
ProvenanceLens: Service Provenance Management in the Cloud

Tao Li1,2,3, Ling Liu3, Xiaolong Zhang1, Kai Xu1, Chao Yang4

1School of Computer, Wuhan University of Science and Technology
2Hubei Province Key Laboratory of Intelligent Information Processing and Real -time Industrial System

3School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30329, USA
4Computer Science and Information Engineering, Hubei University, Wuhan, China

litaowust@163.com, lingliu@cc.gatech.edu, {xiaolong.zhang@wust.edu.cn, stevenyc@foxmail.com

Abstract—Service provenance can be defined as a profile of
service execution history. Queries of service provenance data
can answer questions such as when and by whom a server is
invoked? which services operate on this data? What might be
the root cause for the service failure? Most of the organizations
today collect and manage their own service provenance in
order to trace service execution failures, locate service
bottlenecks, guide resource allocation, detect and prevent
abnormal behaviors. As services become ubiquitous, there is an
increasing demand for proving service provenance
management as a service. This paper describes
ProvenanceLens, a two-tier service provenance management
framework. The top tier is the service provenance capturing
and storage subsystem and the next tier provides analysis and
inference capabilities of service provenance data, which are
value-added functionality for service health diagnosis and
remedy. Both tiers are built based on the service provenance
data model, an essential and core component of
ProvenanceLens, which categorizes all service provenance data
into three broad categories: basic provenance, composite
provenance and application provenance. In addition,
ProvenanceLens provides a suite of basic provenance
operations, such as select, trace, aggregate. The basic
provenance data is collected through a light-weight service
provenance capturing subsystem that monitors service
execution workflows, collects service profiling data,
encapsulates service invocation dependencies. The composite
and application provenance data are aggregated through a
selection of provenance operations. We demonstrate the
effectiveness of ProvenanceLens using a real world educational
service currently in operation for a dozen universities in China.

Keywords. service provenance; service dependency; execution
history, service profiling.

I. INTRODUCTION
Everything in the cloud is delivered as a service, from

infrastructure and platform to software and applications.
Service provenance is a description of service execution
history. Capturing and understanding the dynamic workflows
of service execution is critical to improve service quality,
guide resource allocation, analyze causes of service failures,
detect security vulnerabilites. Both Internet company (such
as google, twitter) and software company pay more attention
to service behavior monitoring [1,2], because service
provenance can help answer questions such as who invoke

this server, which set of data are accessed by the server,
which service is bottleneck of the system. By examining the
service runtime state statistics together with service
invocation graph, we can find the root cause of a service
failure. By analyzing the service invocation patterns, we can
evaluate the side effects of a service failure. By collecting
input and output of a service execution and its execution
path, we can evaluate the correctness of a complex service
execution. By surveying elapsed time of services and their
execution paths, we can gain better understanding of where
the system bottlenecks might be.
 As cloud systems and applications become more
distributed and big data centric, not only services are
deployed in distributed compute nodes but the number of
services involved in accomplishing a job also continues to
increase. This raises more challenges for service provenance
capturing and service provenance tracing with respect to
service invocation, dynamic and complex execution
dependencies among a large number of services. In addition,
service provenance management also needs to deal with
large service provenance data and determine which types of
service provenance data should be stored persistently, which
provenance data should be derived on demand based on
stored provenance data, and how to efficiently derive new
provenance data over stored service provenance. Thus,
service provenance management in general consists of
provenance capture, storage and analysis. By providing
service provenance management as a service, we need to
design the provenance management functionalities in such a
way that they can be easily used by an application to monitor
the runtime behavior of its services. Concretely, the
following system requirements should be the core design
objectives:

Automated and configurable provenance capturing.
The service provenance management by design should take
into account of heterogeneous services and application
systems and identify the essential provenance data that are
common to many applications and their cloud services. More
importantly, the provenance collection process should be
automated and easily configurable for provenance capturing
and provenance analysis, while maintaining application
transparency.

Light-weight. One of the key design goals for service
provenance management is light-weighted. First, service
provenance capturing should be exercised with little

overhead that has negligible impact on the performance of
routine executions of applications. Thus, optimization
techniques should be employed at the right time for the right
applications. For example, some application services may
execute thousands of times in a short period of time. The
provenance capturing modules should turn on selective
sampling with adjustable intervals to allow provenance
capturing to be zoomed out with larger monitoring intervals
or selectively zoomed in with shorter intervals.

Scalable data management. As the number of services
involved in cloud applications continues to increase, the
dataset size of service provenance to be collected and
managed continue to grow. Thus, a scalable service
provenance management should support two core
functionalities: (i) compact storage with the support of
seamless scale out to a distributed provenance storage and
(ii) efficient provenance analysis by providing a set of basic
provenance operations, enabling querying, tracing and
reasoning over large provenance data across multiple
services within an application and across applications within
a cloud hosting service.

In this paper, we present ProvenanceLens, a two-tier
service provenance management framework, which is
designed to meet the above requirements. The top tier is the
service provenance capturing and storage and the next tier
provides analysis and inference capabilities of service
provenance data. Both tiers are built based on the service
provenance data model, an integral part of ProvenanceLens.
A unique feature of this provenance data model is to
categorize service provenance into three broad categories:
basic provenance, composite provenance and application
provenance. We also introduce the provenance data structure
and a suite of basic operations, such as select, project,
aggregate, slice, dice, roll-up, drill-down, and trace. The
basic provenance data is collected through a light-weighted
provenance capturing system that monitors service execution
workflows, collects service profiling data, encapsulates
service invocation dependencies. A real-world cloud service
in educational domain managing teaching services for a
dozen universities is used as the use-case study to
demonstrate the effectiveness of ProvenanceLens.

The rest of the paper is organized as follows. Section 2
reviews the architecture of ProvenanceLens and the use-case
scenario. Section 3 describes the ProvenanceLens data model.
Section 4 presents the ProvenanceLens capturing system.
Tthe experimental evaluation of ProvenanceLens on the use-
case study is given in Sections 5. We discuss related work in
Section 6 and conclude the paper in Section 7.

II. OVERVIEW
A. Architecture

The ProvenanceLens system by design consists of two
subsystems: the provenance capturing subsystem and the
provenance management and analysis subsystem. The
provenance capturing subsystem performs service runtime
profiling and derives execution dependency through
execution workflow analysis over the basic provenance log
created by different service profiling agents. Every profiling
task is controlled by the provenance collector management.

System administrator can start or terminate a service
profiling task or set provenance collection strategy, such as
where and what types of service provenance data should be
collected, the interval of sampling, how long the provenance
collection process should run, and the type of composite
provenance data to be derived over the captured basic
provenance data.

The provenance query and analysis subsystem allows the
system administrator to generate a selection of composite
provenance data and store them in persistent provenance
store for on-demand access. In the first prototype
development, three types of provenance operations are
provided to generate composite provenances: provenance
query operation, provenance trace operation and graph
based service correlation operation. In addition, the
ProvenanceLens system will also provide the application
level provenance data for application specific provenance
analysis. An extensible application provenance library is
provided to allow application-specific provenance analysis or
functionality specific provenance analysis to be performed
conveniently for service quality evaluation, service security
compliance evaluation, and cloud deployment optimization.

B. Case Study
Figure 1 shows a teaching management system deployed

in an IaaS cloud for 12 universities in P.R. China. Given
that universities vary from one another in terms of both the
number of students, the number of teaching faculties and the
number of courses being offered within each semester or
quarter, the service response time for requests coming from
different universities can vary dramatically. Even for the
same service, the peak time performance for the same
university can differ significantly from normal time. These
motivate the use of service provenance management on this
operational cloud system.

By performing service profiling using the techniques
developed in ProvenanceLens, we conclude with a number
of interesting observations: First, the concrete quality of
service (QoS) requirements can vary significantly from
university to university. Second, with different business
model for course and teaching management at different
universities, the service runtime behavior for each
university is different. Some services need more CPU
resource, such as ArrangeCourse, TeachingTask. Other

Fig. 1 ProvenanceLens System Architecture

services need more I/O resource, such as StudentProject
management. Also some services may have clearly
understood business peak-time performance, such as
RegistCourse, LessonPlanManagement. The peak time
behavior of these services depend on many factors: the
number of students, the number of business processes, the
type of user behavior. Thus it is hard to find the root cause
of some failures of a service invoked by different
universities.

Fig. 2 A University-Teaching Management System deployed in an IaaS cloud

Figure 3 and Figure 4 show two example provenance data

captured by the university service provenance analysis over
the basic service provenance.

In Figure2, we choose three typical services:

TeachingTask, RegistCourse, Project service, which
represent three different service types: computation
intensive, concurrent execution, file operations.
University(1) has high invocation frequency for
RegistCourse service, it suggests to the system administrator
that additional servers may be beneficial if the peak time
performance should meet a specified QoS requirement such
that all registration requests by students for a course are
guaranteed. University(2) has a relatively hot TeachingTask
service, which indicates the potential demand for more CPU
resource. In Figure3, we show that LessonPlanManagement
services in university(2) using time sequence. It indicates
that the peak time workload for the file storage was

experienced on 2013-02-27. These examples clearly show
the importance of service profiling and service provenance
in understanding the service runtime performance, detecting
system bottlenecks, and providing cost-effective capacity
planning. Figure 5 shows the invocation dependence for
RegistCourse service. When the RegistCourse service
encounters a runtime error and aborts suddenly, provenance
data can help system administrator to detect possible root
causes. For example, the RegisterCourse service has
multiple runtime execution paths. In order to understand
which execution path was the cause of this failure, we need
to examine both the execution history to see if there are any
other reported failures from relevant services. This leads us
to find that the CheckConfilct service S7 reported an error in
the same duration of S1. Then we need to perform composite
service provenance analysis to trace the set of execution
paths from S1 to S7 over the captured provenance data. By
narrowing down the focus to the execution path of S1 ! S2
! S7 and S1 ! S3 ! S7 and the fact that only UserRegister
S3 was active in the short interval prior to the occurrence of
the failure, this leads us to infer with high probability that
the CheckConfilct service would be the root cause of the
failure of the registerCourse service. Clearly, by maintaining
traces (different execution paths) as a composite provenance,
this root analysis can be performed faster in the presence of
complex application services, composed by many correlated
services.

Fig. 5 execution dependency in registerCourse service

In ProvenanceLen, we address these requirements

through the service provenance model which defines both
the data structure and the provenance operations for both
basic provenance captured directly by the provenance
collector agents and the composite provenance derived
through the use of basic provenance operations.

III. SERVICE PROVENANCE MODEL
In this section, we describe the service provenance data

model developed in the ProvenanceLens system. The first
feature of our provenance model is the separation of three
types of service provenance data: the basic provenance, the
composite provenance and the application provenance. The
second feature of our provenance model is the support for
three types of provenance operations: the basic provenance
query operations, the provenance aggregation operation, and
the provenance correlation graph operations. We use the
case study in the previous section to illustrate the main
concepts, data structure and operations.

Figure3 service invocation times

Figure4 service invocation time-sequence

Fig. 1 ProvenanceLens System Architecture

A. Basic Provenance
Given a set of cloud services denoted as S={S1, S2,.. Sn},

we use invoke(Si,Sj) or Si!Sj to describe the service
invocation relationship that Si invokes Sj. Each invocation
relationship is also associated with the provenance captured
during the invocation and execution of services Si and Sj,
such as time, location, elapsed time, input, output. In
general, for each service execution, we need to collect the
seven types of provenance, which describe "what", "when",
"where", "who", "which", "how" and "why" [8]. “What”
means the invocation event. “when” describe the time of
invocation, we record the request time and response time
which can help us compute the elapsed time. In distributed
execution environment, due to time synchronization in
distributed nodes, we also compute the elapsed time based
on local node clock. “Where” describe the service
location ,such as IP address. “Who” describe the invocation
initiator. "Which" describe invocation protocol and the
service framework used, such as RPC, WSDL, SOAP.
"Why" describes the reason of the invocation fault. “How”
describes the path of invocation. “When”, “where” and
“who” can be captured directly. “How” can be computed by
a series of calling service and invoked service. “Why” can
be inferred by service status in the path.

TABLE 1. SERVIVCE PROVENANCE CONTEXT

Concept Provenance ontology service provenance (example)
what Event Invocation
when Time Invocation timestamps
Where Space Service IP address
who Agent or other things service invoking
Which service invocation protocol
how Action, input/output Invocation path
why Reason Invocation fail reason

Table 2 shows the data structure of the basic provenance

captured by the service profiling agents in the provenance
capturing phase. We can view each basic provenance as a
nine dimensional object.

TABLE 2. BASIC PROVENANCE

item Description
Token 32 bit string which identify a relatime job
InvokingService Service customer
ServiceInvoked Service provider
Location IP address
Elapsed time Time cost of one invocation
Timestamp Receive invocation request time
Input Input parameter
Output Output parameter
Status 1-sucessful 0-fail, time out

Table 3 shows an example of the basic service

provenance records captured for the RegistCourse service
described in Figure 4. T1, T2, T3, T4 are four different
tokens, representing four different jobs. (T1, S1, S2, 35ms,
true) describes that service S1 invoke service S2 with the
elapsed time of 35ms. This ElapsedTime includes the
execution time of S2.

TABLE 3 REGISTCOURSE EXAMPLE

token Invoking Invoked ElapsedTime status
Token1 S1 S2 35ms True
Token1 S2 S5 20ms True
Token2 S1 S3 50ms True
Token2 S3 S5 30ms True
Token3 S5 S8 12ms True
Token4 S3 S6 --- false

B. Composite Provenance
For each service execution captured by the provenance

collector agent, we separate those that capture the state of a
service, such as success or failure status, active or inactive
status, from those that capture invocation relationship and
the execution dependency of a pair of services, such as
S1!S2 and S1 preceeds S2. We call the former the data-
oriented provenance and the later the process-oriented
provenance. By utilizing data-oriented provenance, such as
(service, status), we can figure out the exception rate of a
service execution, denoted by ServiceExceptionRate(S1,
status). This can be computed using the number of failed
execution divided by the total number of executions in a
given time interval. We call such derived provenance the
data oriented composite provenance. Similarly, by utilizing
the process-oriented provenance, we can infer process-
oriented composite provenance. An example is how
frequently the invocation of a service fails, denoted by
InvokeExceptionRate(S1, S2, status). Another example is
which services are dependent on a given service, which can
be derived by evaluating whether they counting on the
number of services that are reachable from the given service
through the invocation graph (Figure 4).
 Composite provenance can be obtained by employing
simple aggregate functions, such as count, avg, max, and
min, over the basic provenance records. They can also
obtained by using more complex provenance operations as
those to be discussed in the subsequent section. For example,
we can aggregate the time based provenance by using data
cube summarization techniques, such as using coarse time
granularity, such as hours, days, months, to summarize the
service invocation frequency provenance over a period of
day or week or month. This will allow us to answer
questions such as which weekday the highest invocation
frequency is observed for a given pair of services.
 Given a finite set of basic provenance records captured
by the provenance collector agents, we can derive a large
collection of composite provenance. Consider the storage
cost and the search space explosion, a wise decision is to
carefully select a small set of composite provenance for
persistent storage and compute the remaining composite
provenance on-demand. The choice is often application
dependent. For example, a system administrator may need
certain composite provenance data on a subset of services
for improving service availability.

C. Application Provenance
Application provenance refers to some high-level

provenance data analysis that are application dependent. For
example, one can use a graph structure to capture the
invocation relationship among a collection of services. By
modeling services as vertices and the invocation
ElapsedTime as the edge weight, we can employ subgraph
matching algorithms to find the common invocation patterns.
We can also employ graph clustering algorithms to group
services into K clusters such that services within the same
cluster are densely connected.

Given that different applications may require different
application provenance based on both composite
provenance and application specific service management
requirements, in ProvenanceLens, we provide a library of
graph analysis algorithms to facilitate the creation and
derivation of application specific provenance from the basic
provenance data and the composite provenance data.

D. Service Provenance Storage
We consider support three types of storage schema :

relationship schema, document schema and graphic schema.
In the first prototype implementation of ProvenanceLens, we
choose relational database MySQL, the document database
MongoDB, and the graph database Neo4j[18] to store both
the basic provenance captured by our provenance capturing
tool and the composite provenance derived from the basic
and composite provenance data.

(1) Storing Relationship based provenance data

We store the invocation relationship information in
relational table. Figure 6 shows an example of such
relational table with six columns: token, invoking, invoked,
elapsed time, status and time. The relationship between a
service and the location where the service is executed and
the relationship between the location and the IP address are
stored separately in two different tables.

token Invoking Invoked Elapsed
Time

status Time

Token1 S1 S2 35ms true T1
Token1 S2 S5 20ms true T2
Token1 S5 S8 12ms true T3
Token2 S1 S2 30ms true T4

service location
S1 P1
S2 P2

 Figure 6 Relational data storage for relationship based provenance

Aggregation operations. In order to support
summarization of basic provenance records captured by our
service profiling tool, we provide a suite of aggregation
functions such as sum, count, average, sort, group. By
employing these aggregation operations, we can compute
how many times did S1 invoke S2 in the past 3 days, what is
the failure rate of this invocation in the past 4 weeks. When
the service invocation relationship table is large in size, the
computation complexity of such aggregation operations can
be significant. Performance optimization techniques can be
beneficial for improving the real-time analytics.

Join operation: Join operation is essential for computing
some of the composite provenance and application
provenance. For example, consider the basic provenance
stored in three different tables in Figure 6. If we want to get
the invocation frequency grouped by location, we need to
perform join on the invocation table and the service-location
table. In addition, we need to use join operation to carry out
the invocation path tracing through self-join on the
invocation table by examining <invoking, invoked>
relationship row by row. Such join operations can be
expensive for long tables and indexing techniques can help
speedup both relational selection and relational join
operations.

(2) storing provenance as documents

Document based storage is a typical NO-SQL data

schema. Figure 7 shows the storage schema for storing
provenance data as documents. We choose Mongodb to
store the basic provenance in the form of documents. Data
store in one collection. Each service dependency is a
document which include all the invocation related data
between the two services. In each document, there are three
key-value pairs, which describe invoking, invoked and
content. The content is a sub-document and it describes the
invocation detail, which includes elapsed time, invocation
time, token, status, etc.

Loation IP
P1 192.168.0.2
P2 192.168.0.3

Aggregation

Join

Document
(S1:S2))

Document
(S2:S3))

Provenance
（Collection）

Key Value

Invoking S1
Invoked S2

Location IP

Content

Key Value

Elapsed 35ms
Time 16:22

Token Token1

Status 1

Input String

Output String

Key Value

Elapsed 20ms
Time 09:10

Token Token2

Status 1

Figure 7 Storing provenance as documents

Comparing with the relational model for storing the basic
provenance, the document model has a number of
advantages. First, by using a key-value store to host the
basic provenance, one can extend the structure of the basic
provenance data easily for any given key, such as invoking
and invoked by simply adding the new content as the new
value by following the key-value structure.

Document based storage model can also improve query
and insertion performance. Given a service S1, in order to
query how many services are invoked by S1, we just look up
S1 related data, which are stored in one document with key
S1, instead of querying the entire table.

 (3) Storing basic provenance in Graph stores

Although relational mode and document model based
storage systems can reduce query space and improve storage
efficiency, they cannot implement trace operation easily
because the trace operation needs to perform iteration
operation according to the service invocation dependency.
By storing the service invocation provenance data in a graph
store, say neo4j[18], we can easily compute the path of
service execution.

Figure 8 shows an example of storing some of the basic
provenance records in the graph database, where the vertices
of the graph represent services and the edges represent the
relationship of the service invocation. The property refers to
both node and relationship property, which are represented
and stored as key-value pairs. The node property describes
the name, location, url of the service and the relationship
property describes the elapsed time, the invocation time,
token, status, input and output of services.

Figure 8 An example of storing provenance in a graph database

By storing the basic provenance records in a graph
database, we can conveniently provide complex path
operations, such as shortest path, connected components,
and so forth.

IV. SERVICE PROVENANCE CAPTURING
In this section, we introduce the framework for

provenance capturing in ProvenanceLens. We first describe
and how to capture and store provenance data. First, we
illustrate capture point—where does we capture provenance,
we compare white-box and black-box based provenance
capturing methods and analyze related feature. Second, Then
we introduce will discuss how to capture service dependency
and how to reduce capturing cost by sampling strategy.

A. Capturing Methods
The first provenance capturing method is referred to as

the white box method. It is suitable to capture disposed
provenance, namely the provenance data about the services
and their runtime execution at application level or user level
and thus we as the provenance consumers know about the
detail and can make more semantic annotatations. Typical
examples are the elapse time of a service invocation.
Generally, this approach carries rich semantic information
about services and their execution environment, the service
developers or service providers can use API to capture such
disposed provenance. In comparison, the black-box method
is used to capture observed provenance, such as those
captured in Dapper[1] and PASS[3]. These types of
provenance data are collected by the system automatically
and transparently at low level of the system and the
provenance users may not know more information about
these provenance data to add rich semantic annotations. In
comparison to the white-box methods, the provenance
information collected using the black box method is
relatively poor in quality and often depends on the specific
system, framework or protocol.

In ProvenanceLens, a hybrid approach of white-box and
black-box method is employed. The interceptor is deployed
in the framework manually when it first invoked and run.
The interceptor will first print basic provenance log, then all
the provenance data can be collected by the system.
Compare with the black box method and the white box
method, this hybrid approach implements automated
provenance collection, because the collector can contain
different framework interceptors or collect provenance logs
which are produced by other external tools, framework or
invocation protocols. Because all the invocations must be
executed through either the framework or the protocol,
while keeping the balance between the transparency and
flexiblility. In fact, the transparency depends on where an
interceptor is deployed. If an interceptor is designed based
on low level (library), it will have lower time cost and lower
level of transparency. If an interceptor is designed based on
high level application, it is not transparent, but it has rich
high level semantics.

Key Value

Elapsed 30ms

Time 16:22

Token Token1

Status 1

Input String

Output String

S1

S2
Node

Property

invoke

invoke

Relationship
property

Key Value

Name SelectCourese

Location IP

URL Http://service

invoke

have
ave

have

S4

S3

Node
property

We collect service provenance data by service
interceptors. Usually there are some interceptors according
to different platforms. For example, JAVA EE has provided
an interceptor, which can be used to logging, auditing, and
profiling. We have developed an example interceptor based
on CXF[10], an open web service framework. The
interceptor could be deployed in the service customer and
the service provider when the service is being published.

B. Capturing Service Dependency
The core problem of capturing service dependency is

related to transmitting tokens which identify a job between a
pair of services (consumer and provider). We introduce how
to capture service dependency between a service provider
and a service customer. (1) Token is produced by the service
customer (invoker) in the entry of a transaction and stores in
the local context variable of the thread. (2) When invocation
happens, the interceptor will insert basic provenance into the
head of the respective service invocation protocol. (3) When
the service provider receives the invocation request, the
interceptor would exact the token information from the head
of the protocol, then put the token into local context variable
of the thread. (4) Service customer receives the invocation
respponse, and have the interceptor would print the basic
provenance.

C. Sampling
Some hot service, such as GetUseName, RegistCourse

may be invoked several thousands of times in a short period
of time. Provenance data capturing agent will spend large
resource costs, from CPU, memory to disk I/O and network
I/O cost and storage space cost. Thus, similar to [1],
ProvenanceLens system will use sampling as a valid method
to address this problem. There are two commonly used
sampling methods (i) Uniform sampling rate based method,
in which all services will adopt the same sampling rate. But
lower frequency service may miss important events. If we
increasing sampling rate, it will affect the performance. (ii)
Adaptive sampling rate based method can make adaptive
sampling decisions such that low frequency service will
trigger the increase of sampling rate automatically, while
high frequency service will need to reduce the sampling rate
to some extent. In addition, the high frequency service using
low sampling rate for provenance capturing should set the
provenance capturing interval to ensure no loss or minimum
loss of important provenance information.

Choosing appropriate sampling rate parameter is
important to enable the provenance-capturing agent to
adaptively tune the setting of the parameter. For example, if
the time for running the interceptor is 1 ms for every service
invocation, and the throughput for serving a request will not
exceed 1000 per second for common services in our use-
case, because the services that handle higher request rates
will be implemented as a distributed service running on a
cluster of compute nodes. In ProvenanceLens, the sampling
rate is set by default to 0.1% to 1% for popular services.

D. Scalability
When a large number of services are deployed and

invoked concurrently, ProvenanceLens should provide
seamless scalability such that it can handle provenance
capturing, provenance storage, provenance reasoning in real
time and on demand. In ProvenanceLens, we provide three
levels of support for improving the system scalability.

(1) Logical Independence between the inteceptor, the
provenance collection, storage and analysis. This loose
coupling basd abstraction enables each component to be
modified or extended with no impact or minimum impact on
the functionality of other components.

(.2) Distributed Architecture for Provenance Capturing
and Collection, which enables the new servers to be added
to the existing infrastructure of the system seamlessly,
enabling scalability of the ProvenanceLens with the
increasing number of services and increasing amount of
provenance data to be captured.

(3) Strategic Refinement Management, which allows the
provenance capturing strategiesi, such as priority, scale,
frequency, to be refined and revised. For example, we can
set high priority for a given subset of services due to the
demand for emergency based performance tuning.

In Figure 9, we show a sketch of the capturing tools and
the framework of the provenance capturing agent, which is
responsible for monitoring the collector and transfer
configuration information to the relevant parties. We
represent and store the provenance capturing strategies as
collecting rules. Data flow refers to the process of
provenance capturing, which includes the data check and
append-only database.

Figure 9 The Framework of Provenance Collector

In Figure 9, provenance log is designed to keep loose
coupling between the provenance capturing system and the
provenance analysis system. The provenance log can be
produced by the inteceptors through annotation and ESB log.
If provenance log is different from the basic provenance
records we obtained, we provide a mapping tool to establish
the one to one mapping between them. In fact, such
mapping tools can be built by extending some existing
schema-mapping tools that support heterogeneous data
mapping, such as MapForce[17].

V. EVALUATION
In order to verify the performance of our service

provenance management system ProvenanceLens, we
design some experiments to evaluate the performance of
service provenance capturing, usage and operation
consumption based on the real world use-case outlined in
Section II. The provenance server used in this measurement
study has 8G RAM, CPU Xeon 2.5GHz, and the client node
has CPU AMD 2.8G with 2G RAM.

A. Capture Tools: Time Complexity
We measure the runtime of the inteceptor by varying the

output size and invocation frequency. The service used in
this measurement study is the common query service, called
UserInformation service, which responds to each query by
returning the UserName, Password, department information.
The intercepted output data from 100 to 1000 rows. Because
the cost of running interceptor is low, so every intercept
executes 1000 times. In Table 4, we record time (unit: ms)
of the service without using interceptor (NoProv), then
measure the time of the same service with interceptor
(Proxv). The results in Table 4 show that the cost of running
interceptor will increase with the increase of the output size.
Especially, when output size exceeds 1000 rows, the
runtime cost grows drastically.

Table 4 intercept time cost with output (time:ms)

OutSize No Interception With Interception Intercept
100 11.09 11.39 0.30
200 16.46 16.93 0.47
400 27.55 27.89 0.34
600 40.17 41.05 0.88
800 51.35 52.12 0.77
1000 60.09 65.05 4.96

Next, we evaluate the impact of the invocation frequency

on the interceptor performance. In this set of experiments,
the service will be invoked at varying frequency, such as
100, 200, 1000. Table 5 shows that as the invocation
frequency increases, the interceptor runtime cost is
relatively stable. Thus, the invocation frequency does not
have significant impact on the interceptor performance. The
average time cost of interceptor is less than 1 ms. Also the
small difference between no interception and with
interception is the cost of initialization of interceptor.

Table 5 intercept time cost with frequency (time:ms)
OutSize No Interception With Interception Intercept
100 1588 1681 0.93
200 3247 3408 0.81
400 6497 6644 0.37
600 9787 10183 0.66
800 13042 13326 0.36
1000 16362 16656 0.29

Figure10 measures the interception runtime by varying

the number of output rows and the invocation frequency. It
shows that when the number of output rows exceeds 1000,
the inteceptor runtime is drastically increased. On the other

hand, as the increase of invocation counts, the average time
of every invocation is relatively stable.

Figure10 inteceptor time cost of frequency and output

Figure 11 shows the interception runtime for 40 different

invocations of the inceptor and we can see that the
interceptor runtime cost is very low, which shows that the
provenance capturing agent in ProvenanceLens is light
weight and non-intrusive.

Figure 11 inteceptor runtime cost of 40 different service invocations

Figure12 Inteceptor runtime cost with varying breadth and depth of
invocation

The next set of experiments evaluates how the

interception runtime is impacted by both depth and breath t
of service dependency. Depth here refers to the sequence of
invocations. Breadth refers to the number of services being
invoked at same time by a service. In this set of experiments,
the service being monitored will invoke 2, 4, 6, 8, 10 other
services. Figure 12 shows that both breadth and depth of the
service invocation. It is observed that the depth of the
service invocation do not have much impact on the runtime

cost of the interception when the number of invoked
services varies from 2 to 10. However, the breadth of the
service invocation may impact the runtime performance of
the interceptor. When the invocation breadth increases from
2 to 10 services, the runtime cost grows as well.

B. Resource Utlization
We measure the percentage of CPU and memory resource

utilization when varying the number of tasks triggered for
provenance capturing. Figure 13 shows the measurement
results, where 32tps means that there are 32 collection tasks
per second. For the popular services, we collect the
provenance data with high frequency, thus it incurs high
CPU cost. We observe that the CPU utilizaiton is 35 percent
when the collector frequency is at 388 tasks per second. On
the other hand, the memory utilization is low and relatively
stable, showing that the amount of provenance data captured
is relatively small.

.

Figure13 Resource Utilization

C. Runtime of Three Different Provenance Stores
Figure14 measures the runtime cost of three different

provenance stores by inserting a varying amount of
provenance data in MySQL, MongoDB, Neo4j respectively
with 100, 200, 500, 1000, 2000 thousand rows. MySQL
spent more time doing insertion than MongDB and Neo4j.
With the increasing rows of insertion data, the operation
runtime increases quickly for MySQL, while the run time of
Neo4j increases slightly and the runtime of Mongodb is
very stable. By inserting 2000 thousands of rows of
provenance data, MySQL runtime is 192.81 seconds,
Mongodb runtime is 6.234s and Neo4j is 38.781 seconds.

Figure14 Runtime of insertion in three stores

Figure15 compares the database size of MySQL,
Mongodb and Neo4j with 10,100, 200, 500, 1000, 2000
thousands of rows inserted into the provenance store. As the
number of rows increases, the database size in Neo4j grows
slowly than the other two stores. However, when the
database is relatively small (10,000 rows or less), Neo4j
spends more storage space than the other two stores due to
the graph structure maintained in Neo4j. In comparison, as
the number of provenance records increases, MongoDB
spends largest space than the other two stores

Figure15 Storeage cost with three stores

Figure 16 Runtime of aggregation in three stores

Figure16 measures the runtime of a typical aggregation

by varying the size of the provenance records captured and
stored in the three stores. We query how many times did
service S1 invoke S2. With different provenance database
sizes, the result shows that MongoDB has the most stable
performance as the provenance database grows in size,
whereas MySQL spends more time than MongoDB when
the data size reaches 1,000,000 and Neo4j takes much
longer to perform this aggregation query compared to
MySQL and MongoDB when the size of the provenance
database grows.

Figure17 runtime cost of trace operation

Figure17 measures the runtime cost of the trace operation
by varying the length of path from 1, 3, 5, 7 to 9 services in
one invocation path. Trace(token)(return the path according
to token value) consumes more runtime than trace(si).

VI. RELATED WORK
Provenance has been used in many domains [2], such as
biology, Chemical Sciences, Earth Sciences. From the cloud
perspective, there are various categories of services, ranging
from business services, middleware services, database
services, network services to application services. Existing
work on capturing and managing provenance can be broadly
divided accordingly. For example, Dapper[1] is dedicated
for provenance management in application services, though
its service trace tools are limited to homogeneous platform
and do not support heterogeneous systems. PASS
(provenance-aware storage systems)[3] designed for
capturing and managing provenance in file systems, PASS
implements the file provenance atuo-collection,and storage
management by modifying the Linux kernel in order to
intercept the system call of file operations. DTaP[4] is
managing provenance in network. Trio[5] is collecting
provenance in database, and provenance in databases
[14,15,16] focus on view update, data tracing. Moreau [7]
proposes web data provenance. Karma2 [6] is dedicated for
provenance in workflow. Some workflow systems [11,12,13]
collect the provenance data from the logs of workflow
engines. To the best of our knowledge, this work is the first
one considering provenance management as a service and
provides a systematic framework for service provenance
management in the Cloud. .

VII. CONCLUSION
We have presented ProvenanceLens, a two-tier service
provenance management framework. The top tier is the
service provenance capturing and storage subsystem and the
next tier provides analysis and inference capabilities of
service provenance data. Both tiers are built based on the
service provenance data model, which categorizes all
service provenance data into three broad categories: basic
provenance, composite provenance and application
provenance. ProvenanceLens also provides a suite of basic
provenance operations, such as select, trace, aggregate. The
basic provenance data is collected through a light-weight
service provenance capturing subsystem. The composite and
application provenance data are aggregated through a
selection of provenance operations. We demonstrate the
effectiveness of ProvenanceLens using a real world
educational service currently in operation for a dozen
universities in China.

Acknowledgement. The first author performs this work
while visiting DiSL in Georgia Institute of Technology. Tao
Li, X.Zhang and Kai Xu are partially supported by the
National Natural Science Foundation of China (Grant Nos.

61273225), Humanities and Social Sciences Foundation of
Education Ministry of Hubei province (Grant Nos.
2012D111). Ling Liu is partially supported by NSF under
Grants IIS-0905493, CNS-1115375, IIP-1230740.

REFERENCES
[1]. Benjamin H. Sigelman, Luiz Andr′ e Barroso, Mike

Burrows, Pat Stephenson,Manoj Plakal, Donald Beaver, Saul
Jaspan and Chandan Shanbhag, "Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure", Google
Technical Report dapper-2010-1, April, 2010.

[2]. Yogesh L. Simmhan,Beth Plale and Dennis Gannon, "A
Survey of Data Provenance in e-Science" ,SIGMOD,VOL
34.NO.3.Sept.2005

[3]. Kiran-Kumar Muniswamy-Reddy,David A. Holland, Uri
Braun,and Margo Seltzer,"Provenance-Aware Storage
Systems", 2006 USENIX Annual Technical Conference
(USENIX'06) , June 2006

[4]. Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon
Thau Loo, and Yun Mao, "Efficient Querying and
Maintenance of Network Provenance at Internet-Scale",
SIGMOD ,Jun 2010

[5]. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S.
Nabar, T. Sugihara, and J. Widom. "Trio: A System for Data,
Uncertainty, and Lineage. Proc". 32nd Intl. Conference on
Very Large Data Bases , pages 1151-1154, Seoul, Korea,
September 2006.

[6]. Yogesh L. Simmhan, Beth Plale, Dennis Gannon, "Karma2:
Provenance Management for Data Driven Workflows",
International Journal of Web Services Research , Vol.X,
No.X, 200X

[7]. Luc Moreau, "The Foundations for Provenance on the Web",
Foundations and Trends in Web Science Vol. 2, Nos. 2-3
(2010) 99-241

[8]. Sudha Ram and Jun Liu，"A New Perspective on Semantics
of Data Provenance", SWPM-2009, 2009.10

[9]. Linton C.Freeman,"Centrality in social networks conceptual
clarification", Social Networks}, Volume 1, Issue 3, Pages
215-239,1978

[10]. cxf,http://cxf.apache.org/
[11]. Susan B. Davidson, Juliana Freire, "Provenance and

scientific workflows: challenges and opportunities",
SIGMOD, 2008

[12]. Rajendra Bose and James Frew. " Lineage retrieval for
scientific data processing: A survey", ACM Computing
Surveys, 28 March 2005.

[13]. J. Zhao, C. A. Goble, R. Stevens, and S. Bechhofer,
"Semantically Linking and Browsing Provenance Logs for
Escience,"in ICSNW, 2004.

[14]. Y. Cui and J. Widom, "Lineage tracing for general data
warehouse transformations," VLDB Journal , vol. 12, 2003.

[15]. Peter Buneman,Adriane P.Chapman,James
Cheney,"Provenance Management in Curated Databases",
SIGMOD, 2006

[16]. Laura Chiticarius James Cheney and Wang-Chiew Tan.
"Provenance in databases: Why, how, and where",
Foundations and Trends in Databases (4):379-474, 2009.

[17]. Altova MapForce 2009, MapForce graphical data mapping,
Conversion & Intergration tool.Retrieved May 8, 2009, from
http:// www. altova.com /documents/mapForcedatasheet.pdf

[18]. www.neo4j.org

