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Abstract—Hybrid clouds, geo-distributed cloud and 
continuous upgrades of computing, storage and networking 
resources in the cloud have driven datacenters evolving towards 
heterogeneous clusters. Unfortunately, most of MapReduce 
implementations are designed for homogeneous computing 
environments and perform poorly in heterogeneous clusters. 
Although a fair of research efforts have dedicated to improve 
MapReduce performance, there still lacks of in-depth 
understanding of the key factors that affect the performance of 
MapReduce jobs in heterogeneous clusters. In this paper, we 
present an extensive experimental study on two categories of 
factors: system configuration and task scheduling. Our 
measurement study shows that an in-depth understanding of these 
factors is critical for improving MapReduce performance in a 
heterogeneous environment. We conclude with five key findings: 
(1) Early shuffle, though effective for reducing the latency of 
MapReduce jobs, can impact the performance of map tasks and 
reduce tasks differently when running on different types of nodes. 
(2) Two phases in map tasks have different sensitive to input block 
size and the ratio of sort phase with different block size is different 
for different type of nodes. (3) Scheduling map or reduce tasks 
dynamically with node capacity and workload awareness can 
further enhance the job performance and improve resource 
consumption efficiency. (4) Although random scheduling of reduce 
tasks works well in homogeneous clusters, it can significantly 
degrade the performance in heterogeneous clusters when shuffled 
data size is large. (5) Phase-aware progress rate estimation and 
speculation strategy can provide substantial performance gain 
over the state of art speculation scheduler. 

I. INTRODUCTION  
Cloud datacenters typically employ cluster computing 

infrastructure for big data processing and cloud service 
provisioning. Hadoop MapReduce [2] clusters are one of the 
most popular cluster deployment in the cloud. Although 
compute clusters in datacenters are homogeneous by design, 
as CPU, memory, storage and network communication 
technologies advance over time, most datacenters continue 
to upgrade their computing infrastructure. At the same time, 
hybrid cloud and geo-distributed cloud become popular 
solution approach to instantaneous demand of additional 
computational resources to expand in-house resources and 
to maintain peak service demands. As a result, most data 
centers are equipped with heterogeneous sets of servers, 
typically ranging from fast nodes with high CPU and 
memory capacity to slow nodes with lower CPU and 
memory capacity (physical machines or virtual machines). 
Cloud datacenters provide different capacity of nodes at 
different price, represented by Amazon EC2. In order to 

meet the performance requirements of different workloads 
at affordable cost, the mix of nodes with different compute, 
storage and networking capacities is needed.  

Unfortunately, most MapReduce implementations are 
designed and optimized for homogeneous clusters and 
deliver unstable and poor performance on heterogeneous 
clusters. In recent years, a fair amount of independent 
research has studied some problems experienced in 
heterogeneous environments [4,5,7,8,10,12,13,17,18] with 
LATE [4] as the most popular representative. However, 
most existing efforts [5,17,18] only focus on speculation 
schedulers to find the stragglers and schedule a copy of 
straggler tasks on other nodes. Very little efforts have been 
put forward to measure the effectiveness and efficiency of 
setting a proper configuration for the heterogeneous 
environment. In addition, many research efforts on tuning 
MapReduce performance only analyze a subset of 
parameters [6,9,15]. To the best of our knowledge, there is 
no systematic study and in-depth analysis on the root causes 
of unstable and sometimes poor runtime performance of 
MapReduce jobs on heterogeneous clusters. For example, 
how much performance gains and overhead the early shuffle 
will have for data intensive applications with huge 
intermediate data on heterogeneous clusters, how different 
configuration parameters and their correlations may impact 
on MapReduce performance on heterogeneous clusters; 
when do existing schedulers,  including Hadoop-LATE, fail 
to deliver good performance and why. The ability to answer 
these and many other related questions on performance 
optimization of MapReduce jobs are critical for developing 
the next generation cluster computing solutions.  

Bearing these open issues in mind, in this paper, we 
present a comprehensive experimental study with in-depth 
analysis on two categories of performance factors: system 
configuration and task scheduling, especially how different 
configuration parameters and different scheduling 
parameters may interact and impact on the MapReduce 
performance in a heterogeneous environment. Our 
measurement study shows that an in-depth understanding of 
these factors is critical for improving MapReduce 
performance in a heterogeneous environment.  

The rest of the paper is organized as follows. Section 2 
gives a brief overview of MapReduce execution model, and 
the framework for distributed task scheduling. Section 3 
describes the methodology of our measurement study. We 
present the experimental results and analysis in Section 4 to 



 
 

Figure 1. MapReduce execution model 

experimentally analyze the hidden problems and the 
limitations of the current Hadoop MapReduce task 
scheduler (Hadoop-LATE), including the scenarios in which 
it performs poorly and the in-depth experimental analysis of 
the root causes for such limitations. We conclude the paper 
with a discussion on related work and a summary of our 
original contributions. 

II. OVERVIEW AND BACKGROUND 

A. MapReduce execution model 
A MapReduce cluster typically consists of one master 

node and a set of worker nodes. The JobTracker runs on the 
master node for job execution and task scheduling, and the 
TaskTracker runs on each worker node for launching and 
executing tasks assigned by the JobTracker. The input data 
of a MapReduce job is typically divided into multiple input 
blocks, one per Map task. By default configuration, a 
worker node typically has two map slots and one reduce slot 
and it runs tasks on its task slots. A sketch of MapReduce 
operational framework is given in Figure 1. A map task 
consists of two phases: read and sort and its output file is 
stored in the local storage of the node. A reduce task 
consists of three phases: shuffle, sort and reduce. In the 
shuffle phase, a reduce task first obtain the reduce input by 
copying its input pieces from each map node based on its 
partition ID. The reduce task can only enter the sort phase 
after all the reduce input pieces have been copied to local 
storage.  

B. Early shuffle v.s. no early shuffle. 
No early shuffle refers to the reduce tasks cannot start 

shuffle phase until all map tasks of a job have completed. In 
contrast, early shuffle breaks this rigid bulk synchronization 
point by allowing the reduce task to start shuffle phase as 
soon as some map tasks have completed and their map 
output files are available. For example, the default early 
shuffle condition in the Hadoop MapReduce configuration 
is 5% of map tasks completed. Early shuffle utilizes the 
parallel computing to mitigate bisector network congestion 

of the cluster and work well when the number of map tasks 
and intermediate data are large.  

Although early shuffle can reduce the overall job 
execution time, there is no reported study to date on the 
additional overhead introduced by early shuffle when 
shuffle data is large and its impact on (i) the execution 
performance of concurrent map tasks, (ii) the amount of 
performance degradation incurred at map nodes to 
accommodate the early shuffle workloads, and (iii) the best 
scenarios where early shuffle gives the most overall 
performance gains.  

C. Speculative execution in Hadoop 
Speculative execution refers to the duplicate execution 

of a task that is currently running at another straggler node 
due to its poor performance compared to other peer nodes 
for the same workload (same computation task).  Two key 
factors that may impact on the efficiency of speculative 
execution are the accuracy of detecting straggler nodes and 
the accuracy of selecting speculative execution nodes.  

  Hadoop Speculative scheduler is a core component of 
the Hadoop MapReduce middleware package. Hadoop-Late 
is the most recent production speculative scheduler that 
replaced the previous Hadoop Speculative scheduler. It 
incorporates the LATE strategy [4], which estimates the 
remaining time of each task using the longest approximate 
time to end. Although LATE and Hadoop LATE are simple 
and light-weight, the current implementation does not take 
into consideration of early shuffle.  

III. MEASUREMENT METHODOLOGY 
In this section we outline the objectives of this 

measurement study and the methodology we use to design, 
setup and conduct the experiments. 

A. Objectives of the Measurement study. 
The main objective of this measurement study is two 

folds: First, we report the performance degradations that are 
observed when measuring the current Hadoop Late task 
scheduler under varying system configurations and with 



different workload characterizations. To the best of our 
knowledge, many of the observations have never been 
reported before. Second, for each of the problems observed, 
we design and conduct in-depth experimental analysis to 
identify and understand where the root causes of the 
problem may be, especially in the context of distributed task 
scheduling, the system configuration and parameter setting 
choices. 

We argue that such an in-depth measurement analysis 
of the performance problems and the limitations of the 
Hadoop LATE scheduler can provide deep insights and 
optimizations for system developers to further improve the 
availability, the robustness and the performance of Hadoop 
MapReduce task scheduling. More importantly, this 
measurement study also provides valuable guidance on 
designing the next generation distributed task scheduling 
algorithm that can provide high overall execution efficiency 
for distributed long running jobs running on heterogeneous 
clusters with early shuffle, while minimizing unnecessary 
consumption of compute resources.  

B. Measurement Design 
In order to meet the above goals of our measurement 

study, we plan to focus our experiments and measurement 
analysis on the following two categories of issues, which 
have not been studied in depth in the literature but are 
critical to the cloud consumers to better understand how to 
configure their systems and clusters in the cloud data centers, 
and the cloud service developers to design and implement 
the next generation MapReduce task scheduler.  

The first category is about system configuration. We 
argue that correct configuration is a key factor for 
MapReduce performance.  We are interested three 
fundamental aspects of correct configurations: (i) Finding 
the problems inherent with certain default configuration 
parameters; (ii) Analyzing and understanding the root 
causes of the problems; and (iii) Learning the best practice 
and possibly the automated method to set the configuration 
parameters. We show that by conducting extensive 
experiments with different settings of configuration 
parameters, it can guide us to find the interesting 
correlations between different parameters and different 
settings of parameters, which further facilitate our analysis 
on the root causes of the problems found due to the design 
choices made in the Hadoop MapReduce middleware. 

The second category is about task scheduling, a core 
component of Hadoop MapReduce software package. We 
argue that efficient task scheduling and effective system 
configuration are equally important for improving 
performance of MapReduce jobs. Although a lot of efforts 
have been made to improve the Hadoop LATE task 
scheduler, most of existing works show improvements on 
restricted workloads under specific configurations with 
much higher complexity compared to Hadoop LATE, due to 
the lack of in-depth understanding of the strengths and the 
inherent weakness in the current task scheduler. In this 

measurement study, we conduct targeted experiments to 
identify the root causes of the inefficiency displayed by the 
current MapReduce task scheduler and provide in-depth 
analysis of the problems due to executing MapReduce jobs 
in a heterogeneous cloud environment from both task 
scheduling and system configuration perspective. 

C. Experiment Environment 
Our measurement results reported in this paper are 

conducted on a heterogeneous Hadoop0.21 cluster with 
three types of nodes: (i) 10 fast nodes with 64-bit Intel Quad 
Core Xeon E5530, 12G memory, 500G 7200 rpm Western 
Digital SATA disk. (ii) 3 slow nodes: Core 2 Duo, 2G 
memory, 250G disk. (iii) 3 slowest nodes: 64-bit Xeon 1 
core 3 GHz, 2GB memory, 146G disk. And take one fast 
node as master node. 

As we mentioned earlier, the intermediate result size 
such as map outputs can be a dominating factor for 
execution time of shuffle phase. By switching on local 
combine, we may reduce the size of intermediate results 
significantly for some applications such as WordCount. 
However, local combine may not be applicable to some 
other applications such as Hadoop TeraSort. Thus we design 
three types of benchmarks for our measurement study: (a) 
Type 1, data-intensive applications with large shuffle data: 
such as WordCount without local combine and 
InvertedIndex which takes a list of documents as input and 
generates word-to-document indexing. (b) Type 2, data-
intensive applications with small shuffle data: e.g., 
WordCount with local combine turned on. (c) Type 3, 
compute-intensive applications with no shuffle data: e.g., 
Kmeans.    

IV. PERFORMANC MEASUREMENT AND ANALYSIS  
In this section, we study the key factors that affect the 

performance of a MapReduce job running on a 
heterogeneous cluster. We divide the set of key factors into 
two categories and report our measurement results. For each 
result, we further provide experimental analysis and 
discussion to gain better understanding of the root causes. 
The first category of key factors is the system configuration 
settings. We design and conduct several sets of experiments 
with different combinations of configuration settings and 
identify strong and interesting correlations between different 
configuration parameters and different settings of 
parameters, then we conduct in-depth analysis of the root 
causes from the perspectives of Hadoop MapReduce 
implementation. The second category of key factors is 
related to task scheduling. Similarly, we design and conduct 
a suite of experiments to expose the problems of current 
MapReduce task scheduler and analyze the root causes from 
both the design of the task scheduling algorithms and the 
runtime execution information. 

A. Performance impact of system configuration 



   
       (a) job execution time                (b) map phase execution time 

Figure 3. Effectivenees of speculation  
 

 
   (a) Wordcount without combine             (b) InvertedIndex 
                Figure 4. Map task execution time on fast node 

 

 
                  (a) Map phase Execution time 

 
(b) Job Execution time 

Figure 2. Performance of five job execution models 
 

In this section, we study the effect of three types of 
system configurations on the performance of MapReduce 
jobs. We first study the effect of early shuffle and 
speculation. Then we study the effect of map input block 
size and memory buffer size on the performance of jobs. 
Finally, we study the effect of varying of task slots on 
different types of nodes on the performance of jobs.  

 

1) Effect of early shuffle and speculation 
To better understand the effect of early shuffle and 

speculation on the performance of MapReduce jobs, we 
consider five execution models based on whether to turn on 
or off early shuffle and speculative execution. To better 
understand the advantage of early shuffle, we use the type 1 
benchmark applications with large intermediate results. We 
varying the block size and the input data size and set the 
number of reducers to 9, which equals to the number of fast 

nodes. Every experimental plot is the average of 3 runs. 
Figure 2 (a) shows map phase execution time of the five 

models with input data size varying from 15G to 30G and 
map input block size from 256MB to 512MB. This set of 
experiments shows a number of interesting observations. 
First, when block size increases from 256MB to 512MB, the 
map phase execution time is increased in all five models. 
This is expected. However, it is unclear whether the smaller 
block size will always lead to better performance. This 
motivates us to design another set of experiments to be 
discussed in the next section (see Figure 4, 5).  Second, 
when turning on early shuffle, the map phase execution time 
is increased compared to no early shuffle, as expected. Also 
speculation can improve the effectiveness of early shuffle. 
The third observation is that the map phase execution time 
with only map speculation is more efficient than with both 

map and reduce speculation. This implies that reduce 
speculation can add additional overhead on map execution.  

Figure 2 (b) shows the overall job execution time in all 
five models. We observe that early shuffle always provides 
faster job response time than without early shuffle. Early 
shuffle combined with speculative execution offers the best 
performance among all five models. Also speculation can 
significantly improve the overall job response time, which 
shows the effectiveness of the current speculative scheduler, 
Hadoop Late. However, by looking closer at the 3rd group 
of histograms (30G, 256m), we make an interesting 
observation: the performance of the execution model with 
no early shuffle and speculation is surprisingly poor 
compared to other three groups of histograms. This indicates 
that the speculative execution may not offer stable 
performance gain (effectiveness). This motivates us to 
design the next set of experiments shown in Figure 3(a). By 
examining the best, worst and average job response time 
with block size of 256MB and 512MB, we observe that the 
speculative execution indeed shows unstable effectiveness. 
Also the worst case is almost 40% longer than the best case. 
Figure 3 (b) shows the map phase execution time for type 2 
benchmark applications WordCount with local combine 
turned on with the input data size of 18G, block size of 
256MB. We observe that speculation does not reduce the 
execution time, which indicates that speculation may not be 
always effective.  

2) Effect of block size and memory buffer size 
Recall Figure 2(a), the map phase execution time will 

increase as the block size increases. In this section, we first 
study map task execution time by varying block size from 
128MB, 256MB to 512MB. We use type 1 benchmark 
applications in the experiments reported in this section. 
Figure 4 shows the map task execution time of two type 1 
applications on fast node, we observe that although the map 



 
(a) Fast node                  (b) Slow and Slowest node 

Figure 6. Map task execution time with different map slots  

 
(a) CPU utilization                           (b) Memory utilization 

Figure 7.  CPU and Memory utilization with different map task slots 
on fast node (WordCount without combine) 

 

   
           (a) (K,V) map phase                           (b) Sort phase 

        Figure 5． Two phases’ ratios with different block sizes  

       
 (a) CPU utilization                            (b) Memory utilization 

Figure 8. CPU and Memory utilization with different map task slots 
on fast node (Kmeans) 

 

task execution time is not linear to input block size, the 
(K,V) map phase is almost linear to the input block size. 
Thus we design the next set of experiments to measure the 
execution time for each of the two phases by running on 
three types of nodes respectively. Figure 5 shows the results 
of running the application WordCount without combine. We 
observe that (K,V) map phase and sort phase have different 
sensitivity to input block size. The (K,V) map phase is 
linear to the input block size. However, the execution time 
of sort phase is not linear to input block size. Also the ratio 
of sort phase with different block size is different for 
different type of nodes  

In summary, small block size can reduce the execution 
time of speculative map task, while bigger block size can 
reduce the number of map tasks. Also different types of 
workloads may produce different sizes of intermediate data. 
Although the best configuration can be different for 
different types of workload, it is helpful to gain an in-depth 
understanding of how block size, memory buffer size in 
map task and JVM memory size may have different impact 
on the execution time of map task and reduce task.  

 

3) Effect of map slots and different type of nodes  
In this section, we study the effect of different map 

slots for different type of nodes on the performance of 
MapReduce jobs. To better understand the effect of varying 
map slots, we run this set of experiments with no early 
shuffle. Figure 6 (a) shows the map task execution time by 
varying the number of map slots on fast nodes, ranging from 
2 to 9 per map node. By increasing the allocation of map 
slots from 2 to 4, the map execution time has no obvious 
increase compared to 2 map slots. However, when the 
allocation of map slots is increased to 6 map slots or higher, 
we see that the map task execution time continue to 
increases quickly compared to the allocation of 2 map slots, 
with about 30% increase at 6 slots, 80% of increase at 8 
slots and close to 200% of increase at 9 slots. One obvious 

reason is that as the allocation of map slots on the fast nodes 
increases from 2 to 9, the number of map output files to be 
generated for the map tasks running on fast nodes will 
equally be increased. Thus it may take much longer to 
perform the merge-sort step for each map task. We validate 
this analysis by measuring CPU and memory utilization 
when the allocation of the map slots is changing from 2 to 9.  

 Figure 7 measures the CPU utilization and memory 
utilization on fast nodes when varying the number of map 
slots from 2 to 9. We see that the CPU utilization reaches 
100% most of the time when the allocation of map slots is 
increased to 8 slots. In contrast, with 6 slots, the CPU 
utilization is at 90% most of the time and occasionally 
approaching 100%. But with 4 slots, the CPU utilization is 
increased to the range of 50% to 70% comparing to the CPU 
utilization of about 38% for 2 map slots. Interestingly, for 
memory utilization on fast node, we used the default JVM 
memory setting of 200MB when run the map task or reduce 
task. With the setting of 8 map slots, the memory utilization 
of the map task is approaching 100% only at the end of the 
map task execution, which is the time when merge-sort is 
performed. For all map slot settings, the memory utilization 
curves show consistently that the sort step in the map phase 
consumes much more memory. This set of experiments also 
show that CPU is the main bottleneck during the map 
execution when the map slots are 6 or 8 but when the 
allocation of map slots is increased to 9 or higher, both CPU 
and memory become bottleneck, though the memory 
utilization only reaches 100% at the end of the merge step.  

Figure 8 shows the CPU and Memory utilization when 
varying the number of map slots on fast node for type 3 
benchmark application like Kmeans. We observe that for 
this type of application, CPU can be the bottleneck while 
memory utilization is low. This set of experiments shows 
that assigning the map slots simply based on the capacity of 
memory like Yarn [3] is not always effective.  



  
                  (a) Case one      (b) Case two 

Figure 11. Two cases of reduce task execution time and reduce nodes 
distribution (from left to right is reduce task 0 to reduce task 8) 

         
              (a) Slow node                                       (b) Fast node 
     Figure 9. Map task execution time (1s,2w denotes 1 slot with 2 workloads) 

 

       
            (a) 4 slots on fast node                         (b) 6 slots on fast node 

Figure 10. Varying map slots with three workloads on fast node 

B. Performance impact of task scheduling algorithms 
In this section, we study and analyze the problems of 

current task scheduler from three aspects: (i) Effect of early 
shuffle on map task scheduler; (ii) Effect of early shuffle on 
reduce task scheduler; and (iii) Effect of early shuffle on 
speculation task scheduler (Hadoop-LATE scheduler). 

 

1) Effect of early shuffle on map task scheduler 
When early shuffle starts, each node running map tasks 

may have to run the following three types of workloads 
concurrently: 
e Map workload: It still runs the remaining map tasks. 
e Shuffle serving workload: When there are map output 

files on this node, there will be reduce workload that 
serves other reduce tasks of fetching data from this node.  

e Shuffle fetching workload: If a reduce task is running on 
the node, there will be reduce workload of fetching the 
partition of the map outputs from other map nodes. 

The last two workloads may incur additional and possibly 
excessive burden on slow nodes and sometimes they may 
even slow down the progress rate of the fast node for the 
remaining map task. Consequently, the estimation of map 
progress rate may no longer be accurate, which may mislead 
all the decision made solely based on the progress rate, such 
as straggler detection and speculation task selection in the 
speculation scheduler.  

All experiments presented in this section will measure 
the map task execution time with varying allocation of map 
slots when turn on the early shuffle. For any node that starts 
early shuffle, the node will run two or three type of 
workloads concurrently. For presentation convenience, we 
classify all map nodes into three types in the presence of 
early shuffle: 1) One workload type (Map workload); 2) 
Two workload type (Map workload + Shuffle serving 
workload); 3) Three workload type (Map workload + 
Shuffle serving workload + shuffle fetching workload). First 
we measure the map task execution time on fast node and 
slow node with varying number of map slots when turn on 
early shuffle. 

 Figure 9 (a) shows the map execution time on slow 
node.  We observe that no matter how many map slots are 
set on the slow node, when the node has 3 workloads, the 
map task execution time will become significantly slow. 
Another interesting observation is that early shuffle will 
cause some startup time before the (K,V) map phase 
actually starts. This startup time is the time spent waiting to 
assign the JVM. This result suggests that the scheduler 
should be sensitive to the types of nodes and do not assign 
reduce task on the slow node before it finishes its map tasks. 

Figure 9 (b) shows the map execution time on fast node. 
As expected, as the number of map slots increases from 2 to 
8, the execution time continues to slow down. We observe 
that when map slots is 2 and 4, the execution time of map 
task on the node with three workloads is only slightly slow, 
however, when map slots become 6 and 8, the node with 
three workloads become dramatically slow. We monitor the 
CPU and memory utilization of the node with three 
workloads. Figure 10 shows the allocation of 4 slots and 6 
slots on fast node. We can see that when the map slot is 4, 
the CPU utilization does not reach 100%, and however, 
when map slot is 6, the CPU utilization reaches to 100%. In 
all cases, the memory utilization can reach up to 100%. 

This set of experimental results suggests that when both 
CPU and memory utilization are approaching 100%, the 
scheduler should not schedule more map tasks on this node. 
Also when early shuffle is turned on, the resource utilization 
is dynamic and more complexity. Thus the current map 
scheduler that assigns all types of nodes uniformly a fixed 
number of map slots may fail to achieve the best 
performance. We need an adaptive scheduler that can fully 
utilize the information of node status and assign tasks 
dynamically. 
2) Effect of early shuffle on Reduce task scheduler 

In this set of experiments, we identify the problems of 
reduce task scheduler in the presence of early shuffle. Recall 
our experimental setup, we set 9 reduce tasks, which equals 
to the number of fast worker nodes in our heterogeneous 
cluster of 16 nodes.  Ideally, the reduce task schedule should 
be able to schedule all nine reduce tasks on the nine fast 
nodes. However, when the reduce phase started, the reduce 
scheduler schedules reduce tasks randomly in the sense that 
the master node will assign the first reduce task 0 (input data 
is partition 0 of all the map output files) to the first node 
with free reduce slot which requests for the reduce task, then 
assign the next reduce task 1 to the second node with free 
reduce slot, and so forth. Unfortunately, the input data of 



Table 3. Slow->Fast case 
Estimate(s) Real(s) 

77.58 180 
51.82 153 

 Table 4. Slowest->Slow case 
Estimate(s) Real(s) 

289.1 183 
 

  Table 2. Fast-> Fast case 
Estimate(s) Real(s) 

217.17 138 
205 102 

 

Table 1. The distribution of speculative tasks  
 Slowest- 

>Slow 
Slow- 
>Slow 

Fast- 
>Slow 

Slowest- 
>Fast 

Slow- 
>Fast 

Fast- 
>Fast 

Map no early 
Shuffle 

3 0 0 0 0 6 
Map early 
Shuffle 

0 0 2 2 4 4 
Reduce early 
Shuffle 

0 0 1 2 1 1 

 

    
     (a) Different nodes         (b) Different workloads      (c) Different slots 
 Figure 12. The ratios between (K,V) map phase and sort phase in Map task 

reduce tasks are skewed because of the partition skewedness. 
So the scheduler may assign the reduce task with largest 
input data to the slowest node, which is the worst case 
scenario.  

Figure 11 shows the two reduce nodes distributions 
obtained by running the same experiment twice. The set of 
experiments in Figure 11 shows clearly that the assignment 
of  reduce tasks is random. Another interesting observation 
is is that reduce 7 with largest input data has been scheduled 
on a slow node in case one and a slowest node in case two. 
This severely hurts the performance of reduce tasks. 

Although, reduce task speculation can alleviate the 
errors made by the reduce task scheduler to some extent, it 
cannot solve the problem.  One approach to address this 
problem is that before scheduling a reduce task to the node 
requesting for reduce task, the reduce scheduler first checks 
if this node is a slow node or not. It only schedules the 
reduce task on it if it is not a slow node.  This approach 
needs a new algorithm to measure the progress rate and the 
performance of the node. 
 

3) Effect of early shuffle on speculation scheduler 

Recall Figure 3 we have shown that the performance of 
speculation is not stable. The problems of current 
speculation scheduler can be summarized as follows: 
e Waste resources: a good portion of speculative tasks 

cannot help reduce the execution time of the detected 
straggler tasks. 

e Degradation of performance: In the case of eager reduce 
task speculation in early shuffle, the additional reduce 
task can hurt the map execution time on the node. In the 
case of wrong speculation, running the speculation task 
on slow node can delay the whole job execution time. 
One of the main reasons for the above problems is due 

to the fact that Hadoop-LATE uses the fixed ratio of 2:1 
between (K,V) map phase and sort phase for calculating the 
map progress rate, and uses the fixed ratio of 1:1:1 for the 
three phases (shuffle, sort and reduce) of the reduce task. 
Our experimental results in Figure 12 show that the ratio 
can be different in different type of nodes (Figure 12 (a)), 
different applications (Figure 4), different time in the same 
node (Figure 12 (b)) and different configurations (Figure 4, 
Figure 12 (c)). Another problem with the current speculation 
scheduler is its eager and simple speculation policy: When 
Hadoop-LATE find the task with the longest remaining time, 
the scheduler will assign this task to the node that has idle 
slot. When do early shuffle, too eager reduce speculation 
will affect the performance of map tasks. To provide in-

depth analysis of why current Hadoop-LATE cannot work 
well in the presence of early shuffle, we conduct three sets 
of experiments: the map speculation performance without 
early shuffle, the map speculation performance with early 
shuffle, and the reduce speculation performance. All use the 
type 1 benchmark application, WordCount without combine. 
We consider six speculation situations: Slowest Æ Slow; 
SlowÆSlow, Fast Æ Slow, Slowest Æ Fast, Slow Æ Fast, 
and Fast Æ Fast. For the case Slowest Æ Slow, it means 
that Hadoop-LATE detects the task with longest remaining 
time on slowest node and assign the speculative task on the 
slow node.  

Table 1 shows the distribution of speculative tasks of 
the three sets of experiments. We can see that there are 9 
speculative tasks when do map speculation no early shuffle, 
but all of them are not beneficial and have been killed. The 
three incorrect FastÆSlow speculative tasks are due to the 
wrong slow node detection, where the scheduler does not 
filter the slow node from fast node, and wrong selection of 
slow nodes for speculative tasks.  

When we turn on early shuffle and speculation, we have 
12 speculative tasks (see the distribution in Table 1),  5 of 
which fail to improve the execution time of original map 
tasks, though they are correct speculative tasks. These 5 
speculative tasks are distributed as 2 FastÆFast, 2 SlowÆ 
Fast, 1 Slowest Æ Slow. Table 2 shows the two FastÆ Fast 
cases, from the results we can see the actual remaining time 
is greater than the estimate. Table 3 shows the two SlowÆ 
Fast cases, again the estimate remaining time is larger than 
the actual remaining time. Table 4 shows the case of 
SlowestÆ Slow, the actual remaining time is still smaller. 
In reduce case, FastÆ Slow and FastÆ Fast denotes wrong 
detection of slow node and straggler when do early shuffle. 

This set of experiments suggest two design principles 
for developing the next generation speculation scheduler: (1) 
we need method to calculate the progress rate of every 
phase to capture the dynamics of different applications, 
different types of nodes and different configurations. (2) We  
need more practical and yet accurate speculation policies 
that are phase aware and can filter out noises.  



V. RELATED WORK 
A fair amount of research efforts has been dedicated to 

improving the performance of MapReduce [1] in 
heterogeneous environments. However, most of them focus 
on optimizing the task scheduler or auto-tuning the 
configuration parameters. LATE [4] is the first to show the 
problems of MapReduce in heterogeneous environments 
and improves the native speculation scheduler by 
introducing the LATE method to compute the progress rate 
of tasks. Mantri [5], MCP [17], BASE [18] improves LATE 
by optimizing the speculative execution.  

Hadoop auto-tuning are proposed in recent literatures [6, 
9, 13, 15]. The motivation is to automatically find the 
optimal configuration for a job. The self-tuning system 
provides Job-Level tuning. 

Recently, a new Hadoop version Yarn [3] is developed. 
In this version, the JobTracker in Hadoop 0.21 is replaced 
by the ResourceManager and ApplicationMaster. The 
ResourceManager is responsible for computing resource 
allocation and the application-specific ApplicationMaster is 
responsible for task scheduling and coordination. Our work 
on improving the efficiency of the task scheduling in 
MapReduce Job can also help system developer to improve 
the ApplicationMaster in Yarn. 

To the best of our knowledge, none of the existing 
works has provided a comprehensive study of the impact of 
early shuffle on the effectiveness of MapReduce task 
scheduler and the key factors for improving the performance 
of MapReduce in heterogeneous environments.  

VI. CONCLUSION 
We have presented an in-depth measurement study on 

two categories of factors: system configuration and task 
scheduling, which are critical for improving MapReduce 
performance in a heterogeneous environment. We conclude 
with a number of key findings. First, early shuffle, though 
effective for reducing the latency of MapReduce jobs, can 
affect the performance of both map tasks and reduce tasks 
differently. Second, different workloads may have different 
sensitivity to input block size and thus adequate settings of 
Memory buffer size for map tasks and JVM memory size 
can have drastic impact on both task performance and 
resource utilization. Third, dynamic node capacity and 
workload aware scheduling map or reduce tasks can further 
enhance the job performance and improve resource 
consumption efficiency. Fourth, random scheduling of 
reduce tasks, thought works well in homogeneous clusters, 
can significantly degrade the performance in heterogeneous 
clusters when shuffled data size is large. Finally, we 
conjecture that phase-aware progress rate estimation and 
speculation strategy can provide substantial performance 
gain over the state of art speculation scheduler. To the best 
of our knowledge, this is the first in-depth measurement and 
analysis on critical performance properties of MapReduce in 
heterogeneous environments.  
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