
Under consideration for publication in Knowledge and Information
Systems

Dynamic and Fast Processing of Queries
on Large Scale RDF Data

Pingpeng Yuan1, Changfeng Xie1, Hai Jin1, Ling Liu2, Guang Yang1

and Xuanhua Shi1
1Services Computing Technology and System Lab., School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China;
2Distributed Data Intensive Systems Lab., School of Computer Science, College of Computing,
Georgia Institute of Technology, Atlanta, USA

Abstract. As RDF data continues to gain popularity, we witness the fast growing
trend of RDF datasets in both the number of RDF repositories and the size of RDF
datasets. Many known RDF datasets contain billions of RDF triples (subject, pred-
icate and object). One of the grant challenges for managing this huge RDF data is
how to execute RDF queries e�ciently. In this paper, we address the query process-
ing problems against the billion triple challenges. We first identify some causes for the
problems of existing query optimization schemes, such as large intermediate results,
initial query cost estimation errors. Then we present our block oriented dynamic query
plan generation approach powered with pipelining execution. Our approach consists of
two phases. In the first phase, a near optimal execution plan for queries is chosen by
identifying the processing blocks of queries. We group the join patterns sharing a join
variable into building blocks of the query plan since executing them first provides op-
portunities to reduce the size of intermediate results generated. In the second phase, we
further optimize the initial pipelining for a given query plan. We employ optimization
techniques, such as sideways information passing and semijoin, to further reduce the
size of intermediate results, improve the query processing cost estimation and speedup
the performance of query execution. Experimental results on several RDF datasets of
over a billion triples demonstrate that our approach outperforms existing RDF query
engines that rely on dynamic programming based static query processing strategies.

Keywords: query processing; plan generation; query plan graph; operator

Received May 06, 2013

Revised Aug 16, 2013

Accepted Nov 16, 2013

0DQXVFULSW
&OLFN�KHUH�WR�GRZQORDG�0DQXVFULSW��TXHU\�ILQDO�WH[�
&OLFN�KHUH�WR�YLHZ�OLQNHG�5HIHUHQFHV

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 P. Yuan et al

1. Introduction

RDF datasets are rapidly growing in both numbers and sizes. The number of
RDF datasets that exceed billions of triples continues to grow. The explosion
of Big RDF Data puts forward several technical challenges for data scientists.
Another attractiveness of RDF data is that many big RDF datasets remain to
be open and publically available, represented by the Semantic Web Challenges
(http://challenge.semanticweb.org) and Linked Open Data Project (SWEO Com-
munity Project; 2010). Billion Triple Challenge dataset (Semantic Web Chal-
lenge; 2012), collected by the Semantic web community, contains up to 3 billion
triples as of 2012. One of the grant challenges of managing this huge RDF data
is how to execute RDF queries, especially complex join queries e�ciently, at the
scale of billions of triples. An RDF triple consists of subject, predicate, object
and often we refer to subject or object of an RDF triple as entities and predicate
as the relationship from subject to object. RDF uses URI to name the relation-
ship between entities, namely subject (S) and object (O). SPARQL (W3C; 2008)
is a W3C standard SQL-like query language defined to query RDF data from
RDF stores. The flexible features of RDF allow structured and semi-structured
data to co-exist, be exposed and shared across di↵erent applications by using
the RDF data model. Today RDF data has been used in many business, science
and engineering domains, such as government, biologists, life science (UniProt;
n.d.), business intelligence, social networks and Wikipedia.

Most of RDF datasets are residing in RDF stores powered with SPARQL
and RDF query engines. The query engines, such as RDF-3X, employ Dynamic
Programming (Neumann and Weikum; 2009, 2010a) to generate an optimized
static query execution plan, which is generally an operator tree. Figure 1 shows
an example of such an operator tree for benchmark query Q5 on RDF dataset
LUBM (See Appendix A). Unfortunately, dynamic programming is known to
have exponential time and space complexity to generate an optimal plan be-
cause it needs to search a large solution space (Kossmann and Stocker; 2000).
In many scenarios (e.g., queries having large intermediate results), it is di�cult
to translate a declarative query into an e�cient static execution plan due to the
di�culty in predicting the size of intermediate results and in estimating accurate
query execution cost. Furthermore, the output of an operator in each operator
tree is used only by another single operator, its parent operator. As a conse-
quence, the intermediate results are not reused by multiple operators, leading to
ine�cient processing of some queries on big data. For example, considering P1,
P4, P6 share variable ?z in Figure 1, the number of triples matching this triple
pattern is #(P1)< #(P4)< #(P6) (where #(Pi) denotes the number of triples
matching triple pattern Pi). According to the query plan shown in Figure 1, the
query engine will execute P 0 = P4 ./ P1, then execute join P 0 ./ P6. Thus, the
intermediate results of P1 is only used to reduce P4 although they can also be
used to reduce P6. In fact, the cost of using P1 to reduce both P4 and P6 and
then finishing the query processing is cheaper than the cost to execute the query
plan shown in Figure 1.

Big RDF datasets tend to produce large intermediate results. Before execut-
ing the operator tree, the query engine initializes the query patterns (selection
and join patterns) by scan. For large RDF datasets, there are a large number
of triples matching a pattern. For example, consider Figure 1 again, there are
six leave nodes, representing the inputs of the operator tree from the underlying
scans. The scan for each pattern produces an intermediate relation. Some rela-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 3

Fig. 1. Operator tree of LUBM Q5

tions contain large number of triples. For instance, there are 52,205,394 triples
in the dataset LUBM-500M (Table 1) matching P6. For the same queries, the
bigger the dataset is, the larger the intermediate results are. For example, there
are 104,403,077 triples in LUBM-1B matching P6 which is about twice of in-
termediate results matching P6 in LUBM-500M. Intermediate results are not
only the number of triples matching patterns, but also the size of intermediate
data loaded into memory during query evaluation. Suppose that each triple is
encoded using three integer IDs as is done in most of RDF stores, then the sizes
of the relation matching P6 in LUBM-500M and LUBM-1B are about 600MB
and 1,195MB respectively. For the join to be performed, the intermediate results
involved in the join must be loaded to the main memory for CPU computation.
Thus, huge amount of I/O communication takes place, which slows down the
join.

By understanding the main problems of answering SPARQL queries on big
RDF data, such as the need for processing bigger and more complex intermedi-
ate results, we propose a block-based pipelining approach for dynamic and fast
processing of SPARQL queries in this paper. Our approach has three unique fea-
tures: First, we use graphs instead of trees to represent query plan. Our approach
considers the blocks of graph, which share same join variables as the basic query
processing units in order to reduce intermediate results. When building query
plans as graphs, operators can easily reuse intermediate results produced by the
proceeding operators because all triples in a block have a same join variable. Sec-
ond, we develop a two phase join processing framework, which first generates an
initial query execution plan and then iteratively refine the plan as more accurate
estimation of intermediate result size and the execution cost is obtained. For plan
generation, we present a simple but e↵ective selectivity estimation method based
on block of triple patterns. For iterative plan execution, we employ pipelining
technique to select the next join operations dynamically. Third but not the least,
to further reduce the size of intermediate results, we also employ optimization
techniques, such as light-weight sideways information passing, semi-joins and sort
merge join. We evaluate our approach through extensive experiments on open
RDF datasets with up to 2.9 billion triples. Our experimental comparison with
RDF-3X and other existing RDF systems shows that our approach consistently

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 P. Yuan et al

outperforms existing representative RDF query engines, such as RDF-3X and
TripleBit.

The remainder of this paper is organized as follows. First, we give an overview
of related work in section 2. Section 3 describes a RDF store TripleBit where
our methods are implemented. Section 4 presents our query plan generation ap-
proach and query plan executing technologies. Section 5 presents the optimized
technologies of the query processor. We evaluate the technologies in Section 6.
Then, we conclude the paper with a summary and future work in Section 7.

2. Related work

Since the RDF data is growing rapidly, query on the large scale RDF data is
a critical issue. A lot of RDF engines which focus on the query performance
have been proposed, such as YARS2 (Harth et al.; 2007), RDF-3X (Neumann
and Weikum; 2009, 2010a,b), SHARD (Rohlo↵ and Schantz; 2010), SpiderStore
(Binna et al.; 2010), HexaStore (Weiss et al.; 2008), BRAHAMS (Janik and
Kochut; 2005), gStore (Zou et al.; 2011), C-Store (Abadi et al.; 2007) et al. The
storage structure of these systems can be roughly classified into following cate-
gories (Yuan et al.; 2013): 3-columns row store, property table, column store with
vertical partition (Abadi et al.; 2007) and graph store. Three column row store
stores the RDF triples in a natural way, but it su↵ers from too many self-joins.
So RDF-3X and HexStore build several clustered B+-trees for all permutations
of three columns. To avoid too many self-joins, property table clusters the prop-
erties of the subjects which tend to occur all together. However, this kind of
storage will waste too much space because of large number of sparse properties.
Column store with vertical partitioning (Abadi et al.; 2007) uses one table which
has only two columns to store one predicate. Obviously, the shortage of it is the
scalability when the number of predicates increases. gStore uses an adjacency
list table to store the properties. It is a property table inherently, and it uses a
list to skip the null property of the subjects.

In order to accelerate the SPARQL query processing, some RDF engines,
such as RDF-3X and HexaStore use additional indexes on combinations of S, P,
and O. With all possible permutations of SPO triples which are compressed to
reduce the space consuming, the query processing engine chooses the best index
to get the candidate answers. On the other hand, (Udrea et al.; 2007) and (Yan
et al.; 2004) present a novel index based on the graph, and indexes all the paths
and SPO labels, however, it brings some di�cult to query optimization. gStore
transforms the RDF graph into a data signature graph by encoding entity and
class vertex, and uses a novel index (named VS*-tree) to speed up the query.
Huang etc (Huang et al.; 2011) partitions the RDF data in several data nodes
and decomposes SPARQL queries into high performance that take advantage of
how data is partitioned in a cluster.

No matter how well the storage and index is designed, it is essential to es-
timate the selectivity of triple patterns in the query which can help the query
optimizer generate optimal query plan. For single triple patterns, RDF-3X pre-
compute the selectivity of all permutations, such as SP, OP, SO, PS, PO, OS,
S, P, O. For the joins, (Stocker et al.; 2008) proposed a heuristics based method
which ranges from simple to sophisticate to estimate the selectivity, but the
heuristics must be customized. Other systems pre-compute the frequent paths,
and keep the statistics. But this should be done by graph mining techniques.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 5

Join operation is expensive and di↵erent orders of join operation result in
large performance variations. It is a critical issue to determine joins order in
query optimization. Dynamic programming (Selinger et al.; 1979) was used in
most query optimizers (Kossmann and Stocker; 2000). It will construct millions
of partial plans in the search phase and thus results in very memory intensive and
computation-intensive operations. While this algorithm produces good optimiza-
tion results, its high complexity can be prohibitive. And dynamic programming
also relied on an optimal substructure of a problem. D. Kossmann etc. proposed
Iterative Dynamic Programming (Kossmann and Stocker; 2000). The main idea
of IDP is to apply dynamic programming several times in the process of opti-
mizing a query.

Within a query plan, typically two execution methods are used: pipelining
and materialization. Pipelining is typically realized by a tree of iterators that im-
plement the physical operations. An iterator allows a consumer to get the results
of an operation separately, one at a time. The tuple-at-a-time approach is elegant,
simple to understand, and relatively easy to implement. However, it also results
in a set of important performance drawbacks that for every tuple there are multi-
ple function calls performed. Materialization (MonetDB; 2010) is not realized as
a pipeline of operators, but instead a series of sequentially executing statements,
consuming and producing columns of data. used the column-at-a-time approach:
every operator is executed at once for all the tuples in the input columns. Its
output is fully materialized as a set of columns. While materialization approach
in many areas demonstrates a significant performance improvement over the tra-
ditional tuple-at-a-time strategy, it also su↵ers from a number of problems, such
as high memory tra�c. C. Balkesen etc analyzed the join algorithms proposed
in the literature and proposed several important optimizations (Balkesen et al.;
2013). C. Kim etc reexamined hash join and sort-merge join under the latest
computer architecture and current architectural trends will imply better scala-
bility potential for sort-merge join (Kim et al.; 2009). Since SPARQL is similar as
SQL, some research translates the SPARQL into SQL, and utilizes the rich work
in relational database query optimization. However, the translation between the
SPARQL and SQL is a critical issue which has to keep the semantics (Chebotko
et al.; 2009).

3. TripleBit Overview

Since our technologies presented here are implemented in TripeBit (Yuan et al.;
2013), an RDF engine, we will briefly introduce its storage and indexing tech-
nologies in the following.
Clustered storage. We design a Triple Matrix model where RDF triples are
represented as a two dimensional bit matrix. We call it the triple matrix. The
triple matrix is created with subjects (S) and objects (O) as one dimension (row)
and triples (T) as the other dimension (column). Thus, we can view the corre-
sponding triple matrix as a two dimensional table with |S

S
O| columns and |T |

rows. Each column of the matrix corresponds to an RDF triple. Each row is
defined by a distinct entity value, representing a collection of the triples having
the same entity. We group the columns according to predicates such that the
triples with the same predicate will be adjacent in the matrix.

In TripleBit, we first vertically partition the matrix into multiple disjoint
buckets, one per predicate (property). For each RDF dataset, we store the triple

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 P. Yuan et al

matrix physically in two duplicates, one for S-O order and another for O-S or-
der. We use chunks, fixed-size storage spaces to store a triple matrix. The chunks
having the same predicates are placed adjacently on storage media.
Indexing Technologies. Indexes include ID-Chunks index and ID-Predicate
index are used to accelerate table scanning. ID-Chunk matrix represents the re-
lationship between IDs (rows) and Chunks (columns). Given that chunks with
the same predicate are stored consecutively on storage media and triples in each
chuck are ordered by S-O or O-S, thus triples related with a subject (or object)
will only be stored in several adjacent chunks and the non-zero entries of the ID-
Chunk matrix are distributed around the main diagonal of the matrix. We can
draw two lines or two finite sequences of straight line segments, which bound the
non-zero entries of the matrix. If there are many predicates in RDF data, then
it may be very time consuming to locate the candidate chunks. For the purpose
of quickly executing queries with unbounded predicates, we introduce the ID-
Predicate bit matrix index structure. The entries in the ID-Predicate matrix are
bit and ”1” indicates the occurrence relationship between IDs and predicates.
With the ID-Predicate matrix, if a subject or object is known, TripleBit can
determine which predicates are related with it.

4. Dynamic Query Plan Generation and Pipelining
Execution

For queries, the query processor must generate an execution plan for it and
then execute the plan. The first problem in query plan generation is the repre-
sentation of the query execution plan. The representation of plan should allow
all operators are freely reorderable. We use graphs instead of trees to represent
query plan. One reason is that operators can easily reuse intermediate results,
as they can share children when building query plans as graphs. Thus, I/O costs
can be reduced. Although there are multiple approaches to describe SPARQL
query graph (Atre et al.; 2010; Hartig and Heese; 2007; Stocker et al.; 2008), here
we use the similar model in (Atre et al.; 2010) to represent query graph. The
query graph describes the relationships between variables and patterns as well as
the logical joins between the triple patterns. In a query graph, nodes are triple
patterns and variables. If there are two variables connected with at least one
common triple pattern, we say these two variables dependent with each other.
From the query graph, we can derive the relationships between the join variables
too. Figure 2(a) is the query graph of LUBM Q5. Due to clarity, some edges,
for example the join edge between P1 and P6 are omitted in the Figure 2(a) (A
position marked with ? in the triple pattern is variable). There are two kinds of
edges connect the nodes. One kind of edges (dashed line) connect pattern nodes
with variable nodes if the corresponding variables appears in the corresponding
triple patterns. Another kind of edges which are shown in solid line represent
the type of join between the triple patterns.

When using a constructive plan generator, we have to determine the build-
ing blocks which will eventually be combined to form the full query. A query
graph typically consists of multiple components which share common variables.
For example, Figure 2(a) contains three components. Actually, the blocks of a
query graph represent star shaped sub-queries. Star join query has an important
feature. That is star queries impose restrictions on the common variables. Thus,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 7

(a) Query graph of LUBM Q5 (b) Block

Fig. 2. The query graph of LUBM Q5 and one of its blocks

the query engine can reduce intermediate results. In our query plan generation
method, we consider star join as basic building blocks. Since each block has a
common variable node, we name the blocks using the variable nodes. ?z block
(Figure 2(b)) is one block of LUBM Q5 (P2 ./ P4 ./ P5) which contains three
triples P2, P4, P5.

Another problem is how to generate optimal plan and execute it. Our ap-
proach does not aim to produce a static optimal query plan for the whole query
processing, but iteratively refine the plan as more accurate estimation of inter-
mediate result size and the execution cost is obtained. Namely, once a plan is
generated, the query engine will execute it. Then the plan generator will generate
the plan again for next execution according to current statistics of intermediate
results. Generally, the plan generator takes the logical representation of the query
and transforms it into a physical plan. Both bottom-up and top-down approach
can generate physical plans for queries. However, di↵erent from previous gener-
ators which only employ top-down approach or bottom-up approach, our plan
generator combines both bottom-up approach and top-down approach together.
Corresponding to bottom-up and top-down approach, our approach includes two
phase. In the first phase, the generator constructs a plan that mainly consists of
semi-joins. And in the second phase, a bottom-up plan is generated and performs
full joins to obtain the final results. Concretely, by our approach, we first identify
the blocks of query and then determine the plan of each block using top-down
approach. Then the query engine will execute the plan using dynamic chunk
pipelining. Finally, our plan generator starts with the plans of blocks plans and
combines these plans using operators until the whole query has been constructed.
By this means, the plan generator tries to construct the plan that will produce
the query result with minimal costs.

In the following, we first describe how to obtain the query execution cost for
a given query plan (Section 4.1). We then discuss how the query plan is gener-
ated by ordering blocks and refining it (Section 4.2) and hence the of the plan
is executed (Section 4.3).

4.1. Selectivity Estimation

In the query graph representation, a node can receive one or more inputs from its
neighborhoods and produce one output forwarded to its neighborhoods for join.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 P. Yuan et al

The performance of a query plan is determined largely by the order in which the
nodes (triple patterns) are joined. Join order is based on the selectivity and join
cost estimation. In order to generate an optimal query plan, the query engine
should estimate the selectivity of the query. The selectivity estimation includes
single triple selectivity estimation, selectivity of variable and the selectivity esti-
mation of the joins between the patterns. In order to estimate the selectivity more
accurately, we build SP (for subject-predicate), OP (for object-predicate), S (for
subject only), O (for object only) statistics indexes to store the pre-computed
statistics information (Yuan et al.; 2013).

Triple pattern selectivity is computed as the fraction of the number of triples
which are matching the triple pattern (Stocker et al.; 2008). The selectivity of
single query pattern can be estimated accurately directly by locating the entity
id in statistics indexes. Especially, when the subject and object are known but
the predicate is a variable, we simply estimate the selectivity is 2, because we
assume the relations between two entities is much smaller than the other types.
When the triple pattern contains no variable, its result cardinality is 1 (assume
the result is not empty). If its three components are unbound, the results are
all triples in the system. For instance, in Figure 2(a), the number of triples
matching triple patterns is #(P2) < #(P1)< #(P4) < #(P3)< #(P5) <
#(P6), thus, we can get the initial selectivity of the triple patterns as follows:
SEL(P2)> SEL(P1)> SEL(P4) >SEL(P3)> SEL(P5)> SEL(P6) (SEL(p)
represents p’s selectivity). The selectivity of a variable is computed according to
the selectivity of query patterns containing the variable. Here, we considered the
largest triple pattern selectivity as the variable selectivity. For example, P2, P4,
P5 share the same join variable ?y. So, SEL(?y) = SEL(P2). Accordingly, we
know SEL(?y) > SEL(?z) > SEL(?x).

Next, we estimate the selectivity of the joins between two query patterns (e.g.
P1, P2) according to the join types as well as the product of the selectivity of
the corresponding patterns. The computation formula is shown as Formula 1.

sel(P1 ./ P2) = sel(P1)⇥ sel(P2)⇥ factor2 (1)

4.2. Ordering Blocks

The query plan is mainly focused on the join order of the query patterns and the
choosen join type between the query patterns. The plan generator itself builds
the query plans bottom-up, clustering those patterns sharing variables into star
joins. The query engine should add building blocks with care, as the search space
increases exponentially with the number of building blocks. This approach is es-
pecially interesting for two reasons. First, it is the simple approach that will
construct the optimal solution and guarantee small intermediate results. Sec-
ond, the building blocks are larger and high level. So, the query optimizer can be
extended or improved by introducing new low level plan operators or strategies.

Ordering the blocks is typically employing selectivity estimation algorithms
(see Section 4.1) to determine an optimized execution plan. Once the variable
selectivity is known, we can order blocks. First, we begin with the block where
variable node has the maximal variable selectivity. In the above example (Figure
2(a)), it is ?y. As each block consists of multiple join edges, we must order its
join edges. In the block associated with ?y, we choose the pattern node with
the maximal selectivity first, namely P2. Then we compute the join selectivity

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 9

which is the product of selectivity of two join patterns, namely edge selectivity
which are directly connected with P2.

If we determine the join order of all the patterns of block ?y, we choose
the next block having the next maximal selectivity of variable, namely ?z. In the
block, we begin with the pattern which connects this pattern eith previous block.
The pattern is P4 which has variables ?y and ?z. Then we compute the edge
selectivity between P4 and other patterns which have variable ?z. The algorithm
terminates when all blocks are processed in the graph (see Algorithm 1).

Once the initial plan is generated, query processor will execute the plan (see
Section 4.3). After the plan is executed, some bindings may be dropped. And
some patterns (for example P1, P2, P3) may be removed from the query graph
because bindings of those patterns are joined with other patterns. Thus, the se-
lectivity of the nodes, edges may change. We need to compute selectivity again.
In the situation, the query processor estimates the selectivity of triple patterns
according to the intermediate results matching the triple pattern so far. Then
the query processor computes selectivity of variables and selectivity of join as
previous steps do. According to the selectivity, we can determine the join order
of the next round. The final plan, in which final results will be produced, will be
generated bottom-up when no selectivity changes.

In RDF storage systems such as RDF-3X (Neumann and Weikum; 2010a,b,
2009), they utilize dynamic programming for enumerating plans in an appropri-
ate order. The method both comes in bottom-up and top-down manner, starting
with the simplest sub-queries. If there are n triple patterns in the query, the time
complexity of it is O(n3) . In our system, we use a simple but e↵ective query plan
generation method which time complexity is O(n). What is more, the coe�cient
of time complexity is much lower than others. The cost of the plan generating
approach is cheaper than dynamic programming (Neumann and Weikum; 2009,
2010a). We compare our solution with the bottom-up DP of RDF-3X (Table 2).
Interestingly our plan generation scheme output plans faster than the bottom-up
DP of RDF-3X. One reason is our solution is lightweight.

4.3. Dynamic Chunk Pipelining

RDF stores typically exhibit less data and computation overlap, e.g., they invoke
a set of operator instances (access data on the disk, scan, sort-merge or hash join
etc) sequentially for each query. Sequential operations result in long query la-
tencies. To overcome the issue, we incorporate a pipelining approach in query
execution in order to reduce latency between operators. The approach combines
two di↵erent techniques. First, we adopt a dynamic semi-pipelined query pro-
cessing, which is a combination of task pools and parallel processing. Task pools
are consisted of a set of work queues which are accessed by processes or threads
used for the computation. The ratio of work queues to processes or threads can
be varied, allowing for a variety of schemes with di↵erent properties. The pro-
cesses get data items from and send data items to work queues depending on its
cohesion, which is defined as the di↵erence of maximal value and minimal value
in data items. The work queue receives the data items and processes posting data
items as soon as possible. Second, chunk instead of a single tuple is processed
by the pipelining operation each time. Generally, pipelining is typically realized
by a tree of iterators, each of which allows a consumer to get the results of an
operation separately, one at a time (Hartig et al.; 2009). The approach is fine

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 P. Yuan et al

Algorithm 1 Block Oriented Dynamic Query Plan Generation
Input: queryStr
1: parse queryStr;
2: for each tp in queryStr do
3: tp.sel=calPatternSel(tp);
4: for each var in tp do
5: jV ars[var].tps[jV ars[var].tpcount]=tp;
6: jV ars[var].tpcount+=1;
7: if jV ars[var].sel < tp.sel then
8: jV ars[var].sel = tp.sel;
9: end if

10: end for
11: end for
12: for each var in jV ars do
13: if jV ars[var].tpcount < 2 then
14: remove var from jV ars;
15: end if
16: end for
17: sortVariableBySelectivity(jV ars);
18: while jV ars IS NOT NULL do
19: PipeliningQuery(jV ars, n);
20: for each var in jV ars do
21: for i 0 to jV ars[var].tpcount� 1 do
22: if jV ars[var].tps[i] has only one variable then
23: remove jV ars[var].tps[i];
24: end if
25: end for
26: end for
27: remove var from jV ars;
28: end while
29: sortVariableBySelectivity(jV ars);
30: PipeliningQuery(jV ars, ./);

grained and may induce communication overhead. Hence, instead of iterator-
based pipelining to process one triple-at-a-time, intermediate results are broken
into smaller chunks, and the operators execute on them in the pipelined fashion.
The algorithm is shown in Algorithm 2.

Considering the block of query shown in Figure 2(b), some of its pipelines is
shown in Figure 3. The edges show possible pipelining. The actual pipelining de-
pends on the cohesion of data chunks. For example, assume the first data chunk
of matching P2 having the maximal cohesion, n operator will get data chunks
from queues tagged with P2 and P4. When the operator consumes data chunks,
it first performs a bu↵er pool lookup, and, on a miss, it fetches the data chunks
from disk. Bu↵er pool management techniques only control the access policy for
data chunks; they cannot instruct operators to dynamically alter their execution
orders. Then the operator will process the data chunks from queues tagged with
P2 and P4 respectively. The result will be sent to corresponding queues tagged
with P4 n P2 and P5 n P2. The operator will get one input from P40 or P50

queue by comparing theirs cohesion. The output will be pipelined to the queue

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 11

Algorithm 2 PipeliningQueries
Input: operator
1: while (dblock=getdatablock(currentpattern))!=NULL do
2: p=getNextJoinPattern(dblock, queryblock);
3: while (s=getdatablock(p))==NULL do
4: continue;
5: end while
6: dblock=operator(dblock, s);
7: processedpatterns = p

S
currentpattern;

8: if processedpatterns contain all patterns then
9: output dblock;remove dblock;

10: else
11: q=getQueue(processedpatterns);
12: if q==NULL then
13: create queue q for processedpatterns;
14: end if
15: enque(q, dblock);
16: end if
17: end while

Fig. 3. Dynamic Pipeline Executing

tagged with P40 n P50. Thus, we choose the data chunks having the minimal
cohesion to reduce the triples matching other pattern. This helps reduce the cost
to execute join operations. Dynamic chunk pipelining combining flexible chunk-
at-a-time operations and the pipelined execution strategy can further improve
the performance of TripleBit, a high-performance RDF store, and at the same
time reduce the memory consumption of query processing.

5. Other Performance Optimization Techniques

To perform join operations, relations involved in a join must be shipped to the
CPU for join computation. If the relations contain large number of triples, this

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 P. Yuan et al

will incur huge communication overheads. Thus, communication is the dominant
cost when a RDF engine processes big datasets. Since the join cannot be elimi-
nated, one optimization we can apply is to limit communication. One tactic for
limiting communication is to drop as many bindings as possible. For example,
all restrictions, such as boundaries of variables (see Section 5.1), should be ap-
plied early. The second tactic is to use semi-joins (Bernstein and Chiu; 1981;
Stocker et al.; 2001). Semi-join was originally proposed in order to reduce the
communication costs of a distributed system (Bernstein and Chiu; 1981). When
executing queries on large dataset, the query engine will output large interme-
diate results. It will induce much communication cost and computation cost.
By applying semi-join, we can reduce the size of intermediate results early and
consequently reduce the cost of other operations.

Join, which combines tuples from two or more relations, is an important and
yet expensive operation. E�cient join algorithms will significantly improve the
performance of processing queries. Sort-merge join and hash join are two common
join algorithms. Although there exists debate over their performance, as com-
puter architecture evolves, sort-merge join outperforms hash joins (Kim et al.;
2009; Neumann and Weikum; 2010a). Thus, we exploit the usage of sort-merge
join in join operation and we show that the tactics can help minimize the size of
intermediate results and improve the query response time. In the following, we
will explain this tactics.

5.1. Light-weight and Fine Grained Sideways Information
Passing

The non-selective sub-queries will lead to a large number of intermediate results.
For example, there are large number of triples in LUBM-1B matching P5 (Ap-
pendix A). Typically, a query optimizer evaluates the query over the data in series
of joins. Joins are executed firstly may be unaware of fail-matching triples from
inputs until late in plan execution. Thus, a triple may propagate through a series
of join operators before it is found to not produce any output. To alleviate the
impact of the cases and allow more precise information of join variables, we adopt
a light-weight sideways information passing mechanism (Neumann and Weikum;
2009). In sideways information passing, the query optimizer need make an a pri-
ori decision about what information to pass, how to pass it, and where to pass
it. Here, the query optimizer firstly obtains the knowledge about the variables
and patterns. Then, the query optimizer computes and passes the lightweight
information of variables to next patterns needed in an e�cient way.

In the phase to initialize patterns, the query processor considers the minimal
and maximal IDs of matching triples of adjacent patterns when loading bindings
of a pattern. For example, in Figure 2(a), query processor initializes P2 firstly
since it has larger selectivity than P4. When triples matching P2 are loaded, the
bindings of join variable ?y should have boundaries. Obviously, it is not necessary
to load the triples beyond the boundaries even though they are bindings of P4.
Then ranges of ?y will be passed to P4 and P5 as a filter condition to reduce
the intermediate results. The query processor will filter those triples beyond the
boundaries. Filtering before materializing mechanism is super e�cient for star
queries. By this means, the query processor reduces intermediate results when
loading triples.

When query processing is carried out in parallel, many sub-results are be-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 13

ing computed simultaneously, and several of these computations may produce
information that are relevant to several triple patterns. Our information passing
takes advantage of the fact that intermediate results are computed and bu↵ered
in the storage of corresponding patterns. Hence once a join is fully computed,
there is state that can be correlated against arriving triples from another pat-
tern; new tuples that do not satisfy the query conditions may be discarded early.
We refer to our method as boundary SIP because of its very light-weight nature:
it only passes the range of variables throughout the join edges in query plan
graph. This is in contrast to previously proposed SIP strategies such as (Ives
and Taylor; 2008) where filter information is passed on only when the producing
operator has completed its execution and (Neumann and Weikum; 2009) where
information is passed between operators during pipelined executions. In addi-
tion, our approach reduces the data volume to be accessed or joined in the query
plan graph, and it is also fine-grained since the boundary is the minimal and
maximal value of data chunk instead of maximal and minimal values of triples
matching a pattern (See Section 4.3).

5.2. Semi-joins

Although SPARQL is a powerful tool for processing RDF queries, it exhibits
certain performance deficiencies when the RDF datasets being queried upon be-
come very large. We propose to employ semi-join. Semi-joins send join-attribute
values to other patterns in the query plan graph, where these value lists serve
as run-time filters. Suppose Ri and Rj are relations matching patterns Pi and
Pj respectively. A semijoin from Ri to Rj on attribute a can be denoted as
RjnRi. The query engine then projects Ri on attribute (or variable) a (denoted
as ⇧aRi), and ships this projection from storage to CPU without transmitting
Ri. Comparing transmission relation Ri which contains two or more attributes,
sending ⇧aRi which has one attribute reduces transmission cost. Furthermore,
we can construct a projection index on the projection, namely, the column be-
ing indexed. Thus, the column being indexed can be removed from the original
pairs and stored separately, with each entry being in the same position as its
corresponding base record. With the index, the query engine can execute join
between projection and Rj .

Using semi-joins, we not only drop the bindings of triple patterns using semi-
joins, but also remove the useless patterns in subsequent semijoins. For example,
in Figure 2(a), after the initial plan is executed, each triple pattern having only
one variable (P1, P2, P3) joins with those patterns having two or more variables
respectively (P4, P5, P6). Those bindings of the latter that are not matching
the former are dropped. Hence, the constraints on join variable bindings of the
former are propagated to the latter. So we can remove those patterns having only
one variable in the next round of joins. An informal proof is given as follows.
Without loss of generality, we consider a join query consisted of two patterns
Pi, Pj where a same variable a1 appears. Pi contains only one variable, namely
a1. Variables a1, ..., am (m 6 3) appear in Pj . The join query can be repre-
sented as ⇧a1,...,amPj ./ Pi=⇧a1,...,am((Pj n Pi)./ (Pi n Pj)). Let P 0

j = Pj n Pi,
and P 0

i = PinPj . So, ⇧a1,...,amP 0
i=⇧a1P

0
i because Pi contains only one variable.

And ⇧a1P
0
i=⇧a1P

0
j because a semijoin from Ri to Rj on attribute a is performed.

We can know ⇧a1,...,amPj ./ Pi= ⇧a1,...,amP 0
j=⇧a1,...,am(Pj n Pi). Thus, we can

remove patterns containing only one variable after it semi-joins with other pat-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 P. Yuan et al

terns. Another advantage of semijoin brings is that it does not complicate sort of
each relations for subsequent semijoins because each relation includes only two
attributes.

Once bindings are dropped or patterns are removed, the selectivity of the
nodes and edges may change and we need generate new query plan for the next
round of semijoin. In each round of semijoin, some bindings of those patterns
will be dropped further. Although semi-joins prune the relations, they do not
generate final results. Thus, the remaining relations involved are joined in the
final query plan and the final results will be produced.

By reducing intermediate results, we benefit in two ways: first, we achieve
lower memory bandwidth usage and second, we accomplish the computation of
joins with smaller intermediate results.

5.3. Sort-Merge Join

Join processing is the most expensive step during query evaluation. Our query
processor uses extensively sort-merge joins because they are faster than hash
or nested-loop joins (Neumann and Weikum; 2010a). This entails preserving in-
teresting orders. For those intermediate results that are not sorted in an order
suitable for a subsequent merge-join, we can transform them into suitable or-
dered pairs. We divide the intermediate results matching the patterns into k
parts so that the first elements of pairs in each part are the same. Since pairs
are SO ordered or OS ordered in storage, the second elements of pairs of each
part are also sorted. Hence, we can easily transformed SO ordered pairs into
OS ordered pairs (or OS ordered pairs into SO ordered pairs) using merge sort.
Considering the join P2 ./ P4, query processor loads OS ordered pairs to ini-
tialize P2 because P2 contains two bounded components. For the subsequent
join, we transform the bindings of P2 into SO ordered pairs because S is a join
variable. For example, in Figure 4, the OS pairs matching P2 are first divided
into data blocks (in the top of the Figure). Each of data blocks has the same O
value. Thus, each data block is also ordered by O values because OS pairs are
OS ordered. We can merge OS pairs of data blocks matching P2 and sort them.

The transformation process is easy and cheap. In sorting n elements, the
standard merge sort has an average and worst-case performance of O(nlogn).
However, our cases where each part is ordered are di↵erent from the standard
case where initial elements may be un-ordered. We can deduce the performance
of applying merge sort in our cases. If the running time of merge sort for a list of
length n is T (n) and apply the algorithm to two sublists of the original list, then
the recurrence T (n) = T (nl) + T (nr) + O(n) where nl and nr are respectively
the number of leaf nodes in left child tree and right child tree. Since each part
of k parts of intermediate results is ordered, thus, merge sort in our cases has
an average performance of O(n log k). The benefit can also contribute to our
RDF store storing (x, y) pairs. For example, to transform (x, y, z) triples into
(z, y, x) triples is more expensive than transforming (x, y) pairs to (y, x) pairs.
Compared to those stores, such as RDF-3X, which store (x, y, z) triples, the
query processor require less cost to transform SO/OS ordered pairs into OS/SO
ordered pairs and have more chances to execute sort-merge join. We can merge
more than two data blocks at a time in order to exploit more thread level par-
allelism.

The query processor would use order-preserving merge-joins as long as possi-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 15

Fig. 4. Merge sort

ble. Considering P2 ./ P4 again, the query processor can load OS ordered pairs
or SO ordered pairs to initialize P4 because S and O of the pattern are variables.
Considering the subsequent merge-join with P2, the query processor loads OS
ordered pairs to initialize P4 since the bindings of P2 are SO ordered pairs.
For star queries, the query processor can use sort-merge join for the whole join
processing. If it is expensive to transform bindings of two patterns to an order
suitable for later sort-merge join, the query processor will switch to hash-joins.
For example, for circle queries (Q5 etc.), we cannot always keep the bindings of
each pattern in an order suitable for sort-merge join. Hence, we will use sort-
merge join to process some joins and use hash join to process other joins in order
to avoid transforming the order of bindings of a pattern frequently.

5.4. Parallel Hash Join

For those intermediate results that are not ordered on the same join variables,
hash join is employed. There are many existing hash join algorithms, such as no
partitioning join, radix join (Balkesen et al.; 2013). Consider the characteristics
of data and the better performance of merge join, we introduce a parallel hash
join, which is a combination of hashed partition and merge join. We first partition
the two intermediate result sets that match the two patterns into smaller disjoint
partitions (referred to as sub-bu↵ers). Concretely, the input tuples are divided
up using hash partitioning (via hash function f in Figure 5) on their key values.
Those pairs having the same key value will be in the same partition. Thus, all
pairs matching a join pattern will be in the same partition. Triples in a partition
are also sorted because triples are SO-ordered or OS-ordered in chunks. If triples
are not ordered in some cases (e.g. full join), we will insert triples into suitable
position of buckets in order to save the time for sorting triples when we partition
triples using hash. By this means, we keep the order of triples and save the time

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 P. Yuan et al

Fig. 5. Parallel Hash Join

to sort them again. Since each segment is ordered, we can perform sort-merge join
on segments in a slot. Comparing with those hash functions, such as Bloom filter
mapping values id onto bit-vector positions (Neumann and Weikum; 2009), the
cost of our approach is modulo operation. After tuples are partitioned, the actual
merge-join between the corresponding sub-bu↵ers will be executed parallel.

6. Evaluation

We implemented our approaches by modifying TripleBit (Yuan et al.; 2013).
In the experimental evaluation, we measured the unmodified system (TripleBit)
against the enhanced system powered by the new methods presented in this paper
(our approach). We also implement dynamic programming and join processing
technologies in TripleBit according to (Neumann and Weikum; 2009, 2010a) (DP
for brevity). For both modifications of TripleBit, we only change query execution
and the rest of the system (storage, dictionary lookup, etc.) is unchanged. Here,
we also include RDF-3X as a competitor.

We used three large datasets each with over a billion triples: LUBM (LUBM;
2005), UniProt (UniProt; n.d.) and Billion Triples Challenge 2012 (Semantic
Web Challenge; 2012). To choose the queries which output di↵erent sizes of
result set, we decide to choose most of the queries with larger result set in
our experiments. This is because it generally takes query engines much time
to run queries with large results. The performance to execute such queries will
demonstrate the ability of techniques to process big data.

All experiments were conducted on a server with 4 Way 4-core 2.13GHz Intel
Xeon CPU E7420, 64GB memory; CentOS release 5.6 (2.6.18 kernel), 64GB Disk
swap space and a SAS local disk with 300GB 15000RPM. In the experiments, to
account for caching, each of the queries is executed for three times consecutively.
We took the average result to avoid artifacts caused by OS activity. We also

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 17

Table 1. Dataset characteristics
Dataset #Triples #S #O #(S

T
O) #P

LUBM 1M 1,270,770 207,615 155,837 84,867 18
LUBM 10M 13,879,970 2,181,772 1,623,318 501,365 18
LUBM 50M 69,099,760 10,857,180 8,072,359 2,490,221 18
LUBM 100M 138,318,414 21,735,127 16,156,825 4,986,781 18
LUBM 500M 691,085,836 108,598,613 80,715,573 24,897,405 18
LUBM 1B 1,335,081,176 217,206,844 161,413,041 49,799,142 18
UniProt 2,954,208,208 543,722,436 387,880,076 312,418,311 112
BTC 2012 1,048,920,108 183,825,838 342,670,279 165,532,701 57,193

Table 2. Plan generation time on LUBM using two plan generation approaches (time in ms)
Queries Approaches 1M 10M 50M 100M 500M 1B Geom. mean

Cold caches

Q5
DP 12.69 13.359 21.6 14.848 13.623 32.55 16.9967
Our Approach 7.123 8.429 14.685 10.804 6.818 19.383 10.3911

Q6
DP 10.818 13.284 20.612 16.806 15.971 29.883 16.9552
Our Approach 7.078 8.416 14.66 10.785 6.768 19.351 10.3559

Warm caches

Q5
DP 0.147 0.135 0.135 0.134 0.147 0.162 0.1430
Our Approach 0.062 0.053 0.054 0.05 0.05 0.051 0.0532

Q6
DP 0.143 0.151 0.145 0.128 0.142 0.157 0.1440
Our Approach 0.053 0.047 0.047 0.043 0.044 0.044 0.0462

include the geometric mean of the query times. All results are rounded to 4
decimal places.

6.1. LUBM

We evaluate the scalability of our approach using several LUBM datasets of vary-
ing sizes generated using LUBM data generator (LUBM; 2005). Those LUBM
datasets contain about 1M, 10M, 50M, 100M, 500M and 1 Billion triples re-
spectively (Table 1). Therefore, we call the datasets as LUBM-1M, 10M, 50M,
100M, 500M and 1 B respectively. The sizes of LUBM 500M and 1B in theirs
original form are 115.88GB, 231.95GB respectively. All the queries are listed in
Appendix A.

First, we evaluate the plan generation time of our approach against DP us-
ing Q5 and Q6. According to the experimental results shown in Table 2, our
approach is faster than DP in both cold cache cases and warm cache cases. Our
approach outperforms DP on the cold cache time by nearly a factor of 1.63 in
the geometric mean, and the warm-cache time by a factor of 2-3 in the geo-
metric mean. One of the reasons why our approach outperforms DP is that DP
relied on an optimal substructure of a problem. DP tries to find the cheapest
valid combination of optimal solutions for subproblems that is equivalent to the
query. Thus, the plan generation step itself is basically a combinatorial problem.
Since the search space is huge, in order to construct a query plan fast, it should
pre-compute as much data as possible to allow for fast tests for valid operator
combinations. Furthermore, DP may construct millions of partial plans, requir-
ing a large amount of memory.

We compared our query execution time with RDF-3X, DP, TripleBit in Table
3, 4 (best times are boldfaced). Here, we only report the experimental results
on LUBM-500M, LUBM-1B because larger datasets tend to put more stress on
RDF stores. The first observation is that our approach performs much better
than RDF-3X, DP and TripleBit for all queries. Our approach clearly outper-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 P. Yuan et al

Table 3. LUBM 500M (time in seconds)
Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom.
#Results 0 882,616 949,446 2,639,972 2,528 219,772 4,201,280 Mean

Cold caches
RDF-3X 24.8759 137.9175 3896.3533 114.6057 1198.6520 295.0343 137.6253 257.2533
DP 25.8708 47.2692 16.8267 36.5537 31.2081 111.2313 66.0054 40.2902
TripleBit 23.9359 32.3817 9.8176 20.1255 23.4303 26.2114 34.9432 22.8841
Our Approach 20.5674 29.4135 8.5311 18.0124 20.6345 24.3663 31.2583 20.3815

Warm caches
RDF-3X 14.6922 45.1109 2194.7415 18.8331 1114.5000 45.9599 59.6334 97.4868
DP 20.7387 26.9583 8.5854 18.5394 16.1354 34.3071 52.0677 22.0878
TripleBit 13.8401 25.4067 6.9399 16.0397 14.2093 17.7789 27.5051 16.0300
Our Approach 10.6662 22.4087 5.7223 13.6688 10.5698 14.2858 25.1791 13.2336

Table 4. LUBM 1B (time in seconds)
Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom.
#Results 0 1,765,676 1,899,316 5,276,247 2,528 439,997 8,399,626 Mean

Cold caches
RDF-3X 35.5183 279.6338 4784.9105 243.9383 2335.8000 496.1967 280.7406 450.6077
DP 62.0331 85.0982 28.8692 55.1597 98.4372 169.7828 153.4137 80.3134
TripleBit 30.2536 58.6571 19.1009 38.3939 36.8445 53.1482 82.4419 41.4466
Our Approach 27.3576 51.8009 16.3639 34.1981 32.4415 47.2091 76.1397 36.8619

Warm caches
RDF-3X 30.4811 98.8727 4103.0499 54.5362 2227.5900 91.5595 126.5979 208.9890
DP 42.8596 63.2565 18.7916 42.2857 55.2341 69.5412 108.9265 51.0319
TripleBit 27.5299 50.1393 12.6735 31.6847 27.2772 36.5613 57.4734 31.6438
Our Approach 21.6197 45.5613 11.2136 27.2417 20.0444 29.7587 51.6267 26.5365

forms the other three systems for both cold and warm caches, by a typical factor
in the geometric mean of 1.12-19 (cold cache) and 1.2-11 (warm cache). The
query times of RDF-3X (except Q1) are far larger than other three systems.
Especially, although RDF-3X and DP share same query processing technologies,
DPP is still much faster than RDF-3X. One reason is that the storage of RDF-
3X tend to produce large intermediate results. Thus, our approach outperforms
RDF-3X in the cold-cache case by a typical factor of 4 to 58, and sometimes
by more than 450. In the warm-cache cases the di↵erences are typically smaller
but still substantial (factor of 1-37, sometimes by more than 380). Our approach
improves DP and TripleBit on the cold cache time by nearly a factor of 1.1-4.5,
and the warm-cache time by a factor of 1.1-2.8.

Another important factor for evaluating our approach is how the perfor-
mance scales with the size of data. It is worth noting that the our approach scales
linearly and smoothly when the scale of the LUBM datasets increases from 500M
to 1 Billion triples.

6.2. UniProt

UniProt (Universal Protein Resource) aims to provide the scientific community
with a freely accessible resource of protein sequence and functional information
(UniProt; n.d.). UniProt is updated monthly. Here, in the experiment, we use
UniProt released in Feb. 2012, which consists of 542.80GB of protein informa-
tion. The RDF graph has 619,184,201 vertices and more than 2.9 billion edges
(Table 1). It is a huge graph, much larger than other two billion datasets. All
the queries are listed in Appendix B.

The results are shown in Table 5. Again, Our approach clearly outperforms
RDF-3X, DP and TripleBit for all queries in both cold and warm Cache. Our
approach reduces the geometric means to 11.6499s (cold) and 4.3956s (warm),
which is faster than RDF-3X and DP. Concretely, our approach clearly outper-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 19

Table 5. UniProt(time in seconds)
Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom.
#Results 12,112,776 430,633 838,568 355,523 0 43,671,080 1,040,507 Mean

Cold caches
RDF-3X 634.6494 53.0641 294.1853 105.5517 2.2879 211.5074 95.3784 90.1166
DP 572.7618 61.5337 30.3106 13.4736 1.8926 54.8142 42.2318 34.8998
TripleBit 268.1374 47.2917 9.8352 10.8213 1.5781 27.7419 24.7136 20.3799
Our Approach 185.6983 34.3219 7.4023 6.3147 1.2063 23.6313 21.8481 15.1778

Warm caches
RDF-3X 332.3779 26.2310 39.1318 2.9810 0.1141 140.6314 23.7241 16.8594
DP 297.4920 28.0256 11.5491 2.8432 0.1098 26.1587 19.5997 10.6374
TripleBit 142.6319 24.8173 6.6047 2.2605 0.0853 16.5995 12.1463 7.0993
Our Approach 108.7275 18.1909 4.5382 1.8704 0.0632 12.8771 8.6122 5.3013

forms RDF-3X by a factor in the geometric mean of 5.9 (cold cache) and 3.2
(warm cache). Comparing with DP, our approach gains the performance factor
of 2.3 (cold cache) and 2 (warm cache) in geometric mean. The experimental
results also show the similar cases, namely that our approach improve RDF-3X
and DP more when the results are larger. For example, Q1-Q4, Q6-Q7 have far
larger result set than Q5. When running the queries (Q1-Q4, Q6-Q7), our ap-
proach outperforms RDF-3X by a factor of 3.4-39.7 (cold cache) and 2.8-10.9
(warm cache). However, when executing Q5, our approach outperforms RDF-3X
by nearly a factor of 1.8 (cold cache and warm cache).

6.3. BTC 2012 Dataset

Semantic Web community holds up Billion Triples Challenge every year, which
requires the participants to make use of the dataset provided by the organizers.
Every year, the organizers published Billion Triples Challenge (BTC) dataset
and provided the data for challenge participants. BTC 2012 dataset was crawled
from Web during May/June 2012 and provided by the Semantic Web Challenge
2012 (Semantic Web Challenge; 2012). BTC 2012 dataset has varying quality due
to its composition of multiple web sources. We ignored those noise data including
the redundant triples which appeared many times in the dataset. This resulted in
1,048,920,108 unique triples (Table 1). BTC2012 dataset contains 57,193 distinct
predicates, which are far larger than other two datasets. All queries is given in
Appendix C. The query run-times are shown in Table 6. Our approach performs
consistently the best for all queries. Our approach improves DP on the cold
cache time by nearly a factor of 1.58-85, and the warm-cache time by a factor
of 1.45-3. Our approach improves RDF-3X more by by a factor in the geometric
mean of 30.1 (cold cache) and 2.3 (warm cache).

7. Conclusions and future work

We have presented a dynamic and fast query processing approach, which aims
to improve the performance of queries over big RDF datasets. Our approach is
highlighted by dynamic plan generation and pipelining execution. We process
an RDF query in two phases: plan generation phase and execution phase. Two
phases are executed iteratively. Plan generation phase identifies blocks of queries
and orders them according to the cost estimation. In the second phase, each block
is executed using dynamic pipelining, which dynamically and adaptively select
the next operator to execute in order to minimize the size of intermediate results

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 P. Yuan et al

Table 6. BTC 2012 dataset (time in seconds)
Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom.
#Results 7,241 48,001 13,919 3,446 0 115 583 Mean

Cold caches
RDF-3X 46.7618 84.6836 67.4986 20.4059 2.2927 96.5408 10.8196 27.8705
DP 11.5731 13.3285 27.3465 2.6178 1.9391 18.9611 10.2275 8.8201
TripleBit 0.1592 0.5921 0.8836 1.5327 1.7638 14.6271 1.5299 1.2599
Our Approach 0.1351 0.4469 0.4374 1.2954 1.2215 10.2368 1.3794 0.9274

Warm caches
RDF-3X 0.0961 0.6968 0.3761 1.8046 1.2235 9.5634 1.7428 0.9892
DP 0.0826 0.3833 0.3598 1.4653 0.9928 8.7576 1.5759 0.8100
TripleBit 0.0754 0.3614 0.2923 0.8385 0.8947 8.2322 0.6304 0.6088
Our Approach 0.0569 0.2659 0.1761 0.6223 0.6635 5.3293 0.5325 0.4386

generated. We also incorporate optimization techniques, such as lightweight and
fine-grained sideways information passing, semi-join and other join processing
optimizations to further enhance the performance of our query processing en-
gine. We use TripleBit as a testbed and implement our approach, the dynamic
programming and its join processing techniques reported in RDF-3X. We con-
duct experimental comparison of these approaches on three well-known RDF
datasets with over a billion triples and our result shows that our approach con-
sistently outperforms existing query engines that generate query execution plan
based on dynamic programming, such as RDF-3X.

Our future work on e�cient processing of large-scale RDF data continues
along two dimensions. First, we are working on developing a distributed SPARQL
query processing system by extending single server TripleBit. Second, we are
investigating in query decomposition and RDF data partitioning techniques,
including relevance oriented RDF data partitioning and query decomposition,
distributed indexing algorithms.

Acknowledgments

The research is supported by National Science Foundation of China (61073096)
and National High Technology Research and Development Program of China
(863 Program) under grant No.2012AA011003. Ling Liu acknowledges the partial
support of her research from grants of NSF CISE NetSE program, SaTC program
and I/UCRC Fundamental Research Program as well as Intel ISTC on Cloud
Computing.

References

Abadi, D. J., Marcus, A., Madden, S. R. and Hollenbach, K. (2007). Scalable
semantic web data management using vertical partitioning, Proc. of VLDB
2007, ACM, pp. 411–422.

Atre, M., Chaoji, V., Zaki, M. J. and Hendler, J. A. (2010). Matrix bit loaded: A
scalable lightweight join query processor for RDF data, Proc. of WWW 2010,
ACM, pp. 41–50.

Balkesen, C., Teubner, J., Alonso, G. and Özsu, M. T. (2013). Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware, Proc. of
ICDE’13, IEEE Computer Society.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 21

Bernstein, P. A. and Chiu, D.-M. W. (1981). Using semi-joins to solve relational
queries, Journal of the Associanon for Computing Machinery 28(1): 25–40.

Binna, R., Gassler, W., Zangerle, E., Pacher, D. and Specht, G. (2010). Spi-
derstore: Exploiting main memory for e�cient RDF graph representation
and fast querying, Proc. of Workshop on Semantic Data Management (Sem-
Data@VLDB) 2010.

Chebotko, A., Lu, S. and Fotouhi, F. (2009). Semantics preserving SPARQL-to-
SQL translation, Data and Knowledge Engineering 68(10): 973–1000.

Harth, A., Umbrich, J., Hogan, A. and Decker, S. (2007). YARS2: A feder-
ated repository for querying graph structured data from the web, Proc. of
ISWC/ASWC2007, Springer-Verlag Berlin, Heidelberg, pp. 211–224.

Hartig, O., Bizer, C. and Freytag, J.-C. (2009). Executing SPARQL queries over
the web of linked data, Proc. of ISWC 2009, Springer, Berlin, pp. 293–309.

Hartig, O. and Heese, R. (2007). The SPARQL query graph model for query
optimization, Proc. of ESWC 2007, Springer, Berlin, pp. 564–578.

Huang, J., Abadi, D. J. and Ren, K. (2011). Scalable SPARQL querying of large
RDF graphs, PVLDB 4(11): 1123–1134.

Ives, Z. G. and Taylor, N. E. (2008). Sideways information passing for push-style
query processing, Proc. of ICDE 2008.

Janik, M. and Kochut, K. (2005). BRAHMS: A workbench RDF store and high
performance memory system for semantic association discovery, Proc. of ISWC
2005, Springer, Berlin, pp. 431–445.

Kim, C., Sedlar, E., Chhugani, J., Kaldewey, T., Nguyen, A. D., Blas, A. D.,
Lee, V. W., Satish, N. and Dubey, P. (2009). Sort vs. hash revisited: Fast join
implementation on modern multicore CPUs, PVLDB 2(2): 1378–1389.

Kossmann, D. and Stocker, K. (2000). Iterative dynamic programming: a
new class of query optimization algorithms, ACM Trans. Database Syst.
25(1): 4382.

LUBM (2005).
URL: http://swat.cse.lehigh.edu/projects/lubm/

MonetDB (2010). Overview.
URL: http://monetdb.cwi.nl/

Neumann, T. and Weikum, G. (2009). Scalable join processing on very large
RDF graphs, Proc. of SIGMOD 2009, ACM, pp. 627–639.

Neumann, T. and Weikum, G. (2010a). The RDF-3X engine for scalable man-
agement of RDF data, The VLDB Journal 19(1): 91–113.

Neumann, T. and Weikum, G. (2010b). x-RDF-3X: Fast querying, high update
rates, and consistency for RDF databases, PVLDB 3(1-2): 256–263.

Rohlo↵, K. and Schantz, R. E. (2010). High-performance, massively scalable dis-
tributed systems using the mapreduce software framework: The shard triple-
store, Proc. of International Workshop on Programming Support Innovations
for Emerging Distributed Applications 2010 (PSI EtA ’10), ACM.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price,
T. G. (1979). Access path selection in a relational database management
system, Proc. of SIGMOD’79, Springer, Berlin, p. 2334.

Semantic Web Challenge (2012). Semantic web challenge 2012.
URL: http://challenge.semanticweb.org/2012/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 P. Yuan et al

Stocker, K., Kossmann, D., Braumandl, R. and KemperK, A. (2001). Integrating
semi-join-reducers into state of the art query processors, Proc. of ICDE 2001,
pp. 575–584.

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C. and Reynolds, D. (2008).
SPARQL basic graph pattern optimization using selectivity estimation, Proc.
of WWW 2008, ACM, pp. 595–604.

SWEO Community Project (2010). Linking open data on the semantic web.
URL: http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Udrea, O., Pugliese, A. and Subrahmanian, V. S. (2007). Grin: A graph based
RDF index, Proc. of the 22nd AAAI Conference on Artificial Intelligence,
pp. 1465–1470.

UniProt (n.d.). UniProt RDF distribution.
URL: ftp://ftp.uniprot.org/pub/databases/uniprot/current release/rdf/

W3C (2008). SPARQL query language for RDF.
URL: http://www.w3.org/TR/rdf-sparql-query/

Weiss, C., Karras, P. and Bernstein, A. (2008). Hexastore: Sextuple indexing for
semantic web data management, PVLDB 1(1): 1008–1019.

Yan, X., Yu, P. S. and Han, J. (2004). Graph indexing: a frequent structure-based
approach, Proc. of SIGMOD 2004, ACM, pp. 335–346.

Yuan, P., Liu, P., Wu, B., Liu, L., Jin, H. and Zhang, W. (2013). TripleBit: a
fast and compact system for large scale RDF data, PVLDB 6(7): 517–528.

Zou, L., Mo, J., Chen, L., Özsu, M. T. and Zhao, D. (2011). gStore: Answering
SPARQL queries via subgraph matching, PVLDB (8): 482–493.

A. LUBM queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/⇠zhp2/2004/0401/univ-bench.owl#>

Q1: SELECT ?x ?y ?z WHERE { ?y ub:teacherOf ?z . ?y rdf:type ub:Assistant-Professor . ?z
rdf:type ub:Course . ?x ub:takesCourse ?z . ?x rdf:type ub:GraduateStudent . ?x ub:advisor
?y . }

Q2: SELECT ?x ?y ?z WHERE { ?x rdf:type ub:AssistantProfessor . ?y rdf:type ub:Department
. ?x ub:worksFor ?y . ?z rdf:type ub:UndergraduateStudent . ?z ub:memberOf ?y . ?z ub:advisor
?x . }

Q3: SELECT ?x ?y WHERE { ?x rdf:type ub:AssistantProfessor . ?x ub:worksFor ?y . []
ub:memberOf ?y . ?y rdf:type ub:Department . }

Q4: SELECT ?x ?y WHERE { ?x rdf:type ub:FullProfessor . ?y rdf:type ub:UndergraduateStudent
. ?y ub:advisor ?x . ?x ub:worksFor [] . }

Q5: SELECT ?x ?y ?z WHERE { ?z ub:subOrganizationOf ?y . ?y rdf:type ub:University
. ?z rdf:type ub:Department . ?x ub:memberOf ?z . ?x rdf:type ub:GraduateStudent . ?x

ub:undergraduateDegreeFrom ?y . }
Q6: SELECT ?x ?y ?z WHERE { ?y ub:teacherOf ?z . ?y rdf:type ub:FullProfessor . ?z rdf:type

ub:Course . ?x ub:takesCourse ?z . ?x rdf:type ub:UndergraduateStudent . ?x ub:advisor ?y .
}

Q7: SELECT ?x ?y WHERE { ?x rdf:type ub:GraduateStudent . ?x ub:takesCourse [] . ?y

rdf:type ub:AssistantProfessor . ?x ub:advisor ?y . }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 23

B. UniProt queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX uni: <http://purl.uniprot.org/core/>
PREFIX taxon: <http://purl.uniprot.org/taxonomy/>

Q1: SELECT ?protein ?annotation WHERE { ?protein uni:annotation ?annotation . ?protein
rdf:type uni:Protein . ?protein uni:organism [] . ?annotation rdf:type [] . ?annotation uni:range
?range . }

Q2: SELECT ?protein ?annotation WHERE { ?protein uni:annotation ?annotation . ?protein
rdf:type uni:Protein . ?protein uni:organism taxon:9606 . ?annotation rdf:type ?type . ?anno-
tation rdfs:comment [] . }

Q3: SELECT ?protein ?annotation WHERE { ?protein uni:annotation ?annotation . ?protein
rdf:type uni:Protein . ?annotation rdf:type<http://purl.uniprot.-org/core/Transmembrane An-
notation> . }

Q4: SELECT ?b ?ab WHERE { ?b rdf:type uni:Protein . ?a uni:replaces ?ab . ?ab uni:replacedBy
?b . }

Q5: SELECT ?protein ?annotation WHERE { ?protein uni:annotation ?annotation . ?protein
rdf:type uni:Protein . ?protein uni:organism taxon:9606 . ?annotation rdf:type<http://purl.uni-
prot.org/core/Disease Annotation> . ?protein uni:modified ”2008-07-22” . }

Q6: SELECT ?a ?vo WHERE { ?a rdfs:seeAlso ?vo . ?a uni:classifiedWith<http://purl.uniprot.-
org/keywords/67> . ?b uni:annotation ?annotation . ?b rdf:type uni:Protein . ?a uni:replaces
?ab . ?ab uni:replacedBy ?b . }

Q7: SELECT ?annotation ?a WHERE { ?annotation rdf:type <http://purl.uniprot.org/core/-
Transmembrane Annotation> . ?annotation uni:range ?range . ?annotation rdfs:comment
?text . ?a rdfs:seeAlso ?vo. ?a uni:classifiedWith <http://purl.uniprot.org/keywords/67> .
?a uni:annotation ?annotation . }

C. BTC 2012 queries

PREFIX geo: <http://www.geonames.org/>
PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84 pos#>
PREFIX dbpedia: <http://dbpedia.org/property/>
PREFIX dbpediares: <http://dbpedia.org/resource/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Q1: SELECT distinct ?a ?b WHERE { ?a dbpedia:spouse ?b . ?a <http://www.w3.org/1999/02/-
22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/Person> . ?b <http://www.w3.org/-
1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/Person> . }

Q2: SELECT ?a ?l WHERE { ?a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type><http://-
dbpedia.org/ontology/Person> . ?a dbpedia:deathPlace ?l . ?l pos:lat ?lat . }

Q3: SELECT ?p ?l WHERE { ?p dbpedia:name [] . ?p dbpedia:deathPlace ?l . ?p dbpe-
dia:spouse ?c . ?p <http://www.w3.org/1999/02/22-rdf-syntax-ns#type><http://dbpedia.org/-
ontology/Person> . ?l pos:long ?long . }

Q4: SELECT ?a ?b WHERE { ?a dbpedia:-spouse ?b . ?a <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type><http://dbpedia.org/ontology/Person> . ?b <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type><http://dbpedia.-org/ontology/Person> . ?c owl:sameAs ?c2 . ?c2 pos:long
[] . ?a dbpedia:deathPlace ?c . }

Q5: SELECT distinct ?a ?c ?c2 WHERE { ?a <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type><http://dbpedia.org/ontology/Person> . ?a dbpedia:placeOfBirth ?c . ?c owl:sameAs
?c2 . ?c2 pos:lat ?lat . ?c2 pos:long ”-4.256901” . }

Q6: SELECT distinct ?a ?b ?c WHERE { ?a dbpedia:spouse ?b . ?a <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> [] . ?a dbpedia:placeOfBirth ?c . ?b dbpedia:placeOfBirth ?c . ?c owl:sameAs
?c2 . ?c dbpedia:name ?d . }

Q7: SELECT distinct ?a ?b ?lat ?long WHERE { ?a dbpedia:spouse ?b . ?a <http://www.w3.org/-
1999/02/22-rdf-syntax-ns#type><http://dbpedia.org/ontology/Person> . ?b <http://www.w3.-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 P. Yuan et al

org/1999/02/22-rdf-syntax-ns#type><http://dbpedia.org/ontology/Person> . ?a dbpedia:place-
OfBirth ?c . ?b dbpedia:placeOfBirth ?c . ?c owl:sameAs ?c2 . ?c2 pos:lat ?lat . ?c2 pos:long
?long . }

Author Biographies

Pingpeng Yuan is an associate professor in the School of Computer
Science and Technology at Huazhong University of Science and Tech-
nology. He received his Ph.D. in Computer Science from Zhejiang Uni-
versity. His research interests includes databases, knowledge represen-
tation and reasoning and information retrieval. Now he focus on in-
vestigating the storage and query processing technologies for big data
and innovative applications. Dr. Yuan and his group have developed
a number of software, including TripleBit, SemreX.

Changfeng Xie received his B.Sc. degree in Computer Science in 2012
from Huazhong University of Science and Technology(HUST). Now he
is Master candidate of School of Computer Science and Technology,
HUST. His current research interests include semantic web technology,
massive data processing and distributed processing.

Hai Jin is a Cheung Kung Scholars Chair Professor of computer sci-
ence and engineering at Huazhong University of Science and Technol-
ogy (HUST) in China. He is now the Dean of the School of Computer
Science and Technology at HUST. Jin received his Ph.D. in computer
engineering from HUST in 1994. In 1996, he was awarded a German
Academic Exchange Service fellowship to visit the Technical Univer-
sity of Chemnitz in Germany. Jin worked at The University of Hong
Kong between 1998 and 2000, and as a visiting scholar at the Univer-
sity of Southern California between 1999 and 2000. He was awarded
Excellent Youth Award from the National Science Foundation of China
in 2001. Jin is the chief scientist of ChinaGrid, the largest grid com-
puting project in China, and the chief scientist of National 973 Basic
Research Program Project of Virtualization Technology of Computing
System. Jin is a senior member of the IEEE and a member of the
ACM. Jin is the member of Grid Forum Steering Group (GFSG). He
has co-authored 15 books and published over 400 research papers. His
research interests include computer architecture, virtualization tech-
nology, cluster computing and grid computing, peer-to-peer comput-
ing, network storage, and network security.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic and Fast Processing of Queries on Large Scale RDF Data 25

Ling Liu is a Professor in the School of Computer Science at Geor-
gia Institute of Technology. She directs the research programs in Dis-
tributed Data Intensive Systems Lab (DiSL), examining various as-
pects of large scale data intensive systems. Prof. Ling Liu is an in-
ternationally recognized expert in the areas of Database Systems, Dis-
tributed Computing, Internet Data Management, and Service oriented
computing. Prof. Liu has published over 300 international journal and
conference articles and is a recipient of the best paper award from
a number of top venues, including ICDCS 2003, WWW 2004, 2005
Pat Goldberg Memorial Best Paper Award, IEEE Cloud 2012, and
ICWS 2013. Prof. Liu is also a recipient of IEEE Computer Society
Technical Achievement Award in 2012 and an Outstanding Doctoral
Thesis Advisor award from Georgia Institute of Technology. In addi-
tion to services as general chair and PC chairs of numerous IEEE and
ACM conferences in data engineering, very large databases and dis-
tributed computing fields, Prof. Liu has served on editorial board of
over a dozen international journals. Currently Prof. Liu is the editor in
chief of IEEE Transactions on Service Computing, and serves on the
editorial board of half dozen international journals, including ACM
Transactions on Internet Technology (TOIT), ACM Transactions on
Web (TWEB), Distributed and Parallel Databases (Springer), Jour-
nal of Parallel and Distributed Computing (JPDC). Dr. Liu’s current
research is primarily sponsored by NSF, IBM, and Intel.

Guang Yang graduated from Huazhong University of Science and
Technology with B.Sc. degree in Computer Science. Now he is a grad-
uate student of School of Computer Science and Technology, HUST.
His research focuses on query processing based on RDF data.

Xuanhua Shi received his Ph.D. degree in computer engineering from
Huazhong University of Science and Technology (China) in 2005. From
2006, he worked as an INRIA Post-Doc in PARIS team at Rennes for
one year. Currently he is an associate professor in Service Computing
Technology and System Lab (SCTS) and Cluster and Grid Comput-
ing Lab (CGCL) at Huazhong University of Science and Technology
(China). His research interests include cloud computing, data intensive
computing, fault-tolerance, virtualization technology.

Correspondence and o↵print requests to: Hai Jin, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China. Email: hjin@hust.edu.cn

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

