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Abstract—Service provenance can be defined as a profile of 
service execution history. Queries of service provenance data 
can answer questions such as when and by whom a server is 
invoked? which services  operate on this data? What might be 
the root cause for the service failure? Most of the organizations 
today collect and manage their own service provenance in 
order to trace service execution failures, locate service 
bottlenecks, guide resource allocation, detect and prevent 
abnormal behaviors. As services become ubiquitous, there is an 
increasing demand for proving service provenance 
management as a service. This paper describes 
ProvenanceLens, a two-tier service provenance management 
framework. The top tier is the service provenance capturing 
and storage subsystem and the next tier provides analysis and 
inference capabilities of service provenance data, which are 
value-added functionality for service health diagnosis and 
remedy. Both tiers are built based on the service provenance 
data model, an essential and core component of 
ProvenanceLens, which categorizes all service provenance data 
into three broad categories: basic provenance, composite 
provenance and application provenance. In addition, 
ProvenanceLens provides a suite of basic provenance 
operations, such as select, trace, aggregate. The basic 
provenance data is collected through a light-weight service 
provenance capturing subsystem that monitors service 
execution workflows, collects service profiling data, 
encapsulates service invocation dependencies. The composite 
and application provenance data are aggregated through a 
selection of provenance operations. We demonstrate the 
effectiveness of ProvenanceLens using a real world educational 
service currently in operation for a dozen universities in China.  

Keywords. service provenance; service dependency; execution 
history, service profiling. 

 

I.  INTRODUCTION  
Everything in the cloud is delivered as a service, from 

infrastructure and platform to software and applications. 
Service provenance is a description of service execution 
history. Capturing and understanding the dynamic workflows 
of service execution is critical to improve service quality, 
guide resource allocation, analyze causes of service failures, 
detect security vulnerabilites. Both Internet company (such 
as google, twitter) and software company pay more attention 
to service behavior monitoring [1,2], because service 
provenance can help answer questions such as who invoke 

this server, which set of data are accessed by the server, 
which service is bottleneck of the system. By examining the 
service runtime state statistics together with service 
invocation graph, we can find the root cause of a service 
failure. By analyzing the service invocation patterns, we can 
evaluate the side effects of a service failure. By collecting 
input and output of a service execution and its execution 
path, we can evaluate the correctness of a complex service 
execution. By surveying elapsed time of services and their 
execution paths, we can gain better understanding of where 
the system bottlenecks might be.  
     As cloud systems and applications become more 
distributed and big data centric, not only services are 
deployed in distributed compute nodes but the number of 
services involved in accomplishing a job also continues to 
increase. This raises more challenges for service provenance 
capturing and service provenance tracing with respect to 
service invocation, dynamic and complex execution 
dependencies among a large number of services. In addition, 
service provenance management also needs to deal with 
large service provenance data and determine which types of 
service provenance data should be stored persistently, which 
provenance data should be derived on demand based on 
stored provenance data, and how to efficiently derive new 
provenance data over stored service provenance. Thus, 
service provenance management in general consists of 
provenance capture, storage and analysis. By providing 
service provenance management as a service, we need to 
design the provenance management functionalities in such a 
way that they can be easily used by an application to monitor 
the runtime behavior of its services. Concretely, the 
following system requirements should be the core design 
objectives: 

Automated and configurable provenance capturing. 
The service provenance management by design should take 
into account of heterogeneous services and application 
systems and identify the essential provenance data that are 
common to many applications and their cloud services. More 
importantly, the provenance collection process should be 
automated and easily configurable for provenance capturing 
and provenance analysis, while maintaining application 
transparency. 

Light-weight. One of the key design goals for service 
provenance management is light-weighted. First, service 
provenance capturing should be exercised with little 



overhead that has negligible impact on the performance of 
routine executions of applications. Thus, optimization 
techniques should be employed at the right time for the right 
applications. For example, some application services may 
execute thousands of times in a short period of time. The 
provenance  capturing modules should turn on selective 
sampling with adjustable intervals to allow provenance 
capturing to be zoomed out with larger monitoring intervals 
or selectively zoomed in with shorter intervals. 

Scalable data management. As the number of services 
involved in cloud applications continues to increase, the 
dataset size of service provenance to be collected and 
managed continue to grow. Thus, a scalable service 
provenance management should support two core 
functionalities: (i) compact storage with the support of 
seamless scale out to a distributed provenance storage and 
(ii) efficient provenance analysis by providing a set of basic 
provenance operations, enabling querying, tracing and 
reasoning over large provenance data across multiple 
services within an application and across applications within 
a cloud hosting service.  

In this paper, we present ProvenanceLens, a two-tier 
service provenance management framework, which is 
designed to meet the above requirements. The top tier is the 
service provenance capturing and storage and the next tier 
provides analysis and inference capabilities of service 
provenance data. Both tiers are built based on the service 
provenance data model, an integral part of ProvenanceLens. 
A unique feature of this provenance data model is to 
categorize service provenance into three broad categories: 
basic provenance, composite provenance and application 
provenance. We also introduce the provenance data structure 
and a suite of basic operations, such as select, project, 
aggregate, slice, dice, roll-up, drill-down, and trace.  The 
basic provenance data is collected through a light-weighted 
provenance capturing system that monitors service execution 
workflows, collects service profiling data, encapsulates 
service invocation dependencies. A real-world cloud service 
in educational domain managing teaching services for a 
dozen universities is used as the use-case study to 
demonstrate the effectiveness of ProvenanceLens.  

The rest of the paper is organized as follows. Section 2 
reviews the architecture of ProvenanceLens and the use-case 
scenario. Section 3 describes the ProvenanceLens data model. 
Section 4 presents the ProvenanceLens capturing system. 
Tthe experimental evaluation of ProvenanceLens on the use-
case study is given in Sections 5. We discuss related work in 
Section 6 and conclude the paper in Section 7. 

II. OVERVIEW  
A. Architecture  

The ProvenanceLens system by design consists of two 
subsystems: the provenance capturing subsystem and the 
provenance management and analysis subsystem. The 
provenance capturing subsystem performs service runtime 
profiling and derives execution dependency through 
execution workflow analysis over the basic provenance log 
created by different service profiling agents. Every profiling 
task is controlled by the provenance collector management. 

System administrator can start or terminate a service 
profiling task or set provenance collection strategy, such as 
where and what types of service provenance data should be 
collected, the interval of sampling, how long the provenance 
collection process should run, and the type of composite 
provenance data to be derived over the captured basic 
provenance data.  

 

 
 

The provenance query and analysis subsystem allows the 
system administrator to generate a selection of composite 
provenance data and store them in persistent provenance 
store for on-demand access. In the first prototype 
development, three types of provenance operations are 
provided to generate composite provenances: provenance 
query operation, provenance trace operation  and graph 
based service correlation operation.  In addition, the 
ProvenanceLens system will also provide the application 
level provenance data for application specific provenance 
analysis. An extensible application provenance library is 
provided to allow application-specific provenance analysis or 
functionality specific provenance analysis to be performed 
conveniently for service quality evaluation, service security 
compliance evaluation, and cloud deployment optimization. 

B. Case Study 
Figure 1 shows a teaching management system deployed 

in an IaaS cloud for 12 universities in P.R. China. Given 
that universities vary from one another in terms of both the 
number of students, the number of teaching faculties and the 
number of courses being offered within each semester or 
quarter, the service response time for requests coming from 
different universities can vary dramatically. Even for the 
same service, the peak time performance for the same 
university can differ significantly from normal time. These 
motivate the use of service provenance management on this 
operational cloud system.  

By performing service profiling  using the techniques 
developed in ProvenanceLens, we conclude with a number 
of interesting observations: First, the concrete quality of 
service (QoS) requirements can vary significantly from 
university to university. Second,  with different business 
model for course and teaching management at different 
universities, the service runtime  behavior for  each 
university is different. Some services need more CPU 
resource, such as ArrangeCourse, TeachingTask. Other 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 ProvenanceLens System Architecture 
 



services need more I/O resource, such as StudentProject 
management. Also some services may have clearly 
understood business peak-time performance, such as 
RegistCourse,  LessonPlanManagement. The peak time 
behavior of these services depend on many factors: the 
number of students,  the number of business processes, the 
type of user behavior. Thus it is hard to find the root cause 
of some failures of a service invoked by different 
universities.  
 

 
 

Fig. 2  A University-Teaching Management System deployed in an IaaS cloud 
 
Figure 3 and Figure 4 show two example provenance data 

captured by the university service provenance analysis over 
the basic service provenance.  

 
 
 
 
 
 
 

 
 
 

 
 
In Figure2, we choose three typical services: 

TeachingTask, RegistCourse, Project service, which 
represent three different service types: computation 
intensive, concurrent execution, file operations. 
University(1) has high invocation frequency for 
RegistCourse service, it suggests to the system administrator 
that additional servers may be beneficial if the peak time 
performance should meet a specified QoS requirement such 
that all registration requests by students for a course are 
guaranteed. University(2) has a relatively hot TeachingTask 
service, which indicates the potential demand for more CPU 
resource. In Figure3, we show that  LessonPlanManagement 
services in university(2) using time sequence. It indicates 
that the peak time workload for the file storage was 

experienced on 2013-02-27. These examples clearly show 
the importance of service profiling and service provenance 
in understanding the service runtime performance, detecting 
system bottlenecks, and providing cost-effective capacity 
planning. Figure 5 shows the invocation dependence for 
RegistCourse service. When the RegistCourse service 
encounters a runtime error and aborts suddenly, provenance 
data can help system administrator to detect possible root 
causes. For example, the RegisterCourse service has 
multiple runtime execution paths. In order to understand 
which execution path was the cause of this failure, we need 
to examine both the execution history to see if there are any 
other reported failures from relevant services. This leads us 
to find that the CheckConfilct service S7 reported an error in 
the same duration of S1. Then we need to perform composite 
service provenance analysis to trace the set of execution 
paths from S1 to S7 over the captured provenance data.  By 
narrowing down the focus to the execution path of S1 ! S2 
! S7 and S1 ! S3 ! S7 and the fact that only UserRegister 
S3 was active in the short interval prior to the occurrence of 
the failure, this leads us to infer with high probability that 
the CheckConfilct service would be the root cause of the 
failure of the registerCourse service. Clearly, by maintaining 
traces (different execution paths) as a composite provenance, 
this root analysis can be performed faster in the presence of 
complex application services, composed by many correlated 
services.  

 
Fig. 5 execution dependency in registerCourse service 

 
In ProvenanceLen, we address these requirements 

through the service provenance model which defines both 
the data structure and the provenance operations for both 
basic provenance captured directly by the provenance 
collector agents and the composite provenance derived 
through the use of basic provenance operations.  

III. SERVICE PROVENANCE MODEL 
In this section,  we describe the service provenance data 

model developed in the ProvenanceLens system. The first 
feature of our provenance model is the separation of three 
types of service provenance data: the basic provenance, the 
composite provenance and the application provenance. The 
second feature of our provenance model is the support for 
three types of provenance operations: the basic provenance 
query operations, the provenance aggregation operation, and 
the provenance correlation graph operations. We use the 
case study in the previous section to illustrate the main 
concepts, data structure and operations. 

 
 
Figure3 service invocation times 

 

 
 

Figure4 service invocation time-sequence  
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A. Basic Provenance 
Given a set of cloud services denoted as S={S1, S2,.. Sn},  

we use invoke(Si,Sj) or Si!Sj to describe the service 
invocation relationship that Si invokes Sj. Each invocation 
relationship is also associated with the provenance captured 
during the invocation and execution of services Si and Sj, 
such as time, location, elapsed time, input, output. In 
general, for each service execution, we need to collect the 
seven types of provenance, which describe "what", "when", 
"where", "who", "which", "how" and "why" [8]. “What” 
means the invocation event. “when” describe the time of 
invocation, we record the request time and response time 
which can help us compute the elapsed time. In distributed 
execution environment, due to time synchronization in 
distributed nodes, we also compute the elapsed time based 
on local node clock. “Where” describe the service 
location ,such as IP address. “Who” describe the invocation 
initiator. "Which" describe invocation protocol and the 
service framework used, such as RPC, WSDL, SOAP. 
"Why" describes the reason of the invocation fault. “How” 
describes the path of invocation. “When”, “where” and 
“who” can be captured directly. “How” can be computed by 
a series of calling service and invoked service. “Why” can 
be inferred by service status in the path.  

TABLE 1. SERVIVCE PROVENANCE CONTEXT 

Concept Provenance ontology service provenance (example) 
what  Event Invocation 
when  Time   Invocation timestamps 
Where Space Service IP address 
who  Agent or other things service invoking 
Which service invocation protocol 
how  Action, input/output Invocation  path 
why  Reason Invocation  fail  reason 

 
Table 2 shows the data structure of the basic provenance 

captured by the service profiling agents in the provenance 
capturing phase. We can view each basic provenance as a 
nine dimensional object. 

TABLE 2. BASIC PROVENANCE  

item Description 
Token 32 bit string which identify a relatime job 
InvokingService Service customer 
ServiceInvoked Service provider 
Location IP address 
Elapsed time Time cost of one invocation 
Timestamp  Receive invocation  request time 
Input Input parameter 
Output Output parameter 
Status 1-sucessful  0-fail, time out 

 
Table 3 shows an example of the basic service 

provenance records captured for the RegistCourse service 
described in Figure 4. T1, T2, T3, T4 are four different 
tokens, representing four different jobs. (T1, S1, S2, 35ms, 
true) describes that service S1 invoke service S2 with the 
elapsed time of 35ms. This ElapsedTime includes the 
execution time of S2. 

TABLE 3  REGISTCOURSE EXAMPLE 

token Invoking Invoked ElapsedTime status 
Token1 S1 S2 35ms True 
Token1 S2 S5 20ms True 
Token2 S1 S3 50ms True 
Token2 S3 S5 30ms True 
Token3 S5 S8 12ms True 
Token4 S3 S6 --- false 
 

B. Composite Provenance 
For each service execution captured by the provenance 

collector agent, we separate those that capture the state of a 
service, such as success or failure status, active or inactive 
status, from those that capture invocation relationship and 
the execution dependency of a pair of services, such as 
S1!S2 and S1 preceeds S2. We call the former the data-
oriented provenance and the later the process-oriented 
provenance. By utilizing data-oriented provenance, such as 
(service, status), we can figure out the exception rate of a 
service execution, denoted by ServiceExceptionRate(S1, 
status). This can be computed using the number of failed 
execution divided by the total number of executions in a 
given time interval. We call such derived provenance the 
data oriented composite provenance. Similarly, by utilizing 
the process-oriented provenance, we can infer process-
oriented composite provenance. An example is how 
frequently the invocation of a service fails, denoted by 
InvokeExceptionRate(S1, S2, status). Another example is 
which services are dependent on a given service, which can 
be derived by evaluating whether they counting on the 
number of services that are reachable from the given service 
through the invocation graph (Figure 4).   
      Composite provenance can be obtained by employing 
simple aggregate functions, such as count, avg, max, and 
min, over the basic provenance records. They can also 
obtained by using more complex provenance operations as 
those to be discussed in the subsequent section. For example, 
we can aggregate the time based provenance by using data 
cube summarization techniques, such as using coarse time 
granularity, such as hours, days, months, to summarize the 
service invocation frequency provenance over a period of 
day or week or month. This will allow us to answer 
questions such as which weekday the highest invocation 
frequency is observed for a given pair of services.  
       Given a finite set of basic provenance records captured 
by the provenance collector agents, we can derive a large 
collection of composite provenance. Consider the storage 
cost and the search space explosion, a wise decision is to 
carefully select a small set of composite provenance for 
persistent storage and compute the remaining composite 
provenance on-demand. The choice is often application 
dependent. For example, a system administrator may need 
certain composite provenance data on a subset of services 
for improving service availability.  



C. Application Provenance  
Application provenance refers to some high-level 

provenance data analysis that are application dependent. For 
example, one can use a graph structure to capture the 
invocation relationship among a collection of services. By 
modeling services as vertices and the invocation 
ElapsedTime as the edge weight, we can employ subgraph 
matching algorithms to find the common invocation patterns. 
We can also employ graph clustering algorithms to group 
services into K clusters such that services within the same 
cluster are densely connected.  

Given that different applications may require different 
application provenance based on both composite 
provenance and application specific service management 
requirements, in ProvenanceLens, we provide a library of 
graph analysis algorithms to facilitate the creation and 
derivation of application specific provenance from the basic 
provenance data and the composite provenance data. 

D. Service Provenance Storage  
We consider support three types of storage  schema : 

relationship schema, document schema and graphic schema. 
In the first prototype implementation of ProvenanceLens, we 
choose relational database MySQL, the document database 
MongoDB, and the graph database Neo4j[18] to store both 
the basic provenance captured by our provenance capturing 
tool and the composite provenance derived from the basic 
and composite provenance data. 

 
(1)  Storing Relationship based provenance data 

We store the invocation relationship information in 
relational table. Figure 6 shows an example of such 
relational table with six columns: token, invoking, invoked, 
elapsed time, status and time. The relationship between a 
service and the location where the service is executed and 
the relationship between the location and the IP address are 
stored separately in two different tables.  

 
 
 

token Invoking Invoked Elapsed 
Time 

status Time 

Token1 S1 S2 35ms true T1 
Token1 S2 S5 20ms true T2 
Token1 S5 S8 12ms     true T3 
Token2 S1 S2 30ms true T4 

 
 

service location 
S1 P1 
S2 P2 

                
 

 
 Figure 6  Relational data storage for relationship based provenance 
  

Aggregation operations. In order to support 
summarization of basic provenance records captured by our 
service profiling tool, we provide a suite of aggregation 
functions such as sum, count, average, sort, group. By 
employing these aggregation operations,  we can compute  
how many times did S1 invoke S2 in the past 3 days, what is 
the failure rate of this invocation in the past 4 weeks. When 
the service invocation relationship table is large in size, the 
computation complexity of such aggregation operations can 
be significant. Performance optimization techniques can be 
beneficial for improving the real-time analytics.   

Join operation: Join operation is essential for computing 
some of the composite provenance and application 
provenance. For example, consider the basic provenance 
stored in three different tables in Figure 6. If we want to get 
the invocation frequency grouped by location, we need to 
perform join on the invocation table and the service-location 
table. In addition, we need to use join operation to carry out 
the invocation path tracing through self-join on the 
invocation table by examining <invoking, invoked> 
relationship row by row. Such join operations can be 
expensive for long tables and indexing techniques can help 
speedup both relational selection and relational join 
operations. 

 
(2)  storing provenance as documents  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Document based storage is a typical NO-SQL data 

schema. Figure 7 shows the storage schema for storing 
provenance data as documents. We choose Mongodb to 
store the basic provenance in the form of documents. Data 
store in one collection. Each service dependency is a 
document which include all the invocation related data 
between the two services. In each document, there are three 
key-value pairs, which describe invoking, invoked and 
content. The content is a sub-document and it describes the 
invocation detail, which includes elapsed time, invocation 
time, token, status, etc.  

Loation IP 
P1 192.168.0.2 
P2 192.168.0.3 

Aggregation  

Join 

 
 
 
 
 
 
 

Document 
(S1:S2) ) 

Document 
(S2:S3)) 

Provenance 
（Collection） 

Key Value 

Invoking S1 
Invoked S2 

Location IP 

Content  

 
Key Value 

Elapsed 35ms 
Time 16:22 

Token Token1 

Status 1 

Input String 

Output String 

 

Key Value 

Elapsed 20ms 
Time 09:10 

Token Token2 

Status 1 

 
Figure 7  Storing provenance as documents  



Comparing with the relational model for storing the basic 
provenance, the document model has a number of 
advantages. First, by using a  key-value  store to host the 
basic provenance, one can extend the structure of the basic 
provenance data easily for any given key, such as invoking 
and invoked by simply adding the new content as the new 
value by following the key-value structure.  

Document based storage model can also improve query 
and insertion performance. Given a service S1, in order to 
query how many services are invoked by S1, we just look up 
S1  related data, which are stored in one document with key 
S1, instead of querying the entire table.  

 
    (3)  Storing basic provenance in Graph stores  

Although relational mode and document model based 
storage systems can reduce query space and improve storage 
efficiency, they cannot implement trace operation easily 
because the trace operation needs to perform iteration 
operation according to the service invocation dependency. 
By storing the service invocation provenance data in a graph 
store, say neo4j[18], we can easily compute the path of 
service execution. 

Figure 8 shows an example of storing some of the basic 
provenance records in the graph database, where the vertices 
of the graph represent services and the edges represent the 
relationship of the service invocation. The property refers to 
both node and relationship property, which are represented 
and stored as key-value pairs. The node property describes 
the name, location, url of the service and the relationship 
property describes the elapsed time, the invocation time, 
token, status, input and output of services. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 8 An example of storing provenance in a graph database 
 

By storing the basic provenance records in a graph 
database, we can conveniently provide complex path 
operations, such as shortest path, connected components, 
and so forth. 

IV. SERVICE PROVENANCE CAPTURING 
In this section, we introduce the framework for 

provenance capturing in ProvenanceLens. We first describe 
and how to capture and store provenance data. First, we 
illustrate capture point—where does we capture provenance, 
we compare  white-box and black-box based provenance 
capturing methods and analyze related feature. Second, Then 
we introduce will discuss how to capture service dependency 
and how to reduce capturing cost by sampling strategy.  

A. Capturing Methods 
The first provenance capturing method is referred to as 

the white box method. It is suitable to capture disposed 
provenance, namely the provenance data about the services 
and their runtime execution at application level or user level 
and thus we as the provenance consumers know about the 
detail and can make more semantic annotatations. Typical 
examples are the elapse time of a service invocation. 
Generally, this approach carries rich semantic information 
about services and their execution environment, the service 
developers or service providers can use API to capture such 
disposed provenance. In comparison, the black-box method 
is used to capture observed provenance, such as those 
captured in Dapper[1] and PASS[3]. These types of 
provenance data are collected by the system automatically 
and transparently at low level of the system and the 
provenance users may not  know more information about 
these provenance data to add rich semantic annotations. In 
comparison to the white-box methods, the provenance 
information collected using the black box method is 
relatively poor in quality and often depends on the specific 
system, framework or protocol. 

In ProvenanceLens, a hybrid approach of white-box and 
black-box method is employed. The interceptor is deployed 
in the framework manually when it first invoked and run.  
The interceptor will first print basic provenance log, then all 
the provenance data can be collected by the system. 
Compare with the black box method and the white box 
method, this hybrid approach implements automated 
provenance collection, because the collector can contain 
different framework interceptors or collect provenance logs 
which are produced by other external tools, framework or 
invocation protocols. Because all the invocations must be 
executed through either the framework or the protocol, 
while keeping the balance between the transparency and  
flexiblility. In fact, the transparency depends on where an 
interceptor is deployed. If an interceptor is designed based 
on low level (library), it will have lower time cost and lower 
level of transparency. If an interceptor is designed based on 
high level application, it is not transparent, but it has rich 
high level semantics. 
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We collect service provenance data by service 
interceptors. Usually there are some interceptors according 
to different platforms. For example, JAVA EE has provided 
an interceptor, which can be used to logging, auditing, and 
profiling. We have developed an example interceptor based 
on CXF[10], an open web service framework. The 
interceptor could be deployed in the service customer and 
the service provider when the service is being published. 

B. Capturing Service Dependency 
The core problem of capturing service dependency is 

related to transmitting tokens which identify a job between a 
pair of services (consumer and provider). We introduce how 
to capture service dependency between a service provider 
and a service customer. (1) Token is produced by the service 
customer (invoker) in the entry of a transaction and stores in 
the local context variable of the thread. (2) When invocation 
happens, the interceptor will insert basic provenance into the 
head of the respective service invocation protocol. (3) When 
the service provider receives the invocation request, the 
interceptor would exact the token information from the head 
of the protocol, then put the token into local context variable 
of the thread. (4) Service customer receives the invocation 
respponse, and have the interceptor would print the basic 
provenance. 

C. Sampling 
Some hot service, such as GetUseName, RegistCourse 

may be invoked several thousands of times in a short period 
of time. Provenance data capturing agent will spend large 
resource costs, from CPU, memory to disk I/O and network 
I/O cost and storage space cost. Thus, similar to [1], 
ProvenanceLens system will use sampling as a valid method 
to address this problem. There are two commonly used 
sampling methods (i) Uniform sampling rate based method, 
in which all services will adopt the same sampling rate. But 
lower frequency service may miss important events. If we  
increasing sampling rate, it will affect the performance. (ii) 
Adaptive sampling rate based method can make adaptive 
sampling decisions such that low frequency service will 
trigger the increase of sampling rate automatically, while 
high frequency service will need to reduce the sampling rate 
to some extent. In addition, the high frequency service using 
low sampling rate for provenance capturing should set the 
provenance capturing interval to ensure no loss or minimum 
loss of important provenance information.  

Choosing appropriate sampling rate parameter is 
important to enable the provenance-capturing agent to  
adaptively tune the setting of the parameter. For example, if 
the time for running the interceptor is 1 ms for every service 
invocation, and the throughput for serving a request will not 
exceed 1000 per second for common services in our use-
case, because the services that handle higher request rates 
will be implemented as a distributed service running on a 
cluster of compute nodes. In ProvenanceLens, the sampling 
rate is set by default to 0.1% to 1% for popular services. 

D. Scalability 
When a large number of services are deployed and 

invoked concurrently, ProvenanceLens should provide 
seamless scalability such that it can handle provenance 
capturing, provenance storage, provenance reasoning in real 
time and on demand. In ProvenanceLens, we provide three 
levels of support for improving the system scalability.  

(1) Logical Independence between the inteceptor, the 
provenance collection, storage and analysis. This loose 
coupling basd abstraction enables each component to be 
modified or extended with no impact or minimum impact on 
the functionality of other components.  

(.2) Distributed Architecture for Provenance Capturing 
and Collection, which enables the new servers to be added 
to the existing infrastructure of the system seamlessly, 
enabling scalability of the ProvenanceLens with the 
increasing number of services and increasing amount of 
provenance data to be captured.   

(3) Strategic Refinement Management, which allows  the 
provenance capturing strategiesi, such as priority, scale, 
frequency, to be refined and revised. For example, we can 
set high priority for a given subset of services due to the 
demand for emergency based performance tuning. 

In Figure 9, we show a sketch of the capturing tools and 
the framework of the provenance capturing agent, which  is 
responsible for monitoring the collector and transfer 
configuration information to the relevant parties. We 
represent and store the provenance capturing strategies as 
collecting rules. Data flow refers to the process of 
provenance capturing, which includes the data check and 
append-only database. 

 
Figure 9  The Framework of Provenance Collector 

 
In Figure 9, provenance log is designed to keep loose 
coupling between the provenance capturing system and the 
provenance analysis system. The provenance log can be 
produced by the inteceptors through annotation and ESB log. 
If provenance log is different from the basic provenance 
records we obtained, we provide a mapping tool to establish 
the one to one mapping between them. In fact, such 
mapping tools can be built by extending some existing 
schema-mapping tools that support heterogeneous data 
mapping, such as MapForce[17]. 



V. EVALUATION 
In order to verify the performance of our service 

provenance management system ProvenanceLens, we 
design some experiments to evaluate the performance of 
service provenance capturing, usage and operation 
consumption based on the real world use-case outlined in 
Section II. The provenance server used in this measurement 
study has 8G RAM, CPU Xeon 2.5GHz, and the client node 
has CPU AMD 2.8G with 2G RAM. 

A. Capture Tools: Time Complexity 
We measure the runtime of the inteceptor by varying the 

output size and invocation frequency. The service used in 
this measurement study is the common query service, called 
UserInformation service, which responds to each query by 
returning the UserName, Password, department information. 
The intercepted output data from 100 to 1000 rows. Because 
the cost of running interceptor is low, so every intercept 
executes 1000 times. In Table 4, we record time (unit: ms) 
of the service without using interceptor (NoProv), then 
measure the time of the same service with interceptor 
(Proxv). The results in Table 4 show that the cost of running 
interceptor will increase with the increase of the output size. 
Especially, when output size exceeds 1000 rows, the 
runtime cost grows drastically. 

 
Table 4 intercept time cost with output  (time:ms) 

OutSize No Interception With Interception Intercept 
100 11.09  11.39 0.30 
200 16.46  16.93 0.47 
400 27.55  27.89 0.34 
600 40.17  41.05 0.88 
800 51.35  52.12 0.77 
1000 60.09  65.05 4.96 

 
Next, we evaluate the impact of the invocation frequency 

on the interceptor performance. In this set of experiments, 
the service will be invoked at varying frequency, such as 
100, 200, 1000. Table 5 shows that as the invocation 
frequency increases, the interceptor runtime cost is 
relatively stable. Thus, the invocation frequency does not 
have significant impact on the interceptor performance. The 
average time cost of interceptor is less than 1 ms. Also the 
small difference between no interception and with 
interception is the cost of initialization of interceptor.  
 

Table 5 intercept time cost with frequency  (time:ms) 
OutSize No Interception With Interception Intercept 
100 1588  1681 0.93 
200 3247  3408 0.81 
400 6497  6644 0.37 
600 9787  10183 0.66 
800 13042  13326 0.36 
1000 16362 16656 0.29 
 
Figure10 measures the interception runtime by varying 

the number of output rows and the invocation frequency. It 
shows that when the number of output rows exceeds 1000, 
the inteceptor runtime is drastically increased. On the other 

hand, as the increase of invocation counts, the average time 
of every invocation is relatively stable. 

 
 

Figure10 inteceptor time cost of frequency and output 
 
Figure 11 shows the interception runtime for 40 different 

invocations of the inceptor and we can see that the 
interceptor runtime cost is very low, which shows that the 
provenance capturing agent in ProvenanceLens is light 
weight and non-intrusive. 

 

 
Figure 11  inteceptor runtime cost of 40 different service invocations 
 

 
 

Figure12 Inteceptor runtime cost with varying breadth and depth of 
invocation 

 
The next set of experiments evaluates how the 

interception runtime is impacted by both depth and breath t 
of service dependency. Depth here refers to the sequence of 
invocations. Breadth refers to the number of services being 
invoked at same time by a service. In this set of experiments, 
the service being monitored will invoke 2, 4, 6, 8, 10 other 
services. Figure 12 shows that both breadth and depth of the 
service invocation. It is observed that the depth of the 
service invocation do not have much impact on the runtime 



cost of the interception when the number of invoked 
services varies from 2 to 10. However, the breadth of the 
service invocation may impact the runtime performance of 
the interceptor. When the invocation breadth increases from 
2 to 10 services, the runtime cost grows as well. 

B. Resource Utlization 
We measure the percentage of CPU and memory resource 

utilization when varying the number of tasks triggered for 
provenance capturing. Figure 13 shows the measurement 
results, where 32tps means that there are 32 collection tasks 
per second. For the popular services, we collect the 
provenance data with high frequency, thus it incurs high 
CPU cost. We observe that the CPU utilizaiton is 35 percent 
when the collector frequency is at 388 tasks per second. On 
the other hand, the memory utilization is low and relatively 
stable, showing that the amount of provenance data captured 
is relatively small.  

.  

 
Figure13 Resource Utilization 

C. Runtime of Three Different Provenance Stores 
Figure14 measures the runtime cost of three different 

provenance stores by inserting a varying amount of 
provenance data in MySQL, MongoDB, Neo4j respectively 
with 100, 200, 500, 1000, 2000 thousand rows. MySQL 
spent more time doing insertion than MongDB and Neo4j. 
With the increasing rows of insertion data, the operation 
runtime increases quickly for MySQL, while the run time of 
Neo4j increases slightly and the runtime of Mongodb is 
very stable. By inserting 2000 thousands of rows of 
provenance data, MySQL runtime is 192.81 seconds, 
Mongodb runtime is 6.234s and Neo4j is 38.781 seconds. 

 

 
Figure14 Runtime of insertion in three stores  

Figure15 compares the database size of MySQL, 
Mongodb and Neo4j with 10,100, 200, 500, 1000, 2000 
thousands of rows inserted into the provenance store. As the 
number of rows increases, the database size in Neo4j grows 
slowly than the other two stores. However, when the 
database is relatively small (10,000 rows or less), Neo4j 
spends more storage space than the other two stores due to 
the graph structure maintained in Neo4j. In comparison, as 
the number of provenance records increases, MongoDB 
spends largest space than the other two stores 

 

 
Figure15 Storeage cost with three stores  

 

 
Figure 16 Runtime of aggregation in three stores 

 
Figure16 measures the runtime of  a typical aggregation  

by varying the size of the provenance records captured and 
stored in the three stores. We query how many times did 
service S1 invoke S2. With different provenance database 
sizes, the result shows that MongoDB has the most stable 
performance as the provenance database grows in size, 
whereas MySQL spends more time than MongoDB when 
the data size reaches 1,000,000 and Neo4j takes much 
longer to perform this aggregation query compared to 
MySQL and MongoDB when the size of the provenance 
database grows.  

 
Figure17  runtime cost of trace operation 



Figure17 measures the runtime cost of the trace operation 
by varying the length of path from 1, 3, 5, 7 to 9 services in 
one invocation path. Trace(token)(return the path according 
to token value) consumes more runtime than trace(si). 

VI. RELATED WORK 
Provenance has been used in many domains [2], such as 
biology, Chemical Sciences, Earth Sciences. From the cloud 
perspective, there are various categories of services, ranging 
from business services, middleware services, database 
services, network services to application services. Existing 
work on capturing and managing provenance can be broadly 
divided accordingly. For example, Dapper[1] is dedicated 
for provenance management in application services, though 
its service trace tools are limited to homogeneous platform 
and do not support heterogeneous systems. PASS 
(provenance-aware storage systems)[3] designed for 
capturing and managing provenance in file systems, PASS 
implements the file provenance atuo-collection,and storage 
management by modifying the Linux kernel in order to 
intercept the system call of file operations. DTaP[4] is 
managing provenance in network. Trio[5] is collecting 
provenance in database, and provenance in databases 
[14,15,16] focus on view update, data tracing. Moreau [7] 
proposes web data provenance. Karma2 [6] is dedicated for 
provenance in workflow. Some workflow systems [11,12,13] 
collect the provenance data from the logs of workflow 
engines. To the best of our knowledge, this work is the first 
one considering provenance management as a service and 
provides a systematic framework for service provenance 
management in the Cloud.  .  

VII. CONCLUSION 
We have presented ProvenanceLens, a two-tier service 
provenance management framework. The top tier is the 
service provenance capturing and storage subsystem and the 
next tier provides analysis and inference capabilities of 
service provenance data. Both tiers are built based on the 
service provenance data model, which categorizes all 
service provenance data into three broad categories: basic 
provenance, composite provenance and application 
provenance. ProvenanceLens also provides a suite of basic 
provenance operations, such as select, trace, aggregate. The 
basic provenance data is collected through a light-weight 
service provenance capturing subsystem. The composite and 
application provenance data are aggregated through a 
selection of provenance operations. We demonstrate the 
effectiveness of ProvenanceLens using a real world 
educational service currently in operation for a dozen 
universities in China.  
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