
Fast Iterative Graph Computation with Resource Aware
Graph Parallel Abstractions

Yang Zhou†, Ling Liu‡, Kisung Lee†, Calton Pu‡, Qi Zhang‡

Georgia Institute of Technology
†{yzhou, kslee}@gatech.edu, ‡{lingliu, calton.pu, qzhang90}@cc.gatech.edu

ABSTRACT
Iterative computation on large graphs has challenged system
research from two aspects: (1) how to conduct high per-
formance parallel processing for both in-memory and out-
of-core graphs; and (2) how to handle large graphs that
exceed the resource boundary of traditional systems by re-
source aware graph partitioning such that it is feasible to
run large-scale graph analysis on a single PC. This paper
presents GraphLego, a resource adaptive graph processing
system with multi-level programmable graph parallel ab-
stractions. GraphLego is novel in three aspects: (1) we
argue that vertex-centric or edge-centric graph partitioning
are ineffective for parallel processing of large graphs and
we introduce three alternative graph parallel abstractions
to enable a large graph to be partitioned at the granularity
of subgraphs by slice, strip and dice based partitioning; (2)
we use dice-based data placement algorithm to store a large
graph on disk by minimizing non-sequential disk access and
enabling more structured in-memory access; and (3) we dy-
namically determine the right level of graph parallel abstrac-
tion to maximize sequential access and minimize random
access. GraphLego can run efficiently on different computers
with diverse resource capacities and respond to different
memory requirements by real-world graphs of different com-
plexity. Extensive experiments show the competitiveness of
GraphLego against existing representative graph processing
systems, such as GraphChi, GraphLab and X-Stream.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; D.1.3 [Concurrent Programming]: Par-
allel Programming

Keywords
Graph Processing System; Large-scale Graph; Parallel Com-
puting; 3D Cube Representation; Multigraph Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC’15, June 15–20, 2015, Portland, Oregon, USA.
Copyright c⃝ 2015 ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749258.

1. INTRODUCTION
Scaling iterative computation on large graphs with billions

of vertices and billions of edges is widely recognized as a
challenging systems research problem, which has received
heated attention recently [1–20]. We can classify existing
research activities into two broad categories: (1) Distribut-
ed solutions and (2) Single PC based solutions. Most of
existing research efforts are dedicated to the distributed
graph partitioning strategies [2, 17–19] to distribute large
graphs across a cluster of computer nodes. Several recent
efforts [4,11,14,16,20] have successfully demonstrated huge
opportunities for optimizing graph processing on a single
PC through efficient storage organization and in-memory
computation. However, most existing approaches rely on
vertex-centric graph parallel computation model.

Many existing algorithms fail to work effectively under
the vertex-centric computation model for several scenarios:
(1) when the algorithms require to load the whole graph
into the main memory but the graph and its intermediate
results of computation together are too big to fit into the
available memory; (2) when high degree vertices and their
edges combined with the necessary intermediate results are
too big to fit into the working memory; (3) when the time
of computing on a vertex and its edges is much faster than
the time to access to the vertex state and its edge data in
memory or on disk; and (4) when the computation workloads
on different vertices are significantly imbalanced due to the
highly skewed vertex degree distribution.

To address the above issues, we propose to exploit compu-
tational parallelism by introducing three alternative graph
parallel abstractions that offer larger level of granularity
than vertex-centric model, with three complimentary ob-
jectives: (1) large graphs should be stored physically on
disk using the right level of partition granularity to max-
imize sequential I/Os; (2) large graphs should be parti-
tioned into graph parallel units such that each partition plus
the necessary intermediate results will fit into the working
memory and parallel computation on partitions generate
well balanced workloads; and (3) different graph parallel
abstractions are critical for scaling parallel processing of
large graphs to computers with different capacities.

In this paper we present GraphLego, a resource aware
graph processing system with multi-level programmable par-
allel abstractions. GraphLego by design has three novel
features. First, to introduce graph parallel abstractions at
different levels of granularity, we model a large graph as
a 3D cube with source vertex, destination vertex and edge
weight as the dimensions. This data structure enables us to

introduce multi-level hierarchical graph parallel abstraction
by slice, strip and dice based graph partitioning. Second,
we dynamically determine the right level of graph paral-
lel abstraction based on the available system resource and
the characteristics of graph datasets for each of the itera-
tive graph computation algorithms. By employing flexible
and tunable graph parallel abstractions, GraphLego can run
iterative graph computations efficiently on any single PC
with different CPU and memory capacities. We show that
by choosing the right level of parallel abstraction, we can
maximize sequential access and minimize random access.
Third but not the least, GraphLego uses dice-based da-
ta placement algorithm to store a large graph on disk by
minimizing non-sequential disk access and enabling more
structured in-memory access. By supporting multi-level pro-
grammable graph parallel abstractions and dynamic cus-
tomization, GraphLego enables data scientists to tailor their
graph computations in response to different real-world graph-
s of varying sizes/complexity and different computing plat-
forms with diverse computing resources.

2. RELATED WORK
We classify existing research activities on graph processing

system into two broad categories below [1–20].
Single PC based systems [4, 11, 14–16, 20] are gaining at-

tention in recent years. GraphLab [4] presented a new se-
quential shared memory abstraction where each vertex can
read and write data on adjacent vertices and edges. It sup-
ports the representation of structured data dependencies and
flexible scheduling for iterative computation. GraphChi [11]
partitions a graph into multiple shards by storing each vertex
and its in-edges in one shard. It introduces a novel parallel
sliding window based method to facilitate fast access to
the out-edges of a vertex stored in other shards. Turbo-
Graph [14] presented a multi-thread graph engine by using
a compact storage of slotted page list and exploiting the
full parallelism of multi-core CPU and Flash SSD I/O. X-
Stream [16] is an edge-centric approach to the scatter-gather
programming model on a single shared-memory machine. It
uses streaming partitions to utilize the sequential streaming
bandwidth of the storage medium for graph processing.
Distributed graph systems [1,2,5,8,10,13,17–19] have at-

tracted active research in recent years, with Pregel [2], Pow-
erGraph [10]/Distributed GraphLab [8], and GraphX [19] as
the most popular systems. Pregel [2] is a bulk synchronous
message passing abstraction where vertices can receive mes-
sages sent in the previous iteration, send messages to other
vertices and modify its own state and that of its outgoing
edges or mutate graph topology. PowerGraph [10] extends
GraphLab [4] and distributed GraphLab [8] by using the
Gather-Apply-Scatter model of computation to address the
natural graphs with highly skewed power-law degree distri-
butions. GraphX [19] enables iterative graph computation,
written in Scala like API in terms of GraphX RDG, to run
on the SPARK cluster platform, making the programming of
iterative graph algorithms on Spark easier than PowerGraph
and Pregel.
Iterative graph applications has been extensively studied

in the areas of machine learning, data mining and informa-
tion retrieval [21, 24–39]. Typical examples of real-world it-
erative graph applications include ranking, similarity search,
graph classification, graph clustering, and collaborative fil-
tering. Popular iterative graph applications can be catego-

rized into three classes in terms of the core computation used
in the respective algorithms: (1) matrix-vector computation,
such as PageRank [21], EigenTrust [28] and Random Walk
with Restart [29]; (2) matrix-matrix computation, includ-
ing Heat Diffusion Kernel [24, 30], Label Propagation [31],
wvRN [32], Markov Clustering [33] and SA-Cluster [34]; and
(3) matrix factorization, such as NMF [36], SVD++ [37],
Social Regularization [38]. They often need to repeatedly
self-interact on a single graph or iteratively interact among
multiple graphs to discover both direct and indirect relation-
ships between vertices.

To our best knowledge, GraphLego is the first one to
support multi-level programmable parallel graph abstrac-
tions (slice, strip, dice) and to provide resource adaptive
selection of the right level of graph parallel granularity for
partitioning, storing and accessing large graphs.

3. GRAPHLEGO APPROACH
Real graphs often have skewed vertex degree distribu-

tion and skewed edge weight distribution. Partitioning a
large graph in terms of vertex partitions without consider-
ing skewed vertex degree distribution or edges with skewed
weight distribution may result in substantial processing im-
balance in parallel computation. In addition, different types
of iterative graph applications combined with different sizes
of graphs often have different resource demands on CPU,
memory and disk I/O. GraphLego is designed to address
these issues by introducing resource-adaptive and multi-level
programmable graph parallel abstractions.

3.1 Graph Processing with 3D Cube
3D Cube. GraphLego represents a given graph G as a

3D cube I with source vertices, destination vertices and edge
weights as the three dimensions. Formally, a directed graph
is defined as G=(V,E,W) where V is a set of n vertices, E is
a set of directed edges, and W is a set of weights of edges in
E. Each vertex is associated with one or more states. Two
vertices may be connected by multiple parallel edges. For
an edge e=(u, v)∈E, we refer to e as the in-edge of v and the
out-edge of u and we refer to u and v as the source vertex
and the destination vertex of e respectively. In GraphLego,
we model a graph G with a 3-dimensional representation of
G, called 3D cube, denoted as I=(S,D,E,W) where S=V
represents the set of source vertices and D=V specifies the
set of destination vertices. Given a vertex u∈S and a vertex
v∈D, if (u, v)∈E then (u, v).weight=w∈W and (u, v, w)
represents a cell with u, v, w as coordinates.

GraphLego by design provides three alternative graph par-
allel abstractions to partition a graph and to enable locality-
optimized access to the stored graph using three different
levels of granularity: slice, strip and dice. By utilizing dif-
ferent graph parallel abstractions based on memory resource
capacity, GraphLego can process big graphs efficiently on a
single PC with different resource capacity, by using a unified
multi-level graph parallel abstractions based computation
framework.

3.1.1 Dice-based Parallel Graph Abstraction
The dice partitioning method partitions a large graph G

into dice-based subgraph blocks and store G in dices to
balance the parallel computation tasks and maximize the ad-
vantage of parallel processing. Concretely, givenG=(V,E,W)
and its 3D cube I=(S,D,E,W), we first sort the vertices in

V4

V2

V12

V16V11

V5 V14V13

V1V3

V9 V10V8

V7

V6 V15

(a) Original Graph

P3

P2P1

P4

V4

V2

V12

V16V11

V5 V14V13

V1V3

V9 V10V8

V7

V6 V15

(b) Dice Partitioning

Figure 1: Dice Partitioning: An Example
S and D by the lexical order of their vertex IDs. Then we
partition the destination verticesD into q disjoint partitions,
called destination-vertex partitions (DVPs). Similarly,
we partition the source vertices S (|D|=|V |) into r disjoint
partitions, called source-vertex partitions (SVPs). A
dice of I is a subgraph ofG, denoted asH=(SH , DH , EH ,WH),
satisfying the following conditions: SH⊆S is one of the SVP,
denoting a subset of source vertices, DH⊆D is one of the
DVP, denoting a subset of destination vertices, WH⊆W is a
subset of edge weights, and EH={(u, v)|u∈SH , v∈DH , (u, v)
∈E, (u, v).weight∈WH} is a set of directed edges, each with
its source vertex from SH and its destination vertex fromDH

and its edge weight inWH . Unlike a vertex and its adjacency
list (edges), a dice is a subgraph block comprised of a SVP,
a DVP and the set of edges that connect source vertices in
the SVP to the destination vertices in the DVP. Thus, a
high degree vertex u and its edges are typically partitioned
into multiple dices. Figure 1 (a) gives an example graph and
Figure 1 (b) shows a dice-based partitioning of this example
graph. Each of four dice partitions is a dice-based subgraph
satisfying the constraint defined by the specific SVP and
DVP. Because in-edges and out-edges of a vertex are often
applied to different application scenarios, we maintain two
types of dices for each vertex v in G: one is in-edge dice
(IED) containing only in-edges of v and another is out-edge
dice (OED) containing only out-edges of v. Figure 2 shows
the storage organization of the dice partitions in Figure 1
(b), consisting of a vertex table, an edge table (in-edges or
out-edges), and a mapping of vertex ID to partition ID.
In GraphLego, dice is the smallest storage unit and by

default the original graph G is stored on disk in unordered
dices. To provide efficient processing for all types of iterative
graph computations, GraphLego stores an original graph
using two types of 3D cubes: in-edge cube and out-edge
cube, each consists of unordered set of dices of the same
type on disk (IEDs or OEDs). This provides efficient access
locality for iterative graph computations that require only
out-edges or only in-edges or both.

3.1.2 Slice-based Parallel Graph Abstraction
In contrast to dices, slices are the largest partition units

in GraphLego. To address the skewed edge weight distribu-
tion, we provide the slice-based graph partitioning method,
which partitions a 3D cube of graph into p slices along
dimension W . p is chosen such that edges with similar
weights are clustered into the same partition. Formally,
given a 3D cube I=(S,D,E,W), a slice of I is denoted as
J=(S,D,EJ ,WJ) where WJ⊆W is a subset of edge weights,
and EJ={(u, v)|u∈S, v∈D, (u, v).weight∈WJ , (u, v)∈E} is a
set of directed edges from S to D with weights WJ . A big
advantage of slice partitioning along dimension W is that
we can choose those slices that meet the utility requirement

P1

(V1, V2)

(V2, V3)

(V3, V4)

(V3, V5)

(V3, V6)

P2

(V1, V12)

(V1, V13)

(V1, V14)

(V1, V15)

(V3, V12)

P3

(V5, V7)

(V6, V11)

(V7, V8)

(V7, V9)

(V7, V10)

P4

(V11, V12)

(V11, V16)

(V12, V13)

(V12, V16)

(V15, V16)

Edge Table
Vertex Table

DVP 1: V2V3V4 V5V6

DVP 2: V7V8V9 V10 V11

DVP 3: V12 V13V14 V15 V16

SVP 1: V1V2V3

SVP 2: V5V6V7

SVP 3: V11 V12V15

Vertex Map

P1: SVP 1 DVP 1

P2: SVP 1 DVP 3

P3: SVP 2 DVP 2

P4: SVP 3 DVP 3

V2
V3

V1
P1

P1, P2

P1, P2

V6

V4
V5

P1, P3

P1
P1, P3

V7 P3

V9
V10

V8
P3
P3

P3

V13

V11
V12

P2, P4

P3, P4
P2, P4

V14 P2
V15 P2, P4
V16 P4

Figure 2: Dice Partition Storage (OEDs)

e.weight (0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5]
edges(%) 59.90 18.79 6.99 6.61 5.14
e.weight (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0) 1.0
edges(%) 0.14 0.21 0.08 0.02 0.00 2.12

Table 1: Transition Distribution on DBLPS
to carry out the iterative graph computation according to
application-dependent accuracy requirements.

An intuitive example for utilizing slice partitioning is to
handle multigraphs. A multigraph is a graph that allows for
parallel edges (multiple edges) between a pair of vertices.
RDF graph is a typical example of multigraph, where a
pair of subject and object vertices may have multiple edges
with each annotated by one predicate. Similarly, the D-
BLP coauthor graph can also be generated as a coauthor
multigraph in terms of 24 computer research fields [46]: AI,
AIGO, ARC, BIO, CV, DB, DIST, DM, EDU, GRP, HCI,
IR, ML, MUL, NLP, NW, OS, PL, RT, SC, SE, SEC, SIM,
WWW. A pair of coauthors in this multigraph can have
up to 24 parallel edges, each weighted by the number of co-
authored papers in one of the 24 computer science fields [27].
Figure 3 shows an illustrative example of slices. Consider
the example co-author graph in Figure 3 (a) with three
types of edges: AI, DB and DM, representing the number
of coauthored publications on AI conferences (IJCAI, AAAI
and ECAI), DB conferences (SIGMOD, VLDB and ICDE),
and DM conferences (KDD, ICDM and SDM), respectively.
By slice partitioning, we obtain three slices in Figure 3
(b), (c) and (d) respectively, one for each category. If we
want to compute the coauthor based social influence among
researchers in DB and DM area, we only need to perform
iterative computation on the coauthor graph using joint
publications in DB and DM conferences and journals.

Another innovative and rewarding usage of slice parti-
tioning is to speed up the iterative graph algorithms on
single graphs by performing parallel computation on p s-
lices in parallel. Consider PageRank as an example, the
edge weights in the original simple graph are normalized as
probabilities in the transition matrix M. Thus, the domain
of W is defined on a continuous space over the range [0, 1].
In each iteration, PageRank updates the ranking vector R
by iteratively calculating the multiplication between M and
R. However, the transition matrix M often has skewed edge
weight distribution. For instance, the transition matrix for
the DBLPS dataset [44] has skewed distribution of transition
probabilities (the percentage of edges in the specific weight
range to total edges), as shown in Table 1. By introducing
dimension W , GraphLego can partition the input DBLPS
graph for PageRank into slices along dimension W based on
its transition matrix M and execute the iterative computa-
tions at the slice level in parallel. This enables GraphLego to

Jiawei Han Philip S. Yu

Charu C. AggarwalJian Pei
Laks V. S. Lakshmanan

Tim Weninger

Sangkyum Kim

Joel L. Wolf

Daniel M. DiasBo Long

DB Conference

DM Conference

AI Conference

Michail Vlachos

Haixun Wang

(a) Coauthor Multigraph

Jiawei Han Philip S. Yu

Charu C. AggarwalJian Pei

Bo Long

Haixun Wang

(b) AI Slice

Jiawei Han Philip S. Yu

Charu C. AggarwalJian Pei
Laks V. S. Lakshmanan

Tim Weninger

Sangkyum Kim

Joel L. Wolf

Daniel M. Dias

Michail Vlachos

Haixun Wang

(c) DB Slice

Jiawei Han Philip S. Yu

Charu C. AggarwalJian Pei
Laks V. S. Lakshmanan

Tim Weninger

Sangkyum Kim

Joel L. Wolf

Daniel M. DiasBo Long

Michail Vlachos

Haixun Wang

(d) DM Slice

Figure 3: Slice Partitioning: An Example from DBLP

Jiawei Han Philip S. Yu

Charu C. AggarwalJian Pei
Laks V. S. Lakshmanan

Tim Weninger

Sangkyum Kim

Joel L. Wolf

Daniel M. Dias

Michail Vlachos

Haixun Wang

(a) Strip 1

Jiawei Han Philip S. Yu

Charu C. AggarwalJian Pei
Laks V. S. Lakshmanan

Tim Weninger

Sangkyum Kim

Haixun Wang

(b) Strip 2

Figure 4: Strip Partitioning of DB Slice

address skewed edge weight distribution much more efficient-
ly as demonstrated in our experiments reported in Section 4,
where we set p = 13, 10, 7, 7, 4 and 4 for Yahoo, uk-union,
uk-2007-05, Twitter, Facebook and DBLPS, respectively.
We show that the iterative graph computation using the
slice partitioning significantly improves the performance of
all graph algorithms we have tested.
The slice partitioning can be viewed as an edge parti-

tioning through clustering by the edge weights. However,
when a slice-based subgraph (partition block) together with
its intermediate results are too big to fit into the working
memory, we further cut the graph into smaller graph par-
allel units such as dices (see Section 3.1.1) or strips (see
Section 3.1.3).

3.1.3 Strip-based Parallel Graph Abstraction
For graphs that are sparse with skewed degree distribu-

tion, high degree vertices can incur acute imbalance in par-
allel computation, and lead to serious performance degra-
dation. This is because the worker thread assigned to a
high degree vertex takes much longer time to compute than
the parallel threads computing on low degree vertices. To
maximize the performance of parallel computation, and en-
sure better resource utilization and better work balance, in
GraphLego we introduce the strip-based graph partitioning,
which cuts a graph along either its source dimension or its
destination dimension to obtain strips. Compared to the
dice-based partitioning that cuts a graph (or slices of a
graph) along both source and destination dimensions, strips
represent larger partition units than dices. A strip can be
viewed as a sequence of dices stored physically together.
Similarity, we further cut a slice into strips when single slice
can not fit into the working memory.
An efficient way to construct in-edge strips (out-edge strip-

s) is to cut an in-edge cube or slice (out-edge cube or slice)
along destination (source) dimension D (S). By cutting an
in-edge slice of G, J=(S,D,EJ ,WJ), along D into q in-edge
strips, each strip is denoted as K=(S,DK , EK ,WJ), where
DK⊆D is a subset of destination vertices, and EK={(u, v)|u
∈S, v∈DK , (u, v).weight∈WJ ,(u, v)∈EJ} is a set of directed
edges from S to DK with weights in WJ . An in-edge strip
contains all IEDs of a DVP. Similarly, an out-edge strip

can be defined and it has all OEDs of a SVP. Figure 4 gives
an illustrative example of strip-based partitioning, where
two strips are extracted from the DB slice in Figure 3 (c),
i.e., all coauthored DB links of Daniel M. Dias, Michail
Vlachos and Philip S. Yu, and all coauthored DB links of
Jiawei Han, Sangkyum Kim and Tim Weninger. Another
important feature of our graph partitioning methods is to
choose smaller subgraph blocks such as dice partition or strip
partition to balance the parallel computation efficiency a-
mong partition blocks and to use larger subgraph blocks such
as slice partition or strip partition to maximize sequential
access and minimize random access.

3.1.4 Graph Partitioning Algorithms
In the first prototype of GraphLego, we implement the

three parallel graph abstraction based partitioning, place-
ment and access algorithm using a unified graph processing
framework with the top-down partitioning strategy. Given
a PC, a graph dataset and a graph application, such as
PageRank or SSSP, GraphLego provides the system default
partitioning settings on p (#Slices), q (#Strips) and r
(#Dices). We defer the detailed discussion on the settings
of optimal partitioning parameters to Section 3.5. Based
on the system-supplied default settings of the partitioning
parameters, we first partition a graph into p slices, and then
we partition each slice into q strips, and partition each strip
into r dices. The partitioning parameters are chosen such
that each graph partition block and its intermediate results
will fit into the working memory. In GraphLego, we first
partition the source vertices of a graph into SVPs, partition
destination vertices of the graph into DVPs and then par-
tition the graph into edge partitions slice by slice, strip by
strip or dice by dice. Figure 2 gives an example of vertex
partitioning and edge partitioning for the graph in Figure 1.
Based on the system-recommended partitioning parameter,
we store the graph in the physical storage using the smallest
partition unit given by the system configuration. Dice is
the smallest and most frequently used partition block in
GraphLego (see Table 6).

GraphLego provides a three-level partition-index struc-
ture to access dice partition blocks on disk slice by slice,
strip by strip or dice by dice. When the graph application
has sufficient memory to host the entire index in memo-
ry, sequential access to dices stored in physical storage can
be maximized. For example, PageRank algorithm requires
computing the ranking score for every vertex using its incom-
ing edges and its corresponding source vertices in each iter-
ation. Thus, the PageRank implementation in GraphLego
will start to access the graph by one in-edge strip at a
time. For each strip, we check if there are multiple slices
corresponding to this strip, For each strip and a correspond-
ing slice, we access the dices corresponding to the strip
and the slice. GraphLego provides a function library to

Algorithm 1 GraphPartitioning(G, app, p, q, r, flag)

1: Sort source vertices by the lexical order of vertex IDs;
2: Sort destination vertices by the lexical order of vertex IDs;
3: Sort edges by source vertex ID, destination vertex ID and edge

weight;
4: switch(flag)
5: case 0: select p, q, r input by user;
6: case 1: detect resource, calculate p, q, r for app online;
7: case 2: select the optimal p, q, r with offline learning;
8: Divide W into p intervals;
9: Split G into p in-edge slices;
10: Divide D into p DVPs; //partition destination vertices
11: Split p in-edge slices into p×q in-edge strips; //partition edges

in each in-edge slice into q strip-based edge partitions
12: divide S into q SVPs; //partition source vertices
13: Split p×q in-edge strips into p×q×r IEDs; //partition edges in

each in-edge strip into r dice-based edge partitions
14: Compress DVPs, SVPs and IEDs, and write them back to disk;

//compress vertex partitions and edge partitions
15: Build the indices for p slices, p×q strips and p×q×r IEDs;

support various iterative graph applications with a conven-
tional vertex-oriented programming model. Algorithm 1
provides the pseudo code for an example function Graph-
Partitioning. Given a graph G and a graph application, say
PageRank, it constructs an in-edge cube representation of G
and partitions its in-edge cube through slice, strip and dice
abstractions. We do not build the out-edge cube of graph
since PageRank does not use outgoing edges.

3.2 Access Locality Optimization
We describe two access locality based optimizations im-

plemented in the first prototype of GraphLego: (1) graph
index structure for indexing slices, strips and dices; and (2)
graph partition-level compression for optimizing disk I/Os.
Partition Index. GraphLego stores a graph G in the

physical storage as either dices or strips or slices. The
iterative graph computation is performed in parallel at the
partition level, be it a dice or a strip or a slice. Each partition
block corresponds to a subgraph of G. In order to provide
fast access to partition blocks of G stored on disk using
slice or strip or dice specific conditions, and to ensure that
each partition subgraph is loaded into the working memory
only once or minimum number of times in each iteration,
we design a general graph index structure to enable us to
construct the slice index, the strip index or the dice index.
The dice index is a dense index that maps a dice ID and
its DVP (or SVP) to the chunks on disk where the corre-
sponding dice partition is stored physically. The strip index
is a two-level sparse index, which maps a strip ID to the
dice index blocks and then map each dice ID to the dice
partition chunks in the physical storage. Similarly, the slice
index is a three-level sparse index with slice index blocks
at the top, strip index blocks at the middle and dice index
blocks at the bottom, enabling fast retrieval of dices with
a slice-specific condition. In addition, we also maintain a
vertex index that maps each vertex to the set of subgraph
partitions containing this vertex, as shown in Figure 2. This
index allows fast lookup of the partitions relevant to a given
vertex.
Partition-level Compression. It is known that iter-

ative computations on large graphs incur non-trivial cost
for the I/O processing. For example, the I/O processing of
Twitter dataset on a PC with 4 CPU cores and 16GB mem-
ory takes 50.2% of the total running time for PageRank (5
iterations). In addition to utilize index, we employ partition-
level compression to increase the disk I/O efficiency. Con-
cretely, GraphLego transforms the raw graph data into par-

Tag (1KB) DataText (2KB) Tag (1KB) Data

Head Partition Partition

Sequential

Partitions

Figure 5: Data Structure for Compressed Graph

tition blocks and applies in-memory gzip compression to
transform each partition block into a compressed format be-
fore storing them on disk. We maintain two buffers in mem-
ory, one for input graph data and another for in-memory
compressed output graph data. As soon as a sequential read
into the input stream buffer is completed, we start the in-
memory gzip compression and append the compressed data
to the output stream buffer. After finishing the compression,
GraphLego sequentially writes the compressed chunks in the
output stream buffer to disk. This one-time compression
cost at the building time can provide quick access to stored
graph partitions and reduce I/O time in each of the graph
computation iteration. A gzip-compressed graph file consists
of a 2KB head section and multiple partition sections, as
shown in Figure 5. The head section stocks the descriptive
information about the graph: the number of vertices, the
number of edges, the edge type (undirected or directed),
the domain of edge weights, the average degree, and the
maximum degree. Each partition section consists of a 1KB
metadata tag followed by the data in the partition. The
tag provides the descriptive information about the specific
partition: the data type, the size of partition, the number of
edges, the source range, the destination range, the domain
of edge weights.

3.3 Programmable GraphLego Interface
GraphLego provides a conventional programming inter-

face to enable users to write their iterative graph algorithms
using the vertex centric computation model. By supporting
the vertex centric programming API, the users of GraphLego
only need to provide their iterative algorithms in terms of
vertex-level computation using the functions provided in our
API, such as Scatter and Gather. For each iterative graph
algorithm defined by users using our API, GraphLego will
compile it into a sequence of GraphLego internal function
(routine) calls that understand the internal data structures
for accessing the graph by subgraph partition blocks. These
routines can carry out the iterative computation for the in-
put graph either slice by slice, strip by strip, or dice by dice.
For example, PageRank algorithm can be written by simply
proving the computation tasks, as shown in Algorithm 2.

For each vertex in a DVP to be updated, GraphLego
maintains a temporary local buffer to aggregate received
messages. Since each vertex v may contain both in-edges
and out-edges, users only need to define two application-level
functions to instruct the system-level scatter and gather rou-
tines to perform the concrete aggregations. Given a vertex,
the Scatter function works on a selection of v’s neighbors, say
the destination vertices of the out-edges of v, to scatter its
update based on its vertex state from the previous iteration.
Similarly, the Gather function works on a selection of v’s
neighbors, e.g., the source vertices of the in-edges of v, to
gather the information in order to update its vertex state,
and pass this updated vertex state to the next iteration if
the update commits and otherwise assign a partial commit
to the gather task.

Vertices are accessed either by DVP or SVP depending on
the specific graph algorithm. For each vertex to be updated,
GraphLego maintains a temporary local buffer to aggregate

Algorithm 2 PageRank
1: Initialize(v)
2: v.rank = 1.0;
3:
4: Scatter(v)
5: msg = v.rank/v.degree;
6: //send msg to destination vertices of v’s out-edges
7:
8: Gather(v)
9: state = 0;
10: for each msg of v
11: //receive msg from source vertices of v’s in-edges
12: state += msg; //summarize partial vertex updates
13: v.rank = 0.15+0.85∗state; //produce complete vertex update

received messages. We implement the Scatter API function
as follows: First, an internal routine called GraphScan is
invoked, which will access the graph dataset on disk by
partition blocks (say dices). Then the PartitionParallel rou-
tine will be invoked to assign multiple threads to process
multiple partitions in parallel, one thread per partition sub-
graph block. For each partition subgraph, the VertexParallel
routine is called to execute multiple subthreads in parallel,
one per vertex. At each vertex thread, the Scatter routine
is performed. Given that the Scatter function at the system
level intends to send the vertex state of v to all or a selection
of its (out-edge) neighbor vertices, by utilizing the vertex-
partition map (see Figure 2), each vertex thread will check
if all partition blocks containing v as a source vertex have
been processed. If so, then v finishes its scatter task with a
commit status; Otherwise, v registers a partial commit.
Similarly, the Gather function in our API will be carried

out by executing a sequence of four tasks with the first
three routines identical to the implementation of the scatter
function. The fourth routine is the Gather routine, which
executes the gather task in two phases: (1) intra-partition
gather, performing partial update of vertices or edges within
a partition subgraph block, and (2) cross-partition gather,
combining partial updates from multiple partition blocks.
We call the vertices that belong to more than one sub-
graph partitions (e.g., dices) the border vertices. The cross-
partition gather is only necessary for the border vertices.
The Gather routine first records the messages that v has
received from the source vertices of v’s in-edges in the re-
ceive buffer, produces the count of the received messages,
combines the update messages in the receive buffer using
the local aggregation operation provided in the user-defined
gather function, and then store the partial update as the new
vertex state of v. At the end of the aggregation operation,
if the received message count is the same as the in-degree
of v, then we get the final update of v, and store it as
the new state of v for this iteration. Otherwise, if the
received message count is less than the in-degree of v, we
mark this vertex as a border vertex, indicating that it belongs
to more than one partition blocks and thus needs to enter
the cross-partition gather phase. In the next subsection,
we will discuss how GraphLego executes the cross-partition
gather task to combine the partial updates from different
edge partitions at different levels of granularity to generate
the complete update.

3.4 Synchronization and Multi-threading
To maximize parallelism in iterative graph computations,

GraphLego provides parallel processing at two levels: (1)
parallel processing at the subgraph partition level (slice,
strip or dice) , and (2) parallel processing at the vertex level
A number of design choices are made carefully to support ef-

fective synchronization and multi-threading, ensuring vertex
and edge update consistency.

Parallel partial vertex update. As vertices in different
dice or strip based subgraph partitions belong to different
DVPs (or SVPs), and the DVPs (SVPs) from different strip
or dice partitions are disjoint within the given graph or
a slice of the graph, the vertex update can be executed
safely in parallel on multiple strip or dice based partitions,
providing partition-level graph parallelism. Furthermore,
the vertex update can also be executed safely in parallel on
multiple vertices within each strip or dice since each vertex
within the same DVP (or SVP) is unique. Thus, GraphLego
implements the two-level graph computation parallelism at
the partition level and at the vertex level.

However, all the parallel vertex updates at both partition-
level and vertex level are partial for two reasons: (1) al-
though the edge sets in different in-edge subgraph partitions
are disjoint, an edge may belong to one in-edge partition
and one out-edge partition for strip or dice based partitions;
thus concurrent edge update needs to be synchronized; (2)
a vertex may belong to more than one partitions. Thus, the
vertex updates performed within a strip or dice partition are
partial and need to do cross-partition gather among strip or
dice partitions; and (3) the associated edges of a DVP (or
SVP) may lie in multiple slices. Thus, the vertex updates
performed concurrently on strip or dice partitions within
each slice are partial and need to do cross-partition gather
among slices.

For cross-partition gather at slice level, for each vertex,
there are at most p partial vertex update states, one per slice.
We need to aggregate all the partial vertex update states for
each vertex to obtain its final vertex update state before
moving to the next iteration. To ensure the correctness
and consistency of obtaining the final vertex updates via
aggregating such partial vertex update states, during each
iteration, GraphLego uses an individual thread to sequen-
tially aggregate all partial vertex updates of a single DVP
(or SVP) slice by slice.

Similarly, for cross-partition gather at strip or dice level,
GraphLego divides the strip or dice based partitions that
share the same DVP (or SVP) into DVP (or SVP) specific
partition groups, and sets the number of DVPs (or SVPs) to
be processed in parallel by the number of concurrent threads
used (#threads) such that an individual memory block, i.e.,
partial update list is assigned to each partition group for
cross-partition gather. Now each of the individual threads
is dedicated to each edge partition within the DVP (or SVP)
specific partition groups and execute one such partition at
a time. In order to avoid conflict, GraphLego maintains a
counter with an initial value of 0 for each specific partition
group. When a thread finished the Scatter process of an
edge partition within the partition group: put the partial
update into the partial update list, this thread checks if
counter is equal to the number of associated edge partitions
for the specific partition group. If not, this thread per-
forms counter++ and the scheduler assigns an unprocessed
edge partition within the same specific partition group to
it. Otherwise, we know that GraphLego have finished the
processing of all edge partitions within the partition group.
Thus, this thread continues to perform the Gather process
to aggregate all partial updates of this DVP (or SVP) in its
partial update list to generate its complete update. Finally,
the final update of this DVP (or SVP) in the current itera-

tion are written back to disk. Then, this thread will start to
fetch and process the next unfinished or unprocessed DVP
(or SVP) and the set of subgraph partitions associated to
this DVP (or SVP) in the same manner. We complete one
round of iterative computation when vertices in all DVPs
(or SVPs) are examined and updated.
Parallel edge update. In GraphLego each edge must

belong to one in-edge dice (IED) and one out-edge dice
(OED). Thus, edge update is relatively straightforward. Gra-
phLego also implements a two-level parallelism at the strip
level by strip threads and at the vertex level by vertex sub-
threads. An individual strip thread is assigned to a single
DVP (or SVP) to sequentially execute the updates of associ-
ated edges of this DVP (or SVP) slice by slice. When a DVP
(or SVP) thread finishes the updates of all associated edges
of a DVP (or SVP), this DVP (or SVP) thread will fetch and
process the associated edges of the next unprocessed DVP
(or SVP) in the same manner without synchronization.

3.5 Configuration of Partitioning Parameters
Given a total amount of memory available, we need to de-

termine the best settings of the partitioning parameters for
achieving the optimal computational performance. GraphLego
supports three alternative methods to determine the set-
tings of parameters: user definition, simple estimation, and
regression-learning based configurations.
User Definition. We provide user-defined configuration

as an option for expert users to modify the system default
configuration.
Simple Estimation. The general heuristic used in sim-

ple estimation is to determine p (#Slices), q (#Strips)
and r (#Dices) based on the estimation of whether each
subgraph block for the given partition unit plus the inter-
mediate results will fit into the available working memory. In
GraphLego, we provide simple estimation from two dimen-
sions: the past knowledge from regression-based learning
and the simple estimation in the absence of prior experiences
by estimating the size of the subgraph blocks and the inter-
mediate results depending on the specific graph applications.
GraphLego uses the parameter settings produced by simple
estimation as the system-defined default configuration.
In summary, the decision of whether to use slice, strip

or dice as the partition unit to access the graph data on
disk and to process the graph data in memory should be
based on achieving a good balance between the following
two criteria: (1) We need to choose the partition unit that
can best balance the parallel computation workloads with
bounded working memory; and (2) we need to minimize
excessive disk I/O cost by maximizing sequential disk access
in each iteration of the graph algorithm.
Regression-based Learning. A number of factors may

impact the performance of GraphLego, such as concrete
applications, graph datasets, the number of CPU cores, the
DRAM capacity. Thus, for a given graph application, a giv-
en dataset and a given server, we want to find the latent rela-
tionship between the number of partitions and the runtime.
In order to learn the best settings of these partitioning pa-
rameters, we first utilize multiple polynomial regression [47]
to model the nonlinear relationship between independent
variables p, q or r and dependent variable T (the runtime)
as an nth order polynomial. A regression model relates T
to a function of p, q, r, and the undetermined coefficients α:
T ≈ f(p, q, r, α) =

∑np

i=1

∑nq

j=1

∑nr
k=1 αijkp

iqjrk + ϵ where

Application Propagation Core Computation
PageRank [21] single graph matrix-vector
SpMV [22] single graph matrix-vector

Connected Components [23] single graph graph traversal
Diffusion Kernel [24] two graphs matrix-matrix

Inc-Cluster [25] two graphs matrix-matrix
Matrix Multiplication two graphs matrix-matrix

LMF [26] multigraph matrix-vector
AEClass [27] multigraph matrix-vector

Table 2: Graph Applications

Graph Type #Vertices #Edges AvgDeg MaxIn MaxOut
Yahoo [40] directed 1.4B 6.6B 4.7 7.6M 2.5K

uk-union [41] directed 133.6M 5.5B 41.22 6.4M 22.4K
uk-2007-05 [41] directed 105.9M 3.7B 35.31 975.4K 15.4K
Twitter [42] directed 41.7M 1.5B 35.25 770.1K 3.0M
Facebook [43] undirected 5.2M 47.2M 18.04 1.1K 1.1K
DBLPS [44] undirected 1.3M 32.0M 40.67 1.7K 1.7K
DBLPM [44] undirected 0.96M 10.1M 21.12 1.0K 1.0K
Last.fm [45] undirected 2.5M 42.8M 34.23 33.2K 33.2K

Table 3: Experiment Datasets

np, nq and nr are the highest orders of variables p, q or r,
and ϵ represents the error term of the model.

We then select m samples of (pl, ql, rl, Tl) (1 ≤ l ≤ m)
from the existing experiment results, such as the points in
Figure 15 (c)-(d), to generate the following m linear equa-
tions:

T1 =

np∑
i=1

nq∑
j=1

nr∑
k=1

αijkp
i
1q

j
1r

k
1 + ϵ

· · · · · ·

Tm =

np∑
i=1

nq∑
j=1

nr∑
k=1

αijkp
i
mqjmrkm + ϵ

(1)

We adopt the least squares approach [48] to solve the
above overdetermined linear equations and generate the re-
gression coefficients αijk. Finally, we utilize a successive
convex approximation method (SCA) [49] to solve this poly-
nomial programming problem with the objective of mini-
mizing the predicted runtime and generate the optimal p, q
and r. The experimental evaluation demonstrates that our
regression-based learning method can select the optimal set-
ting for the partitioning parameters, which gives GraphLego
the best performance under the available system resource.

4. EXPERIMENTAL EVALUATION
We evaluate the performance of GraphLego using a set

of well-known iterative graph applications in Table 2 on
a set of large real world graphs in Table 3. DBLPS is
a single heterogeneous graph with three kinds of vertices:
964,166 authors, 6,992 conferences and 363,352 keyword-
s, and 31,962,786 heterogeneous links. By following the
edge classification method in [27], we construct a coauthor
multigraph, DBLPM, with 964,166 authors and 10,180,035
coauthor links. Each pair of authors have at most 24 par-
allel coauthor links, each represents one of the 24 computer
research fields [46], as mentioned in Section 3.1.2. Similarly,
we build a friendship multigraph of Last.fm with 2,500,000
highly active users and 42,782,231 parallel friendship links.
All the experiments were performed on a 4-core PC with
Intel Core i5-750 CPU at 2.66 GHz, 16 GB memory, and
a 1 TB hard drive, running Linux 64-bit. We compare
GraphLego with three existing representative single PC sys-
tems: GraphLab [4], GraphChi [11] and X-Stream [16].

We use regression-based learning described in Section 3.5
to choose the optimal setting for the GraphLego partitioning

Graph GraphLab GraphChi X-Stream GraphLego
Yahoo [40] 0 6073 28707 15343

uk-union [41] 0 4459 20729 10589
uk-2007-05 [41] 0 2826 13965 5998
Twitter [42] 6210 1105 5620 2066
Facebook [44] 31 4 25 9
DBLPS [43] 23 3 18 7

Table 4: Building Time (seconds)

parameters p, q and ri or ro. To show the significance of
multi-level graph parallel abstraction powered by resource-
adaptive customization, we evaluate and compare the fol-
lowing four versions of GraphLego: (1) GraphLego with
the optimal setting of p, q and r; (2) GraphLego-OSL
with only the optimal p (#Slices); (3) GraphLego-OST
with only the optimal q (#Strips); and (4) GraphLego-
OD with only the optimal r (#Dices).

4.1 Preprocessing Efficiency
Most of graph processing systems transform the raw graph

text files into their internal graph representations through
preprocessing. The preprocessing step typically performs
three tasks: (1) read a raw graph dataset into memory block
by block, (2) transform raw data blocks into the system-
specific internal storage format, and (3) write the prepro-
cessed data back to disk block by block. Table 4 com-
pares the preprocessing time by four graph parallel systems.
GraphLab can directly work on those raw graph text files
with ordered edges, such as Yahoo, uk-union and uk-2007-
05. Thus there is no building time for these datasets. How-
ever, for graph datasets with unordered edges, GraphLab
needs to presort the graph text files. In this case, GraphLab
tends to be the slowest in building time. The building time
in X-Stream is usually 2-3 times slower than GraphLego
since X-Stream uses a single thread to execute the import
task line by line. GraphChi utilizes multiple threads to
perform the transformation task and it only needs to build
one copy of in-edges. GraphLego imports data faster than X-
Stream and GraphLab, but slower than GraphChi, primarily
due to the fact that GraphLego builds two copies of the
raw graph: in-edge cube and out-edge cube and GraphLego
executes in-memory gzip compression in parallel to reduce
the total I/O cost for iterative graph computations.

4.2 Execution Efficiency on Single Graph
Figures 6-8 present the performance comparison of iter-

ative algorithms on a single graph with different graph-
parallel implementations. Figure 6 (a) shows the throughput
((#edges processed per second)) comparison of PageRank
on six real graphs with different scales: Yahoo, uk-union, uk-
2007-05, Twitter, Facebook and DBLPS with #iterations=
1, 2, 3, 5, 40, 30 respectively. GraphLego (with the optimal
numbers of slices, strips and dices) achieves the highest
throughput (around 1.53×107-2.27×107) and consistently
higher than GraphLab, GraphChi and X-Stream and out-
performs all versions of GraphLego with partial optimization
on all six datasets, with the throughput values by GraphLego-
OSL as the lowest (9.38×106-2.20×107), especially on the
largest three graphs. Comparing among the three partial-
optimization versions of GraphLego, GraphLego-OSL achieves
the highest throughput on two smaller datasets (Facebook
and DBLPS) but GraphLego-OD obtains the best perfor-
mance on other four large-scale graphs (Facebook and D-
BLPS). This demonstrates that, when handling large-scale
graphs, we should focus more on the optimization of ri (or

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

0.5

1

1.5

2

x 107

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(a) Throughput

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

500

1000

1500

2000

2500

3000

3500

4000

4500

R
un

tim
e

(s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(b) Runtime

Figure 6: PageRank on Six Real Graphs

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

2

4

6

8

10

12

14
x 106

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(a) Throughput

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

500

1000

1500

2000

2500

R
un

tim
e

(s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego
GraphLego−OSL
GraphLego−OST
GraphLego−OD

(b) Runtime

Figure 7: SpMV on Six Real Graphs

ro) by drilling down to the lowest level of granularity in
multi-level abstraction to ensure better work balance. On
the other hand, the optimization of p should be emphasized
for addressing small-scale graphs by rolling up to the highest
level of granularity to maximize the sequential bandwidth.

Figure 6 (b) compares the running time by different graph-
parallel models, including the loading time of preprocessed
graph partitions from disk partition by partition, the in-
memory decompression time (only for GraphLego and it-
s variants), the computation time, and the time to write
results back to disk. The runtime comparison is consis-
tent with the throughput evaluation in Figure 6 (a). The
GraphLego family outperforms GraphLab, GraphChi and
X-Stream in all experiments. X-Stream achieves the worst
performance on all six graph datasets. Although both Graph-
Chi and GraphLab are slower than all versions of GraphLego,
GraphChi is relatively faster than GraphLab, as it breaks
the edges of large graph into small shards and sort edges in
each shard for fast access.

Similar trends are observed for the performance compar-
ison of SpMV and Connected Components (CC) in Figure
7 and Figure 8 respectively. Given that X-Stream failed to
work on Yahoo and uk-union when running up to 36,000
seconds in the experiment of CC, we did not plot X-Stream
for these two datasets in Figure 8. Compared to GraphLab,
GraphChi and X-Stream, GraphLego (with the optimization
of all parameters) doubles the throughput and runs twice
faster in seconds.

4.3 Execution Efficiency on Multiple Graphs
Figures 9-11 present the performance comparison of iter-

ative applications on multiple graphs with different graph-
parallel models. Since GraphLab, GraphChi and X-Stream
can not directly address matrix-matrix multiplications a-
mong multiple graphs, we thus modify the corresponding
implementations to run the above graph applications. As
the complexity of matrix-matrix multiplication (O(n3)) is
much larger than the complexity of matrix-vector multipli-
cation and graph traversal (O(n2)), we only compare the
performance by different graph-parallel models on two s-

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

2

4

6

8

10

12

14

16

x 106

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(a) Throughput

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

0.5

1

1.5

2

x 104

R
un

tim
e

(s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego
GraphLego−OSL
GraphLego−OST
GraphLego−OD

(b) Runtime

Figure 8: Connected Components on Six Real Graphs

Facebook DBLPS
0

0.5

1

1.5

2

2.5

3

3.5

x 109

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego
GraphLego−OSL
GraphLego−OST
GraphLego−OD

(a) Throughput

Facebook DBLPS
0

1000

2000

3000

4000

5000

R
un

tim
e

(s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(b) Runtime

Figure 9: Matrix Multiplication on Two Real Graphs

maller datasets: Facebook and DBLPS. We observe the very
similar trends as those shown in Figures 6-8. All versions of
GraphLego significantly prevail over GraphLab, GraphChi
and X-Stream in all efficiency tests, and GraphLego (full
optimization of partitioning parameters) obtains the highest
throughput.

4.4 Effect of Partitioning on Dimension W

Figure 12 exhibits the efficiency comparison of PageRank
on multiple graphs by GraphLego with different numbers of
slices along dimension W . Although the above graphs are
simple graphs (non-multigraphs) with the edge weights of 0
or 1, PageRank [21] needs to iteratively calculate the multi-
plication between the transition matrix M and the ranking
vector R. Similar examples include Diffusion Kernel [24]
which repeatedly computes the power of the generatorH (re-
al symmetric matrix), and Inc-Cluster [25] which iteratively
calculates the power of the transition matrix PA. To reduce
the repeated cost of calculating the transition probabilities,
instead of stocking the original simple graphs, we store the
above graphs with their representations of transition matrix
for PageRank in our current implementation. From the
runtime curve (or the throughput curve) for each dataset, we
have observed that the optimal #Slices on different graphs
are quite different, depending on the graph size and the edge
weight distribution: large-scale graphs contain more vertices
and edges such that there exists more distinct edge weights.
The optimal values of #Slices on Yahoo, uk-union, uk-2007-
05, Twitter, Facebook and DBLPS are 13, 10, 7, 7, 4 and 4,
respectively.
Figures 13-14 present the performance comparison of t-

wo multigraph algorithms with the GraphLego implemen-
tation. LMF [26] is a graph clustering algorithm based
on multigraph in both unsupervised and semi-supervised
settings, with the Linked Matrix Factorization (LMF) to
extract reliable features and yield better clustering results.
AEClass [27] transforms the problem of multi-label classifi-
cation of heterogeneous information networks into the task
of multi-label classification of coauthor (or friendship) multi-
graph based on activity-based edge classification. GraphLego

Facebook DBLPS
0

5

10

15

x 108

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(a) Throughput

Facebook DBLPS
0

0.5

1

1.5

2

2.5

x 104

R
un

tim
e

(s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(b) Runtime

Figure 10: Diffusion Kernel on Two Real Graphs

Facebook DBLPS
0

0.5

1

1.5

2

2.5

3

3.5

x 108

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(a) Throughput

Facebook DBLPS
0

2

4

6

8

10

x 104

R
un

tim
e

(s
ec

)

GraphLab
GraphChi
X−Stream
GraphLego

GraphLego−OSL
GraphLego−OST
GraphLego−OD

(b) Runtime

Figure 11: Inc-Cluster on Two Real Graphs

partitions the 3D cube of a multigraph into p slices along
dimension W . Each slice consists of parallel edges with a
unique semantics. By hashing the parallel edges with the
same semantics into the same partition, each slice corre-
sponds to one partition, and represents a subgraph with only
those edges that have the corresponding semantics included
in the hash bucket for that partition. It is observed that the
running time is relatively long when we ignore the slice parti-
tioning, i.e, #Slices = 1. This demonstrates that GraphLego
can deliver significant speedup for big multigraph analysis
by running iterative computations on p slices with different
semantics in parallel. In addition, we have observed that the
optimal value of #Slices for a specific multigraph is related
to the graph size, the edge weight distribution, and the graph
algorithm.

4.5 Decision of #Partitions
Figure 15 measures the performance impact of different

numbers of partition on GraphLego with PageRank running
over Twitter, Diffusion Kernel and Inc-Cluster running on
Facebook. The x-axis shows different settings of the number
of partition units (slices, strips and dices). We vary the
number of one partition unit, say slice, from 1 to 10,000 and
fix the settings of other two units, say setting strips and
dices as 5 in each figure. It is observed that the runtime
curve (or the throughput curve) for each application in each
figure follows a similar “U” curve (inverted “U” curve) with
respect to the size of partition unit, i.e., the runtime is very
long when the unit size is relatively small or very large and
it is almost a stable horizontal line when the unit size stands
in between two borderlines. This is because the bigger units
often lead to substantial work imbalance in iterative graph
applications. On the other hand, the smaller units may
result in frequent external storage access and lots of page
replacements between units lying in different pages. Among
three partition units, the policy of dice partition achieves
the best performance on large-scale graphs but the policy of
slice partition achieves the best performance on small-scale
graphs.

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

0.5

1

1.5

2

x 107

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

#Slices=1
#Slices=4
#Slices=7
#Slices=10
#Slices=13

(a) Throughput

Yahoo ukunion uk2007 Twitter FacebookDBLPS
0

500

1000

1500

2000

2500

3000

3500

4000

R
un

tim
e

(s
ec

)

#Slices=1
#Slices=4
#Slices=7
#Slices=10
#Slices=13

(b) Runtime

Figure 12: PageRank: Vary #Slices on Dimension W

Last.fm DBLPM
0

2

4

6

8

10

12

14

x 106

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

#Slices=1
#Slices=4
#Slices=7
#Slices=10
#Slices=13

(a) Throughput

Last.fm DBLPM
0

2000

4000

6000

8000

10000

12000

14000

R
un

tim
e

(s
ec

)

#Slices=1
#Slices=4
#Slices=7
#Slices=10
#Slices=13

(b) Runtime

Figure 13: LMF: Vary #Slices on Dimension W

Figures 15 (e)-(f) measures the CPU utilization by GraphL-
ego for three real applications. The CPU utilization rate on
each application increases quickly when the number of par-
titions (#Slices, #Strips, or #Dices) is increasing. This is
because for the same graph, the larger number of partitions
gives the smaller size per partition and the smaller partition
units in big graphs often lead to better workload balancing
when graph computations are executed in parallel. Figures
15 (g)-(h) show the memory utilization comparison. The
memory utilization for each application is totally contrary
to its CPU utilization when the number of partition units is
increasing: the smaller the number of partitions, the larger
size each partition will have, thus the larger the memory
usage.
Figure 16 shows the effectiveness of the predicated run-

time with regression-based learning method for PageRank
over Twitter, Diffusion Kernel and Inc-Cluster on Facebook.
Instead of the biased or incorrect decision made with expe-
riential knowledge, GraphLego utilizes the multiple polyno-
mial regression model and the successive convex approxima-
tion method to discover the optimal numbers of partition
units to minimize the execution time. In spite of the com-
mon fixed partition scheme, GraphLego implements the 3D
cube storage of graph and multi-level graph parallel abstrac-
tion to support access locality for various graph analysis
algorithms, graphs with different characteristics, and PCs
with diverse configurations by drilling down to the lowest
level of granularity or by rolling up to the highest level
of granularity in multi-level abstraction. The predication
curve fits very well with the real execution curve on two
settings of the optimal number of partition units (slices and
dices) respectively, especially in data points corresponding
to the optimal runtime (#Slices=75-250 and #Dices=50-
500). Compared to the computational cost of iterative graph
applications, the prediction cost is very small due to very
small np, nq, nri , nro≪|V | for large-scale graphs. In the cur-
rent implementation, we set np=nq=nri=nro=3 in Eq.(1).
For the experiment of PageRank on Twitter by GraphLego
in Figures 6, the computation time is 599 seconds but the
prediction time is only 12 seconds.

Last.fm DBLPM
0

2

4

6

8

10

x 106

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

#Slices=1
#Slices=4
#Slices=7
#Slices=10
#Slices=13

(a) Throughput

Last.fm DBLPM
0

0.5

1

1.5

2

2.5

x 104

R
un

tim
e

(s
ec

)

#Slices=1
#Slices=4
#Slices=7
#Slices=10
#Slices=13

(b) Runtime

Figure 14: AEClass: Vary #Slices on Dimension W

1 5 10 50 100 500 1K 5K 10K

107

108

109

#Slices

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

PageRank
DiffusionKernel
Inc−Cluster

(a) Throughput:#Slices

1 5 10 50 100 500 1K 5K 10K

107

108

109

#Dices

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

PageRank
DiffusionKernel
Inc−Cluster

(b) Throughput:#Dices

1 5 10 50 100 500 1K 5K 10K0

2

4

6
x 104

#Slices

R
un

tim
e

(s
ec

)

PageRank
DiffusionKernel
Inc−Cluster

(c) Runtime:#Slices

1 5 10 50 100 500 1K 5K 10K0

2

4

6
x 104

#Dices

R
un

tim
e

(s
ec

)

PageRank
DiffusionKernel
Inc−Cluster

(d) Runtime:#Dices

1 5 10 50 100 500 1K 5K 10K0

20

40

60

80

100

#Slices

C
P

U
 (%

)

PageRank
DiffusionKernel
Inc−Cluster

(e) CPU:#Slices

1 5 10 50 100 500 1K 5K 10K0

20

40

60

80

100

#Dices

C
P

U
 (%

)

PageRank
DiffusionKernel
Inc−Cluster

(f) CPU:#Dices

1 5 10 50 100 500 1K 5K 10K0

20

40

60

80

100

#Slices

M
em

or
y

(%
)

PageRank
DiffusionKernel
Inc−Cluster

(g) Memory:#Slices

1 5 10 50 100 500 1K 5K 10K0

20

40

60

80

100

#Dices

M
em

or
y

(%
)

PageRank
DiffusionKernel
Inc−Cluster

(h) Memory:#Dices

Figure 15: Impact of #Partitions

Tables 5 and 6 compare the optimal p (#Slices), q (#Strips),
r (#Dices) generated by offline regression-based learning.
Table 5 exhibits the optimal parameters by PageRank on
three datasets using two PCs with different memory capa-
bilities. From Table 5, we observe that the multiplications of
p ∗ q ∗ r on the 2-core PC are about 2.67-5.97 times than the
multiplications of p ∗ q ∗ r on the 4-core PC. This indicates
that GraphLego can achieve good performance based on a
simple estimation in terms of the optimal parameter setup

1 1000 2000 3000 4000 50000

2

4

6
x 104

#Slices

R
un

tim
e

(s
ec

)

Real PageRank
Real DiffusionKernel
Real Inc−Cluster
Predicted PageRank
Predicted DiffusionKernel
Predicted Inc−Cluster

(a) Different #Slices

1 1000 2000 3000 4000 50000

2

4

6
x 104

#Dices

R
un

tim
e

(s
ec

)

Real PageRank
Real DiffusionKernel
Real Inc−Cluster

Predicted PageRank
Predicted DiffusionKernel
Predicted Inc−Cluster

(b) Different #Dices

Figure 16: Runtime Prediction

PC (16 GB memory) PC (2 GB memory)
Dataset Facebook Twitter Yahoo Facebook Twitter Yahoo

p (#Slices) 4 7 13 4 8 9
q (#Strips) 3 5 4 4 10 12
r (#Dices) 0 4 8 2 7 23

Table 5: Optimal Partitioning Parameters for PageRank

on the existing machines as long as the simple estimation
lies in the near-horizontal interval of the runtime “U” curve
shown in Figure 15. Table 6 compares the optimal pa-
rameters recommended by regression-based learning for two
applications over three different datasets on the 4-core PC.
Clearly, the number of partitions grows as the graph dataset
gets larger.

4.6 CPU, Memory and Disk I/O Bandwidth
Figure 17 compares three graph processing systems on

CPU utilization, memory utilization and disk I/O band-
width by PageRank on Twitter with 5 iterations. As shown
in Figures 17 (a)-(b), GraphLego achieves the highest uti-
lization rates in both CPU and memory. GraphChi has lower
and stable CPU and memory utilization than X-Stream.
Figures 17 (c)-(d) report the I/O bandwidth compari-

son by three models. GraphLego incurs very small amount
of updates but much larger number of reads compared to
GraphChi and X-Stream. The I/O bandwidth curves (both
I/O read and I/O write) by GraphChi and X-Stream are
consistent with those in the X-Stream paper [16]. X-Stream
consumes more I/O bandwidth than GraphChi. We observe
that (1) Although Graphchi needs to load both in-edges (the
shard itself) and out-edges (one sliding window of each of
other shards) of a shard into memory, GraphChi updates
this shard in memory and then directly write the update
to disk. The size of a sliding window of one shard is much
smaller than the size of the shard itself; (2) in X-Stream, the
huge graph storage dramatically increases the total I/O cost.
In addition, the two-phase implementation also doubles the
I/O cost: for each streaming partition, the merged scat-
ter/shuffle phase reads its out-edges from disk and writes its
updates to disk, and the gather phase loads its updates from
disk. When the graph is relatively dense or the edge update
is very frequent at the beginning phase of computational
iterations, the number of updates approximately equals to
the number of edges. The parallelism of I/O processing
may also result in higher disk seek time on the standard
PC with a single disk; and (3) the gzip-compressed storage
helps GraphLego dramatically reduce the total I/O cost. At
each iteration, GraphLego reads the in-edges of each DVP,
calculates the updates of vertices in the DVP and writes the
updates to the private buffer if the entire vertices can fit
into the memory, or writes them back to disk if the working
memory is limited. After completing the updating of a DVP,

PageRank Connected Components
Dataset Facebook Twitter Yahoo Facebook Twitter Yahoo

p (#Slices) 4 7 13 4 6 8
q (#Strips) 3 5 4 2 6 7
r (#Dices) 0 4 8 0 4 12

Table 6: Optimal Parameters for PC with 16 GB DRAM

0

20

40

60

80

100

#Interval (775 sec)

C
P

U
 (%

)

GraphLego
GraphChi
X−Stream

(a) CPU

0

20

40

60

80

100

#Interval (775 sec)

M
em

or
y

(%
)

GraphLego
GraphChi
X−Stream

(b) Memory

0

20

40

60

80

#Interval (775 sec)

R
ea

d
(M

B
/s

)

GraphLego
GraphChi
X−Stream

(c) Read

0

20

40

60

80

#Interval (775 sec)

W
rit

e
(M

B
/s

)

GraphLego
GraphChi
X−Stream

(d) Write

Figure 17: CPU, Memory and Disk I/O bandwidth
GraphLego never needs to read this DVP and its associated
edges again until the algorithm enters the next iteration.
Thus, GraphLego only has very few or no write I/O costs
within each iteration.

5. CONCLUSIONS
We have presented GraphLego, a resource adaptive graph

processing system with multi-level graph parallel abstrac-
tions. GraphLego has three novel features: (1) we introduce
multi-level graph parallel abstraction by partitioning a large
graph into subgraphs based on slice, strip and dice parti-
tionings; (2) we dynamically determine the right abstrac-
tion level based on the available resource for iterative graph
computations. This resource-adaptive graph partitioning
approach enables GraphLego to respond to computing plat-
forms with different resources and real-world graphs with d-
ifferent sizes through multi-level graph parallel abstractions;
(3) GraphLego uses dice-based data placement algorithm to
store a large graph on disk to minimize random disk access
and enable more structured in-memory access.

Acknowledgement. This material is based upon work par-
tially supported by the National Science Foundation under
Grants IIS-0905493, CNS-1115375, IIP-1230740, and a grant
from Intel ISTC on Cloud Computing.

6. REFERENCES
[1] U. Kang, C. E. Tsourakakis, and C. Faloutsos.

Pegasus: A peta-scale graph mining system -
implementation and observations. In ICDM, 2009.

[2] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A system for large-scale graph processing. In
SIGMOD, pages 135–146, 2010.

[3] R. Power and J. Li. Piccolo: Building fast, distributed
programs with partitioned tables. In OSDI, 2010.

[4] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
framework for parallel machine learning. In UAI, 2010.

[5] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and
C. Faloutsos. Gbase: A scalable and general graph
management system. In KDD, pages 1091–1099, 2011.

[6] A. Buluc and J. R. Gilbert. The combinatorial blas:
Design, implementation, and applications. IJHPCA,
25(4):496–509, 2011.

[7] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.
Kineograph: Taking the pulse of a fast-changing and
connected world. In EuroSys, pages 85–98, 2012.

[8] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning and data
mining in the cloud. In PVLDB, 2012.

[9] V. Prabhakaran, M. Wu, X. Weng, F. McSherry,
L. Zhou, and M. Haridasan. Managing large graphs on
multi-cores with graph awareness. In ATC, 2010.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

[11] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. OSDI’12.

[12] Giraph. http://giraph.apache.org/.

[13] B. Shao, H. Wang, and Y. Li. Trinity: A distributed
graph engine on a memory cloud. In SIGMOD, 2013.

[14] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. TurboGraph: A Fast Parallel
Graph Engine Handling Billion-scale Graphs in a
Single PC. In KDD, pages 77–85, 2013.

[15] W. Xie, G. Wang, D. Bindel, A. Demers, and
J. Gehrke. Fast iterative graph computation with
block updates. PVLDB, 2013.

[16] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric Graph Processing using Streaming
Partitions. In SOSP, 2013.

[17] K. Lee and L. Liu. Scaling Queries over Big RDF
Graphs with Semantic Hash Partitioning. PVLDB’13.

[18] Y. Tian, A. Balmin, S. Andreas Corsten,
S. Tatikonda, and J. McPherson. From ”Think Like a
Vertex” to ”Think Like a Graph”. PVLDB, 2013.

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. GraphX: Graph
Processing in a Distributed Dataflow Framework. In
OSDI, 2014.

[20] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and
K. Lee. Fast Iterative Graph Computation: A Path
Centric Approach. In SC, 2014.

[21] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW, 1998.

[22] M. Bender, G. Brodal, R. Fagerberg, R. Jacob, and
E. Vicari. Optimal sparse matrix dense vector
multiplication in the i/o-model. Theory of Computing
Systems, 47(4):934–962, 2010.

[23] X. Zhu and Z. Ghahramani. Learning from Labeled
and Unlabeled Data with Label Propagation. In CMU
CALD Tech Report, 2002.

[24] R. I. Kondor and J. D. Lafferty. Diffusion kernels on
graphs and other discrete input spaces. In ICML, 2003.

[25] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large
attributed graphs: An efficient incremental approach.
In ICDM, 2010.

[26] W. Tang, Z. Lu, and I. S. Dhillon. Clustering with
multiple graphs. In ICDM, 2006.

[27] Y. Zhou and L. Liu. Activity-edge centric multi-label
classification for mining heterogeneous information
networks. In KDD, 2014.

[28] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in p2p networks. In WWW, pages 640–651, 2003.

[29] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random
walk with restart and its applications. In ICDM, 2006.

[30] H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social
networks using heat diffusion processes for marketing
candidates selection. In CIKM, pages 233–242, 2008.

[31] X. Zhu, Z. Ghahramani, and J. Lafferty.
Semi-supervised learning using Gaussian fields and
harmonic functions. In ICML, 2003.

[32] S. A. Macskassy and F. Provost. A simple relational
classifier. In MRDM, pages 64–76, 2003.

[33] V. Satuluri and S. Parthasarathy. Scalable graph
clustering using stochastic flows: Applications to
community discovery. In KDD, 2009.

[34] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering
based on structural/attribute similarities. VLDB’09.

[35] Y. Zhou and L. Liu. Social influence based clustering
of heterogeneous information networks. In KDD, 2013.

[36] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. In NIPS, 2000.

[37] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD’08.

[38] H. Ma. An experimental study on implicit social
recommendation. In SIGIR, pages 73–82, 2013.

[39] Y. Zhou, L. Liu, C.-S. Perng, A. Sailer, I. Silva-Lepe,
and Z. Su. Ranking services by service network
structure and service attributes. In ICWS, 2013.

[40] Yahoo Webscope. Yahoo! AltaVista Web Page
Hyperlink Connectivity Graph, circa 2002.
http://webscope.sandbox.yahoo.com/.

[41] P. Boldi, M. Santini, and S. Vigna. A Large Time-
aware Web Graph. SIGIR Forum, 42(2):33–38, 2008.

[42] H. Kwak, C. Lee, H. Park, S. Moon. What is Twitter,
a social network or a news media? In WWW, 2010.

[43] M. Gjoka, M. Kurant, C. T. Butts, A. Markopoulou.
Walking in Facebook: A case study of unbiased
sampling of OSNs. In INFOCOM, 2010.

[44] http://www.informatik.uni-trier.de/∼ley/db/.

[45] http://www.last.fm/api/.

[46] T. Chakraborty, S. Sikdar, V. Tammana, N. Ganguly,
and A. Mukherjee. Computer science fields as
ground-truth communities: Their impact, rise and fall.
In ASONAM, pages 426–433, 2013.

[47] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken.
Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences. In Routledge, 2002.

[48] O. Bretscher. Linear Algebra With Applications, 3rd
Edition. In Prentice Hall, 1995.

[49] F. Hillier and G. Lieberman. Introduction to
Operations Research. In McGraw-Hill College, 1995.

