
ϵ-PPI: Searching Identity in Information Networks with

Quantitative Privacy Guarantees

Yuzhe Tang † Ling Liu † Arun Iyengar ‡ Kisung Lee † Qi Zhang †

†Georgia Institute of Technology, GA, USA Email: {yztang, lingliu@cc., kisung.lee@cc., qzhang90@}gatech.edu

‡IBM T.J. Watson Research Center, NY, USA Email: aruni@us.ibm.com

Abstract

In information sharing networks, having a privacy preserving

index (or PPI) is critically important for providing efficient

search on access controlled content across distributed providers

while preserving privacy. An understudied problem for PPI
techniques is how to provide controllable privacy preservation,

given the innate difference of privacy of the different content

and providers. In this paper we present a configurable privacy

preserving index, coined ϵ-PPI, which allows for quantitative

privacy protection levels on fine-grained data units. We devise a

new common-identity attack that breaks existing PPI’s and pro-

pose an identity-mixing protocol against the attack in ϵ-PPI. The

proposed ϵ-PPI construction protocol is the first without any

trusted third party and/or trust relationship between providers.

We have implemented our ϵ-PPI construction protocol by using

generic MPC techniques (secure multi-party computation) and

optimized the performance to a practical level by minimizing

the costly MPC computation part.

I. Introduction

In information networks, autonomous service providers store
private personal records on behalf of individual owners and
enable information sharing under strict enforcement of access
control rules. Such information networks have the following
salient features: 1) providers, each under a different adminis-
trative domain, do not mutually trust each other, 2) providers
have the responsibility of protecting owners’ privacy and 3)
it is crucial to share information between providers from an
application perspective.

An example of the information network is the emerging
Nationwide eHealthcare Information Network (NHIN [1] and
Healthcare software CONNECT [2]), in which patients delegate
their personal medical records to the hospitals where they have
visited. Different hospitals may compete for customer patients
and have conflicting economic interests, which renders it hard
to build full trust relationships between them. Hospitals are

responsible for protecting patient privacy, which is regulated
by Federal laws (e.g. HiPPA [3]). On the other hand, to provide
immediate and accurate medical diagnosis and treatment, it is
important to have an information sharing service; for example,
when a patient who is unconscious is sent to a hospital, such
information sharing can help the doctor be able to retrieve
the patients’ medical history that involves multiple (untrusted)
hospitals. Another example is cross-university online course
management systems (e.g. StudIP [4], Swiki [5]). Such online
systems allow sharing of access-controlled materials within
groups of students and teachers; while the information sharing
is crucial for collaborative learning and improved learning
efficiency, it may pose a threat to student privacy; on the other
hand, protection of student privacy is required by Federal laws
(e.g. FERPA [6]). In these untrusted networks with needs of
cross-domain collaborations, it calls for a global mechanism to
protect privacy of a patient or a student, while enabling effective
information sharing.

AuthSearch(s,{p0, p1},t0)

Searcher s

p1

p0

p2

p3

QueryPPI(t0) p0, p1

Where’re owner t0’s 
records?

PPI ConstructPPI

Owner t0 Owner t1

Provider network

Delegate Delegate

Third-party 
domain

Fig. 1: The system of PPI and the provider network
To support and promote information sharing among mutually

untrusted providers, privacy preserving index or PPI [7], [8],
[9], [10] is proposed. The PPI aims at supporting a global
search facility hosted on a third-party entity; the design of
PPI should respect the providers’ complete access control on
personal records and protect their privacy. The typical working
of a PPI, as will be elaborated in Section II, is a two-phase
search procedure. As in Figure 1, a searcher, in the hope of
finding certain owners’ records, first queries the PPI, and obtains
a list of providers that may or may not have the records of
interest. Then for each provider in the list, the searcher attempts



to get authenticated and authorized before she can locally search
the private records there. A PPI is usually hosted on a third-party
and untrusted entity, mainly because of the difficulty to find a
global entity trusted by all (mutually untrusted) providers; for
example, consider the U.S. government as a candidate; various
scandals including the recent PRISM program [11] have made
the government lose the public trust. Hence, it is desirable to
construct the PPI in such a way that the data owners’ privacy
is protected.

Quantitatively Differentiated Privacy Preservation

While existing PPI’s have addressed privacy preservation,
none of these approaches recognize the needs of differentiating
privacy preservation for different owners and providers. To be
specific, the privacy goals addressed by a PPI system are about
a private fact whether “an owner tj has his/her record stored
on provider pi”. It is evident that disclosing the private fact
regarding different owners and providers causes different levels
of privacy concerns. For example, a woman may consider her
visit to a women’s health center (e.g., for an abortion) much
more sensitive than her visit to a general hospital (e.g., for
cough treatment). Similarly, different owners may have different
levels of concerns regarding their privacy: while an average
person may not care too much about their visit to a hospital, a
celebrity may be more concerned about it, because even a small
private matter of a celebrity can be publicized by the media
(e.g., by paparazzi). To address the innate privacy difference of
owners, it is therefore critical to differentiate privacy protection
to address the innate different privacy concerns in a PPI system.
That being said, using existing PPI approaches can not provide
quantitative guarantees on the privacy preservation degree, let
alone on a fine-grained per-owner basis. The cause, largely
due to the degree-agnostic way of constructing PPI systems,
is analyzed in Appendix B.

In this paper, we propose a new PPI abstraction for differ-
entiated and quantitative privacy control, coined ϵ-PPI. Here,
ϵ is a privacy aware knob that allows each owner to mark a
desired privacy level when delegating data to the providers.
Specifically, ϵj is a value in a spectrum from 0 to 1, where
value 0 is for the least privacy concern (in this case, the PPI
returns the list of exactly those “true positive” providers who
truly have the records of interest) and value 1 for the best
privacy preservation (in this case, PPI returns all providers,
and a search essentially goes to the whole network). By this
means, an attacker observing the PPI search result can only
have a bounded confidence by ϵ in successfully identifying a
true positive (and thus vulnerable) provider from the obscured
provider list.

Challenges: To construct the new ϵ-PPI abstraction, it
poses challenges. On one hand, achieving quantitative privacy
guarantee typically requires the index construction to know
more about providers’ data (e.g. owner identity distribution
across the provider network), which entails information ex-
change between providers. On the other hand, providers do
not trust each other and may feel reluctant to disclose too
detailed information. Therefore, it is essential to draw a clear

line between what is private information and what is not
during the index construction, and to fully utilize the non-
private information to provide as much quantitative guarantee
as possible. In our proposed construction protocol, we utilize
the owner frequency (i.e. the number of providers an owner has
delegated her records to). Our unique insight in protocol design
is that the owner frequency is private only when the value is
big (i.e., when the owner’s record appears almost everywhere).
This is because knowing such “common” owners would give an
adversary confidence to make successful guesses regarding any
provider. By only releasing the small-value frequency, we can
protect providers’ privacy and deliver a quantitative guarantee.

In realizing the design protocol in a mutually untrusted
network, we rely on MPC computation (i.e., secure multi-party
computation [12], [13], [14], [15]) which addresses the input
privacy for generic computation. However, it raises performance
issues when directly applying MPC techniques in our problem
setting. On one hand, current MPC computation platforms can
only scale to small workloads [16]; they are practically efficient
only for simple computation among few parties. On the other
hand, a typical PPI construction may involve thousands of
owners and tens or hundreds of providers, which entails an
intensive use of bit-wise MPC computation. It is therefore
critical to a practical MPC protocol to efficiently carry out
the computation for ϵ-PPI construction. In this regards, we
propose to minimize the expensive MPC computation by using a
parallel secure sum protocol. The secure sum can be efficiently
carried out by a proposed secret sharing scheme with additive
homomorphism. Based on the proposed MPC primitive, our
index construction protocol protects providers’ privacy and can
tolerate collusion of up to c providers (c is configurable).

The contributions of this paper can be summarized as fol-
lows,

• We propose ϵ-PPI that differentiates the needs of privacy
protection in a quantitative manner. The ϵ-PPI exposes
a new delegate operation to owners, which allows them
to specify their different levels of privacy concerns. This
new privacy knob, coined ϵ, can give quantitative privacy
control while enabling information sharing.

• We propose ϵ-PPI construction protocol for an untrusted
environment. As far as we know, this is the first PPI
construction protocol without assumption on trusted par-
ties or mutual trust relationships between providers. The
performance of ϵ-PPI construction protocol is extensively
optimized by reducing the use of costly generic MPC and
using the proposed domain-specific protocols. The pro-
posed construction protocol is implemented and evaluated
with verified performance superiority.

• We introduce a new privacy attack (called common-owner
attack) that can break generic PPI systems. The new attack
model targets vulnerable common owners. Our proposed ϵ-
PPI is the first to resist common-owner attacks by using a
proposed term-mixing protocol.

The rest of this paper proceeds as follows: Section II formu-
lates the ϵ-PPI problem. Section III and IV respectively describe
the computation model and distributed implementation of the ϵ-
PPI construction protocol. Section V presents evaluation results,



and Section VI surveys the related work before the conclusion
in Section VII.

II. Problem Formulation

A. System Model

We formally describe our system model, which involves
four entities: 1) a set of n data owners, each of whom,
identified by tj , holds a set of personal records, 2) a provider
network consisting of m providers in which a provider pi is an
autonomously operating entity (e.g. a hospital or a university),
3) a global PPI server in a third-party domain, 4) a data searcher
who wants to find all the records of an owner of interest. The
interactions between these four entities are formulated in the
following four operations.

• Delegate(< tj , ϵj >, pi): A data owner tj can delegate
her records to provider pi based on her trust relationship
(e.g. such trust can be built based on her visit to a hospital).
Along with the record delegation, the owner can specify
her preferred privacy degree ϵj . Here ϵj indicates the level
of privacy concerns, ranging from 0 up to 1. For example,
a VIP user (e.g. a celebrity patient in the eHealthcare
network) may want to set the privacy level at a high value
while an average patient may set the privacy level at a
medium value 1

• ConstructPPI({ϵj}): After data records are populated, all
m providers in the network join a procedure ConstructPPI
to collectively construct the privacy preserving index. The
index construction should comply with owner-specified
privacy degree {ϵj}. As will be elaborated, the constructed
PPI contains noises or false positives for the purpose of
privacy preservation and {ϵj} is materialized as the false
positive rate of owner tj .

• QueryPPI(tj)→ {pi}: At data serving time, a searcher
s, in the hope of finding owner tj’s records, initiates a
two-phase search procedure consisting of two operations,
QueryPPI(tj)→ {pi} and AuthSearch(s, {pi}, tj). This
is illustrated in Figure 1. For the first phase, the searcher
poses query request, QueryPPI(tj), and the PPI server
returns a list of providers {pi} who may or may not have
records of the requested owner tj . The query evaluation in
PPI server is trivially done since the PPI, once constructed,
contains the (obscured) mapping between providers and
owners.

• AuthSearch(s, {pi}, tj): The second phase in the search
is for searcher s to contact each provider in list {pi} (i.e.
the result list from the first phase) and to find owner tj’s
records there. This process involves user authentication
and authorization regarding searcher s; we assume each
provider has already set up its local access control subsys-
tem for authorized access to the private personal records.
Only after authorization can the searcher search the local
repository on provider pi.

1To prevent every user from setting the highest value of ϵ, one possible way is
to differentiate prices for different privacy settings. The system has incentive to
do so, since high privacy settings incur more overhead in the provider networks.

We describe the internal data model in a PPI. Each personal
record contains an owner identity tj

2 (e.g. the person’s name).
As shown in Figure 2, a provider pi summarizes its local record
repository by a membership vector Mi(·); it indicates the list
of owners who have delegated their records on provider pi.
For example, provider p0 who has records of owner t0 and t1
maintains a membership vector as Mi = {t0 : 1, t1 : 1, t2 : 0}.
In our model, the same owner can have records spread across
multiple providers (e.g., a patient can visit multiple hospitals).
The constructed PPI maintains a mapping between providers
and owners; it is essentially a combination of all provider-wise
membership data, yet with noises. The PPI mapping data is
an m × n matrix M ′(·, ·), in which each row is of an owner,
each column of a provider and each cell of a Boolean value
to indicate the membership/non-membership of the owner to
the provider. For the purpose of privacy preservation, there
are noises or false positives added in the matrix; for example,
regarding provider p1 and owner t0, value 1 in the published
PPI M is a false positive in the sense that provider p1 does not
have any records of owner t0 but falsely claims to do so. The
false positive value is helpful for obscuring the true and private
membership information.

Provider network
PPI M’

Local vector M0

ConstructPPI

` `` `

1 1
1 1
0 1

p0 p1 p0 p1

1
1

Local vector M1

1
1

t0 t1 t2

t0

t1 t2

t1
t1

t0

t2

Fig. 2: ϵ-PPI model

Table I summarizes the notations that will be used throughout
the rest of the paper.

TABLE I: Notations

Symbols of system model
tj The j-th owner (identity) n Number of owners
ϵj Privacy degree of tj
pi The i-th provider m Number of providers

Mi(·) Local vector of pi M ′(·, ·) Data matrix in the PPI
Symbols of ϵ-PPI construction

βj Publishing probability of tj σj Frequency of owner tj
λ Percentage of common owners fpj Achieved false positive rate of

tj

B. Threat Model

Privacy goals: In our work, we are mainly concerned
with the owner-membership privacy; for an owner tj , the
owner-membership privacy is about which providers the owner
tj’s records belong to, that is, M(i, j) = 13. Knowing this
information, one can develop the private personal knowledge;
for example, knowing that a sport celebrity has records stored
in a surgery hospital allows one to infer that he or she may have

2In this paper, we use “owner” and “identity” interchangeably.
3We use M·(·) and M(·, ·) interchangeably.



had a medical condition possibly requiring surgery and may be
absent in the rest of the season. Other privacy goals related to
the PPI system but not addressed in this work include searcher
anonymity and record content privacy. The searcher anonymity
prevents an attacker from knowing which owner(s) a searcher
has searched for, which can be protected by various anonymity
protocols [17]. The record content privacy [7] involves the
detailed content of an owner’s record.

In order to attack the owner-membership privacy, we con-
sider a threat model in which an attacker can exploit multiple
information sources through different channels. In particular, we
consider the following privacy-threatening scenarios:

• Primary attack : The primary attack scenario is that an
attacker randomly or intentionally chooses a provider pi
and an owner tj , and then claims that “owner tj has
delegated his/her records to provider pi”. To determine
which providers and owners to attack, the attacker learns
about the publicly available PPI data M ′, and attacks only
those with M ′(i, j) = 1. Given an owner tj , the attacker
can randomly or intentionally (e.g. by her prior knowledge)
picks a provider pi so that M ′(i, j) = 1. To further refine
the attack and improve the confidence, the attacker can
exploit other knowledge through various channels, such
as colluding providers. Due to space limit, we focus on
the attack through the public channel in this paper (the
colluding attack and analysis can be found in the tech
report [18]).

• Common-identity attack : This attack focuses on the
common identity which appears in almost all providers
in the network. The attacker can learn about the truthful
frequency of owner identity σj from the public PPI matrix
M ′ (as will be analyzed many PPI’s [9], [7], [8] reveals
the truthful frequency) and choose the owners with high
frequency. By this means, the attacker can have better
confidence in succeeding an attack. For example, consider
the following extreme case: by learning an owner identity
is with frequency σj = 100%, the attacker can choose any
provider and be sure that the chosen provider must be a
true positive (i.e., M(i, j) = 1).

This paper focuses on attacks on a single owner, while a
multi-owner attack boils down to multiple single-owner attacks.

C. Privacy Metric and Degrees

Privacy metric: We measure the privacy disclosure by
the confidence an attacker can succeeding an attack. Formally,
given an attack on an owner tj and provider pi, we measure
the privacy disclosure by the probability that the attack can
succeed, that is, Pr(M(i, j) = 1|M ′(i, j) = 1). To measure
the privacy protection level of a specific owner tj , we use the
average probability of successful attacks against all possible
providers that are subject to M ′(i, j) = 1. The privacy metric
is formulated as following.

Pr(M(·, j)|M ′(·, j)) = AVG
∀i,M′(i,j)=1

(

Pr(M(i, j) = 1|M ′(i, j) = 1)
)

= 1− fpj

Here, fpj is the false positive rate of providers in the list
of providers M ′(i, j) = 1. The privacy disclosure metric on
owner tj is equal to 1−fpj, because the false positive providers
determines the probability that an attack can succeed/fail. For
example, if the list {pi|M(i, j) = 1} is completely without
any false positive providers (i.e. fpj = 0%), then attacks on
any provider can succeed, leading to 100% = 1− fpj success
probability/confidence.

Based on the privacy metric, we further define four discrete
privacy degrees. The definition of privacy degrees are based on
an information flow model of our privacy threat model, in which
an attacker obtains information from the information source
through different channels.

• UNLEAKED: The information can not flow from the
source, and the attacker can not know the information. This
is the highest privacy protection level.

• ϵ-PRIVATE: The information can flow to attackers through
the channel of public PPI data or PPI construction process.
If this occurs, the PPI design protects privacy from being
disclosed. The PPI can provide a quantitative guarantee on
the privacy leakage. Formally, given a privacy degree ϵj ,
this privacy degree requires the quantitative guarantee as
follows.

Pr(M(·, j)|M ′(·, j)) ≤ 1− ϵj (1)

In particular, when ϵ = 0%, the attacker might be 100%
confident about success of the attack, and privacy is
definitely leaked.

• NOGUARANTEE: The information can flow to the attacker
and the PPI design can not provide any guarantee on
privacy leakage. That is, the achieved value of privacy
leakage metric may be unpredictable.

• NOPROTECT: The information can flow to the attacker
and the PPI design does not address the privacy preserva-
tion. That is, the privacy is definitely leaked and the attack
can succeed with 100% certainty. This is equivalent to the
special case of NOGUARANTEE where ϵj = 0%. This is
the lowest level of privacy preservation.

Based on our privacy model and metric, we can summarize
the prior work in Table II. Due to the space limitation, we put
the analysis in Appendix B.

TABLE II: Comparison of ϵ-PPI against existing PPI’s

Primary attack Common-identity attack
PPI [7], [8] NOGUARANTEE NOGUARANTEE

SS-PPI [9] NOGUARANTEE NOPROTECT

ϵ-PPI ϵ-PRIVATE ϵ-PRIVATE

D. Index Construction of Quantitative Privacy
Preservation

In the ϵ-PPI, we aim at achieving ϵ-PRIVATE on a per-
identity basis (i.e. differentiating privacy preservation for differ-
ent owners). The formal problem that this paper address is the
index construction of quantitative privacy preservation, which
is stated as below.



Proposition 2.1: Consider a network with m providers and
n owners; each provider pi has a local Boolean vector Mi of its
membership of n owners. Each owner tj has a preferred level
of privacy preservation ϵj . The problem of quantitative privacy
preserving index construction is to construct a PPI that can
bound any attacker’s confidence (measured by our per-owner
privacy metric) under ϵj , with regards to all attacks on owner
tj as described in our threat model.

III. ϵ-PPI Construction: the Computation

Our ϵ-PPI construction is based on a proposed two-phase
framework in which providers first collectively calculate a
global value β, and then each provider independently pub-
lishes its local vector randomly based on probability β. This
framework requires complex computations. In this section, we
introduce them at different levels of granularity: First we take
an overview of our two-phase construction framework with
emphasis on describing the second phase. We then introduce
the first phase (called the β calculation) in details; we present
the detailed calculation of β under two kinds of owner identities,
namely the common and non-common owners. At last, we
conduct the privacy analysis.

A. A Two-Phrase Construction Framework

We propose a two-phase framework for the ϵ-PPI con-
struction. First, for each owner identity tj , all m providers
collectively calculate a probability value βj . In the second
phase, the private membership value regarding owner tj and
every provider pi is published. In this paragraph, we assume
βj is already calculated and focus on describing the second
phase – how to use βj to publish private data. Recall that in
our data model, each provider pi has a Boolean value M(i, j)
that indicates the membership of owner tj in this provider. After
knowing value of βj , provider pi starts to publish this private
Boolean value by randomly flipping it at probability βj . To be
specific, given a membership Boolean value (i.e. M(i, j) = 1),
it is always truthfully published as 1, that is, M ′(i, j) = 1.
Given a non-membership value (i.e. M(i, j) = 0), it is negated
to M ′(i, j) = 1 at probability βj . We call the negated value as
the false positive in the published PPI. The following formula
describes the randomized publication. Note when Boolean value
M(i, j) = 1, it is not allowed to be published as M ′(i, j) = 0.

0 →

{

1, with probability β

0, with probability 1− β

1 → 1 (2)

The truthful publication rule (i.e. 1 → 1) guarantees that rele-
vant providers are always in the QueryPPI result and the 100%
query recall is ensured. The false-positive publication rule (i.e.
0 → 1) adds noises or false positives to the published PPI which
can help obscure the true owner-to-provider membership and
thus preserves owner-membership privacy. For multiple owners,
different β’s are calculated and the randomized publication runs
independently.

An example: Consider the case in Figure 2. For owner
t0, if the β0 is calculated to be 0.5, then provider p1 would
publish its negative membership value M1(0) = 0 as value
1 with probability 0.5. In this example, it is flipped and the
constructed ϵ-PPI contains M ′(1, 0) = 1. Similarly for identity
t2 and provider p0, it is also subject to flipping at probability
β2. In this example, it is not flipped, and the constructed ϵ-PPI
contains M ′(0, 2) = 0.

B. The β Calculation

In the randomized publication, βj determines the amount of
false positives in the published ϵ-PPI. For quantitative privacy
preservation, it is essential to calculate a βj value that makes the
false positive amount meet the privacy requirement regarding ϵj .
In this part, we focus on the calculation of β which serves as
the first phase in ϵ-PPI construction process. Concretely we
consider two cases: the common identity case and the non-
common identity case. Recall that the common identity refers to
such an owner who delegates her records to almost all providers
in the network. The general PPI construction is vulnerable to
the common-identity attack and it needs to be specially treated.

1) The Case of Non-common Identity: In the case of non-
common identity, negative providers suffice to meet the desired
privacy degree. We consider the problem of setting value βj for
identity tj in order to meet the desired ϵj . Recall the randomized
publication: Multiple providers independently runs an identical
random process, and this can be modeled as a series of Bernoulli
trials (note that the publishing probability β(tj) is the same
to all providers). Our goal is to achieve privacy requirement
that fpj ≥ ϵj with high level success rate pp, that is, pp =
Pr(fpj ≥ ϵj). Under this model, we propose three policies
to calculate β with different quantitative guarantees: a basic
policy βb that guarantees fpj ≥ ϵj with 50% probability, and an
incremented expectation based policy βd, and a Chernoff bound
based policy betac that guarantees fpj ≥ ϵj with γ probability
where success rate γ can be configured.

Basic policy: The basic policy sets the β value so that
the expected amount of false positives among m providers can
reach a desired level, which is, ϵj ·m(1−σj). We can have the
following,

ϵj =
(1− σj) · βb(tj)

(1− σj) · βb(tj) + σj

⇒ βb(tj) = [(σ−1
j − 1)(ϵ−1

j − 1)]−1 (3)

The basic policy has poor quality in attaining the desired privacy
preservation; the actual value fpj is bigger than ϵj with only
50% success rate.

Incremented expectation-based policy: The incremented
expectation-based approach is to increase the expectation-based
βb(tj) by a constant value, that is,

βd(tj) = βb(tj) +∆ (4)

Incremental ∆ can be configurable based on the quality re-
quirement; the bigger the value is, the higher success rate pp
is expected to attain. However, there is no direct connection
between the configured value of ∆ and the success rate pp that



can be achieved, leaving it a hard task to figure out the right
value of ∆ based on desired pp.

Chernoff bound-based policy: Toward an effective policy
to calculate β, we apply the Chernoff bounds to the Bernoulli
trial model of the randomized publication process. This policy
allows direct control of the success rate. Formally, it has
the property described in Theorem 3.1 (with the proof in
Appendix A-A).

Theorem 3.1: Given desired success rate γ > 50%, let Gj =
ln 1

1−γ

(1−σj)m
and

βc(tj) ≥ βb(tj) +Gj +
√

G2
j + 2βb(tj)Gj (5)

Then, randomized publication with β(tj) = βc(tj) statistically
guarantees the published ϵ-PPI with privacy requirement fpj ≥
ϵj with success rate larger than γ.

2) The Case of Common Identities: With the above β
calculation for non-common identities, the constructed ϵ-PPI
is vulnerable to the common-identity attack. Because the β∗

4

bears information of identity frequency σj , and during our
index construction framework, β needs to be released to all
participating providers. A colluding provider would release such
information to the attacker who can easily obtain the truthful
identity frequency σ (e.g., from Equation 3 assuming ϵj is
publicly known) and effectively formulates the common-identity
attack.

To defend against the common-identity attack, ϵ-PPI con-
struction employs an identity-mixing technique for common
identities. The idea is to mix common identities with certain
non-common identities by exaggerating the calculated βj (i.e.
falsely increasing certain βj to 100%) from which one can not
distinguish common identities from the rest. To be specific, for
a non-common identity tj , we allow its βj to be exaggerated
to 100% with probability λ, that is,

β =

⎧

⎪

⎨

⎪

⎩

{

β∗, 1− λ

1, λ
, β∗ < 1

1, β∗ ≥ 1

(6)

Given a set of common identities, we need to determine how
many non-common identities should be chosen for mixing, in
other words, to determine the value of λ. While a big value of
λ can hide common identities among the non-common ones,
it incurs unnecessarily high search cost. On the other hand, a
value of λ which is too small would leave common identities
unprotected and vulnerable. In ϵ-PPI, we use the following
heuristic-based policy to calculate λ.

• In the set of mixed identities, the percentage of non-
common identities should be no smaller than ξ. Since
there are

∑

β∗≥1 1 common identities and thus
∑

β∗<1 λ
non-common identities in the set, we have the following

4We use β∗ to denote the probability value calculated by any of the three
policies for non-common identities.

formula.

ξ ≤

∑

β∗<1 λ
∑

β∗≥1 1 +
∑

β∗<1 λ
(7)

⇒ λ ≥
ξ

1− ξ
·

∑

β∗≥1 1

n−
∑

β∗≥1 1

3) β Calculation: Putting It Together: We summarize the
β calculation in the ϵ-PPI construction. For each identity tj ,
β(tj) is calculated based on Equation 6, which follows the
computation flows as below. The underline symbol indicates
the variable is private and ⇒ indicates the computation is fairly
complex (e.g. involving square root when calculating β∗).

Frequency σ ⇒ Raw probability β∗ → (8)

→
∑

β∗≥1 1 → Common id percentage λ → Final probability β

C. Privacy Analysis of Constructed ϵ-PPI

We present the privacy analysis of the constructed ϵ-PPI
under our threat model.

Privacy under primary attack: The property of the three
policies of calculating β∗ suggests that the false positive rate in
the published ϵ-PPI should be no smaller than ϵj in a statistical
sense. Recall that the false positive rate bounds the attacker’s
confidence; it implies that ϵ-PPI achieves an ϵ-PRIVATE degree
against the primary attack. It is noteworthy that our ϵ-PPI is
fully resistant to repeated attacks against the same identity over
time, because the ϵ-PPI is static; once constructed and having
privacy protected, it stays the same.

Privacy under common-identity attack: For common-
identity attack, the attacker’s confidence in choosing a true
common identity depends on the percentage of true common
identities among the (mixed) common identities in the published
ϵ-PPI. Therefore the privacy preservation degree is bounded
by the percentage of false positives (in this case, it depends
on the percentage of the non-common identities which is
mixed and published as common identities in the published
ϵ-PPI), which equals ξ. By properly setting λ, we can have
ξ = max∀tj∈{common identities} ϵj . By this way, it is guaranteed to
achieve the per-identity ϵ-PRIVATE degree against the common-
identity attack.

IV. ϵ-PPI Construction: Realization

The information network lacks mutual trusts between
providers, which poses new challenges when putting the ϵ-PPI
construction in practice. This section describes the design and
implementation of a distributed and secure protocol that realizes
the computation of ϵ-PPI construction described in the previous
section.

A. Challenge and Design

The goal of our protocol is to efficiently and securely com-
pute the publishing probability {βj} among a set of mutually
untrusted providers who are reluctant to exchange the private



membership vector with others. On one hand, the secure compu-
tation would require multi-party computation (or MPC) which
respects the per-party input privacy. Current techniques for MPC
only support small computation workloads [16]. On the other
hand, the computation required in ϵ-PPI construction is big
and complex; the computation model involves large number
of identities and providers; even for a single identity involves
fairly complex computation (e.g., square root and logarithm as
in Equation 5). This poses a huge challenge to design a practical
protocol for secure ϵ-PPI construction.

To address the above challenge, we propose an efficient and
secure construction protocol by following the design principle
of minimizing the secure computation. Given a computation
flow in Equation 8, our secure protocol design has three salient
features: 1) It separates the secure and non-secure computations
by the last appearance of private variables in the flow (note
that the computation flows from the private data input to the
end of non-private result). 2) It reorders the computation to
minimize the expensive secure computation. The idea is to
push down complex computation towards the non-private end.
To be specific, instead of first carrying out complex floating
point computations for raw probability β, as in Formula 8, we
push such computations down through the flow and pull up the
obscuring computations for private input, as in Formula 9. 3) To
scale to a large number of providers, we propose an efficient
protocol for calculating secure sum, and use it to reduce the
“core” of the MPC part in ϵ-PPI construction.

σ →
∑

σ<σ′ 1 → λ →

{

→ β = 1

⇒ β = β∗
(9)

B. The Distributed Algorithm

Following our design, we propose a practical distributed
algorithm to run the two-phase ϵ-PPI construction. The overall
workflow is illustrated in Figure 3. For simplicity, we focus
on phase 1 for β calculation. The β calculation is realized
in two stages by itself: As illustrated in Algorithm 1, the
first stage is a SecSumShare protocol which, given m input
Boolean from the providers, outputs c secret shares whose
sum is equal to the sum of these m Boolean. Here, c is the
number of shares that can be configurable based on the tolerance
on provider collusion. The output c shares have the security
property that a party knowing x < c shares can not deduce any
information about the sensitive sum of m Boolean. For different
identities, the SecSumShare protocol runs multiple instances
independently and in parallel, which collectively produce c
vectors of shares, denoted by s(i, ·), where i ∈ [0, c − 1].
The c vectors are distributed to c coordinate providers (for
simplicity we assume they are providers p0, . . . , pc−1) on which
the second-stage protocol, CountBelow, is run. As shown by
Algorithm 2, given c vectors s(0, ·), . . . s(c−1, ·) and a threshold
t, the CountBelow algorithm sums them to vector

∑

i s(i, ·)
and counts the number of elements that are bigger than t.

1) Distributed Algorithm for SecSumShare: We use an
example in the top box in Figure 3 to illustrate the distributed
algorithm of SecSumShare. In the example c = 3 and there

TABLE III: Distributed algorithms for ϵ-PPI construction

Algorithm 1 calculate-beta(M0, . . .Mn−1)

1: {s(0, ·), . . . s(c− 1, ·)}← SecSumShare(M0, . . .Mn−1)
2: σ′(·) is calculated under condition β∗ = 1, by either Equation 3,

or 4 or 5.
3:

∑

σ≥σ′ 1←CountBelow(s(0, ·), . . . s(c− 1, ·), σ′(·) ·m)
4: {β0, . . . βm−1}←

∑

σ≥σ′ 1 ◃ By Equation 9

Algorithm 2 CountBelow(s(0, ·), . . . s(c− 1, ·), threshold t)

1: count← 0
2: for ∀j ∈ [0, m− 1) do
3: S[j]←

∑

i s(i, j)
4: if S[j] < t then
5: count++
6: end if
7: end for
8: return count

M(i,0)

S(i,0,2)

S(i,0,1)

S(i,0,0)

S(i-2,0,2)

S(i-1,0,1)

S(i,0,0)

∑kS(i-
k,0,k)

0 1 1 0
0 4 0 3
3 3 2 1
2 4 4 1
3 1 0 4
4 3 3 2
2 4 4 1
4 3 2 2

0
1
4
0
0
1
0
1

1 4 2

Terms

p0 p3p1 p4p2

q=5
c=3

p0 p1 p2

MPC: CountBeow

β0 0.3 0.3 0.3 0.3 0.3

p0 p3p1 p4p2

P
ub

lic
at

io
n

Pu
bl

ic
at

io
n

P
ub

lic
at

io
n

P
ub

lic
at

io
n

P
ub

lic
at

io
n

Providers

Phase 1.1: SecSumShare

Phase 1.2: Calculate β

Phase 2: Randomized publication

σ0 2

Calculation:
Non-Common/Common Id

Phase 1 

s(i,0)

Fig. 3: An example of ϵ-PPI construction algorithm

are five providers p0, . . . p4. The example focuses on a single
identity case for tj (e.g. j = 0). Out of the 5 providers, p1 and
p2 have records of owner t0 (i.e., M(1, 0) = M(2, 0) = 1).
SecSumShare requires modular operations; in this example,
the modulus divisor is q = 5. It runs in the following 4 steps.

1 Generating shares: each provider pi decomposes its pri-
vate input Boolean M(i, j) into c shares, denoted by
{S(i, j, k)}, with k ∈ [0, c− 1]. The first c − 1 shares
are randomly picked from interval [0, q] and the last share
is deterministically chosen so that the sum of all shares
equals the input Boolean M(i, 0) in modulo q. That is,
(
∑

k∈[0,c] S(i, j, k)) mod q = M(i, j). In Figure 3, as

depicted by arrows 1 , p0’s input M(0, 0) is decomposed
to c = 3 shares, {S(0, 0, k)|k} = {2, 3, 0}. It ensures
(2 + 3 + 0) mod 5 = 0.



2 Distributing shares: each provider pi then distributes her
shares to the next c − 1 neighbor providers; k-th shares
S(i, j, k) will be sent out to k-th successor of provider pi,
that is, p(i+k) mod m. As shown by arrows 2 in Figure 3,
p0 keeps the first share 2 locally, sends her second share 3
to her successor p1 and the third share 0 to 2-hop successor
p2.

3 Summing shares: each provider then sums up all shares she
has received in the previous step to obtain the super-share.
In Figure 3, after the step of share distribution, provider
p0 receives 3 from p3, 4 from p4 and 2 from herself. As
depicted by arrows 3 , the super-share is calculated to be
3 + 4 + 2 mod 5 = 4.

4 Aggregating super-shares: each provider sends her super-
share to a set of c coordinators. These coordinators re-
ceiving super-shares then sum the received shares up
and output the summed vector s(i, ·) to the next-stage
CountBelow protocol. In Figure 3, provider p0, p1, p2
are chosen as coordinators and arrow 4 shows that the
sum of super-shares on provider p0 is s(0, 0) = (4 + 2)
mod 5 = 1. The sum of all the values on coordinators
should be equal to the number of total appearances of
identity t0. That is, 1 + 4 + 2 mod 5 = 2. Note two
providers have identity t0. This total appearance number or
identity frequency may be sensitive (in the case of common
identity) and can not be disclosed immediately, which is
why we need the second stage protocol, CountBelow.

2) Implementation of CountBelow computation: The secure
computation of CountBelow (in Algorithm 2) is implemented
by using a generic MPC protocol. Each party corresponds to a
coordinate provider in the ϵ-PPI system. Specifically, we choose
a Boolean-circuit based MPC protocol FairplayMP [13] for
implementation. The reason is that compared to an arithmetic-
circuit based protocol, it lends itself to the computation of com-
parison required in Algorithm 2 (i.e., in Line 4). In particular
for c = 2, the computation in CountBelow essentially boils
down to a comparison operation (i.e., s(0, i) > t − s(1, i)),
and the problem is reduced to a Millionaire problem [19].
The distributed algorithm to carry out MPC (and thus our
MPC-based CountBelow computation) can be found in [12],
[13]. Since Algorithm 2 is implemented by expensive MPC it
normally becomes the bottleneck of the system; in practice,
c ≪ m and thus the network can scale to large number of
providers m while the MPC is still limited to small subset of
the network.

C. Privacy Analysis of Constructing ϵ-PPI

We analyze the privacy preservation of ϵ-PPI construction
process. We mainly consider a semi-honest model, which is
consistent with the existing MPC work [13]. The privacy anal-
ysis is conducted from three aspects: 1) The privacy guarantee
of SecSumShare protocol. It guarantees: 1.1) (2c−3)-secrecy
of input privacy [9]: With less than c providers in collusion,
none of any private input can be learned by providers other than
its owner. 1.2) c-secrecy of output privacy: the private sum can
only be reconstructed when all c shares are used. With less than

c shares, one can learn nothing regarding the private sum. The
output privacy is formally presented in Theorem 4.1 with proof
in Appendix A-B. 2) The security and privacy of CountBelow
relies on that of the MPC used in implementation. The generic
MPC technique can provide information confidentiality against
colluding providers on c participating parties [13]. 3) The final
output β does not carry any private information, and is safe to be
released to the (potentially untrusted) providers for randomized
publication.

Theorem 4.1: The SecSumShare’s output is a (c, c) secret
sharing scheme. Specifically, for an owner tj , SecSumShare
protocol outputs c shares, {s(i, j)|∀i ∈ [0, c− 1]}, whose sum
is the secret vj . The c shares have the following properties.

• Recoverability: Given c output shares, the secret value vj
(i.e. the sum) can be easily reconstructed.

• Secrecy: Given any c− 1 or fewer output shares, one can
learn nothing about the secret value, in the sense that the
conditional distribution given the known shares is the same
as the prior distribution,

∀x ∈ Zq, P r(vj = x) = Pr(vj = x|V ⊂ {s(i, j)}))

where V is any proper subset of {s(i, j)}.

V. Experiments

To evaluate the proposed ϵ-PPI, we have done two set of
experiments: The first set, with simulation-based experiments,
evaluates how effective the ϵ-PPI can be in terms of delivering
quantitative privacy protection, and the second set evaluates the
performance of our index construction protocol. For realistic
performance study, we have implemented a functioning proto-
type for ϵ-PPI construction.

A. Effectiveness of Privacy Preservation

Experimental setup: To simulate the information provider
network, we used a distributed document dataset [20] of
2, 500− 25, 000 small digital libraries, each of which simulates
a provider in our problem setting. To be specific, this dataset
defines a “collection” table, which maintains the mapping from
the documents to collections. The documents are further derived
from NIST’s publicly available TREC-WT10g dataset [21]. To
adapt to our problem setting, each collection is treated as a
provider and the source web URLs (as defined in TREC-WT10g
dataset) of the documents are treated as owner’s identity. If not
otherwise specified, we use no more than 10, 000 providers in
the experiments. Using the collection table, it also allows us
to emulate the membership matrix M . The dataset does not
have a privacy metric for the query phrase. In our experiment,
we randomly generate the privacy degree ϵ in the domain [0, 1].
We use a metric, success ratio, to measure the effectiveness. The
success rate is the percentage of identities whose false positive
rates in the constructed PPI are no smaller than the desired rate
ϵj . Due to space limit, the experiment results of different β
calculation policies can be found in Appendix C-A.



1) ϵ-PPI versus Existing Grouping-based PPI’s: The ex-
periments compare the ϵ-PPI with existing PPI’s. The exist-
ing PPI’s [7], [8], [9] are based on a grouping abstraction;
providers are organized into disjoint privacy groups so that
different providers from the same group are indistinguishable
from the searchers. By contrast, ϵ-PPI does not utilize grouping
technique and is referred to in this section as a non-grouping
approach. In the experiment, we measure the success rate of
privacy preservation and search performance. Grouping PPI’s
are tested under different group sizes. Given a network of
fixed providers, we use the group number to change average
group size. We test grouping PPI with the Chernoff bound-
based and the incremented expectation-based policy under the
default setting. The expected false positive rate is configured
at 0.8, and the number of providers is 10, 000. We uniformly
sample 20 times and report the average results.

Results are illustrated in Figure 4. Non-grouping PPI gener-
ally performs much better and is more stable than the grouping
approach in terms of success ratio. With proper configuration
(e.g. ∆ = 0.01 for incremental expectation-based policy and
γ = 0.9 for Chernoff policy), the non-grouping ϵ-PPI always
achieves near-1.0 success ratio. By contrast, the grouping PPI’s
display instability in their success ratio. For example, as shown
by the “Grouping (#groups 2000)” series in Figure 4a, the
success rate fluctuates between 0.0 and 1.0, which renders it
difficult to provide a guarantee to the system and owners. The
reason is that with 2000 groups, sample space in each group
is too small (i.e., with 50 providers) to hold a stable result for
success ratio. When varying ϵ, similar behavior is shown in
Figure 4b; the success rate of grouping PPI’s quickly degrades
to 0, leading to unacceptable privacy quality. This is due to the
owner agnostic design in grouping PPI. This set of experiments
shows that the privacy degree of non-grouping PPI’s can be
effectively tuned in practice, implying the ease of configuration
and more control exposed to applications.

(a) Varying identity frequency (b) Varying ϵ

Fig. 4: Comparing non-grouping and grouping

B. Performance of Index Construction

Experimental setup: We evaluate the performance of our
distributed ϵ-PPI construction protocol. Towards that, we have
implemented a functioning prototype. The CountBelow is im-
plemented by using an MPC software, FairplayMP [13], which
is based on Boolean circuits. The implemented CountBelow

(a) Execution time with sin-
gle identity

(b) Circuit size with single
identity

(c) Scale up identity number

Fig. 5: Performance of index construction protocol

protocol is written in SFDL, a secure function definition lan-
guage exposed by FairplayMP, and is compiled by the Fair-
playMP runtime to Java code, which embodies the generated cir-
cuit for secure computation. We implement the SecSumShare
protocol in Java. In particular, we use a third-party library
Netty [22] for network communication and Google’s protocol
buffer [23] for object serialization. We conduct experiments on a
number of machines in Emulab [24], [25], each equipped with a
2.4 GHz 64-bit Quad Core Xeon processor and 12 GB RAM. In
the experiments, the number of machines tested is varied from 3
to 9 (due to limited resource at hand). For each experiment, the
protocol is compiled to and run on the same number of parties.
Each party is mapped to one dedicated physical machine. The
experiment uses a configuration of c = 3.

To justify the standpoint of our design that MPC is expen-
sive, we compare our reduced-MPC approach as in the ϵ-PPI
construction protocol against a pure MPC approach. The pure
MPC approach does not make use of SecSumShare protocol
to reduce the number of parties involved in the generic MPC part
and directly accepts inputs from the m providers. The metric
used in the experiment is the start-to-end execution time, which
is the time duration from when the protocol starts to run to when
the last machine reports to finish. The result is shown as in
Figure 5a. It can be seen that the pure MPC approach generally
incurs longer execution time than our reduced-MPC approach
(used in ϵ-PPI construction): As the information network grows
large, while the execution time of pure MPC approach increases
super-linearly, that of reduced-MPC approach increases slowly.
This difference is due to the fact that the MPC computation in
our reduced-MPC approach is fixed to c parties and does not
change as the number of providers m grows. And the parallel
SecSumShare in reduced-MPC approach is scalable in m as
well, since each party runs in constant rounds, and each round
sends a constant number (at most c − 1) of messages to its
neighbors. For scaling with more parties, we use the metric of
circuit size, which is the size of the compiled MPC program.
As a valid metric, the circuit size determines the execution
time5 in real runs. By this means, we can show the scalability
result of up to 60 parties as in Figure 5b. Similar performance
improvement can be observed except that the circuit size grows
linearly with number of parties involved. Finally, we also study
the scalability from running the protocol with multiple identities
in a three-party network. The result in Figure 5c shows that ϵ-
PPI construction grows with the number of identities at a much

5Regarding the detailed definition of circuit size and the exact correlation
between circuit size and execution time, it can be found in FairplayMP [13].



slower rate than that of the pure MPC approach.

VI. Related Work

This section surveys related work on indexing support on
untrusted servers. We focus on information confidentiality or
privacy on secure index design, and do not survey the issues of
integrity and authenticity.

Non-encryption based privacy preserving index: PPI is
designed to index access controlled contents scattered across
multiple content providers. While being stored on an untrusted
server, PPI aims at preserving the content privacy of all par-
ticipant providers. Inspired by the privacy definition of k-
anonymity [26], existing PPI work [7], [8], [9] follows the
grouping-based approach; it organizes providers into disjoint
privacy groups, such that providers from the same group are
indistinguishable to the searchers. To construct such indexes,
many existing approaches [7], [8], [27] assume providers are
willing to disclose their private local indexes, an unrealistic as-
sumption when there is a lack of mutual trust between providers.
SS-PPI [9] is proposed with resistance against colluding attacks.
While most existing grouping PPI’s utilize a randomized ap-
proach to form groups, its weakness is studied in SS-PPI but
without a viable solution. Though the group size can be used to
configure grouping-based PPI’s, it lacks per-owner concerns and
quantitative privacy guarantees. Moreover, organizing providers
in groups usually leads to query broadcasting (e.g, with positive
providers scattered in all groups), rendering search performance
inefficient. By contrast, ϵ-PPI is a brand new PPI abstraction
without grouping (i.e. non-grouping PPI as mentioned before),
which provides quantitative privacy control on a per-owner
basis.

Secure index and search-able encryption: Building
searchable indexes over encrypted data has been widely studied
in the context of both symmetric key cryptography [28] and
public key cryptography [29], [30], [31]. In this architecture,
content providers build their local indices and encrypt all the
data and indices before submitting them to the untrusted server.
During query time, the searcher first gets authenticated and
authorized by the corresponding content provider; the searcher
then contacts the untrusted server and searches against the
encrypted index. This system architecture makes the assumption
that a searcher already knows which provider possesses the
data of her interest, which is unrealistic in the PPI scenario.
Besides, unlike the encryption-based system, performance is a
motivating factor behind the design of our PPI, by making no
use of encryption during the query serving time.

VII. Conclusion

In this paper, we propose ϵ-PPI for quantitative privacy
control in information networks. The privacy of our ϵ-PPI
can be controlled by each individual in a quantitative fash-
ion. We identify a vulnerability of generic PPI on protecting
common owner identities and address this vulnerability in our
ϵ-PPI design by proposing an identity mixing technique. We

have implemented the index construction protocol without any
trusted party and applied a performance-optimization design that
minimizes the amount of secure computation. We have built a
generic privacy threat model and performed security analysis
which shows the advantages of ϵ-PPI over other PPI system in
terms of privacy preservation quality.

Acknowledgement

This research is partially supported by grants from NSF CISE
NetSE program, SaTC program, I/UCRC, an IBM faculty award
and a grant from Intel ICST on Cloud Computing.

References

[1] “Nhin: http://www.hhs.gov/healthit/healthnetwork.”
[2] “Nhin connect, http://www.connectopensource.org/.”
[3] “Hippa, http://www.cms.hhs.gov/hipaageninfo/.”
[4] “Studip, http://www.studip.de/.”
[5] “Swiki, http://en.wikipedia.org/wiki/swiki.”
[6] “Ferpa, http://www2.ed.gov/ferpa.”
[7] M. Bawa, R. J. B. Jr., and R. Agrawal, “Privacy-preserving indexing of

documents on the network,” in VLDB, 2003, pp. 922–933.
[8] M. Bawa, R. J. Bayardo, Jr, R. Agrawal, and J. Vaidya, “Privacy-

preserving indexing of documents on the network,” The VLDB Journal,
vol. 18, no. 4, 2009.

[9] Y. Tang, T. Wang, and L. Liu, “Privacy preserving indexing for ehealth
information networks,” in CIKM, 2011, pp. 905–914.

[10] S. Zerr, E. Demidova, D. Olmedilla, W. Nejdl, M. Winslett, and S. Mitra,
“Zerber: r-confidential indexing for distributed documents,” in EDBT,
2008, pp. 287–298.

[11] “Prism, http://en.wikipedia.org/wiki/prism (surveillance program).”
[12] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure two-party

computation system,” in USENIX Security Symposium, 2004, pp. 287–302.
[13] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for

secure multi-party computation,” in ACM Conference on Computer and
Communications Security, 2008, pp. 257–266.

[14] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“Tasty: tool for automating secure two-party computations,” in ACM CCS,
2010, pp. 451–462.

[15] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asynchronous
multiparty computation: Theory and implementation,” in Public Key
Cryptography, 2009, pp. 160–179.

[16] A. Narayan and A. Haeberlen, “DJoin: differentially private join queries
over distributed databases,” in OSDI, Oct. 2012.

[17] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of the
degradation of anonymous protocols,” in NDSS, 2002.

[18] Y. Tang and L. Liu, “Searching information networks with quan-
titative privacy guarantee,” Gerogia Tech Technical Report 2012,
http://www.cc.gatech.edu/˜ytang36/docs/techreport-12.pdf .

[19] A. C.-C. Yao, “Protocols for secure computations (extended abstract),” in
FOCS, 1982, pp. 160–164.

[20] J. Lu and J. P. Callan, “Content-based retrieval in hybrid peer-to-peer
networks,” in CIKM, 2003, pp. 199–206.

[21] D. Hawking, “Overview of the trec-9 web track,” in TREC, 2000.
[22] “Netty: http://netty.io.”
[23] “Protobuf: http://code.google.com/p/protobuf/.”
[24] “http://www.emulab.net/.”
[25] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental envi-
ronment for distributed systems and networks,” in OSDI, 2002.

[26] L. Sweeney, “k-anonymity: A model for protecting privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10,
no. 5, pp. 557–570, 2002.

[27] M. Bawa, R. J. B. Jr., S. Rajagopalan, and E. J. Shekita, “Make it fresh,
make it quick: searching a network of personal webservers,” in WWW,
2003, pp. 577–586.

[28] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE SSP, 2000, pp. 44–55.



[29] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in ICDCS, 2010, pp. 253–262.

[30] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword search
over encrypted data in cloud computing,” in ICDCS, 2011, pp. 383–392.

[31] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” in INFOCOM. IEEE,
2011, pp. 829–837.

[32] M. Mitzenmacher and E. Upfal, Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

Appendix A
Proof of theorems

A. Proof of Theorem 3.1

Proof: We model the problem as Bernoulli trials and
prove the theorem by applying Chernoff bound. For a term
tj , the total number of false positive providers is modeled as
sum of T = m(1 − σj) Bernoulli trials, because there are
m(1 − σj) negative providers for term tj and each negative
provider independently and randomly publishes its own bit, a
process that can be modeled as a single Bernoulli trials. In the
trial, when the negative provider becomes a false positive (i.e.,
0 → 1) which occurs at probability β(tj), the Bernoulli random
variable, denoted by X , takes on value 1. Otherwise, it takes
the value 0. Let E(X) be the expectation of variable X , which
in our case is,

E(X) = m(1− σj) · β(tj) (10)

We can apply the Chernoff bound for the sum of Bernoulli trials,
Pr(X ≤ (1− δ)E(X)) ≤ e−δ2E(X)/2 [32], where δ > 0 is any
positive number. For term tj , the expected success rate, denoted
by pp(tj), is equal to the probability of a publication success,
that is, pp(tj) = Pr(fpj > ϵj). Note fpj =

X
X+σj ·m

, we have,

pp(tj) = 1− Pr(fpj ≤ ϵj)

= 1− Pr(X ≤ m
σj

ϵ−1
j − 1

)

≥ 1− e−δ2jm(1−σj)β(tj)/2 (11)

In here, δj = 1 − 1
(ϵ−1

j −1)(σ−1

j −1)
· 1
β(tj)

= 1 − βb(tj)
β(tj)

. Recall

that γ is the required minimal success rate. If we can have

1− e−δ2jm(1−σj)β(tj)/2 ≥ γ (12)

for all indexed terms, then ∀j, pp(tj) ≥ γ. This means in the
case of large number of terms, the percentage of successfully
published terms or pp is expected to be larger than or equal to
γ, i.e., pp ≥ γ, which is the proposition. Hence, by plugging
δj in Equation 12, we can derive,

(βc(tj))
2 − 2

(

βb(tj) +
ln 1

1−γ

(1− σj)m

)

βc(tj) + (βb(tj))
2 ≥ 0

Note
ln 1

1−γ

(1−σj)m
= Gj , and βc(tj) should be bigger than βb(tj)

since success ratio is larger than 50%. Solving the inequality
and taking only the solution that satisfies βc(tj) > βb(tj), we
have,

βc(tj) ≥ βb(tj) +Gj +
√

G2
j + 2βb(tj)Gj

B. Proof of Theorem 4.1

Proof: Recoverability can be trivially proved based on the
fact that

∑

∀i∈[0,c−1] s(i, j) = vj .
To prove secrecy, we examine the process of generating

super-shares s(i, j). It is easy to see that the SecSumShare
protocol uses a (c, c) secret sharing to split each private input
M(i, j). The generated c shares for each input value are
distributed to c different output super-shares. For each private
input M(i, j), an output super share s(i, j) has included one and

only one share from it. Therefore, when an adversary knows at
most c−1 outputs, at least one share of each private input is still
unknown to her. This leaves the value of any input completely
undetermined to this adversary, thus the secret or the sum of
input values completely undetermined.

Appendix B
Analysis of Conventional PPIs

We analyze the privacy of existing PPI work and compare
it with that of ϵ-PPI. Here, we consider the primary attack
and the common-term attack . Before that, we briefly introduce
the construction protocol of existing PPI. To be consistent with
terminology, we use term to refer to owner’s identity in this
section, for example, the common-identity attack is referred to
as the common-term attack.

Grouping PPI: Inspired by k-anonymity [26], existing
PPI work [7], [8], [9] constructs its index by using a grouping
approach. The idea is to assign the providers into disjoint
privacy groups, so that true positive providers are mixed with the
false positives in the same group and are made indistinguishable.
Then, a group reports binary value 1 on a term tj as long as there
is at least one provider in this group who possesses the term.
For example, consider terms are distributed in a raw matrix M
as in Figure 2. If providers p2 and p3 are assigned to the same
group, say g1, then in the published PPI group g1would report
to have term t0 and t2 but not t1, because both p2 and p3 do
not have term t1.

a) Privacy under primary attack: To form privacy
groups, existing PPIs randomly assign providers to groups. By
this means, the false positive rate resulted in the PPI varies
non-deterministically. Furthermore, grouping based approach
is fundamentally difficult to achieve per-term privacy degree.
Because different terms share the same group assignment, even
if one can tune grouping strategy (instead of doing it randomly)
to meet privacy requirement for one or few terms, it would
be extremely hard, if not impossible, to meet the privacy
requirement for thousands of terms. For primary attack, the
privacy leakage depends on the false positive rate of row at
term tj in PPI M ′. This way, the grouping based PPI can at
best provide a privacy level at NOGUARANTEE for primary
attacks. Our experiments in Section V-A1 confirms our analysis
as well.

b) Privacy under common-term attack: The grouping
based PPI work may disclose the truthful term-to-provider
distribution and thus the identity of common terms. We use
a specific example to demonstrate this vulnerability.



Example In an extreme scenario, one common term is with
100% frequency and all other terms show up in only one
provider. For group assignment, as long as there are more than
two groups, the rare terms can only show up in one group. In
this case, the only common term in M ′ is the true one in M ,
in spite of the grouping strategy. This allows the attacker to be
able to identify the true common terms in M and mount an
attack against it with 100% confidence.

Given information of term distribution, one can fully exploit
the vulnerability to amount common-term attacks. And the
privacy degree depends on availability of term distribution
information. For certain existing PPI [9], it directly leaks the
sensitive common term’s frequency σj to providers during index
construction, leading to a NOPROTECT privacy level. Other PPI
work, which does not leak exact term distribution information,
still suffers from data-dependent privacy protection, resulting in
a NOGUARANTEE privacy level.

Appendix C
Extra Experiment Results

A. Effectiveness of different β-calculation poli-
cies

We evaluate the effectiveness of three β-calculation policies
with ϵ-PPI, and the result shows the advantages of Chernoff
bound-based policy in meeting desired privacy requirements. In
the experiments, we have tested various parameter settings. We
show representative results with the following values: ∆ = 0.02
in incremented expectation-based policy and expected success
rate γ = 0.9 in the Chernoff bound based policy. The default
false positive rate is set at ϵ = 0.5. The experiment results are
reported in Figure 6; we consider success rate as the metric. In
Figure 6a, we vary identity frequency from near 0 to about 500
providers with the number of providers fixed at 10, 000, and in
Figure 6b we vary the number of providers with the identity
frequency held constant at 0.1. It can be seen from the results
that while Chernoff bound-based policy (with γ = 0.9) always
achieves near-optimal success rate (i.e., close to 1.0), the other
two policies fall short in certain situations; the expectation-
based policy is not configurable and constantly has its success
rate to be around 0.5. This is expected because the expectation-
based approach works on an average sense. For the incremented
expectation-based policy, its success ratio, though approaching
1.0 in some cases, is unsatisfactory for common identities with
high frequency (as in Figure 6a) and in the relatively small
network of few providers (as in Figure 6b). On the other
hand, the high-level privacy preservation of the Chernoff bound
policy comes with reasonable extra search overhead. Due to
space limit, this part of experiments can be found in technical
report [18].

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
S

uc
ce

ss
 ra

te
 p
p

Term frequency

 basic
 inc-exp
 chernoff

(a) Varying frequency under 10, 000 providers

8 32 128 512 2048 8192
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
uc

ce
ss

 ra
te

 p
p

Number of providers

 basic
 inc-exp
 chernoff

(b) Varying provider numbers under frequency
0.1

Fig. 6: Quality of privacy preservation


