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Abstract—Mining trajectory data has been gaining significant in-
terest in recent years. However, existing approaches to trajectory
clustering are mainly based on density and Euclidean distance
measures. We argue that when the utility of spatial clustering of
mobile object trajectories is targeted at road-network aware location-
based applications, density and Euclidean distance are no longer the
effective measures. This is because traffic flows in a road network
and the flow-based density characterization become important fac-
tors for finding interesting trajectory clusters. We propose NEAT�a
road-network aware approach for fast and effective clustering of
trajectories of mobile objects travelling in road networks. Our ap-
proach carefully considers the traffic locality characterized by the
physical constraints of the road network, the traffic flow among
consecutive road segments, and the flow-based density to organize
trajectories into spatial clusters in a comprehensive three-phase
clustering framework. NEAT discovers spatial clusters as groups of
sub-trajectories which describe both dense and highly continuous
flows of mobile objects. We perform extensive experiments with mo-
bility traces generated using different scales of real road networks.
Experimental results demonstrate the flexibility of the NEAT system
and show that NEAT is highly accurate and runs orders of magnitude
faster than existing density-based trajectory clustering approaches.

Index Terms—trajectory clustering; road network trajectory;
location-base applications

1 INTRODUCTION
Recent years have witnessed a rapidly growth in the
field of location-based services (LBSs) and applica-
tions due to the pervasive use of GPS receivers and
WiFi or location sensing technology embedded in mo-
bile devices (e.g. cellular phones, automobiles). With
the number of smartphones in use world wide reaches
1.038 billion units in 2012 and is predicted to reach 2
billion units by 20151, LBS revenue is forecasted to
reach an annual global total of $13.5 billion by 20152,
up from $4 billion in 20123. Ubiquitous GPS/WiFi-
enabled mobile devices generate a huge amount of
trajectory data, which are sequences of time-ordered
locations of mobile objects. There has been a lot of
work on collecting, storing, indexing and querying
trajectories of mobile objects [1] [2] [3] [4] [5]. We
refer to the trajectories of mobile objects in a road
network as MO trajectories. Clustering trajectories of
these objects provides the most value and has a wide
range of LBS applications. For example, the resulting
clusters would help provide knowledge about traffic
flows as well as dense areas in a road network. Such
knowledge is very useful for applications in vehicular
ad hoc network (VANET) [6] [7], traffic monitoring [8],

1. http://www.strategyanalytics.com/
2. http://www.gartner.com/
3. http://www.abiresearch.com/

transportation planning [9] and location-based adver-
tising [10]. We briefly present below two interesting
application scenarios which show the usefulness of
trajectory clustering and motivate us to study the
problem of clustering trajectories of mobile objects
moving in a spatially constrained road network.

Public transit planning. The establishment of pub-
lic transportation system always target the road net-
work routes which can maximize the utilization of
public transportation vehicles. Since a bus runs along
consecutive road segments, in order to make the best
use of the bus service regarding the number of pas-
sengers it can serve and to improve public transport
convenience, e.g. reduce the number of transit stops
for passengers, knowing which routes with not only
high density but also high continuity helps optimize
rail/bus line and terminal arrangement.

Location based advertising on mobile devices.
Mobile advertisers are trying to improve the matching
of user locations and marketing information. It would
be beneficial for local stores to send advertisements,
e.g. special offers or discounts, to mobile devices
taking path in major traffic flows passing by their
stores. For example, consider when a store wants to
send out text messages with a discount coupon. If
the text message is sent to a group of people in a
nearby dense road segment which is also part of a
route with significant traffic flow leading to the store,
it will better increase the chance that people receiving
the coupon will actually come to the store during their
trips, compared to when the message is sent to a dense
area but does not belong to the traffic flow passing by
their store.

A straight forward solution to address this clus-
tering problem is to adapt the traditional density-
based clustering algorithms (e.g. DBSCAN [11] or
OPTICS [12] - a variant of DBSCAN) to group sim-
ilar MO trajectories. However, clustering trajectories
as a whole does not take into account similar sub-
trajectories since trajectories have various lengths.
This is addressed by partial trajectory clustering. The
TraClus algorithm [13] is the representative method
for clustering portions of a trajectory instead of the
whole trajectory. Specifically, TraClus is a two phase
clustering algorithm. In the partitioning phase, each
trajectory is first examined sample by sample to iden-
tify a sequence of characteristic points at which the
moving object makes a sharp turn, called a rapid
change in direction, and then the trajectory is par-

http://www.strategyanalytics.com/
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titioned into line segments by these characteristic
points. The grouping phase performs a DBSCAN style
clustering on those line segments to find similar sub-
trajectories. A drawback to this and most similar par-
tial trajectory clustering approaches is that they only
consider distances in Euclidean space, while show
reasonable performance for clustering trajectories of
objects moving freely (e.g. the movement of animals
through a forest or the movement of hurricanes across
an ocean), are inappropriate for clustering MO trajec-
tories. We argue that clustering MO trajectories should
take into account the traffic locality characterized by
the spatial constraints of the underlying network,
e.g. road segments and intersections, the movement
behavior of mobile objects as well as the traffic flows
on consecutive road segments, in addition to mobile
object density and the road network proximity. We
illustrate our positional statements with the following
set of examples.

Example 1. We have a set of four objects moving
along the same road segment and produce four MO
trajectories as shown in Figure 1(a). In the context of
a road network, those objects have similar movement
behavior with respect to the road segment. Therefore,
their trajectories should be grouped together regard-
less of the difference in their specific movement on
the road segment. Hence, it is unnecessary to further
partition these trajectories, even though some rapid
changes in direction are found in those trajectories.

Example 2. Consider two trajectories TR1 and TR2

in Figure 1(b). TR1 describes an object moving on
road segment RS1, changing lanes, and then making a
left turn to road segment RS2. TR2 describes another
object moving straight from RS1 to RS3. If we use
the TraClus algorithm, to cluster the MO trajectories,
TR1 will be partitioned into four line segments: A1A2,
A2A3, A3A4, and A4A5, while TR2 consists of only
one line segment which is too long to be grouped
with the segments of TR1 on RS1 (A1A2, A2A3, and
A3A4). We argue that although there is no significant
turning point found in TR2, we should still partition
it into two line segments fragments corresponding to
the two distinct road segments RS1 and RS3.

Example 3. In Figure 1(c), road segments RS1 and
RS3 share a larger number of mobile objects than that
of road segments RS1 and RS2. Thus, when consider
traffic continuity, traffic on road segment RS1 should
be merged with traffic on RS3 rather than RS2.

Example 4. We have three trajectories: TR1 and TR2

are on the same road segment, and TR3 is on another
road segment as shown in Figure 1(d). Using the
Euclidean distance, TR3 is closer to TR2 than TR1,
even though using the road network distance (either
segment length based or travel time based), TR1 is
closer to TR2 than TR3.

In this paper, we present NEAT�a road NEtwork
Aware approach to Trajectory clustering. To the best of
our knowledge, NEAT is the first technique to address
the MO trajectory clustering problem by taking into
account the continuity of movements restricted by

the underlying road network, the network proximity
and the traffic flows among consecutive road seg-
ments to organize MO trajectories into spatial clusters.
The clusters discovered by NEAT are groups of sub-
trajectories, which describe both dense and highly
continuous traffic flows of mobile objects. A unique
feature of the NEAT framework is the formulation of
the three phase trajectory partitioning, merging and
clustering process. Specifically, based on the obser-
vations from the above examples, we identify three
important design guidelines. First, for a given set of
MO trajectories, the road intersections can be viewed
as the initial partitioning points where trajectories
can be split into atomic sub-trajectories called tra-
jectory fragments. Second, the trajectory fragments
corresponding to a road segment can be viewed as a
locally dense cluster of objects involved in the given
set of trajectories. Third, trajectory fragments should
be clustered based on their continuity with regard to
the traffic flows on the consecutive road segments.
In addition, the proximity measure in a road net-
work space uses shortest path distance instead of Eu-
clidean distance. We perform extensive experiments
with road network mobility traces generated using
different scales of road network maps. Our experi-
mental results demonstrate that the NEAT approach
is highly efficient and accurate. It can run more than
three orders of magnitude faster than existing density-
based trajectory clustering approaches.

2 NEAT MODEL AND FRAMEWORK

We first describe a reference model for road networks
and present the basic concepts and operations of
the NEAT model. We end this section with a brief
overview of the NEAT three phase framework and
an illustrative example.

2.1 Road-Network Model
A road network is represented by a single directed
graph G = (V, E), composed of the junction nodes
V = {n0, n1, . . . , nN

} and directed edges E =
{(sid, n

i

n
j

)|n
i

, n
j

2 V}.
An edge e = (sid, n

i

n
j

) 2 E representing a road
segment connecting two junctions n

i

and n
j

in the
real road network. The listed order n

i

n
j

indicates
the direction from n

i

to n
j

of the road segment.
For road segments which have bidirectional lanes,
we use edge e = (sid, n

i

n
j

) and e0 = (sid, n
j

n
i

) to
denote the fact that the road segment is bi-directional
and we label each edge with the corresponding road
segment identifier sid. The length of a road segment
e = (sid, n

i

n
j

) is denoted by length(n
i

n
j

) .
Let L(e) denote the set of adjacent edges of e =

(sid, n
i

n
j

) and L
ni(e) denote the set of adjacent edges

of e, which connect to e at junction n
i

. Hence, we
have L(e) = L

ni(e) [ L
nj (e). If n

i

is a dead-end node
connected by edge e, then L

ni(e) = �. If two edges
e
i

and e
j

are adjacent, function I(e
i

, e
j

) will return
the junction node (intersection) of these two edges. A
route in the road network G is a network path e0e1...ek
such that e

i+1 2 L(e
i

) (0  i < k).
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 (a) An example of the
movement of four vehicles
on a road segment
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(b) Parts of two trajecto-
ries on the same road seg-
ment that are overlooked in
TraClus
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(c) Traffic on road segment RS1

should be merged with traffic
on road segment RS3 rather
than RS2
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(d) An example showing the
difference between the Eu-
clidean proximity and the
road network proximity

Fig. 1: Illustrative examples

We define a road network location of a mobile object
as a tuple of three elements: sid � the identifier
of the road segment on which this object resides,
the geometric coordinates (x, y) of the position of
the object on the road segment sid, and the times-
tamp t when the position is recorded, denoted by
l = (sid, x, y, t). A road network location can also
be represented by a tuple (sid, p, t) where p is the
offset of the location from the start junction of the
road segment identified by sid. We use the (x, y)
coordinates to represent location in this paper due to
the popularity of geometric coordinates. We measure
the network proximity between two network locations
using the network-based distance metric [14]. Let l

i

and l
j

denote the network locations that belong to the
edge e

i

= (sid
i

, n
a

n
b

) and the edge e
j

= (sid
j

, n
c

n
d

)
respectively and e

i

6= e
j

. The network distance be-
tween l

i

and l
j

is the length of the shortest path
between l

i

and l
j

, denoted by dist
N

(l
i

, l
j

). We use
the terms point and location interchangeably to refer
to a road network location and the terms junction,
intersection and endpoint interchangeably to refer to
a road junction. We use (sid, n

i

n
j

) and n
i

n
j

inter-
changeably to denote a segment connecting two end
nodes n

i

and n
j

when there is no confusion.

2.2 NEAT model

In this section, we define the basic concepts and op-
erations of our road network aware trajectory model
with illustrative examples.

For each mobile object, each of his/her trips
with a beginning location and a destination location
forms a trajectory. A trajectory, denoted by TR =
(trid, l0l1...ln), is a time-ordered sequence of locations
l0, l1, ..., ln of an MO in the road network over time
and uniquely identified by a trajectory identifier trid.
A subsequence of points in a trajectory forms a sub-
trajectory. Note that in our model, the temporal infor-
mation in a trajectory, i.e. the recorded timestamps,
determines the order of locations in the trajectory.
Therefore, the direction of movement of an object is
always preserved. For presentation convenience, we
do not explicitly mention the directions of movement
in the definitions and figures used in the subsequent
sections of the paper when no confusion occurs.

Definition 1. (t-fragment) Let TR = {trid, l0l1...ln}
denote a trajectory consisting of n+1 points and trid
denote the trajectory identifier. A t-fragment of TR,

denoted by tf = {trid, sid, l
k

l
k+m

}, represents a sub-
trajectory l

k

l
k+1...lk+m

consisting of m+1 consecutive
points extracted from TR which lie on the same road
segment sid, i.e. l

i

.sid = l
j

.sid (8i, j : k  i, j 
k +m, i 6= j).

There can be more than one t-fragment associated
with a road segment for a given trajectory (in case the
mobile object travels on the road segment multiple
times during her trip).

Definition 2. (base cluster) Let T denote a set of
trajectories and e denote a road segment. A base cluster
S with respect to e is a group of distinct t-fragments,
each of these t-fragments belongs to a trajectory in T
and is associated with e. The base cluster S is formally
defined as follows:
S = {tf

i

|TR(tf
i

) 2 T , tf
i

.sid = e.sid} where
TR(tf

i

) denotes the trajectory from which the t-
fragment tf

i

2 S is extracted. The road segment e
is called the representative of the base cluster S, and
is denoted by eS . The base cluster S is said to be
associated with the road segment eS .

We call a trajectory which has t-fragments in a base
cluster the participating trajectory of the base cluster.

Definition 3. (trajectory cardinality) The set of par-
ticipating trajectories of a base cluster S is defined
as: PTr(S) = {TR(tf

i

)|8tf
i

2 S}. The cardinality of
PTr(S), denoted by |PTr(S)|, is called the trajectory
cardinality of S.

Definition 4. (cluster density) The density of a base clus-
ter S, denoted by d(S), is the number of t-fragments in
S. Given B = {S0, S1, ..., SN

} is a set of base clusters,
we call the base cluster with the highest density in B
the dense-core of B, denoted by densecore(B).

Definition 5. (netflow) The netflow between two base
clusters S

i

and S
j

, denoted by f(S
i

, S
j

), is the
number of trajectories participating in both clusters:
f(S

i

, S
j

) = |PTr(S
i

) \ PTr(S
j

)|
The function netflow between two base clusters

computes the number of common objects traveled on
both representative road segments eSi and eSj .

Definition 6. (f -neighborhood) Let B denote a set of
base clusters, S

i

denote a base cluster and n
u

denote
one endpoint of eSi . The f -neighborhood of S

i

wrt.
n
u

, denoted by N
f

(S
i

, n
u

), is the set of base clusters
that have at least one common participating trajectory,
and is formally defined as: N

f

(S
i

, n
u

) = {S
j

| eSj 2
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(a) A trajectory has
three t-fragments
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(b) An example of base clusters and
flow cluster

Fig. 2: Examples of the elements in the NEAT model

L
nu(e

Si) & f(S
i

, S
j

) > 0}.
Let n

v

be the other endpoint of eSi . We define the f -
neighborhood of S

i

wrt. eSi as: N
f

(S
i

) = N
f

(S
i

, n
u

)[
N

f

(S
i

, n
v

). Each S
j

2 N
f

(S
i

) is called the f -neighbor
of S

i

. Note that the f -neighbor is a symmetric relation.

Definition 7. (maxFlow-neighbor) Let S
i

denote a base
cluster and n

u

denote one endpoint of eSi . We call
S
k

the maxFlow-neighbor of S
i

at n
u

, denoted by
maxFlow(S

i

, n
u

), if f(S
i

, S
k

) = max{f(S
i

, S
j

)| S
j

2
N

f

(S
i

, n
u

)}. f(S
i

, S
k

) is called a maxFlow of S
i

.

Definition 8. (flow cluster) A flow cluster (or a flow for
short) is an ordered list of base clusters, denoted by
F = {S0, S1, ..., SN

}, where S
i+1 2 N

f

(S
i

)(0  i < N)
and eS0eS1 ...eSN forms a route in the road network.
We call eS0eS1 ...eSN the representative route of F ,
denoted by r

F

.

Since a base cluster is comprised of t-fragments
and a flow cluster is comprised of base clusters, we
say that a flow cluster is comprised of t-fragments.
Therefore the definition of trajectory cardinality also
applies to a flow cluster. We define the netflow be-
tween a flow cluster F and a base cluster S as
f(F, S) = |PTr(F ) \ PTr(S)|.

Figure 2(a) shows a trajectory which can be rep-
resented by a sequence of three t-fragments A0A1,
A1A4 and A4A6. In Figure 2(b), we have five tra-
jectories located on four road segments n1n2, n2n3,
n2n4 and n2n5. There are three t-fragments which
lie on n1n2. Those three t-fragments are grouped
together in base cluster S1 whose representative road
segment is n1n2. In total, we have a set of base clusters
B = {S1, S2, S3, S4}. The density of S1 is d(S1) = 4.
Similarly, we have d(S2) = 3, d(S3) = 1 and d(S4) = 2.
S1 is the dense-core of B since d(S1) = 4 is the highest
density. The netflows among these base clusters are:
f(S1, S2) = 2, f(S1, S3) = 1, f(S1, S4) = 1, f(S2, S3) =
0 and f(S2, S4) = 1. The f -neighborhood of S1 wrt.
n2 is N

f

(S1, n2) = {S2, S3, S4}, in which S2 is the
maxFlow-neighbor of S1. The possible flow clusters
include {S1, S2}, {S1, S3}, {S1, S4} and {S2, S4}.

2.3 NEAT Framework Overview
Given a road network G = (V, E) and a set of N
trajectories collected from mobile objects travelling
on G, denoted by T = {TR1, TR2, ..., TRN

}, NEAT

performs road network aware trajectory clustering in
three phases:

Phase 1 - Base cluster formation: We transform the
given set of MO trajectories into a set of trajectory
fragments (t-fragments). Then we organize these t-
fragments into base clusters by grouping those t-
fragments that correspond to the same road segment
into one base cluster.

Phase 2 - Flow cluster formation: We selectively merge
base clusters into flow clusters based on the major
mobility flows and the flow continuity inherent in the
given set of trajectories.

Phase 3 - Flow cluster refinement: We optimize the
clustering result using a density-based refinement
method. Our density-based optimization modifies the
widely-used Hausdorff distance with the shortest
path measurement and adapts the DBSCAN cluster-
ing algorithm [11].

The final result produced by NEAT is a parti-
tioning of the given MO trajectories into a set of
trajectory clusters O = {C1, C2, ..., CK

} where each
cluster C

i

(0  i  K) contains a set of trajectory
fragments satisfying two criteria: (1) High density: the
trajectory fragments in the same cluster are within the
network proximity of each other; (2) High continuity:
the trajectory fragments in the same cluster show a
major traffic flow in the given trajectory data.

The NEAT system uses 3-tier client/server archi-
tecture. Each client node acts as a mobile device
which records its locations, sends its trajectories to
a NEAT server and makes requests to the server
to get trajectory clustering results for a particular
road network. NEAT server also distributes trajectory
datasets across multiple nodes in a cluster. These data
nodes can perform some data preprocessing tasks.
In this paper, we focus on the trajectory clustering
application running on the NEAT server.
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Fig. 3: An example of three phase clustering in the
NEAT framework.

Figure 3 illustrates the three phase NEAT frame-
work. Consider a set of trajectories located on 12
road segments in an example road network as shown
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in the upper-left of Figure 3. In Phase 1, a set of
base clusters are constructed from the given set of
trajectories (the upper-right of Figure 3). In Phase
2, we utilize road network information and mobile
object movement characteristics to group base clusters
into flow clusters. Important operations include com-
puting the netflows, finding the f -neighborhoods and
compute the maxFlow-neighbors. For our example,
the result of this phase is a set of three flow clusters
{F1, F2, F3} (the bottom-right of Figure 3). In Phase 3,
we refine the resulting flow clusters by merging those
flow clusters that are close in terms of a network based
distance measure and a distance threshold. In Figure
3, F1 and F3 are merged in Phase 3 to form a larger
trajectory cluster. The two clusters C1 and C2 shown
in the bottom-left of Figure 3 are the final result of
clustering for this specific example.

3 THREE PHASE TRAJECTORY CLUSTERING
In this section, we present in details the algorithms
used in the NEAT clustering framework to produce
base clusters in Phase 1, flow clusters in Phase 2 and
the final trajectory clusters in Phase 3.

3.1 Phase 1 - Base Cluster Formation
We perform the base cluster formation in two steps.
First, we examine the input set of MO trajectories
and partition each MO trajectory into a sequence of
t-fragment. Second, we group those t-fragments that
belong to the same road segments into one base cluster.

3.1.1 Partitioning Trajectories into t-fragments
Since a mobile object moves along contiguous road
segments, two consecutive locations recorded in a MO
trajectory are either on the same road segment or on
two different road segments. In the latter case, the
two different road segments are either contiguous or
lie on the route (travel path) of the mobile object such
that they are connected through a sequence of road
junction nodes on the same path. For each trajectory
TR

k

= {trid
k

, l0l1...ln} in the given trajectory dataset,
we start the t-fragment extraction by examining TR

k

from the first location l0 to the last location l
n

in the
sequence of location samples {l0l1...ln} of the trajec-
tory. Based on the fact that a mobile object has to go
through the road intersection when moving between
two contiguous road segments, we take every two
consecutive points in the trajectory, say l

i

and l
i+1,

and check if their road segment identifiers, denoted
by sid(l

i

) and sid(l
i+1) respectively, are different. If

sid(l
i

) 6= sid(l
i+1), we know that l

i

and l
i+1 are on

different road segments. If they are contiguous, we
can obtain the road junction node that intersects these
two road segments. If the two road segments happen
to be not contiguous, we can obtain the sequence of
road junction nodes connecting them on the travel
path of the object using the map-matching approach
[15]. Next, we insert the obtained junction node(s) as
new points in between l

i

and l
i+1 in the trajectory

being examined. The junction nodes added to a tra-
jectory in this phase are marked as different points

than the original location samples. After examining
every point in a given trajectory TR

k

, the sequence
of junction nodes added to TR

k

will serve as the tra-
jectory splitting points used to partition the trajectory
into t-fragments. When a given set of trajectories are
given as time series of geometric coordinates, NEAT
will first preprocess the set of trajectories using map-
matching (MM) algorithms such that each point in
a trajectory is mapped to a road network location
as defined in Section 2.1. We use the SLAMM map-
matching algorithm [15] in this data prepocessing
step. MM algorithms for bulk location data are more
effective as noted in [15] because look-ahead and
look-around algorithms can catch many known er-
rors of earlier MM algorithms, such as map-matching
location samples between two nearby parallel road
segments.

By transforming a trajectory into a set of t-
fragments, only the first point and the last point in the
original trajectory are kept, together with the newly
inserted road junction points. These points play crit-
ical roles in extracting t-fragments and constructing
base clusters in the next step of Phase 1 as well as
in subsequent phases of NEAT. Furthermore, the se-
quence of t-fragments extracted from a trajectory still
maintains the traveling route, the movement direction
as well as the identifier of the original trajectory.

3.1.2 Grouping t-fragments into Base Clusters
We examine the t-fragments extracted from the MO
trajectories and group them by their road segment
identifiers. Each group of t-fragments corresponding
to a road segment forms one base cluster with the
road segment as its representative (Definition 2). As
discussed in Section 1, the t-fragments on the same
road segment are considered close in terms of net-
work proximity and they display similarity in the
movement of their mobile objects. We compute the
density of the resulting base clusters (Definition 4),
then sort them by their densities in descending order.
The output of Phase 1 is a sorted list of base clusters
with the first base cluster as the dense-core of the
set of base clusters. The base clusters are used as the
building blocks of our flow-based clustering in the
next phase. We will use flow and density controlled
merging algorithms to construct the final trajectory
clusters of a given trajectory dataset T .

3.2 Phase 2 - Flow Cluster Formation
The flow-based clustering algorithm takes as an input
the list of base clusters B produced from Phase 1. It
starts by selecting one base cluster in B as the first
initial flow cluster. It then expands this initial cluster
by adding other base clusters one at a time such that
the representative road segments of the base clusters
selected for merging are concatenated to make a route.
This expanding process will stop when every base
cluster in B has been examined for its potential to be
merged with existing flow clusters. We consider flow,
density and road speed limit as three characteristics
of a traffic stream to define a set of merging criteria.
We construct flow clusters by grouping base clusters
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according to these criteria. We discuss below how to
choose the initial base cluster and determine which
base clusters are the best candidates for merging with
the flow cluster under consideration.

3.2.1 Density-based Flow Cluster Initialization
In the first prototype of NEAT, we take the dense-
core of the density-ordered list of base clusters B to
begin the flow-based clustering process. There are at
least two reasons for choosing densecore(B) as the
initial flow cluster to start Phase 2. Given that a major
traffic stream usually covers the road segment(s) with
the highest traffic density in the road network, if we
randomly pick a base cluster in B to initialize a flow
cluster, it might lead to a flow cluster that describes
a negligible traffic stream and will eventually be
filtered out. In addition, choosing densecore(B) also
guarantees that the set of base clusters are merged
in a deterministic order. Hence, the resulting flow
clusters are always the same for the same input set
of trajectories.

3.2.2 f -neighbor Merging for Flow Clusters
In this section, we describe how to merge a base
cluster into an existing flow cluster. Suppose we are
in the process of expanding a flow cluster F , which is
in the form of an ordered list of base clusters, denoted
by {S

a

S
a+1 . . . Sb�1Sb

}. We extend the list by inserting
a base cluster either at the front or at the end of
the list. Inserting a base cluster at the front of the
list is performed similarly to inserting a base cluster
at the end of the list. Let n

u

denote the other end
point of eSb other than the intersection I(eSb�1 , eSb) of
the two representative road segments of base clusters
S
b�1 and S

b

. The base cluster S
b+1 to be added to

the end of the list has to be an f -neighbor of S
b

wrt.
n
u

, i.e. S
b+1 2 N

f

(S
b

, n
u

). As it is well known that
flow, density and velocity are the three variables of
traditional theory for uninterrupted traffic flow [16],
we choose S

b+1 among the base clusters in N
f

(S
b

, n
u

)
by considering the flow factor q, density factor k and
speed limit factor v.

Definition 9. Given a base cluster S and n
u

as one
endpoint of road segment eS , the flow factor q, density
factor k and speed limit factor v of a base cluster S

j

2
N

f

(S, n
u

) wrt. S are defined respectively as follows:

q = f (S, S
j

) /|PTr(S)| (1)

k = d (S
j

) /(d(S) +
X

Si2Nf (S,nu)

d (S
i

)) (2)

v = speed (S
j

) /
X

Si2Nf (S,nu)

speed (S
i

) (3)

where speed(S
j

) is the speed limit of eSj .

Definition 10. Given a base cluster S and n
u

as one
endpoint of eS , the merging selectivity of a base cluster
S
j

2 N
f

(S, n
u

) is defined as:

SF (S, S
j

) = w
q

⇥ q + w
k

⇥ k + w
v

⇥ v (4)

where the coefficients w
q

, w
k

and w
v

determine the
weights of q, k, v respectively. The weights w

q

� 0,
w

k

� 0 and w
v

� 0 satisfy w
q

+ w
k

+ w
v

= 1.

Here we assume that S is currently either the first
element or the last element of a flow cluster F . Thus,
selecting a base cluster to merge with F implies select-
ing a base cluster to merge with S. The three factors q,
k, v are computed for each candidate base cluster S

j

and normalized between [0,1] to better represent their
relative capability of extending the flow cluster under
examination to form a route with high continuity and
density as our clustering objectives. Specifically, the
flow factor q measures the relative netflow between
S and S

j

, thus, high q means that S
j

maintains high
continuity of the traffic flow when merging with S.
The density factor k measures the relative density
of S

j

among neighboring base clusters at the road
junction shared with S, namely n

u

, which contributes
to the density characteristic of the extended flow. The
speed limit factor v measures how fast mobile objects
can move within S

j

compared to its neighbors at n
u

,
which is also a capable metric to find popular routes
as mobile objects tend to travel following routes with
either shortest distances or shortest travel times. In
Definition 10, we combine all three factors q, k, v
under a weighing scheme to select the most relevant
base cluster to merge wrt. our clustering objectives.
According to the above definitions, the base cluster in
N

f

(S, n
u

) which has the highest merging selectivity,
denoted by SF

max

, will be chosen to merge with S.
Each base cluster which has been merged into

a flow cluster is removed from B. We also use
a threshold minCard for the trajectory cardinality
of a flow cluster to filter out those flow clusters
whose trajectory cardinalities are smaller than min-
Card. Finally, the condition to stop expanding the
list {S

a

S
a+1 . . . Sb�1Sb

} at the end of the list is
when S

b

has no f -neighbor wrt. its endpoint n
u

, i.e.
N

f

(S
b

, n
u

) = ;. A similar condition is applied to stop
expanding the list at the front. When both conditions
are reached, we add the resulting flow cluster to W ,
the output set of flow clusters in Phase 2. Then, we
begin the next iteration of flow-based clustering with
the remaining base clusters in the list B with the same
process as described above, until all the base clusters
are assigned to flow clusters, i.e. B becomes empty.

3.2.3 Decisions on f -neighbor Merging
Suppose we are at a merging step and the highest
merging selectivity at this step is SF

max

. We dis-
cuss the case when there are more than one base
cluster which have the merging selectivity values of
SF

max

at a merging step. Suppose a base cluster S
is at one end of an intermediate flow cluster F and
S has m equally qualified neighbors S1, S2, . . . , Sm

to merge wrt. their merging selectivity values, i.e.
SF (S, S1) = . . . SF (S, S

m

) = SF
max

. In our flow-based
clustering algorithm described above, we randomly
pick one base cluster in {S1, S2, . . . , Sm

}. We call it
“random SF

max

” merging scheme. Here we propose
two schemes in which instead of randomly picking,
we carefully consider the potential merging oppor-
tunity of each equally qualified base cluster, called
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“look-back” and “look-ahead” schemes respectively.
Both schemes focus on the flow property of the traffic
stream.

 

Fig. 4: An example of a merging iteration in which a
base cluster S at the end of an intermediate flow

cluster F has two neighbors with
SF (S, S

i

) = SF (S, S
j

) = SF
max

Look-back Merging. We compare the netflows
between the flow cluster under examination and
m base clusters f(F, S

i

), f(F, S2), ..., f(F, Sm

) and
choose one S

j

(1  j  m) such that f(F, S
j

) =
max{f(F, S1), f(F, S2), ..., f(F, Sm

)}. This means we
want to maintain the movement of as many objects
which have already on the representative route of the
flow cluster F as possible. So that we “look-back” to
the flow cluster F which has been extended so far and
pick among those m candidates the one that share the
largest number of participating trajectories with F .

Look-ahead Merging. Let n
u

be the intersection of
eS and eS1 , eS2 ,..., eSm . We consider the maxFlows of
those m candidates at the other endpoints, which are
not n

u

, of their representative road segments. If the
maxFlow of S

j

has the biggest value among them,
we will select S

j

to merge with S. In this scheme, we
“look-ahead” to the maxFlow at the other endpoint
of each candidate’s representative road segment and
select the largest one. By using “look-ahead” scheme,
we want to make sure that we capture all the signifi-
cant netflows while expanding a flow cluster.

An example of this case is illustrated in Figure 4
where a base cluster S at the end of an interme-
diate flow cluster F with SF (S, S

i

) = SF (S, S
j

) =
SF

max

. In the “random SF
max

” scheme, S
i

and S
j

have equal merging opportunity, thus, we randomly
pick either S

i

or S
j

to merge with S. In the “look-
back” scheme, we pick the base cluster which gives
max(f(F, S

i

), f(F, S
i

)). In the “look-ahead” scheme,
let S

i+1 be a maxFlow � neighbor of S
i

and S
j+1

be a maxFlow � neighbor of S
j

, we pick the base
cluster either S

i

or S
j

based on which one gives
max(f(S

i

, S
i+1), f(Sj

, S
j+1)).

3.2.4 Weight Assignment Criteria
The setting of the weights w

q

, w
k

and w
v

is usually de-
termined by the specific location-based applications. If
an application favors the three factors equally when
considering a traffic stream, we can set w

q

= w
k

=
w

v

= 1/3. If we set (w
q

, w
k

, w
v

) = (0, 1, 0), we will
merge a base cluster with its densest f -neighbor.
The resulting flows in this case will describe a route
where traffic is highly concentrated. A combination
of (w

q

, w
k

, w
v

) = (0, 0, 1) will produce flow clusters
that describe the routes where objects can travel the

fastest. For traffic monitoring applications, the flow
factor and the density factor can be considered the
most important factors so that we can set (w

q

, w
k

, w
v

)
to (1/2, 1/2, 0). If the application emphasizes the flow
property of a traffic stream and considers the flow
factor as the most important one, it can set w

q

= 1
and w

k

= w
v

= 0. Therefore, the maxFlow-neighbor
of S (Definition 7) will be selected to merge with S.

Beside user supplied weights, NEAT also supports
system generated weights to make it run in an au-
tomated manner. For system supplied weights, we
introduce an adaptive weight assignment scheme which
selects the most critical characteristics of the traffic
stream based on the values of the flow, density and
speed limit factors at each merging step. Suppose we
are in the process of forming a flow cluster. At each
merging step, we compute the maximum values q

max

,
k
max

, v
max

of the flow factor q, density factor k and
speed limit factor v respectively. We the assign the
weights w

q

, w
k

and w
v

to be used at the corresponding
merging step as follows:

w
q

= q
max

/(q
max

+ k
max

+ v
max

) (5)

w
k

= k
max

/(q
max

+ k
max

+ v
max

) (6)

w
v

= v
max

/(q
max

+ k
max

+ v
max

) (7)

Note that all three factors q, k, v are normalized
between 0 and 1. Thus, their maximum values at
each merging step q

max

, k
max

, v
max

can show the
relative importance of each property of the traffic
stream passing the road intersection corresponding to
the base cluster under consideration in the merging
step. By adaptively assigning weights based on those
maximum values as in Formula 5, 6, 7, NEAT puts
more weight on the critical factor at each merging step
and therefore, automatically discovers flow clusters
which capture important traffic flow inherent from the
given trajectory data.

The pseudo code of flow-based clustering is pre-
sented in Algorithm 1. It performs on a set of base
clusters B until all the base clusters are assigned to
flow clusters, i.e. B is empty (lines 3-11). Each round
of flow-based clustering starts with the dense core of
B (line 4). The procedure expandF low() (lines 19-32)
performs f -neighbor merging to extend a flow from
its both sides (lines 8-9) given the factor weights w

q

,
w

k

, w
v

. If the input weights (w
q

, w
k

, w
v

) are set to
(0, 0, 0), the adaptive weight assignment scheme is
used to adaptively compute the weights at each merg-
ing step (line 21). It computes the f -neighborhood
of the base cluster at one end of the flow (line 19)
then select the f -neighbor with maximum merging
selectivity to assign to the current flow. The flow
continues to be expanded (line 31) as long as there
are candidates to be merged (line 23), otherwise it
stops. We also filter out the flows with insufficient
number of participating trajectories. We set minCard
to equal to the average trajectory cardinality of the
flow clusters in the set W . Those flow clusters whose
trajectory cardinalities are smaller than minCard will
be discarded (lines 13-17).



8

Algorithm 1 Flow-based clustering

Input: (1) A set of base clusters B = {S0, S1, ..., SM

}
(2) A road network G
(3) Factor weights w

q

, w
k

, w
v

Output: A set of flow clusters W = {F1, F2, ..., FQ

}
1: flowId = 0;
2: W = ;;
3: while B 6= ; do
4: S

c

= densecore(B);
5: add S

c

to F
flowId

;
6: remove S

c

from B;
7: {n

c1, nc2} =getEndPoints(eSc);
8: expandFlow(S

c

, n
c1, f lowId, wq

, w
k

, w
v

);
9: expandFlow(S

c

, n
c2, f lowId, wq

, w
k

, w
v

);
10: flowId++;
11: end while
12: minCard =averagePtr(W );
13: for each F

i

2 W do
14: if Ptr(F

i

) < minCard then
15: remove F

i

from W
16: end if
17: end for
18: Procedure expandFlow(S, n

u

, f lowId, w
q

, w
k

, w
v

){

19: N
f

=getfNeigborhood(S, n
u

);
20: if (w

q

, w
k

, w
v

) = (0, 0, 0) then
21: (w

q

, w
k

, w
v

) = getAdaptiveWeights(S,N
f

);
22: end if
23: if N

f

6= ; then
24: for each S

i

2N
f

do
25: SF (S

i

) = mergeSelectivity(S
i

, w
q

, w
k

, w
v

);
26: end for
27: SF (S

j

) = max
Si2NfSF (S

i

) ;
28: add S

j

to F
flowId

;
29: remove S

j

from B;
30: n

v

=getEndPoints(eSj ) \ {n
u

};
31: expandFlow(S

j

, n
v

, f lowId, w
q

, w
k

, w
v

);
32: end if
33: }

3.3 Phase 3 - Flow Cluster Refinement
The third phase of NEAT is designed to exploit oppor-
tunities to further merge some flow clusters produced
from Phase 2. We describe in this section a density-
based approach to group flow clusters. We modify
the Hausdorff metric to measure the distance between
two flow clusters and adapt DBSCAN algorithm [11]
to merge flow cluster merging process. This optimiza-
tion is especially effective for real time trajectory clus-
tering where online clustering can be executed in an
incremental and distributed manner. In particular, the
first two phases of NEAT can be performed on each
newly arrived set of trajectories. The new flow clusters
are then merged with the available flow clusters to
produce compact clustering results.

3.3.1 Distance Function for Flow Clusters
We modify the popular Hausdorff distance function
to measure the distance between two flow clusters F

i

and F
j

in terms of network proximity. The distance

between two flow clusters F
i

and F
j

can be deter-
mined by the distance between their representative
routes r

Fi and r
Fj . In the first prototype of NEAT,

we measure the distance between r
Fi and r

Fj by the
network proximity of their ending locations. When
the ends of two flow clusters are within a predefined
network distance, we merge them into a larger cluster
such that the resulting cluster will be able to show a
group of frequent routes between two hotspot areas
as illustrated in Figure 3.

Definition 11. Given two flow clusters F
i

2 W and
F
j

2 W , the distance between F
i

and F
j

is defined as:

dist
N

(F
i

, F
j

) = dist
N

�
r
Fi , rFj

�

= max{max
a2{a1,a2}min

b2{b1,b2}dN (a, b),

max
b2{b1,b2}min

a2{a1,a2}dN (b, a)} (8)

where d
N

(a, b) is the shortest path from a to b, and
{a1, a2}, {b1, b2} are the two endpoints of r

Fi , r
Fj

respectively.

3.3.2 Density-based Optimization
With the modified Hausdorff distance measure for
flow clusters, we need an algorithm to merge the
flow clusters when their distance is within some
user-defined or system-supplied default threshold. We
adapt the DBSCAN algorithm to group the set of
flow clusters when the density opportunity exists. The
DBSCAN algorithm was originally used to cluster a
set of data points and requires two parameters: a dis-
tance threshold " between two points and a minimum
number of points minPts in a cluster. An object is a
member of a cluster if it has at least MinPts neigh-
boring objects within a given radius ". All the objects
in its "-neighborhood are also members of the same
cluster. Otherwise the object is classified as noise. We
make the following modifications: (1) The data unit to
be clustered is a flow cluster; (2) The distance function
is our modified Hausdorff distance between two flow
clusters; (3) No minimum cardinality is set for the
resulting cluster; (4) The density-based clustering for
merging flow clusters always starts each round with
the flow cluster whose representative route is the
longest. It ensures that the final clustering results are
always the same with the same distance threshold.
This is different from DBSCAN in which data points
are not processed in a deterministic order.

3.3.3 Flow-Distance Computation Optimization
As shown in Formula 8, a distance computation for
each pair of flow clusters consists of four shortest
path computations. Note that d

N

(a, b) and d
N

(b, a) are
the same since we consider undirected graphs. Let
W = {F1, F2, . . . , FC

} (C > 1) denote the set of flow
clusters generated from Phase 2 of NEAT. For each F

i

,
we need to compare it with the rest C�1 flow clusters,
one at a time, to determine whether there is a merging
opportunity. When the number of flow clusters in W
is large, the cost of computing the network proximity
of a pair of flow clusters can be expensive. If we use
the popular Dijkstra’s network expansion algorithm
to compute these shortest paths, the computation



9

cost can be high compared to the standard Euclidean
distance, especially when the representative routes of
the flow clusters are long in terms of segment counts.
For a graph with n nodes and m edges, traditional
network expansion based algorithms (e.g. Dijkstra,
Floyd-Warshall) compute shortest paths for each node
pair in O(nlogn + m), while the Euclidean distance
computation for a node pair only takes O(1).

In phase 3 of NEAT, we use the Euclidean lower
bound (ELB) property to reduce the number of
shortest path computations while retrieving the "-
neighborhood of a flow cluster F

i

. By ELB, the
Euclidean distance d

E

(l
i

, l
j

) between two road net-
work locations l

i

and l
j

is always the lower bound
of the network distance d

N

(l
i

, l
j

), i.e. the condition
of d

E

(l
i

, l
j

)  d
N

(l
i

, l
j

) is always hold. Hence, if
d
E

(l
i

, l
j

) > ", we also have d
N

(l
i

, l
j

) > ". In case of
d
N

(F
i

, F
j

), instead of computing four shortest paths
d
N

(a1, b1), d
N

(a1, b2), d
N

(a2, b1) and d
N

(a2, b2), we
compute four Euclidean between those locations first.
If the minimum Euclidean distance between them
exceeds ", we can filter F

j

from the search space
for "-neighborhood of F

i

. Only when the minimum
Euclidean distance between those points does not ex-
ceed ", we calculate dist

N

(F
i

, F
j

) using our modified
Hausdorff distance to determine whether F

j

is in the
"-neighborhood of F

i

or not.

3.4 Extensions
There is a number of interesting extensions of NEAT.
In the first prototype of NEAT, t-fragment is the
default unit for clustering. We can also integrate a
user-defined fragment into our framework to let users
define the granularity of fragments. For examples, a
user can define the grid cells covering a road network
as the building blocks in the base cluster formation
phase. Then the same merging and refinement process
can be applied on the resulting cell-based or any user-
defined fragment clusters. In addition, in Phase 3,
beside our modified Hausdorff distance, other dis-
tance functions which introduce interesting optimiza-
tion results can also be included in this phase. The
endpoints of the flow clusters can be considered as
places of interest. Thus, we can extend our modified
DBSCAN-like optimization phase to group the set of
endpoints of the resulting flow clusters to discover
regions of interest inherent in the given trajectory
data. Furthermore, consider that each road network
location is recorded with a specific timestamp, another
interesting extension to NEAT is to consider the tem-
poral information contained in the MO trajectories.
We can apply NEAT to an extracted sub-trajectory
set from the given trajectories, e.g. recorded mobility
traces in rush hours or during weekends, to discover
the traffic patterns during different time windows (in
terms of hour, day, week, month or year). Finally,
we also plan to parallelize the NEAT algorithms
in future development. Specifically, in Phase 1, the
same method of splitting trajectories and putting t-
fragments into their associated base clusters can run
for each trajectory in parallel. In Phase 2, we would di-
vide the map into partitions and perform MapReduce-
like jobs to retrieve the flow clusters. The last phase

TABLE 2: Datasets used in our experiments

Datasets Number of points
ATL SJ MIA

ATL/SJ/MIA500 114878 131982 276711
ATL/SJ/MIA1000 233793 255162 452224
ATL/SJ/MIA2000 468738 542598 893412
ATL/SJ/MIA3000 669924 794638 1302145
ATL/SJ/MIA5000 1277521 1296739 2262313

is essentially traditional clustering which can adapt
many available parallelized versions of traditional
clustering algorithms such as ones in the Apache
Mahout project [17].

4 EXPERIMENTAL EVALUATION
We perform five sets of experiments to evaluate the
efficiency and effectiveness of our NEAT framework.
Real road networks of different sizes are used in our
experiments. In order to analyze the performance of
each phase, we refer to the trajectory clustering using
Phase 1 of NEAT as the base-NEAT, the trajectory
clustering using the first two phases as the flow-
NEAT, and the trajectory clustering using all three
phases as opt-NEAT. NEAT allows users to perform
trajectory clustering using any of these three versions
of NEAT. Base clusters, flow clusters and final tra-
jectory clusters are the outputs of base-NEAT, flow-
NEAT and opt-NEAT respectively, and each may have
its own attraction in terms of delivering interesting
trajectory clustering results to location-based applica-
tions.

4.1 Experimental Setup
We use three real road networks in our experiments
(Table 1). The road networks of North West Atlanta
(ATL) and West San Jose (SJ) are obtained from [18].
The Miami-Dade (MIA) road network is obtained
from [19]. We adapt the public event-based simulator
GTMobiSIM [20] to generate thousands of mobility
traces on those road networks for a large-scale eval-
uation. We use five trajectory datasets for each of the
road networks ATL, SJ and MIA. Table 2 gives the in-
formation of our synthetic datasets. To create a trajec-
tory dataset, for example SJ1000, we place 1000 mobile
objects on West San Jose road network to travel under
speed limit constrained on road segments, following
shortest paths to a final destination chosen randomly
from a predefined set of locations. We implement our
algorithms using Java and visualize the results using
GTMobiSIM GUI. All the experiments are conducted
on the NEAT server machine with Intel Core2 Duo
CPU of 2.00GHz and 1GB of main memory allocated
for the Java heap size.

4.2 Visualization of NEAT clustering results
We visualize the clustering results obtained after
processing trajectory datasets with the two phase
NEAT approach (flow-NEAT) and with the three-
phase NEAT approach (opt-NEAT). Figure 5 shows
the clustering results for ATL500 dataset. Figure 5(a)
plots 500 trajectories (in green color) on North West
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TABLE 1: Road networks used in our experiments

Regions Total length # Segments # Junctions Avg. segment length Junction degree
North West Atlanta, GA 1384.4km 9187 6979 150.7m avg: 2.6, max: 6

West San Jose, CA 1821.2km 14600 10929 124.7m avg: 2.7, max: 6
Miami-Dade, FL 26148.3km 154681 103377 169.0m avg: 3.0, max: 9

(a) Input data: ATL500 (b) 31 flow clusters (c) 2 clusters after optimizing phase (" =
6500)

Fig. 5: Results for North West Atlanta road network

7 
 

 

 

(a) 172 flow clusters for SJ5000

8 
 

  

(b) 13 clusters after optimizing phase
(SJ5000, " = 1200)

(c) 33 clusters after optimizing phase
(MIA3000, " = 2000)

Fig. 6: Results for West San Jose and Miami-Dade road networks

Atlanta map. After the first two phases, 31 flow clus-
ters are discovered (Figure 5(b)). These flow clusters
capture all the major traffic flows from the ATL500
dataset. Some traces that we see in the original dataset
disappear in Figure 5(b) since there are too few objects
moving in them. The threshold to filter those flow
clusters in this experiment is minCard=5, which is
the average number of participating trajectories in
each of the flow clusters. There are two dense regions
that concentrates the short flows. They are the two
hotspots where we place the 500 mobile objects at
the beginning of their trips. After travelling on those
short flows, they start merging into the long flows
to reach one of the three destinations marked with

the red X-signs on the map. These 31 flow clusters
are grouped into 2 clusters as shown in Figure 5(c)
after performing the density-based flow cluster refine-
ment. We start the density-based optimization with
the longest representative route (the dark red polyline
number 30 in Figure 5(b)). This route connects to one
of the two hotspots and its endpoints are close to the
endpoints of the other long flows (the polylines 29,
28 and 27). As defined in the DBSCAN algorithm,
they are in a density-connected set. Therefore, when
we perform density-based clustering (with the dis-
tance threshold " = 6500m) we have them grouped
together in one cluster (contains the red polylines
in Figure 5(c)). The rest of the flows are grouped
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into another cluster (contains the gray polylines). The
results for West San Jose road network and Miami-
Dade datatsets are shown in Figure 6. For SJ5000,
flow-NEAT produces 172 flows (Figure 6(a)) and opt-
NEAT produces 13 clusters with " = 1200m (Figure
6(b)). For MIA3000, flow-NEAT produces 300 flows
and opt-NEAT produces 33 clusters with " = 2000m.
The visualization for MIA3000 (Figure 6(c)) is not as
clear as the other two datasets because Miami-Dade
road network, which is an urban area, is more dense
and complicated than the ATL and SJ road networks
(see Table 1 and 2).

4.3 Efficiency and Effectiveness of NEAT
In this section we evaluate the efficiency and effective-
ness of NEAT by comparing it with the conventional
density-based approach, represented by TraClus. Fig-
ure 7(a) shows 81 resulting clusters when applying
the TraClus algorithm with " = 10m and MinLns
= 30 to cluster ATL500 dataset. Each cluster has its
representative trajectory plotted and numbered on the
map. Another result of 460 clusters for ATL500 is
shown in Figure 7(b) when applying Traclus with "
= 1m and MinLns = 1. As we see, these clusters
are discrete on the road network. Their representative
trajectories are short in lengths. These clusters only
show short routes in the road network where there is
dense traffic. They do not provide information about
the traffic continuity implied in the original trajectory
dataset. Recall the NEAT clustering results shown in
Figure 5, we can see that most of the important routes
are missed when using TraClus. An interesting point
to note is that our framework with base-NEAT can
also provide this knowledge if we filter out those base
clusters where the density is below a specific thresh-
old. The remaining base clusters will represent the
road segments where traffic is highly concentrated.

Figure 8(a) and Figure 8(b) shows the comparisons
of the average and maximum lengths of the rep-
resentative routes discovered using flow-NEAT and
TraClus. Compared to TraClus, flow-NEAT produces
clusters with longer representative routes, which are
favorable for location based applications such as bus
line organizing or ride sharing [9]. This results in a
smaller number of clusters produced by flow-NEAT
as shown in Fig 8(c). In comparison, NEAT produces
more compact and meaningful results through road
network aware trajectory clustering.

By utilizing the road network information, NEAT
not only produces meaningful trajectory clusters but
also runs very fast. Both traffic flow and traffic density
can be discovered using flow-NEAT without the need
to compute any distance function. We only compute
shortest path distances in Phase 3 for clustering refine-
ment and optimize this costly operation by using ELB
filter to eliminate the unnecessary shortest path com-
putation. In constrast, TraClus depends heavily on the
distance measurements among every pairs of samples
in the trajectory dataset. This makes TraClus overall
very slow as the number of samples in each trajec-
tory and the number of trajectories in each dataset
are high. Figure 8(d) shows the efficiency compari-
son between the three-phase NEAT framework and

(a) 81 clusters for ATL500
("=10m, MinLns=30)

(b) 460 clusters for ATL500
("=1m, MinLns=1)

Fig. 7: TraClus
TABLE 3: Number of flow clusters produced by

opt-NEAT
Datasets SJ500 SJ1000 SJ2000 SJ3000 SJ5000
# flows 73 156 55 52 180

TraClus framework by varying the number of points
in ATL datasets. TraClus is very time-consuming and
the time complexity grows as the number of points
gets larger. TraClus runs in 2573.5 seconds to clus-
ter ATL500 (114878 points) and 334735.1 seconds to
cluster ATL5000 (1277521 points). While opt-NEAT
only takes 1.29 seconds to cluster ATL500 and 59.7
seconds to cluster ATL5000. Compared to TraClus, the
NEAT framework is faster by more than three orders
of magnitude.

One may ask what if TraClus is given the benefit
of our map-matching preprocessing step to partition a
trajectory into trajectory fragments and uses a network
distance measure such as our modified Hausdorff function
in its grouping phase? To address this concern, we have
run a variant of TraClus on our test datasets (the
graphing result is omitted due to space limit). In this
variant of TraClus, we even provide TraClus with the
partitioning of trajectories into base clusters instead
of t-fragments, then the grouping phase merges the
base clusters using our modified Hausdorff distance.
Note that the number of base clusters is usually
much smaller than that of t-fragments. However,
TraClus remains slow compared to NEAT due to
their grouping algorithm which heavily depends on
distance computations and the resulting clusters only
show discrete traffic density in the road network. For
instance, with the SJ2000 dataset (226151 t-fragments,
901 base clusters), this variant of TraClus took 6396.79
seconds to finish with 117 resulting clusters. While
NEAT produced a more compact results of 42 flow
clusters and 14 final clusters in only 11.68 seconds.

4.4 Performance of NEAT Algorithms
We analyze the efficiency of NEAT by analyzing the
performance of different versions of NEAT during the
three phases, focusing on the impact of the flow prop-
erty of traffic streams in NEAT design. The scaling of
base-NEAT, flow-NEAT and opt-NEAT for different
MIA datasets are shown in Figure 9(a). The curves
are almost linear with the growth of dataset size. In
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Fig. 10: Effectiveness of using Euclidean lower bound

all cases, the flow cluster refinement phase contributes
very little to the total running time, as shown in the
graphs, due to the ELB based optimization. The opt-
NEAT curves nearly overlap the flow-NEAT curves.

We further investigate the relative performance of
Phase 1 (base cluster formation) and Phase 2 (flow
cluster formation). Phase 1 algorithm takes the road
network locations as its data units because it scans the
sequence of points in all the trajectories to extract t-
fragments. Phase 2 algorithm takes the base cluster as
its data unit. Intuitively, the number of road network
locations in the trajectory dataset is much larger than
the number of base clusters produced from Phase 1.
Thus, it takes longer to complete Phase 1. This is
confirmed by our experiments shown in Fig 9(b).

Figure 10 unveils the effectiveness of using ELB
to reduce the number of shortest path computations
(opt-NEAT-ELB) versus using Dijkstra’s network ex-
pansion algorithm to compute all the shortest paths
(opt-NEAT-Dijskstra) when performing density-based
optimization in the NEAT framework. In Figure 10(a),

the opt-NEAT-Dijskstra curve goes up faster as the
dataset size grows. However, the curve of opt-NEAT-
Dijkstra in Figure 10(b) shows that the cost at SJ1000
are much higher than at SJ2000 and SJ3000. This is due
to the cost of Phase 3, which computes shortest path
distances, actually depends on the number of flows
produced by Phase 2 and not the data size. Table 3
shows the number of resulting flows output from the
second phase where numbers of flows in SJ1000 and
SJ5000 are much higher than that in other datasets
for SJ road network. Using ELB significantly speeds
up the performance of the density-based optimization
algorithm (see some big gaps between the two curves
opt-NEAT-ELB and opt-NEAT-Dijkstra).

4.5 Effects of f -neighbor Merging Decisions on
Flow-based Clustering
We study how using different merging schemes in-
cluding “random SF

max

” (“random” for short), “look-
back” and “look-ahead” schemes, as described in
Section 3.2.3, affects the results of flow-NEAT. We
measure the cluster quality by computing the total
netflows of the resulting flow clusters. The results
are reported for ATL and SJ datasets in Figure 11
including the running time (Figures 11(a) and 11(b))
and total netflows (Figures 11(c) and 11(d)) of each
scheme. It is shown that in most cases, look-head
merging runs faster than look-back scheme and ran-
dom merging is the fastest. Although the cost in-
curred by running look-ahead or look-back schemes
compared to random merging is not significant, the
total netflows of the resulting flow clusters in all three
schemes are approximately the same. This results
from the low junction degree of road networks where
the average junction degree is usually less than 3.
We conclude that in the context of a road network,
“random SF

max

” merging is good enough to get
good clustering result and thus, NEAT uses “random
SF

max

” merging in Phase 2.

4.6 Effectiveness of Adaptive Weight Assignment
on Flow-based Clustering
In this section, we evaluate the effectiveness of our
adaptive weight assignment scheme (Section 3.2.4) com-
pared to some predefined combinations of the weights
(w

q

, w
k

, w
v

) for flow factor, density factor and speed
limit factor respectively. The different assignments of
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Fig. 11: Effects of using random, look-back and look-ahead f -neighbor merging schemes

TABLE 4: Total netflows

(1/2,1/2,0) adaptive (1,0,0)
ATL3000 225713 271782 271986

SJ3000 275665 326723 326870
MIA3000 812505 921476 921910

TABLE 5: Total cluster density

(1/2,1/2,0) adaptive (0,1,0)
ATL3000 225713 374234 374268

SJ3000 451783 475508 475536
MIA3000 1241101 1276109 1277511

(w
q

, w
k

, w
v

) represent different merging criteria when
we perform f -neighbor merging. In the previous ex-
periments, we want to focus on the flow property of a
traffic stream so we set the highest weight for the flow
factor (w

q

= 1 and w
k

= w
v

= 0), i.e. a base cluster
will always be merged with its maxFlow-neighbor.
Since the speed limit is fixed for each type of road,
the speed limit factor is the least favorable among
three factors. In our experiment with the adaptive
weight assignment, we skip the speed limit factor by
setting v

max

value at each merging step to 0. We run
flow-NEAT with this “adaptive weights” scheme and
three predefined weight settings of (1, 0, 0), (0, 1, 0)
and (1/2, 1/2, 0). The (1/2, 1/2, 0) weight assignment
is used as a base setting where both flow and density
are weighed equally. We measure the total netflows of
the discovered flow clusters by running flow-NEAT
using the “adaptive weights” scheme, compared to
using the “netflows only” (1, 0, 0) weight setting. The
results are reported in Table 4. For ATL3000 dataset,
our adaptive weights scheme achieves an increase of
total netflows of 18.52% compared to the base settings
(1/2, 1/2, 0), while that of the (1, 0, 0) setting is 20.41%.
Similarly for SJ3000 and MIA3000, the percentage
of total netflows increased using adaptive weights
scheme is also so close to that of (1, 0, 0) setting.
With the same three datasets, Table 5 reports the
total cluster density of the discovered flow clusters
by running flow-NEAT using the “adaptive weights”
scheme, compared to using the “density only” (0, 1, 0)
weight setting and (1/2, 1/2, 0) setting. In all cases, the
percentage of total cluster density increased using our
adaptive weights scheme compared to the base setting
of (1/2, 1/2, 0) is very close to that of the (1, 0, 0)
setting (the difference is below 0.1%). Therefore, our
adaptive weight assignment scheme can automati-
cally captures highly dense and continuous traffic
flow from trajectories in the road network.

5 RELATED WORK

The clustering problem has been extensively re-
searched in mobile ad hoc networks (MONET) and
data streaming systems. In MONET, data unit to be
clustered is the mobility node where the characteris-
tics of a node are taken into account for cluster head
choices in order to conserve energy and connectivity
[21] [22] [23]. In data streams, k-means and density-
based clustering algorithms have been extended to
cluster large volume of multi-dimensional data points
generated by sensor networks [24] [25] [26].

Most existing work on MO trajectory clustering [13]
[27] [28] [29] [30] [31] [32] [33] has derived proximity
measures for trajectories and adapted traditional k-
means, hierarchical, or density-based clustering al-
gorithms to group similar trajectories. Trajectory-
OPTICS [27], which extends OPTICS algorithm [12],
is a good example for grouping similar trajectories
as a whole. The distance between two trajectories is
the average Euclidean distance between two objects
for every timestamp. Traclus [13] aims to find similar
sub-trajectories rather than the whole trajectories. It
partitions each trajectory into line segments using
the Minimum Distance Length (MDL) principle and
then performs a DBSCAN-like [11] clustering on line
segments. The similarity measure is composed of
three Euclidean based distance components between
line segments. As a result, discovered clusters are
dense regions of line segments. [31] adapts TraClus
for online trajectory clustering. [32] extends TraClus
for trajectory classification. However, these density-
based methods cluster free space trajectories, i.e. with-
out considering the constrained road network. Other
works [28] [29] [30] consider the network constraint to
derive similarity measures but they only focus on the
density aspect of the given trajectories such as object
density [29], common road segments [28], shortest
path distance [30]. Our approach can produce par-
tial clustering but carefully considers the constrained
road network focusing on both flow and density
characteristics and avoids the expensive shortest path
computation in its first two phases. NEAT innovates
TraClus framework in a creative manner with higher
efficiency (due to reduction of network distance com-
putation) and higher accuracy (due to incorporation
of flow semantics). This paper provides a full-fledged
development of the initial NEAT approach [34] with a
thorough study on different merging decisions and an
adaptive parameter assignment scheme capturing the
most critical characteristics of a traffic stream in the
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core of NEAT, which allows it to discover important
flow clusters in an automated manner.

6 CONCLUSION
We have presented NEAT - a novel road-network
aware approach to MO trajectory clustering which
clusters MO trajectories in a comprehensive three
phase framework. We introduce the concept of f -
neighborhood to identify the most critical and most
interesting parts of the given MO trajectories wrt.
clustering. Instead of taking points or line segments
as the clustering unit as in traditional approaches, we
introduce t-fragment, base cluster and flow cluster as
the basic building blocks for road-network aware tra-
jectory clustering. NEAT carefully combines the traffic
locality, flow and density metrics in its three-phase
trajectory clustering framework which significantly
reduces the data space in each subsequent phase and
ensures trajectory clustering quality. By carrying out
extensive experiments, we show that NEAT discovers
clusters of MO trajectories which represent major
traffic stream in a road network and outperforms
conventional density-based trajectory clustering algo-
rithms in terms of both time complexity and accuracy.
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