
Context-aware Cloud Service Selection based on Comparison and Aggregation of
User Subjective Assessment and Objective Performance Assessment

Lie Qu, Yan Wang and Mehmet A. Orgun
Macquarie University

Sydney, NSW 2109, Australia
{lie.qu, yan.wang, mehmet.orgun}@mq.edu.au

Ling Liu
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

ling.liu@cc.gatech.edu

Athman Bouguettaya
RMIT University

Melbourne, VIC 3001, Australia
athman.bouguettaya@rmit.edu.au

Abstract—Due to the diversity and dynamics of cloud
services, it is usually hard for potential cloud consumers
to select the most suitable cloud service. In prior studies,
cloud service selection is usually based on either objective
performance assessment or cloud users’ subjective assessment
(e.g., subjective ratings). However, either assessment way has
its limitation in reflecting the quality of cloud services. This
causes a problem that some vital performance aspects which
concern potential cloud consumers are not taken into account
in cloud service selection.

This paper proposes a novel context-aware cloud service
selection model based on the comparison and aggregation of
subjective assessment extracted from cloud user feedback and
objective assessment from quantitative performance testing. In
this model, objective assessment provided by some professional
testing parties is used as a benchmark to filter out potentially
biased subjective assessment from cloud users, then objective
assessment and subjective assessment are aggregated to eval-
uate the overall performance of cloud services according to
potential cloud users’ personalized requests. Moreover, our
model takes the contexts of objective assessment and subjective
assessment into account. By calculating the similarity between
different contexts, the benchmark level of objective assessment
is dynamically adjusted according to context similarity, which
makes the following comparison and aggregation process more
accurate and effective. After aggregation, the final results can
quantitatively reflect the overall quality of cloud services. Fi-
nally, our proposed model is evaluated through the experiments
executed in different conditions.

Keywords-Cloud service selection; Subjective or objective
assessment; Context similarity;

I. INTRODUCTION

Many individuals and organizations have started to con-
sume cloud services in their daily work because of many
advantages, such as unlimited resources, flexibility, low-cost
and especially the pay-as-you-go model. Cloud computing
is service-oriented. Compared to traditional web services,
cloud services can provide more complex functions, e.g.,
users can develop their own applications in a PaaS (Platform-
as-a-Service) cloud.

Due to the diversity and dynamics of cloud services,
selecting the most suitable cloud service has become a
major issue for potential cloud consumers. Prior to cloud
service selection, an evaluation of cloud services should be
applied first. There are two types of approaches which can
be used to conduct such an evaluation. The first type of
approaches is based on objective performance assessment
from ordinary QoS (Quality-of-Service) value (e.g., service
response time, availability and throughput) monitoring [22]
[2] [17] and predesigned benchmark testing [10] [1] [9].
As cloud services are highly virtualized, some methods and
tools for traditional IT computation measurements can be

appropriately applied in cloud environments. By combining
these methods and tools according to cloud features, many
metrics can be quantitatively assessed (e.g., the speed of
CPU and storage in virtual machines). The second type of
approaches is based on user subjective assessment which is
usually extracted from user ratings for each concerned aspect
of cloud services [18] [13]. In this type of approaches, cloud
services are usually treated like traditional web services,
thus some rating-based reputation systems [15] [11] can be
utilized for cloud service selection.

Nevertheless, these two types of cloud service evaluation
approaches have their own limitations. For example, consid-
ering a health center processing a large amount of sensitive
customer data every day, the security and privacy of cus-
tomer data have a crucial impact on the center’s reputation.
If the center plans to move its work into cloud environments
in order to reduce daily costs, a suitable cloud provider
which has very good reputation on data security and privacy
needs to be selected. In addition, as the health center is
not a professional IT organization, comprehensive and high-
quality after-sales services are highly desired. Moreover,
a variety of encryption approaches need to be frequently
applied due to the sensitivity of customer data. Hence, the
speed of data encryption and decryption is a big concern
for the center. In this example, neither of the two types
of cloud service evaluation approaches introduced above
can be used to reflect all the concerned aspects (e.g., data
security and privacy, after-sales services and cryptographic
calculation speed) of the health center. That is because,
firstly, objective performance assessment can only be carried
out for the performance aspects which can be easily quan-
tified. Conversely, objective assessment is not appropriate
for those aspects which are quite hard to quantify, such as
data security, privacy and after-sales services. On the other
hand, subjective assessment has the risk of inaccuracy since
users’ subjective feelings are very likely to contain bias
and not reflect the real situations of cloud performance. In
addition, as cloud users who give subjective assessment are
usually spread throughout the world, for any cloud service,
the subjective feelings of a cloud user in a context (e.g.,
morning in Sydney) may be much different from those
of another user in a different context (e.g., afternoon in
Paris). Furthermore, there may be malicious users who give
unreasonable subjective assessment to deceive others and/or
benefit themselves in some cases. As a result, the accuracy
of overall subjective assessment for cloud services can be
significantly affected. Hence, a cloud service selection model
which can be used to not only aggregate different perfor-
mance aspects of cloud services but also filter unreasonable
user subjective assessment is highly desirable.

To overcome the aforementioned drawbacks, this paper
proposes a novel context-aware cloud service selection
model based on the comparison and aggregation of sub-
jective assessment extracted from cloud user feedback and



objective assessment from quantitative performance testing.
In this model, according to a potential cloud consumer’s
requirements, an objective assessment provided by some
professional testing party is first applied as a benchmark to
filter out biased or unreasonable subjective assessments. In
order to guarantee the accuracy of such filtering, our work
considers two assessment features (i.e., location and time) in
contexts, which can commonly affect both objective assess-
ment and subjective assessment. In this paper, the process of
filtering is based on the context similarity between objective
assessment and subjective assessment, i.e., the more similar
the context, the more reliable subjective assessment, so that
the benchmark level is dynamically adjusted according to
the corresponding context similarity. After such filtering, the
final aggregated results can reflect the overall performance
of cloud services according to potential users’ personalized
requirements.

After introducing the related work of cloud service selec-
tion in Section 2, some preliminaries are presented in Section
3. Then, the details of our model are discussed in Section
4. Section 5 presents the experimental results. Finally, this
paper is concluded in Section 6.

II. RELATED WORK

Approaches to cloud service selection can be categorized
into two types based on whether objective assessment or
subjective assessment has been utilized. Objective assess-
ment is usually acquired from service QoS monitoring and
benchmark testing, and subjective assessment is usually
acquired from ratings in user feedback.

In the literature of objective assessment based cloud ser-
vice selection, Zheng et al. [22] introduce a QoS prediction
framework for optimal cloud service selection based on
users’ ranking similarity, and propose two personalized QoS
ranking prediction approaches for potential users. However,
their approaches can only rank different QoS properties
independently, thus cannot reflect the overall performance of
cloud services. Chen et al. [2] propose a cloud service eval-
uation model using QoS ontology for only three dimensions
(i.e., resource utilization, service performance and cost) of
service performance. Rehman et al. [17] propose a multi-
criteria model for IaaS (Infrastructure-as-a-Service) cloud
service selection using QoS history which is divided into
several timeslots. The optimal cloud service in each timeslot
is selected first, and then aggregated to find the overall
optimal service. Although their work considers multiple
criteria, the performance aspects which are hard to quantify
are not taken into account. In the literature, as cloud services
are web-based, some service selection approaches designed
for common web services [19] [20] can also be applied in
cloud environments through modification according to cloud
features.

It should be noted that QoS-based objective assessment
for cloud services is insufficient to evaluate the complex
and flexible functions of cloud services. To this end, many
predesigned benchmark testing scenarios are employed for
the specific quantitative performance aspects of cloud ser-
vices. In [10], Li et al. propose a systematic comparator
called CloudCmp, which can be employed to compare three
specific performance aspects (i.e., elastic computing, persis-
tent storage and intra-cloud and wide area networking) of
public clouds through a set of standard benchmark tools.
In [1], Binning et al. propose a benchmarking approach
for cloud services based on the metrics of scalability, cost,
peak-load and fault tolerance. In [9], Lenk et al. highlight
the significance of third-party performance testing of cloud
services, as the performance indicators provided by cloud
providers may not be enough to judge the real performance
of cloud services. They propose a new performance measure-
ment which considers the types of services running on IaaS

clouds. Recently, some organizations (e.g., CloudHarmony1

and CloudSleuth2) have started to offer third-party cloud
monitoring and testing services. Compared to the perfor-
mance indicators provided by cloud providers, such third
party testing may be more reliable due to no direct profits
involved.

In the literature of subjective assessment based cloud
service selection, Rehman et al. [18] propose a framework
for dynamically monitoring and predicting cloud perfor-
mance based on user feedback. However, their work only
considers cloud users’ subjective assessment. There is no
mechanism to check the reliability of users’ feedback. In
[13], Noor et al. propose a framework for trust management
in cloud environments, and introduce a credibility model
that has the ability to detect malicious user feedback based
on majority consensus and feedback density. However, their
work does not consider the case that plenty of users might
collude to behave maliciously. As cloud services can be
considered as common web services, many rating-based rep-
utation systems can be employed in cloud environments for
service selection. Srivastava et al. [15] present a method to
compare functionally equivalent services on the basis of the
customers’ perception of the QoS attributes rather than the
actual attribute values. In [11], Li et al. propose several trust
vector based service evaluation approaches, where a trust
vector is calculated to reflect both the current trustworthiness
of a service and its trust trend. Such trust values or vectors
are all evaluated from ratings which represent the subjective
assessment of services given by service consumers.

In order to consider multiple performance aspects, some
studies model the cloud service selection problem as a multi-
criteria decision-making (MCDM) problem, which can be
solved by Analytic Hierarchy Process (AHP) [12]. Godse
et al. [6] focus on the selection of SaaS (Software-as-
a-Service) clouds using AHP based on five factors (i.e.,
functionality, architecture, usability, vendor reputation and
cost). Their approach is mainly based on user subjective
assessment. Another AHP-based cloud service selection ap-
proach is proposed by Garg et al. [5]. It should be noted that,
in these AHP-based approaches, all performance aspects
should be standardized before processing AHP. However,
such standardization for some attributes (e.g., elasticity and
reliability) cannot be easily achieved in practice. Moreover,
none of these approaches consider the credibility of the
assessment before processing AHP.

In our prior work [14], we propose a cloud service
selection model based on both objective assessment and
subjective assessment. In this model, objective assessment
and subjective assessment are first normalized in fuzzy num-
bers, and then objective assessment is used as a benchmark
to filter out biased subjective assessment since objective
assessment is usually more objective and accurate through
scientific analysis and statistics. However, such filtering
process does not take the contexts of assessment which
can commonly affect assessment into account. That makes
that the filtering process may be carried out inaccurately in
some cases, thus affecting the overall result of cloud service
selection. This paper proposes a solution to overcome this
drawback in our prior model of cloud service selection.

III. PRELIMINARIES
Before introducing our context-aware cloud service se-

lection model in Section 4, we first briefly introduce our
preliminary work [14] in this section.
A. The Proposed Framework

In our prior work [14], a framework is proposed for cloud
service selection based on both cloud user feedback and
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objective performance benchmark testing. This framework is
composed of four components, namely, (1) cloud selection
service, (2) benchmark testing service, (3) user feedback
management service, and (4) assessment aggregation ser-
vice, where cloud selection service is in the higher layer of
the framework to command the others in the lower layer.

1) Cloud Selection Service: The cloud selection service
is responsible for accepting and preliminarily processing
requests from potential cloud consumers and issuing com-
mands to the lower layer services. When a potential cloud
user submits a request for selecting the most suitable cloud
service, the cloud selection service first chooses those cloud
services which can meet all the basic and minimum re-
quirements (e.g., the type of services, the specification of
virtual machines and costs) of the potential user from a
candidate list of cloud services. Then, according to the user’s
further requirements, it sends requests to the benchmark
testing service and the user feedback management service
for accessing the related records of all alternative clouds.
These records are then sent to the assessment aggregation
service, which returns the final aggregated score of every
alternative cloud service to the cloud selection service.

2) Benchmark Testing Service: The benchmark testing
service is in charge of QoS (e.g., response time and availabil-
ity) monitoring and performance benchmark testing. When
the benchmark testing service receives the commands from
the cloud selection service, the results of QoS monitoring
for all the alternative clouds are gathered, and some specific
performance aspects (e.g., cryptographic calculation speed)
are tested on each alternative cloud through a variety of
predesigned testing scenarios according to the potential
user’s requirements. Then the benchmark testing service
sends both the QoS monitoring records and testing results
to the assessment aggregation service. Each performance
aspect monitored and tested by the benchmark testing service
can be considered as an objective attribute of a cloud service.
All these objective attributes are expressed in quantitative
forms (e.g., 2.15s for response time and 29.87 benchmark
scores for CPU performance).

3) User Feedback Management Service: The user feed-
back management service is responsible for collecting and
managing the feedback from the users who are consuming
cloud services. For each performance aspect of a cloud
service, a user gives his/her subjective assessment according
to his/her perception. Each aspect that users can assess can
be considered as a subjective attribute of the cloud service.
These subjective attributes are expressed by linguistic vari-
ables (e.g., “good”, “fair” and “poor”).

In the framework, some subjective attribute and some ob-
jective attribute can represent the same performance aspect
of a cloud service. For example, the response time of a cloud
service can be accurately monitored and measured under dif-
ferent circumstances. By analyzing these quantitative results,
an objective assessment of response time can be achieved
for the cloud service. Meanwhile, a user consuming this
cloud service can also give subjective assessment of response
time by sensing how long the cloud responds to his/her
requests. Such attributes (e.g., response time) are named as
associated attributes in the framework. Figure 1 illustrates
an example. Assume there are s subjective attributes, o
objective attributes and u pairs of associated attributes for a
cloud service (u ! s, u ! o), where privacy, after-sales
services, availability and response time are its subjective
attributes extracted from users’ feedback. On the other hand,
availability, response time and cryptographic calculation are
its objective attributes extracted from objective performance
assessment. And availability and response time are consid-
ered as its associated attributes.

4) Assessment Aggregation Service: The assessment ag-
gregation Service is in charge of aggregating the values
of subjective attributes and objective attributes from the

Figure 1. The Relationship of Subjective Attributes and Objective
Attributes [14]

benchmark testing service and the user feedback manage-
ment service, and calculating the final aggregated score for
each alternative cloud service according to the importance
weights that are assigned to every attribute by a potential
cloud user in the form of linguistic variables (e.g., “low”,
“medium”, and “high”). By using these weights, a potential
cloud user can also determine whether to put more trust
on subjective assessment or objective assessment, so that
the final score based on aggregating all these attributes can
reflect the various needs of potential cloud users.

B. The Cloud Service Selection Model
In our prior work [14], the overall assessment for a cloud

service depends on s subjective attributes and o objective
attributes, where there are u pairs of associated attributes.
All the subjective attributes and the objective attributes
are denoted as {Ai}, where i = 1, 2, · · · , s + o. {Ai}
(i = 1, · · · , s) denotes the subjective attributes, where {Ai}
(i = s − u + 1, · · · , s) denotes the subjective associated
attributes; {Ai} (i = s+1, · · · , s+ o) denotes the objective
attributes, where {Ai} (i = s + 1, · · · , s + u) denotes the
objective associated attributes. The corresponding objective
associated attribute of the subjective associated attribute Ai
is Ai+u for each i = s−u+1, · · · , s. Suppose that there are
m alternative clouds denoted by {Cj}, where j = 1, · · · ,m.
For an alternative cloud j, there are n subjective assessments
from the user feedback management service denoted as
{Fjk} and one objective assessment from the benchmark
testing service denoted as Tj , where k = 1, · · · , n.

As introduced in Section 3.1, objective assessment and
subjective assessment are expressed in different forms (i.e.,
linguistic variables and quantitative terms). In order to deal
with the uncertainty of linguistic variables, trapezoidal fuzzy
numbers are used to represent these linguistic variables
through some mapping [3]. Meanwhile, trapezoidal fuzzy
numbers can also be used to represent quantitative terms.
In addition, some operations including addition ⊕, multipli-
cation ⊗, division / and a defuzzification method d(∗̃) for
converting a fuzzy number to a crisp number are defined
for trapezoidal fuzzy numbers. As a result, both objective
assessments and subjective assessments can be normalized
for further comparison and aggregation.

The detailed procedure of our prior cloud service selection
model [14] consists of five steps:

Step 1 (Converting the values of subjective attributes
into ratings): Through a mapping from linguistic variables
to fuzzy numbers [3], the values of subjective attributes in
all subjective assessments given by different cloud users
are converted into trapezoidal fuzzy numbers. For example,
“good” can be represented by (5, 7, 7, 10), where the value
7 represents “absolute good” and the values in the intervals
[5, 7] and [7, 10] represent the “fuzziness of good”. And
“very good” can be represented by (7, 10, 10, 10). These
fuzzy numbers are considered as the fuzzy ratings for every
subjective attribute. Let r̃ijk and rijk denote the fuzzy rating
and the crisp rating computed by d(∗̃) for the subjective



attribute Ai of the alternative cloud Cj from the subjective
assessment Fjk respectively, where i = 1, · · · , s.

Step 2 (Converting the values of objective attributes
into ratings): Quantitative terms can also be represented by
trapezoidal fuzzy numbers. For example, “equal to 30” can
be represented by (30, 30, 30, 30), and “approximately equal
to 30” can be represented by (28, 30, 30, 32). In this step,
the quantitative values of every objective attribute from the
objective assessments for all alternative cloud services are
first represented using fuzzy numbers. Then, all these fuzzy
numbers are converted into fuzzy ratings by comparing every
fuzzy value to the best fuzzy value of each objective attribute
in all alternative cloud services [14]. Let r̃ijk and rijk denote
the fuzzy rating and the crisp rating for the objective attribute
Ai of the alternative cloud Cj from the objective assessment
Tj respectively, where i = s+ 1, · · · , s+ o.

So far, all the values in both subjective assessments
and objective assessments have been converted into fuzzy
ratings. As a result, a fuzzy rating matrix is formed for every
alternative cloud service. For the alternative cloud Cj , its
fuzzy rating matrix is

M̃j =

⎡

⎣
r̃1j1 r̃2j1 · · · r̃(s+o)j1

r̃1j2 r̃2j2 · · · r̃(s+o)j2
· · · · · · · · · · · ·
r̃1jn r̃2jn · · · r̃(s+o)jn

⎤

⎦ .

Step 3 (Filtering out unreasonable subjective assessments):
For a fuzzy rating matrix M̃j of the alternative cloud Cj , the
Euclidean distance between the ratings of the corresponding
subjective associated attributes and the objective associated
attributes is computed for each subjective assessment as
follow:
EDjk =

√∑s
i=s−u+1(rijk − r(i+u)jk)2.

Here, the objective assessment is taken as a benchmark to
filter out unreasonable subjective assessments. If the distance
exceeds a fixed threshold (e.g., 60% of the maximum
Euclidean distance), the subjective assessment offering such
values of the subjective attributes are removed from the
fuzzy rating matrix. By this way, even plenty of cloud users
are colluded to provide unfair subjective assessments, such
unfair assessments can also be filtered out.

Step 4 (Computing the importance weight for each
attribute): According to the potential cloud user’s require-
ment, an importance weight in the form of linguistic vari-
ables is assigned to each subjective or objective attribute.
Through these weights, the potential user can also determine
how much to trust subjective or objective assessment.

A fuzzy weight in the form of trapezoidal fuzzy num-
bers is assigned to each attribute, denoted as W̃i, where
i = 1, · · · , s + o, through another mapping from linguistic
variables to fuzzy numbers [3]. For example, “medium” can
be represented by (2, 5, 5, 8), and “high” can be represented
by (5, 7, 7, 10). Wi is the normalized weight for the attribute
Ai, which is computed as follow:
Wi =

d(W̃i)∑s+o
i=1 d(W̃i)

,where i = 1, · · · , s+ o.

Step 5 (Aggregating all attributes): M̃ ′
j is the fuzzy

rating matrix for the alternative cloud Cj after the filtering
process in Step 3. Its final score Sj is computed as follows:

S̃j = M̃j ⊗

⎡

⎣
W1
W2
· · ·

Ws+o

⎤

⎦ =

⎡

⎢⎢⎣

f̃j1
f̃j2
· · ·
f̃jn′

⎤

⎥⎥⎦ , Sj = 1
n′ (

∑n′
k=1 d(f̃jk)) ,

where n′ is the number of the rest of subjective assessments
after Step 3. Finally, according to the final scores, all the
alternative cloud services are ranked for selection by the
potential cloud user.

IV. CONTEXT-AWARE CLOUD SERVICE SELECTION

In this section, we first introduce what the contexts are
in cloud service selection, and then point out the details of
the drawback in our prior work [14] introduced in Section
3. After that, an improved model is proposed based on the
similarity of assessment contexts.

A. Contexts in Cloud Service Selection

The definition of contexts usually varies in different
application environments. In our cloud service selection
model based on both objective assessment and subjective
assessment, the context of an assessment for a cloud service
refers to a group of values of the features of the assessment,
which can affect the result of the assessment.

To give an example of the impact of a context, according
to the objective statistics from CloudSleuth, the response
time of a cloud service varies significantly under different
worldwide QoS monitoring centers, and generally increases
with the increasing distances between the cloud provider and
these monitoring centers because of the increasing length of
the network routes of cloud service delivery. Meanwhile, the
monitoring results of response time can also be affected by
the time of a day, in other words, how busy the cloud service
and the network accessed by the monitoring centers for
monitoring can vary at different times of a day. Therefore,
both objective assessment and subjective assessment can
be affected according to different assessment contexts. At
the current stage of our work, we consider two assessment
features (i.e., location and time) in our context-aware cloud
service selection model.

In our prior cloud service selection model [14], assess-
ment contexts are not taken into account. However, in
order to have more accurate comparison between objective
assessment and subjective assessment, the similarity between
the contexts of objective assessment and subjective assess-
ment should be considered. More similar contexts indicate
the subjective assessments are given in the more similar
situation with that of the given objective assessment, thus
such subjective assessments are considered more reliable.
Furthermore, in our prior model [14], a fixed threshold
is used as the benchmark value for the objective assess-
ment to filter out unreasonable subjective assessments. This
threshold reflects how much the objective assessment is
trusted. If the threshold is high, more subjective assessments
are retained for the following aggregation process, which
means more subjective assessments are considered reason-
able, otherwise fewer subjective assessments are retained,
which means fewer subjective assessments are considered
reasonable. However, determining such a suitable fixed
threshold is very difficult. Because the fixed threshold means
the subjective assessments with different contexts are treated
equally. If the threshold is determined too high, more noisy
subjective assessments will be left in the final aggregated
results. Conversely, if the threshold is too low, only a few
subjective assessments are left so that only these few subjec-
tive assessments can affect the final aggregated results, and,
as a consequence, the final aggregated results cannot reflect
most users’ subjective assessment. An intuitive solution to
overcome this drawback is to adjust the threshold dynami-
cally according to the context similarity between objective
assessment and subjective assessment. The more similar the
contexts, the more reliable subjective assessments, thus the
threshold should be set higher for retaining more of such
subjective assessments. On the contrary, if the contexts are
less similar, then the threshold should be set lower to filter
out more subjective assessments which are given in more
different situations. Next, the details of computing such
context similarity will be introduced.



Figure 2. An Example of Two Contexts

B. Context Similarity
In [16], Tavakolifard et al. introduce a general idea of

the calculation of context similarity based on the bipartite
SimRank algorithm [8] for trust transferability among sim-
ilar contexts in electronic transactions. In order to compute
the similarity of assessment contexts in our context-aware
cloud service selection model, we follow Tavakolifard et al.’s
idea and propose a concrete approach for context similarity
measurement. In details, our approach consists of two steps:

The first step is to compute the similarity between two
values from the same assessment feature.

The second step is to model all contexts and their relevant
assessment features as a graph and compute the overall
similarity between contexts.

Figure 2 illustrates an example of two contexts A (Sydney,
morning) and B (Singapore, afternoon) belonging to two
assessments respectively. Each context contains two values
for two assessment features (i.e., location and time) respec-
tively. Sydney and Singapore are the values of the feature
location for both contexts respectively. Likewise, morning
and afternoon are the values of the feature time.

In [16], Tavakolifard et al. only introduced how to
compute overall context similarity (i.e., the second step)
through the bipartite SimRank algorithm and did not present
details on computing the similarity between two values
from the same assessment feature (i.e., the first step). For
each assessment feature, a specific comparator needs to be
designed for computing similarity among the values of each
feature. In our context-aware cloud service selection model,
two features are considered in assessment contexts. Next,
we first present a modified version of the bipartite SimRank
algorithm [8] according to our model, and then introduce
the design of the comparators for location and time.

1) Modified Bipartite SimRank: The original bipartite
SimRank algorithm is modified to take different context
comparators into account in our model. Let A and B denote
two contexts and, s(A,B) denote the similarity between A
and B. If A = B, then s(A,B) ∈ [0, 1] is defined to be
1. Let c and d denote assessment features for contexts A
and B, and s(c, d) ∈ [0, 1] denote the similarity between
features c and d. Let Vc(A) and Vc(B) denote the values of
the feature c in the contexts A and B respectively. Likewise,
Vd(A) and Vd(B) denote the values of the feature d in the
contexts A and B respectively. If c = d, then s(c, d) =
Cmpc(Vc(A), Vc(B)) = Cmpd(Vd(A), Vd(B)) ∈ [0, 1],
where Cmpc and Cmpd are the comparators for the features
c and d.

Now, A,B and c, d can be formed to a directed graph
pointing from contexts to features. If we take Figure 2
as an example, we have that A = (Sydney,morning),
B = (Singapore, afternoon), c = location, d = time,
Vc(A) = Sydney, Vc(B) = Singapore, Vd(A) =
morning and Vd(B) = afternoon. In the directed graph,
I(v) and O(v) denote the set of in-neighbors and out-
neighbors of v respectively, where v is a node in the
graph. Ii(v) denotes an individual in-neighbor of v for
1 ≤ i ≤ |I(v)|, and Oi(v) denotes an individual out-
neighbor of v for 1 ≤ i ≤ |O(v)|.

Figure 3. A Geographical Hierarchy

Now we have the recursive equations: for A ̸= B,

s(A,B) =
C

|O(A)||O(B)|

|O(A)|∑

i=1

|O(B)|∑

j=1

s(Oi(A), Oj(B)), (1)

and for c ̸= d,
s(c, d) =

C

|I(c)||I(d)|

|I(c)|∑

i=1

|I(d)|∑

j=1

s(Ii(c), Ij(d)), (2)

where C ∈ (0, 1) is a constant which can be considered
as either a confidence level or a decay factor. In the full
version [7] of Jeh et al.’s paper [8] proposing bipartite
SimRank, they argue that the constant C can be viewed
as the bases of exponential functions whose only purpose
is to map distances to finite intervals. Although the values
of similarity can be affected by C, the relative results of
similarity is still retained. Hence, for the sake of efficiency,
we follow Jeh et al.’s setting to set C = 0.8 in our model. In
addition, Jeh et al. have proven that a simultaneous solution
s(∗, ∗) ∈ [0, 1] to the recursive equations (1) and (2) always
exists and is unique.

2) Design of Comparators: According to each assess-
ment feature, a corresponding comparator needs to be de-
signed and applied in the above modified bipartite SimRank
algorithm. In our model, two assessment features are con-
sidered, i.e., location and time.
Similarity of Locations:

The effect for both objective assessment and subjective
assessment of cloud services is usually caused by the delay
of the Internet communication between the locations of
where the assessments are given and the target cloud service.
In order to precisely model such an effect, the Internet
topology between these parties should be first determined.
However, such a topology should be created by some domain
experts, and is out of the scope of this paper. For the sake
of simplicity, in this paper, we use geographical locations
instead of the Internet locations. That is because the distance
between two nodes in the Internet is commonly determined
by their geographical locations. We introduce a similarity
measurement based on a hierarchical ontology structure [21]
for the assessment feature location in our model.

According to the real monitoring data from CloudSleuth,
we establish a geographical hierarchy according to the order
of regions → countries → cities. Figure 3 illustrates
the Aisa/Oceania part of the hierarchy. In order to measure
the similarity between any two nodes in the hierarchy, we
apply Zhang et al.’s hierarchy-based approach of similarity
measurement [21]. Let D denote the depth of the deepest
common ancestor of two nodes n and n′. For example,
the deepest common ancestor of Beijing and Tokyo is
Asia/Oceania in Figure 3, thus D(Beijing, Tokyo) = 1.
The smaller D represents the deepest common ancestor
of the two nodes is on the upper layer of the hierarchy,
which means the two nodes are fallen into a more general
classification, thus are less similar. Conversely, a larger
D means the two nodes are fallen into a more concrete
classification, thus are more similar. Hence, a monotonically
increasing hyperbolic tangent function is defined to model
this trend:



Figure 4. Similarity of Time

Cmp(n, n′) =
eαD(n,n′) − e−αD(n,n′)

eαD(n,n′) + e−αD(n,n′)
, (3)

where Cmp(n, n′) represents the similarity comparator re-
turning the similarity value between n and n′; α ∈ (0, 1)
is a constant. Here, we follow Zhang et al.’s setting to set
α = 0.4, which is considered optimal according to their
experimental results.
Similarity of Time:

In practice, the reasons why the different times of a
day can affect both objective assessment and subjective
assessment of cloud services are quite diverse and com-
plicated, where the main reason for such an effect is how
busy the networks used by users to access cloud services
are. However, the extent of how busy networks are varies
frequently according to different users’ situations, thus it is
also quite hard to quantitatively measure such changes.

Hence, in our model of context-aware cloud service se-
lection, we divide 24 hours of a day into two time intervals.
When a potential cloud user asks for cloud service selection,
he/she needs to specify in what period of time he/she
hopes to frequently employ the selected cloud service. The
assessments given within that period of time are considered
more reliable for the potential user, and the assessments
given within the non-specified period of time are considered
less reliable for the user. Therefore, in our model every
subjective assessment contains a time stamp to identify
the time when the assessment is given. We assume that
such assessments are required to represent users’ subjective
judgement at that time only. To this end, in our future work
we plan to design an incentive mechanism for giving cloud
users incentives to provide subjective assessments regularly.
Due to the incentive mechanism, most cloud users will give
such subjective assessments with time stamps.

In our model, the assessment feature time has two states,
i.e., specified and non-specified. The similarity between
these two states can be computed through the basic bipartite
SimRank algorithm [8]. Figure 4 illustrates the graph of
similarity of the two states. Then, the similarity between
specified period of time and non-specified period of time
can be computed through Equations (1) and (2).

It should be noted that, except location and time, there
are some other assessment features which can also affect the
assessment results for some reasons (e.g., the Internet service
providers). The similarity among the values of such features
should be computed through specific designed comparator.
And the modified bipartite SimRank algorithm introduced
above can be applied with any further comparator.

C. The Proposed Model
In our context-aware cloud service selection model, we

assume there are plenty of benchmark testing agents spread
around the world providing benchmark testing services.
When a potential cloud user asks for selecting the most
suitable cloud service, according to his/her situation, he/she
needs to specify which agents should be selected to offer ob-
jective assessments for all alternative cloud services. Then,
the cloud service selection will be processed independently
according to each agent. For each benchmark testing agent,
the cloud selection service asks the user feedback manage-
ment service to provide the subjective assessments for all

alternative cloud services from the cloud users all over the
world. Then, all the subjective assessments are classified
according to their contexts (i.e., location and time). As the
nodes in the deepest level of our geographical hierarchy are
cities, the location of each subjective assessment is set as the
nearest city to the real location specified in the assessment in
the hierarchy. And due to time differences among cloud users
all over the world, the time specified in every assessment is
converted into one standard time.

Assume that there are l locations shown in all the sub-
jective assessments. As there are only two states for the
assessment feature time in our model, i.e., specified period
of time and non-specified period of time, all the subjective
assessments are classified into 2l groups. Then, according
to the potential user’s requirement, the benchmark testing
agent provides an objective assessment with contextual
information (e.g., objective performance assessment in the
morning of Sydney).

The process of the comparison and aggregation of the
objective assessment and the subjective assessments is the
same as that of our prior work without the consideration of
assessment contexts [14], except the importance weight set-
ting and changing a fixed threshold to a group of dynamical
thresholds. Such thresholds are computed as follows:

Step 1: The potential user first sets the importance weights
on how much to trust objective assessment or subjective
assessment through linguistic variables. Then, through a
mapping [3], linguistic weights are converted into fuzzy
weights, which are denoted as W̃o and W̃s for objective
assessment and subjective assessment respectively. Then,
the potential user sets the importance weight for each
objective or subjective attribute, denoted as W̃i, where
i = 1, · · · , s+ o. After that, Wi is the normalized weight of
each attribute, which is computed as follow:

Wi =
d(W̃s)

d(W̃s) + d(W̃o)
×

d(W̃i)
∑s

i=1 d(W̃i)
, i = 1, · · · , s,

Wi =
d(W̃o)

d(W̃s) + d(W̃o)
×

d(W̃i)
∑s+o

i=s+1 d(W̃i)
, i = s + 1, · · · , s + o.

(4)

Step 2: Let go denote the context of the objective
assessment, and gv denote the context of each group of
the subjective assessments in the total 2l groups, where
1 ≤ v ≤ 2l. Through the approach introduced in Section
4.2, the similarity between each gv and go is computed and
denoted as sv(gv, go).

Step 3: In order to offset the effect caused by the constant
C in the modified bipartite SimRank algorithm, let so(go, go)
denote the similarity between the contexts of the objective
assessment and itself, and Edis denote the theoretical max-
imum Euclidean distance between corresponding objective
associated attributes and subjective associated attributes ac-
cording to our model. The filtering threshold Rv for the
subjective assessment group with the context gv is computed
as follow:

Rv = (1− d(W̃o)

d(W̃s) + d(W̃o)
)× sv(gv, go)

so(go, go)
× Edis, (5)

where v = 1, · · · , 2l. From the above equation, we can see
when the potential user trusts objective assessment more, Rv
will become smaller, so that more subjective assessments are
considered unreasonable and will be filtered out. In addition,
when the context similarity sv(gv, go) becomes lower, Rv
will become smaller. That means the subjective assessments
are given in a more different situation with that of the
objective assessment, thus such subjective assessments are
considered less reliable and will be filtered out more rig-
orously. Finally, the rest of the subjective assessments after
such filtering and the objective assessment are aggregated



to reflect the overall performance of a cloud service more
accurately.

V. EXPERIMENTS

A. Experiment Setup
In our experiments, there are three subjective attributes,

i.e., cloud provider reputation on privacy (A1), after-sales
services (A2), service response time (A3), and two objective
attributes, i.e., service response time (A4) and CPU perfor-
mance (A5), where service response time A3 and A4 are the
associated attribute pair.

In order to evaluate our context-aware cloud service se-
lection model, two kinds of data are required, i.e., subjective
ratings from cloud users, and objective results of QoS
monitoring and benchmark testing. In our experiments, we
collect the data of response time A4 from CloudSleuth and
the data of benchmark scores of CPU performance A5 from
CloudHarmony for 59 real cloud services. To the best of
our knowledge, there is no data set of cloud user ratings
published for these 59 cloud services. Hence, we simulate
user ratings of the attributes A1, A2 and A3 according to
the collected objective data (i.e., A4 and A5). In details, the
ratings of A1 and A2 are randomly generated, and the normal
ratings of A3 are generated according to the ranking of the
real data of response time in A4. Then, some biased ratings
are added into the normal ratings of A3 to simulate the
ratings from the users who are in different contexts with that
of objective assessments. Here, a bias level denoted as BL is
set to represent how much the biased ratings deviate from the
normal synthetic ratings of A3, where BL = 1, · · · , 8 since
a rating scale of 1-9 is employed in our model. Moreover, a
biased rating percentage denoted as BRP is set to represent
how many biased ratings there are in all the subjective
ratings.

We assume that all the subjective ratings are from the
cloud users belonging to two different contexts. The one
context is (Sydney, afternoon) which is also the context
of the objective assessment in our experiments, and the
other context is (Hong Kong, morning). According to the
algorithm introduced in Section 4.2, the similarity of the
two contexts is 0.4714. Thus, two thresholds are computed
for the comparison of subjective assessment and objective
assessment according to different importance weights (i.e.,
W̃o and W̃s).

B. Evaluation Metric
In our experiments, we first generate 1000 normal ratings

for the attributes A1, A2 and A3 respectively through the
way introduced in Section 5.1, and then replace some
proportion of normal ratings with biased ratings. Here,
the original normal rating matrix is denoted as Mo, and
the corresponding processed rating matrix including biased
ratings is denoted as Mb.

As Mo is generated according to the objective assessment,
the ratings in Mo are considered very accurate. Thus, the
final aggregated result for each alternative cloud service
without filtering between subjective assessment and objec-
tive assessment is considered very accurate to represent the
overall performance of each cloud service. Here, R(Mo)
denotes the ranking of all the 59 cloud services based
on such aggregated results without filtering according to
Mo. Rf (Mb) denotes the ranking of the cloud services
based on our prior cloud service selection model [14]
according to Mb without the consideration of assessment
contexts; Rc(Mb) denotes the ranking of the cloud ser-
vices based on our context-aware cloud service selection
model according to Mb with dynamic threshold filtering.
Rsim(∗, ∗) denotes the similarity between two ranking lists.
If Rsim(R(Mo), Rc(Mb)) > Rsim(R(Mo), Rf (Mb)), that

means our context-aware model is more effective than our
prior model [14].

In our experiments, Rsim(∗, ∗) is calculated through the
Kendall tau rank distance [4] which is a common metric to
measure the distance between two rankings through counting
the number of pairwise disagreements between the two rank-
ings. Here, we use the function corr() provided in Matlab
to compute the normalized Kendall tau distance which lies
in the interval [−1, 1], where 1 means two rankings are in the
same order, and −1 means two rankings are in the opposite
order.
C. Experimental Results

In our experiments, the importance weight for each at-
tribute is randomly selected. According to our experiments,
the importance weights do not affect the trend of our
experimental results, that is, our context-aware cloud service
selection model is more effective. Due to the limitation of
space, Table 1 only shows a part of experimental results
for the 59 real cloud services based on two settings of
importance weights. A larger value indicates better ranking
accuracy. In order to more accurately simulate the ratings
from real cloud users in our experiments, every value in
Table 1 is the average ranking similarity computed based on
every 100 different groups of Mo and Mb. And each group
of data is generated independently. Thus, the generality of
experimental data can be kept in our experiments. Table 1
shows that, among different experimental conditions (i.e.,
different BLs and BRP s), our context-aware cloud service
selection model performs better than our prior model [14]
without the consideration of contexts. And our context-aware
model can achieve approximately 1.5% to 9% improve-
ments.

Table 1 shows that our context-aware cloud service se-
lection model based on dynamic threshold filtering can
more effectively deal with the effect of biased subjective
ratings than our prior cloud service selection model [14] in
different conditions (i.e., different BLs and BRP s) except
the conditions that BL = 1, 2 or 3. That is because, in the
real world, cloud users’ subjective assessment for a cloud
service cannot perfectly match the objective assessment
of the cloud service due to users’ different preferences.
However, users’ subjective assessment should not be far off
from objective assessment. For this consideration, in our
experiments, every individual synthetic normal subjective
rating does not perfectly match the objective assessment, and
may have a random small deviation (up to 3). If the deviation
(i.e., BL) between biased ratings and normal ratings is too
small, such biased ratings are very likely to be considered
as normal ratings since such a small deviation should not be
detected as the deviation between biased ratings and normal
ratings. That leads to the fact that our experimental results in
the conditions of BL = 1, 2 or 3 may be opposite since such
biased ratings with small deviations cannot be detected in
our experimental setting. However, in the other conditions of
any BRP and BL = 4, · · · , 8, the trend of our experimental
results is the same. Figure 5 illustrates such an example
when BRP = 20%.

VI. CONCLUSION
This paper has proposed a novel model of context-

aware cloud service selection based on comparison and
aggregation of subjective assessment from cloud users and
objective assessment from quantitative QoS monitoring and
benchmark testing. Our model takes the contexts of both
subjective assessment and objective assessment into account,
and uses objective assessment as a benchmark to filter out
unreasonable subjective assessment. The process of such
filtering is based on a group of dynamic thresholds which are
determined by the similarity between the contexts of subjec-
tive assessment and objective assessment. Our experimental



Importance Weights BRP
Ranking Similarity

BL 4 5 6 7 8

Ws = High,Wo = High Rsim(R(Mo), Rf (Mb)) × 100 84.5235 88.9254 92.9106 92.9663 92.9837
W1 = V eryHigh 20% Rsim(R(Mo), Rc(Mb)) × 100 90.9944 93.3161 94.8105 94.8335 94.9709
W2 = High Rsim(R(Mo), Rf (Mb)) × 100 84.4224 88.9060 92.7962 92.6966 92.8795
W3 = Medium 50% Rsim(R(Mo), Rc(Mb)) × 100 93.7033 93.6175 96.4285 96.3141 96.4009
W4 = V eryHigh Rsim(R(Mo), Rf (Mb)) × 100 84.2947 89.0061 92.9147 92.8943 92.7497
W5 = High 70% Rsim(R(Mo), Rc(Mb)) × 100 93.2850 93.8473 95.4045 95.3478 95.4597
Ws = High,Wo = V eryHigh Rsim(R(Mo), Rf (Mb)) × 100 92.4678 93.1859 93.9019 93.9888 93.9055
W1 = Medium 20% Rsim(R(Mo), Rc(Mb)) × 100 94.3121 95.1874 95.2651 95.3754 95.3366
W2 = High Rsim(R(Mo), Rf (Mb)) × 100 92.3825 94.1011 93.8963 93.9423 93.8958
W3 = High 50% Rsim(R(Mo), Rc(Mb)) × 100 94.7589 96.3560 95.9770 96.0603 96.0587
W4 = V eryHigh Rsim(R(Mo), Rf (Mb)) × 100 91.4525 93.1057 92.9219 92.9775 92.9704
W5 = Medium 70% Rsim(R(Mo), Rc(Mb)) × 100 93.4980 95.3238 95.0511 95.1287 95.2288

Table I
ACCURACY COMPARISON BASED ON RANKING SIMILARITY
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Figure 5. Ranking Similarity when BRP = 20%
results show that our context-aware model performs better
than our prior cloud selection model which has no consid-
eration of assessment contexts. Hence, the final aggregated
results of cloud services based on our context-aware model
can more accurately reflect the overall performance of cloud
services.

For future work, we plan to design an incentive mecha-
nism for our context-aware cloud service selection model.
Through this mechanism, cloud users are encouraged to
regularly provide honest subjective assessment for cloud
services. Furthermore, this incentive mechanism should be
secure against attacks from malicious parties. In addition,
we plan to focus on designing more accurate context com-
parators for more different assessment features.
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