavior, then high global trust
values minimize the number of inauthentic downloads. We
are also interested in time complexity and the iteration rounds
used for trust propagation.

To make our comparison with EigenTrust fair, in the first
set of experiments, we choose the same set of configuration
parameters as those in EigenTrust experiments [6] as shown
in Table I. In the second set of experiments, we extend to
larger size networks. We show that the trust scheme that does
well in small scale networks also performs proportionally
well in large networks. We set pre-trusted peers to have 10
initial neighbors. To simulate the hostile environment as is
done in [6], we also set malicious peers to have at least 10
initial neighbors and normal peers with at least 2 initial
neighbors. This scheme allows malicious peers to be
connected to the highly connected peers and to other
malicious peers.

B. Effectiveness of ServiceTrust
In this section, we compare the effectiveness of

Non_Trust, EigenTrust and ServiceTrust in terms of attack
resilience. All simulations are executed under Threat models
A, B, C and D. The experiment results are shown in Fig.2.

For Threat models A and B, both EigenTrust and
ServiceTrust outperforms non_trust systems with consistently
about 5%-10% of failed services (malicious downloads) no
matter how the ratio of malicious nodes varies in the network
from 0% to 90%. Note that the 5-10% of failed services are
primarily from normal peers performing unintentionally bad
service or due to the use of the maximum 10% probability as
newcomer policy, which allows a peer with global trust value
0 to be selected as a provider. This gives the malicious peers
with zero trust values 10% probability of being selected as a
provider.

TABLE I. SIMULATION CONFIGURATION

 parameter value
Network # of good users, pre-trust users and malicious users good-(60-100) pre-trust(3) malicious(0-42)

of neighbors for pre-trust and malicious users 10
of neighbors for regular good users 2
of hops for forwarding queries 7

Service
distribution

Number of distinct services of the whole system 20
fraction of distinct services at good user i 20%
Set of services categories supported by good peer i Zipf distribution

Top % of queries for most popular services malicious users respond to 20%
Queries of services issued by good user i Zipf distribution

System
Behavior

% of service requests in which good user i provides unsatisfied services 5%
% of service requests in which malicious user i provides unsatisfied services Varied in different threat model
provider source selection algorithm Probabilistic based and similarity based

Probability that user with global trust value 0 is selected as service provider 10%

Figure 2. Fraction of failed services in four threat models

For Threat models C and D, the ServiceTrust model
consistently performs well with 5%-10% of failed services
(malicious downloads) with the percentage of camouflage
malicious nodes is increased to 90% in the network. However,
EigenTrust starts failing compared to Non_Trust system when
the camouflage probability f% reaches 50% in Threat model
C. For Threat model D, we simulate a network of 103 peers
with 60 normal peers, 3 pre-trust users and 40 malicious users,
divided into two groups, regular malicious peers (Type B) and
strategically malicious spy peers (type D). We vary the ratio
of type D and type B peers in each experiment from 40 type B
users, 0 spy users to 5 type B peers, 35 type D peers.
ServiceTrust performs consistently better than both Non-
Trust system and EigenTrust in all cases. When the number
type D peers (spy) reaches 50% of the malicious peers (20 out
of 40), EigenTrust starts getting higher number of failed
services than Non_trust system as the number of type D peers
increases, while ServiceTrust constently performs well with
only 5% failed services due to the 10% probabalistic new
comer selection policy. The strength of ServiceTrust against
strategic malicious attempts attributes to its feedback variance
weighted local trust computation and its feedback similarity
weighted global trust propagation, which makes use of the
sharp difference between the rating behavior of malicious
users in the malicious collective and the feedback rating
behavior of normal peers to control the trust propagation from
good peers to malicious peers.

C. Time Complexity and Impact of Network Scale
In the previous sets of experiments, we use the same size

of networks as those in [6] in order to provide a fair
comparison with EigenTrust. Also the network density in [6]
is fairly dense with degree of 10 for malicious peers. In this
section we will evaluate ServiceTrust using varying sizes of
service provision networks, ranging from 100, 500, 1000,
5000 and 10,000, all with low node degree (on average of 5)
to evaluate the performance of ServiceTrust in a sparse
network of varying size from 100 to 10,000 participants.

Figure 3 shows that when the scale of network is 100,
only 4 iteration rounds are needed to compute global trust for
every peer. However, we can only get the global trust values
for 14% and 7% of all peers in the network within 4 iteration
rounds when the scale of network are 5,000 and 10,000
respectively. As the size of the service network increases, the
number of iteration rounds we need to compute global trust
through trust propagation also increases. But ServiceTrust can
finish the global trust computation through trust propagation
in 7 rounds of iteration for all the network scales in this
experiment. This shows that even with a network of size
10,000 and average degree of 5, most nodes can reach out to a
large population in 7 hops.

Threat Model A Threat Model B

Threat Model C Threat Model D

Figure 3. The ratio of reached peers in different iterations

Figure 4. Time Complexity for trust propagation

Figure 4 shows the time complexity of global trust
computation in ServiceTrust. As the network size increases
from 100 to 10,000, the time needed to compute global trust
for all participants through trust propagation will increase.
Compare with the network of size 10,000, the time
complexity of network size of 100 participants is very tiny. In
7 hops, the time complexity of trust propagation over a
network of 100 participants is 0.00282 seconds and the time
complexity increases to 20 seconds when the size of the
service network reaches 10000.

Now we compare ServiceTrust with EigenTrust and
Non_trust system in terms of how the percentage of
inauthentic downloads varies in Threat model C and Threat
model D, when we varying the sizes of networks. From
Figure 5 we observe two facts. First, the percentage of
inauthentic downloads (failed services) in all three systems is
less sensitive to the increase of network sizes. Second, as the
size of the network increases, the number of inauthentic
downloads (failed services) remains consistently low in
ServiceTrust for different sizes of networks in both Threat
models C and D. In contrast, EigenTrust has much higher
number of failed services in comparison to ServiceTrust. Also
in Threat model D, the number of failed services in
EigenTrust is close to that of Non_trust system, showing

again that EigenTrust is inadequate for managing trust in the
presence of colluding malicious collectives.

ACKNOWLEDGEMENT

 This work is partially sponsored by grants from NSF CISE
NetSE program and SaTC program, Intel ISTC on Cloud
Computing, National Nature Science foundation of China
under grant No.s: 61272173, Liaoning Nature Science fund
under grant no.:201102038 and Basic Research fund for
higher universities (DUT12ZD104). The first author
conducted this work as a visiting PhD student at school of
Computer Science in Georgia Tech, funded by China
Scholarship Council.

Figure 5. The effect of network scale on trust models.

(a)Threat model C f=0.4 (b)Threat model D type D=20
REFERENCES

[1] T. Beth, M. Borcherding, and B. Klein. Valuation of trust in
open networks. In Proc. 3rd European Symposium on
Research in Computer Security – ESORICS ’94, pages 3–18,
1994.

 Next we compare the performance of Non_Trust,
EigenTrust and ServiceTrust in sparse network and dense
network. Figure 12(a) shows that in Threat model C, the
percentage of failed services in the sparse network is much
higher than the result in a dense network for all three systems,
about 15% higher in Non_Trust case, 8% higher in
EigenTrust and 8% higher in ServiceTrust. In Threat model D,
for the Non_Trust case, the percentage of failed services in
the sparse network is extremely high about 98% than it is in
the dense network. In short, ServiceTrust is more robust than
EigenTrust in sparse or dense rating network in all scenarios.

[2] Catherine Dwyer, Starr R.Hiltz, Katia Passerini. Trust and
privacy concern within social networking sites: A comparison
of Facebook and MySpace. In Proceedings of the Thirteenth
Americas Conference on Information Systems. 2007.

[3] X.X. Fan, L. Liu, M.Ch. Li, Zh.Y. Su. EigenTrust++: Attack
Resilient Trust Management. In Proceeding of 8th IEEE
International Conference on Collaborative Computing:
Networking, Applications and Work sharing, page

[4] J. Golbeck and J. Hendler. Inferring binary trust relationships
in Web-based social networks. ACM Transactions on Internet
Technology, ACM, 6(4):497-529,2006.

[5] Jennifer Golbeck. Trust and nuanced profile similarity in
online social networks. ACM Transactions on the Web (TWEB),
3(4):1-33,2009.

[6] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in p2p
networks. In Proceedings of the 12th international conference
on World Wide Web, pages 640–651.ACM, 2003.

[7] A. Y. Ng, A. Zheng and Jordan. Link analysis, eigenvectors
and stability. In Proceedings of 17th International Joint
conference on Artificial Intelligence. page 903-910, 2001

Figure 6. Percentage of failed services in sparse v.s. dense rating network

VI. CONCLUSION
 We have presented ServiceTrust, a quality sensitive and
attack resilient trust management facility for service
provision networks. ServiceTrust offers attack resilience
through three novel trust establishment techniques. First, we
use multi-scale feedback rating scheme to enable providers
offering high quality of services to be rewarded with high
local trust values. Second, we incorporate the variances of
user's rating behaviors into the local trust algorithm. Third,
we exploit pairwise feedback similarity scores to weight the
contributions of local trust values towards the global trust of
a participant. We show that the pairwise feedback similarity
weighted trust propagation can strengthen the robustness of
global trust computation against malicious collectives in
addition to sparse feedbacks. Experimental evaluation with
independent and colluding attack models show that
ServiceTrust is highly resilient to various attacks and highly
effective compared to existing state of art trust models, such
as EigenTrust.

[8] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara.
Reputation Systems. Communications of the ACM, 43(12):45–
48, 2000.

[9] Amir Seyedi, Rachid Saadi and Valérie Issarny. Proximity-
Based Trust Inference for Mobile Social Networking. In
Proceedings of 5th IFIP WG 11.11 International Conference
on Trust Management, vol.358: 253-264,2011.

[10] S. Song, K. Hwang, R. Zhou, and Y.K. Kwok. Trusted p2p
transactions with fuzzy reputation aggregation. Internet
Computing, IEEE, 9(6):24–34, 2005.

[11] L. Xiong and L. Liu. Peertrust: Supporting reputation-based
trust for peer-to-peer electronic communities. IEEE
Transactions on Knowledge and Data Engineering, 16(7):843–
857, 2004.

[12] H.B. Zhang, Y. Wang and X. Zh. Zhang. Transaction
Similarity-Based Contextual Trust Evaluation in E-Commerce
and E-Service Environments. In Proceedings of IEEE
international conference on Web Services(ICWS), page 500-
507,2011.

(a)Threat model C f=0.4 (b)Threat model D type D=20

http://dl.acm.org/author_page.cfm?id=81100123477&coll=DL&dl=ACM&trk=0&cfid=124863684&cftoken=73771590

	II. Related Work
	III. Background and Overview
	A. Reference Trust Model
	1) Computing local trust by aggregating feedbacks
	2) Computing global trust by trust propagation kernel

	B. Threat models
	Threat model A (Independently Malicious)
	Threat model B (Malicious Collectives)
	Threat model C (Malicious Collectives with Camouflage)
	Threat model D (Malicious spies)

	C. Trust based service selection models
	Random selection. When trust is not supported, a service requestor often randomly selects one provider in the list of matching providers as her preferred provider.
	Threshold-based random selection. A requestor randomly select a provider from the subset of providers in the matching list, whose trust values are higher than a given threshold value.
	Deterministic selection. A requestor only selects the provider with the highest global trust value among the list of matching providers as her preferred provider. The problem with this approach is the potential of overloading the providers with high trust values.
	Probabilistic-based selection. A requestor chooses each matching provider i as its preferred provider with probability assuming that there are M matching providers that can provide the requested service. In order to give the newcomers a chance to be selected, we can complement the trust enabled probabilistic selection by allowing a peer j with zero trust value to be selected at a system defined maximum probability, say 10% [6].

	D. Vulnerabilities in the Reference Model

	IV. ServiceTrust
	A. Multi-scale Rating Scheme
	B. Local trust computation by multi-scale ratings
	C. Global trust computation by trust propagation
	Positive similarity. Let pos_comm(i,j) denote the subset of common participants that both i and j have given positive ratings. We propose a similarity function based on the Normalized Euclidean Distance(NED) as follows:
	Negative similarity. Let neg_comm(i,j) denote the subset of common users that both i and j have rated. This measures the negative similarity in terms of the number of peers that peer i and peer j have opposite mean rating values.

	V. Experimental Evaluation
	A. Experimental Setup
	B. Effectiveness of ServiceTrust
	C. Time Complexity and Impact of Network Scale

	VI. conclusion
	References

