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Abstract: Distributed service networks are popular platforms for service providers to offer services to 
consumers and for service consumers to acquire services from unknown parties. eBay and Amazon are two 
well-known examples of enabling and hosting such service networks to connect service providers to service 
consumers. Trust management is a critical component for scaling such distributed service networks to a 
large and growing number of participants. In this paper, we present ServiceTrust++, a feedback quality 
sensitive and attack resilient trust management scheme for empowering distributed service networks with 
effective trust management capability. Comparing with existing trust models, ServiceTrust++ has several 
novel features. First, we present six attack models to capture both independent and colluding attacks with 
malicious cliques, malicious spies and malicious camouflages. Second, we aggregate the feedback ratings 
based on the variances of participants’ feedback behaviors and incorporate feedback similarity as weight 
into the local trust algorithm. Third, we compute the global trust of a participant by employing conditional 
trust propagation based on feedback similarity threshold. This allows ServiceTrust++ to control and 
prevent malicious spies and malicious camouflage peers to boost their global trust scores by manipulating 
the feedback ratings of good peers and by taking advantage of the uniform trust propagation. Finally, we 
systematically combine trust decaying strategy with threshold-value based conditional trust propagation 
to further strengthen the robustness of our global trust computation against sophisticated malicious 
feedbacks. Experimental evaluation with both simulation-based networks and real network dataset 
Epinion show that ServiceTrust++ is highly resilient against all six attack models and highly effective 
compared to EigenTrust, the most popular and representative trust propagation model to date. 

Keywords: Trust, Feedback rating quality, Reliability, Attack resilience, Distributed service network. 

1. INTRODUCTION 
A unique feature of a service provision network is to allow every participant to be 
service provider and service consumer at the same time and to bridge between 
service consumers and service providers on demand. For example, when purchasing a 
product from Amazon or eBay, a ranked list of sellers is offered to the users as the 
service providers. This ranking is based primarily on consumers’ feedback ratings 
obtained through their prior transaction experiences with the service providers. With 
the increased popularity of social media, such social rankings are often used as 
valuable references for those users who have no prior experience with or no prior 
knowledge about the providers.  

Although the service provision network model offers unique opportunities for 
consumers to be connected to unfamiliar service providers and for providers to reach 
out to a large and growing customer base, the opportunity to interact with unknown 
providers or consumers also opens doors for potential risks of dishonest ratings and 
malicious manipulations. eBay, Amazon and numerous other service provisioning 
network systems have demonstrated that incorporating trust management can be an 
effective way to improve the trustworthiness of their system. Many service providers 
consider feedback based trust as one of the most important measures for sharing 
information and developing new consumer-provider relationships. Reputation based 
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trust often refers to trust management in a large network of participants where the 
trust of a participant is computed based on the feedback ratings that this participant 
receives from the rest of the participants.  

Trust management has attracted active research in several areas of computer 
science, ranging from e-Commerce [Xiong, et al. 2004] and e-Government [Nepal, et 
al. 2014], mobile networks, peer to peer networks, sensor networks, to social 
networks and applications, to name a few [Dwyer, et al. 2007, Jøsang, et al. 2007, 
Resnick, et al. 2000, Sherchan, et al. 2013]. Interestingly, most of the trust models 
proposed to date are based on per-transaction feedbacks. The trust of a provider is 
computed in two steps. First, for each pair of provider and consumer, a local trust is 
computed by aggregating the set of feedback ratings provided by the consumer who 
has had transactions with the provider. Second, a global trust of a provider is 
computed based on the set of local trusts, which this provider has received from the 
consumers in the service provision network. However, existing trust models differ 
from one another in three aspects: (i) how the users’ feedback ratings are aggregated 
in computing the trust of providers, (ii) how resilient the local and global trust 
computation are against dishonest feedbacks and malicious manipulations, and (iii) 
how trust is computed in the presence of sparse feedbacks and cold start (zero 
feedbacks). For example, different methods are used to aggregate feedback ratings, 
ranging from simple algorithmic aggregation methods such as those used in eBay to 
more complex feedback aggregation methods based on statistical significance, such as 
naïve Bayesian with majority voting, Bayesian belief networks, eigenvector and so 
forth. Unfortunately, most of the existing approaches have been developed 
independently and little efforts have been made to compare and understand the 
relative strength and inherent vulnerabilities of different approaches. Concretely, 
how dishonest feedbacks and sparse feedbacks may impact on the effectiveness of the 
existing trust models?  How the cold start (new comers) problem is handled, and how 
robust and resilient the existing trust models are in anticipation of malicious or 
dishonest feedbacks, and whether a proposed trust model will be effective in the 
presence of some known attacks. We believe that answers to these questions are 
critical for building a reliable and resilient trust management for service provision 
networks.  

These observations motivate us to develop ServiceTrust++, a feedback quality 
aware and attack resilient trust management model and a suite of algorithms, for 
improving the effectiveness and robustness of distributed service networks. We aim 
to address the above questions from several perspectives: (i) Trust takes time to build 
but can be dropped or destroyed drastically due to malicious manipulations; (ii) Trust 
is based on direct and indirect experiences (circle of friends) but not symmetric and 
not transitive; (iii) Feedback ratings used in building trust can be vulnerable to 
strategically malicious manipulations; and (iv) Two players with low mutual trust 
are unlikely to interact with one another. We develop ServiceTrust++ with a number 
of novel features for establishing and managing trust in a distributed service 
network with strong attack resilience: 
• First, we introduce six attack models to cover the most common forms of attacks in 

trust and social rating systems, including the four well-know basic attacks 
(independently malicious, malicious collective, malicious collective with camouflage, 
malicious spies), and the two strategically malicious attacks (Malicious spies 
combined with camouflage, and Malicious spies combined with both camouflage 
and malicious collectives). We show that even the existing trust models that are 
robust again the four basic attack models to date are vulnerable to the strategically 
malicious attacks. 
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• Second, ServiceTrust++ employs two novel techniques to improve the quality and 
robustness of local trust computation: (i) We use a quality-sensitive variance based 
rating aggregation method to increase the quality-based sensitivity of feedback 
ratings. (ii) We employ pairwise feedback similarity to weight the trust from one 
peer to another. We show that these two techniques encourage finer granularity of 
quality differentiation, which can increase the level of resilience for ServiceTrust++ 
to against colluding attacks on both feedback rating manipulation and local trust 
manipulation.  

• Third, ServiceTrust++ is the first to identify the vulnerability of uniform trust 
propagation and the detrimental effects through analyzing the strategically 
malicious attacks: Malicious spies combined with camouflage and Malicious spies 
combined with both camouflage and malicious collectives. ServiceTrust++ develops a 
conditional trust propagation kernel, which computes the global trust of a 
participant by employing the feedback similarity controlled trust propagation. 
significantly enhances the attack resilience of trust propagation and global trust 
computation against dishonest feedbacks and malicious manipulation of feedback 
ratings. This optimization empowers ServiceTrust++ to effectively handle sparse 
feedbacks and cold start problems, and more importantly to discredit those 
strategically malicious participants, and to control the amount of trust propagating 
from a good participant to a malicious participant and vice versa.  

• Fourth but not the least, we further improve the attack resilience of 
ServiceTrust++ by strengthening the threshold-based conditional trust propagation 
with a set of configurable performance and quality tuning techniques, such as 
tunable decay factor, controlled randomness and jump strategy for handling 
malicious cliques. 

We conduct an extensive experimental evaluation to show the effectiveness and 
efficiency of ServiceTrust++.  

It is worth noting that our preliminary work in [Su, et al 2013] is limited to 
countering the basic four attack models by employing feedback similarity into the 
local trust computation. Unfortunately, as we show in this paper that the trust model 
in [Su, et al 2013] is severely handicapped and is vulnerable to malicious spies with 
camouflage or colluding collectives. This observation motivates us to develop 
ServiceTrust++ to against the six threat models by incorporating the above-mentioned 
three unique features. To the best of our knowledge, ServiceTrust++ is the first trust 
model that is resilient to all six attack-models (see Section 2.2). In addition, 
ServiceTrust++ is the first to promote the conditional trust propagation over the 
uniform trust propagation, and combined it with decaying strategy, for reliable and 
resilient trust management in distributed service networks.  

The rest of paper is organized as follows. Section 2 discussed the overview and 
problem statement of the ServiceTrust++ development. Section 3 presents the core 
components of ServiceTrust++. We report our experimental evaluation results in 
Section 4. Section 5 describes the related work and Section 6 concludes the paper. 

2. OVERVIEW AND PROBLEM STATEMENT 

In this section, we first briefly describe the fundamentals of reputation and trust, 
such as how feedback ratings are collected, how to compute local trust based on 
feedback ratings, and how to compute global trust by utilizing transitive trust 
relationship. Then we describe six different attack models and analyze why existing 
trust models are vulnerable in the presence of both dishonest feedbacks and 
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strategically malicious participants. EigenTrust [Kamvar, et al. 2003] is chosen as 
the reference trust model in the discussion because EigenTrust is the most cited trust 
model in the literature and its Eigen vector based trust propagation and its attack 
analysis remain to be the most representative in the context of trust and reputation 
management.  

2.1 Reference Trust Model 
In a service network of n participants, each participant can be a service provider and 
also a service consumer. Thus the relationship between any two pair of participants 
simulates the peer to peer relationship in a peer to peer network. Thus we refer to a 
member of the service network by either “participant” or “peer” in the rest of the 
paper.  

When a peer Pi acting as a provider to respond to a service request from another 
peer Pj, the receiving peer Pj is allowed to enter a feedback rating on Pi in terms of 
the quality of the service provided by Pi. We refer to this as a per-transaction based 
feedback.  

2.1.1 Computing local trust by aggregating feedbacks 

Let ( , )tr i j  denote the feedback rating from peer i to peer j where i,j ∈[1,…,n] and 
tr(i,j) is initialized to zero. Using a binary rating scheme [Kamvar, et al. 2003], when 
peer i competes a transaction with another peer j at time t, then peer i may rate the 
transaction it has with peer j as positive by ( , , ) 1tr i j t =  or negative by ( , , ) 1tr i j t = −  . 
Let ( , )sat i j  denote the total number of satisfactory transactions between peer i to 
peer j, and ( , )unsat i j  denote the number of unsatisfactory transactions between peer i 

to peer j. sat(i, j) = tr (i , j )
tr ( i , j )>0∑  and unsat(i, j) = tr (i , j )

tr ( i , j )<0∑ . We define ( , )s i j  as the 

aggregation of all feedback ratings from peer i to peer j, namely,
( , ) ( , ) ( , )s i j sat i j unsat i j= − . Clearly, when sat(i, j) > unsat(i, j) , ( , )s i j   is a positive integer, 

indicating that there are more positive feedback ratings from peer i to peer j; and 
( , )s i j   is negative otherwise.  

We compute the local trust cij based on s(i,j). In order to make the local trust 
comparison meaningful between peers with high volume of transactions and peers 
with low volume of transactions, we normalize the local trust values into the range of 
[0,1. For example, we can define cij by normalizing ( , )s i j  using the maximum 
satisfactory score from all participants who have had the direct transactional 
experiences with peer i as follows: 

cij =

max(s(i, j),0)
max(s(i, j),0)
j∑

if max(s(i, j),0)
j∑ ≠0

1/P otherwise if j∈P

$

%
&&

'
&
&

                                  (1) 

 
In Formula (1), P denotes a set of pre-trusted seed participants (pre-trusted peers) 

and the pre-trust value for each peer in P is 1 P . By default, pre-trusted peers are 

considered as the central authority in the network [Kamvar, et al. 2003] and are used 
as the seed peers to bootstrap the system initially and to allow new comers to be 
linked to some existing participants in the network. When max( ( , ),0) 0,

j
s i j =∑  it 

indicates two cases: (i) peer i just joins the network as a newcomer and has not had 
transactions with anyone; or (ii) peer i has not received services from and rated 
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anyone in the system though it may have provided services to others and may have 
been rated by others, i.e., max( ( , ),0)

j
s j i ≠∑ 0. When s(i,j) ≤ 0, it implies that either 

there is no feedback rating from i to j or the feedback ratings from i to j are 
dominated by negative ratings. Thus, the local trust from i to j is zero, i.e., cij = 0. 
Only when s(i,j) > 0, peer i has positive and non-zero local trust value for peer j. We 
can model this local trust relationship among every pair of the n participants as a 
trust network graph with n vertices and every edge in this directed graph represents 
a local trust relationship from participant i to participant j. When the size of the 
network (n) is large, this trust network often becomes sparse since it is common that 
every participant will transact with only a small portion of the participants in a large 
scale network.  

2.1.2 Computing global trust by trust propagation kernel 

 A popular way to compute global trust for a participant i is to aggregate all the 
local trust values that participant i has received from other participants [Resnick, et 
al. 2000, Xiong, et al. 2004]. We call this global trust computation model the one-hop 
aggregation of local trust values. Indeed, local trust values provide valuable reference 
for trust enabled selection of service providers when the local trust network graph is 
dense. Unfortunately, in real world, most of the operational service networks (e.g., 
eBay, amazon) are often very large in size and most of the participants only have 
transactions with a few other participants, resulting in a very sparse local trust 
network graph. This sparseness causes two types of problems: (i) the one-hop local 
trust aggregation may no longer produce an accurate global trust of a participant and 
can easily be manipulated by malicious collectives; and (ii) for each service request, 
the number of trusted providers is often quite small, making the trust-guided service 
selection less effective.  

The trust propagation based global trust computation model, introduced initially 
in [Kamvar, et al. 2003], is designed to cope with such sparse rating problem. It aims 
at computing a global trust for each of the n participants based on the transaction 
experiences collected from the entire network. Concretely, assume that in a local 
trust network graph, peer i has a direct edge to peer j and peer j has a direct edge to 
peer k. Even though peer i does not have any prior direct experience with peer k, we 
can compute the trust value of peer i over peer k by asking the opinion of its 
neighbors who have local trust value over peer k, such as peer j. This process can be 
iteratively extended to the m-hop circle of friends (neighbors of neighbors in the m-
hop range) (1≤  m<n) in m iterations to produce a global trust for each participant in 
the service network. Typically m is determined by the convergence condition of the 
propagation model, such as the global trust values for a large percentage of peers are 
similar within a small threshold with as a system-supplied parameter. 

Let n denote the total number of participants in our service network system. We 

define C = [ ]ijc  as a matrix of n rows by n columns. Let 0
it  denote the initial global 

trust value of peer i. We initialize the global trust values for all participants based on 

a uniform probability distribution over all n peers and set 0
it  =1/n. Let t ki  denote the 

global trust value of peer i from its connected participants within k-hop circle in the 
service network. Thus, the one hop global trust value of peer i can be computed by 
normalized aggregation of its local trust values from other directly connected peers, 

namely t 1
i
= c

jij=1

n

∑ n = c
ji
t
i

0

j=1

n

∑ . Let 
!
t k = (t1

k ,..., ti
k ,..., tn

k )   denote the global trust vector of 
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size n at kth iteration (1 ≤ k<n). The general formula for computing the global trust 
vector at the (k+1) iteration is: 

!
t k+1 =CT

!
t k                                                                   (2) 

Formula (2) can be expanded in the matrix format as follows: 

t
1
k+1

!

t
i
k+1

!

t
n
k+1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

c11 ! ck1 ! cn1
! " ! " !
c1k ! ckk ! cnk
" ! " ! "
c1n ! ckn ! cnn

!
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Thus we have
!
t = (CT )m

!
t 0  . The trust vector 

!
t   will converge to the left principal 

eigenvector of C if m is large enough. For each element of this global trust vector, ti , 

it quantifies how much trust the system collectively places on the participant i.  
To address the cold start problem in terms of new comers or participants with no 

feedback ratings from other participants, we utilize a set P of pre-trusted seed peers 
as the bootstrap peers. A participant can always trust one of the pre-trust peers with 
a probability of 1/|P|. Thus, alternative to initializing the global trust vector using 
uniform distribution over all n participants, 

!
t 0 = (1 n,...,1 n) , we can also initialize 

the global trust vector 
!
t 0   by a uniform distribution 

!p   over the set of pre-trust peers, 

namely each peer initializes its trust vector by placing its initial trust of 1/|P| on 
only the pre-trusted peers. We will study the effect of these two alternative trust 
initialization methods in terms of attack resilience and convergence rate in Section 
3.4 and Section 4.  

One potential weakness of Formula (2) is the vulnerability for chained colluding 
attacks in which a group of colluding peers give one another positive feedbacks to 
gain the global trust value from the network. A common way to break such chained 
malicious collectives is by having each participant, at some random probability, 
placing its trust on pre-trust seed peers that are definitely not a part of the 
collectives instead. Formula (3) below computes the global trust vector of size n at 
(k+1)th round of iterations (1≤  k<n) by taking into account of malicious collectives: 

!
t k+1 = (1− a)CT

!
t k + a!p                                                        (3) 

This formula implies that peer i's global trust at the (k+1)th iteration can be 
defined by the sum of the local trust values that other peers have given to i, weighted 
by their global trust values obtained at the kth iteration, namely  

1
1 1 2 2(1 )( ... )k k k k

i i i ni n it c t c t c t pα α+ = − + + + +                                      (4) 

We use the damping factor a  to allow a participant with some probability to trust 
only some pre-trusted peers instead of establishing trust only through the 
participants with whom it has direct links in the service network. This damping 
factor introduces some controlled randomness in trust establishment such that the 
trust benefit for a participant j by another participant i through direct linkage in the 
service network is to some extent reduced. 

One instance of this reference trust model is the EigenTrust model [Kamvar, et al. 
2003], in which α is set to be 0.1 in their experiment. However, there is no study on 
how different settings of α  may influence the performance of a trust model and what 
other factors may impact on the effectiveness of a trust model. In this paper we argue 
that a number of factors are critical for trust establishment through a trust 
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propagation kernel (see Section 3 and Section 4). In the subsequent two sections, we 
first present the six attack models that are common in social and trust based rating 
systems and then analyze the inherent vulnerabilities of this basic reference trust 
model.  

2.2 Threat models 
In decentralized service provision networks, the following threat models are 

commonly used to characterize malicious behaviors of different forms.  
Thread model A (Independently Malicious) 
Malicious users always provide inauthentic services when selected as service 

providers. Malicious peers always value inauthentic services instead of authentic 
services. 

As malicious participants never provide authentic (good) services, they do not 
expect getting a good rating from non-malicious participants. 

Threat model B (Malicious Collectives) 
Malicious participants always provide inauthentic (bad) services when selected as 

a service provider. In addition, malicious peers form a malicious collective by giving a 
high local trust value, to another malicious peer in the network, leading to a 
malicious chain of mutually high local values. This malicious collective chain traps 
non-malicious participants to enter the collective and once a good peer has entered, it 
will be hard to exit and the global trust value of the good peer will be exploited to 
boost the global trust values of all peers in the malicious collectives. 

Threat model C (Malicious Collectives with Camouflage)  
In this type of attack, malicious entities provide an inauthentic service in %f   

when selected as a service provider. At the same time malicious peers form a 
malicious collective as describe in the threat model B.  

Under this threat model, malicious peers attempt to get positive ratings from 
some good peers in the network by providing good services sometimes, i.e., when 0f > . 
Consequently, malicious peers in the collective could get higher global trust values. 

Threat model D (Malicious spies) 
Malicious participants are strategically organized into two groups (type D and 

type A). One group of malicious peers (type D) try to act as normal users in the 
system in an attempt to increase their global trust values by only providing good 
services but provide dishonest feedback ratings. The type D peers act like spies and 
use their high trust values to boost the trust values of another group of malicious 
peers (type A) who only provide bad (inauthentic) services when selected as service 
providers but they do not form the malicious chain, i.e., they are independently 
malicious. 

Threat model E (Malicious spies with camouflage) 
Malicious participants are also strategically organized into two groups (type D 

and type B). Compared with type D peers in Threat model D, type D peers also 
provide honest feedbacks to good peers at m% after finishing the transaction. In 
addition, type B peers not only provide bad (inauthentic) services but also form a 
chain of malicious collective as described in Threat model B. 

Threat model F (Malicious spies with camouflage and collective) 
Malicious participants are strategically organized into two groups (type D and 

type B). Compared with the type D peers in Threat model E, type D peers in threat 
model F will provide honest feedbacks to good peers with m% and form a malicious 
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collective among all type D peers. The type B peers behave the same as they do in 
Threat model E. 

There are other types of threat models, such as multiple independent or colluding 
malicious collectives, which can be represented as a generalized form of the five 
attack models. Other type of attacks, such as Sybil attacks, can be regulated through 
some cost based enforcement, such as enforcing the network ID of a participant 
corresponds to a hash value of the peer's unique ID in real life (e.g., drive license 
number). Often, Sybil attack is used in conjunction with one of the above five threat 
models. Thus we argue that a highly effective trust model for a service network 
should be resilient to all of the above five threat models.. 

2.3 Trust based service selection schemes 
We discuss the following four commonly adopted service selection schemes: 

Random selection. When trust is not supported, a service requestor often 
randomly selects one provider in the list of matching providers as her preferred 
provider. 

Threshold-based random selection. A requestor randomly selects a provider 
from the subset of providers in the matching list, whose trust values are higher than 
a given threshold value. 

Deterministic selection. A requestor only selects the provider with the highest 
global trust value among the list of matching providers as her preferred provider. 
The problem with this approach is the potential of overloading the providers with 
high trust values.  

Probabilistic-based selection. A requestor chooses each matching provider i as 

its preferred provider with probability ti / j=1

M
∑ t j , assuming that there are M 

matching providers that can provide the requested service. In order to give the 
newcomers a chance to be selected, we can complement the trust enabled 
probabilistic selection by allowing a peer j with zero trust value to be selected at a 
system defined maximum probability, say 10% [Kamvar, et al. 2003]. 

2.4 Vulnerabilities in the Reference Model 
Although EigenTrust by design has incorporated several decisions to increase its 
attack resilience, which is also one of the main factors for its huge popularity and 
citation in the literature, EigenTrust has reported [Kamvar, et al. 2003] some 
inherent vulnerabilities as shown in Figure 1.  
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Fig.1. Attack resilience of EigenTrust model 

 
In this Figure, EigenTrust is effective in the presence of varying percentage of 
malicious peers up to 70% in Threat models A and B where malicious peers either are 
independently malicious or form a malicious chain of high feedback ratings. However, 
EigenTrust performs poorly when malicious peers are up to 50% or more in Threat 
model C. For threat model D, EigenTrust performs worse than non-trust case when 
the type D peers reach 50% or more of the malicious collective. We produced these 
experiments used the identical setup as reported in [Kamvar, et al. 2003]. In Threat 
models A and B, the total number of participants is 63, with 3 pre-trust peers. In 
Threat model C, there are 73 participants in the network, including 20 malicious 
ones, 3 pre-trust ones and 50 good peers. In Threat model D, there are 103 total 
participants with 40 malicious participants, which are divided into two groups (type 
B and type D), 3 pre-trust peers and 60 good peers.  

Next, we analyze the vulnerabilities inherent in the EigenTrust model and 
illustrate why these vulnerabilities cause EigenTrust to perform poorly compared to 
non-trust case when the malicious participants strategically collude with one another 
(i.e., Threat models C and D). 

First, the feedback aggregation formula (1) is vulnerable when type D malicious 
peers exist since it fails to distinguish good participants from type D spy peers. Thus, 
the system fails to recognize the dishonest feedbacks given by type D peers, which 
harms the good peers and increases type B malicious peers’ local trust values. This is 
one of the most important reasons that EigenTrust fails when 50% or more malicious 
collectives with camouflage in Figure 3(c) (Threat model C). 

Second, Formula (3) for computing global trust vector uses a weighted trust 
propagation model where the local trust values received by peer i from other peers, 

 

 

(a)Threat Model A (b)Threat Model B 

(c)Threat Model C (d)Threat Model D 



39:10                                                                                                                            Z, Su et al. 
 
say j, are weighted by the global trust value of peer j. This leads to unexpected 
vulnerability when encountering some sophisticated attacks. Consider Threat model 
D, type D peers are acting as spy by providing good services and accumulate high 
global trust values. Then type D peers utilize their high global trust values to boost 
the global trusts of all type A malicious peers in the collective. This can easily 
subvert the system as the number of spy peers increases, as shown in Figure 1(d). 
Figure 2 shows the global trust values of all participants under Threat model D. We 
observe that except the 3 pre-trust peers, the global trust values of malicious peers 
are higher than good ones, even when the good peers are 60% and malicious peers 
are 40% with 30% type D and 10% type B malicious peers. 

 
Fig.2. Global trust value of each participant with 60% good peers and 40% malicious peers  

(30% spy + 10% type B in threat model D). 
The analysis of the above vulnerabilities motivates us to carefully revisit all core 
components of the reference trust model, including the transaction rating model, the 
local trust computation, the uniform trust propagating kernel, and to develop the 
ServiceTrust++ model for providing feedback quality aware and attack resilient trust 
management in large scale service network systems. 

3. ATTACK RESILIENT TRUST MANAGEMENT IN SERVICETRUST++ 
The design of ServiceTrust++ embodies two innovative techniques: (i) we develop a 
feedback similarity weighted local trust computation algorithm to constrain the trust 
manipulation by malicious collectives; and (ii) we develop a conditional global trust 
computation algorithm by combining pairwise feedback similarity with decaying rate, 
damping strategy and initialization strategy to maintain reliable and resilient trust 
propagation.  

3.1  Feedback Similarity Weighted Local Trust Computation  
Recall the vulnerability analysis in Section 2, the feedback aggregation scheme used 
in EigenTrust suffers from a number of inherent vulnerabilities. To address the 
detrimental effect of those vulnerabilities, the design of ServiceTrust++ needs to meet 
a number of objectives. 

First, we advocate the multi-scale rating scheme over the binary rating scheme. 
By replacing binary rating with multi-scale rating in ServiceTrust++, we can use fine-
grained and quality sensitive metrics to differentiate dishonest ratings by malicious 
participants from feedback ratings by non-malicious participants by introducing 
feedback similarity measure.  
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Second, malicious peers should not accumulate positive ratings from good users by 
simply performing well in some transactions while providing dishonest feedbacks, 
such as type D peers in Thread model D or camouflage peers in Threat model C. This 
implies that we need to provide capability of identifying such malicious behaviors in 
ServiceTrust++.  

Third, a peer who wants to get a good local trust value from other peers must 
provide consistently good services. Also peers who always get high scale ratings, such 
as 5 or 4 score in the multi-scale rating scheme (5) should have higher local trust 
values than those who always receive positive but low feedback ratings of 1 or 2.  

In addition, malicious behavior, be it a bad service or dishonest feedback rating, 
should be punished in ServiceTrust++. One way to meet this objective is to make the 
trust of a peer hard to build but allow the trust of a peer to drop dramatically once 
detected being malicious.   

3.1.1 With these design goals in mind, we propose two new algorithms, one for aggregation 
of feedback ratings and the other for location trust computation. Variance based 
Rating Aggregations 

 
The local trust of peer i for peer j is computed primarily based on the aggregate of the 
feedback ratings that peer i has given to peer j. Instead of using a simple algorithm 
to perform the aggregation, we propose to aggregate the multi-scale ratings by 
incorporating the rating variance. Concretely, let J denote the set of participants that 
i gives rating to and let max(tr(i,J)) denote the highest rating that peer i gives to 
others in the network. We define s(i, j) as follows: 
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                            (6) 

In Formula (6), ( , )v i j  denotes the variance of all the ratings that i gives j. The 

smaller ( , )v i j   is, the more stable j’s service is, which means that j should have 

relatively higher local trust. ( , )v i j  is computed as follows:  
21

( , ) ( ( , ) ( , ))
ll

i j tr i j i j
L

ν µ= × −∑                                                  (7) 

In Formula (7), we assume that there are L transactions in one spectacular interval. 

( , )ltr i j  is the lth transaction’s rating value that i gives to j. ( , )i jµ  is the mean value 

of all the ratings that i gives to j. ( , )i jµ   is defined as follows: 
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3.1.2  Computing Local Trust based on Rating Similarity 
In addition to measure pairwise multi-scale rating similarity by variance and mean 
based normalization, we also measure the rating similarity between two peers based 
on how they rate another participant. The former allows us to assign higher local 
trust values to peers that have more similar rating behavior. The latter enables us to 
distinguish those strategically malicious participants from good peers, because such 
malicious peers provide satisfactory transactions to get high feedback ratings but 
provide dishonest feedbacks in an attempt to subvert the system. Therefore, in 
ServiceTrust, we advocate to incorporate the pairwise feedback similarity into the 
trust aggregation algorithm. The basic motivation for using feedback similarity 
weighted trust propagation metric is to differentiate the positive ratings generated 
by good peers from malicious peers acting as spies. We capture the pairwise feedback 
similarity in terms of both positive feedback similarity and negative feedback 
similarity, denoted by pos_sim(i,j) and neg_sim(i,j) respectively.  

Positive similarity. Let pos_comm(i,j) denote the subset of common participants that 
both i and j have given positive ratings. We propose a similarity function based on 
the Normalized Euclidean Distance (NED) as follows: 

pos _ sim(i, j) = 1−

(µ (i,k )−µ ( j,k ))2

k∈pos_ comm ( i , j )

∑
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 |pos _ comm |> 0

0                                    otherwise
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                 (9) 

( , )R i k  is the total number of transactions happened between peers i and k. ( , )i kµ  is 
the normalized mean rating value that i gives to k after ( , )R i k  transactions. 
max_mean(S) denotes the maximum mean rating value of the entire service network. 
For each peer i in the network of n participants, we refer to the highest rating that 
peer i has received as the maximum rating of peer i. Thus, max_mean(S) can be 
computed by taking the mean from the n maximum ratings from the n participants.   

Negative similarity. Let neg_comm(i,j) denote the subset of common users that either i 
or j have rated as negative ratings.  This measures the negative similarity in terms of 
the number of peers that peer i and peer j have opposite mean rating values. 
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The feedback similarity between two users depends on the historical transaction 
information. Thus ( , )i kµ  is the average rating value between i and k after certain 
number of transactions. We define sim(i,j) as the final similarity value between i and 
user j after we get the neg_sim(i,j) and pos_sim(i,j).  
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Let wn be the weight of negative similarity and wp be the weight of positive 
similarity. 

( , ) _ ( , ) _ ( , )n psim i j w neg sim i j w pos sim i j= × + ×                        (11) 

In the experiments reported in this paper, pw  and nw   are set to 0.5 respectively. 

Let ( )R i   denote the set of peers that have transactions with peers i. We can compute 

the similarity weighted local trust that i places on j, denoted by scij as follows: 

  
scij = cij × (sim(i, j) / sim(i,k)

k∈R(i )∑ )           (12) 

By utilizing pairwise feedback similarity, a peer i can assign higher weight to its 
local trust on those neighboring peers with similar feedback behavior and lower 
weight to its local trust on those peers with very dissimilar rating behavior. 
To facilitate the comparison of different local trust values, we normalize scij by ijl  as 

follows: 
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Let [ ]ijL l=  denote the local trust matrix of size n by n and 
!
t k+1  denote the global 

trust value vector of size n to be computed at (k+1)th round of iterations. We define
!
t k+1 = (1− a)LT

!
t k + a!p  , where a  is the probability of a user knows none and thus relies 

on the pre-trusted peers. We can expand 
!
t k+1   as follows: 

1

1 1 2 2(1 )( ... )k k k k

i i i ni n il l lt t t t pα α+ = − + + + +                                 (14) 

By combining feedback similarity and local trust to weight the amount of trust 
propagation from one participant to another in the trust network, we can constrain 
the effect of bad mouth from malicious peers on the trust of good participants via 
trust propagation. Similarly, we can limit the amount of trust from good peers to be 
propagated to malicious peers when their feedback similarity score is low. 

3.2  Global Trust Computation by Controlled Propagation 
Most of the trust models that utilize the propagating kernel to compute global trust 
are based on the flooding model with uniform distribution. Propagation with the 
uniform distribution treats all neighboring peers equally and fails to distinguish 
those strategically malicious peers from good peers. Even though, by introducing 
feedback similarity based local trust, a peer can decrease its local trust on those with 
dissimilar rating behavior, it cannot prevent or stop the detrimental effect of the 
positive ratings generated by malicious peers acting as spies or camouflage. Moreover, 
by using trust propagation with uniform distribution in global trust computation, the 
benefit of feedback similarity weighted local trust is further decreased because 
malicious peers acting as spies or camouflage can continue to gain higher global trust 
by collecting local trust values from good peers. For example, our experiments in 
Section 4.5 show that trust propagation with uniform distribution are vulnerable 
under Threat model E and Threat model F even for the trust model in [Su, et al. 2013] 
where feedback similarity is utilized in local trust computation.  

We argue in this paper that ServiceTrust++ should develop the conditional trust 
propagation kernel instead of using uniform distribution based trust propagation. In 
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this section, we describe a number of technical strategies used in ServiceTrust++ to 
control the trust propagation from several dimensions, including the similarity 
threshold controlled trust propagation, decaying factor, controlled jump strategy for 
breaking the malicious clique.  

3.2.1 Conditional Trust Propagation based on Rating Similarity Threshold 

Following the uniform trust propagation model, if there exists a directed link from 
participant i to participant j in the trust network, i would always propagates certain 
amount of its global trust value to j no matter how weak this trust relationship is. 
Most of the existing works, even those in recent years [Kuter, et al. 2010, Guha, et al. 
2004, Ortega, et al. 2012, Su et al. 2013], are based on the uniform trust propagation 
model for addressing the rating sparsity problems and malicious collective problems 
in trust and reputation management. However, we argue that trust and reputation in 
real world never follow the uniform propagation model. Intuitively, if the trust 
relationship between two participants i and j is too weak, participant i usually has 
the choice of not considering this weak trust relationship and thus stop to propagate 
its global trust value to j until its trust relationship with j improves. In 
ServiceTrust++, we introduce active and inactive state for each participant in the 
trust propagation network and set j to be in an inactive state with respect to 
participant i when their pairwise feedback similarity value on the directed link, 
which represents the strength of the trust relationship from i to j, is lower than a 
specified threshold value θ . i could propagate its global trust value to j only when 
the strength of trust relationship from i to j is higher than the threshold valueθ , and 
j is in an active state with respect to j. We call this model of trust propagation the 
similarity threshold based conditional trust propagation.  

We formulized the conditional trust propagation process as follows.

 

!
t k+1 = (1− a)LT

!
t k + a!p

ti
k+1 = (1−α )(l1it1

k + l2 it2
k + ...+ lnitn

k ) +α pi

l ji =
l
ji

if sim ji>θ

0 otherwise

!
"
#

$#
j ∈ [1, 2,!,n] θ ∈ (0,1)

                           (15) 

Formula (15) makes the following statements: 
(1) If the threshold value θ  is 0 and the decay factor is not turned on, the conditional 

propagation described in Formula 15 becomes the uniform propagation. If the 
threshold value θ  is 1, the trust propagation process could not be executed and 
no participant would propagate any trust value to others in the network. This is 
not desirable for a reputation system. That is why we set 0<θ <1.  

(2) We need to carefully select the appropriate threshold value in the conditional 
trust propagation process. If the threshold value θ  is too low, it cannot prevent 
the trust values being propagated from good participants to malicious ones. If the 
threshold value θ  is too high, there might be the danger that too many trust 
propagation paths from good ones to good ones are cut out. This may lead to the 
trust propagation process to be collapsed or meaningless. 

In the first prototype of ServiceTrust++, we recommend settings of θ  between 0.1 to 
0.5, such as 0.1, 0.2, 0.3, 0.4, 0.5. As we have analyzed, smaller θ  implies more 
propagation paths and faster convergence rate, and higher θ  implies fewer 
propagation paths and slower convergence rate. We conduct a series of experiments 
in Section 4 to show the impact of θ  values on attack resilience and propagation rate 
of ServiceTrust++. 
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3.2.2 Decay factors  

One serious threat to existing trust propagation models is the malicious clique. On 
one hand, malicious cliques can manipulate the trust propagation and unfairly bring 
down the global trust scores of good peers. On the other hand, the existence of 
malicious cliques can also affect the convergence speed of trust propagation based 
global trust computation.   

We argue that although employing pairwise feedback similarity to weight the 
local trust and threshold-based conditional propagation to control the global trust 
computation during the trust propagation are effective against all six attacks, when 
the number of strategically malicious peers (type D peers) becomes large and 
dominating in numbers, it will be harder to break the malicious cliques by simply 
relying on the rating similarity based techniques, which rely on the majority voting 
principle. This motivates us to incorporate the decay factor with tunable decay rates 
to the trust propagation kernel and the global trust computation algorithm to further 
improve the attack resilience of ServiceTrust++.  

Concretely, let (0,1]d ∈  be the decay factor supplied by the trust management 

system. By incorporating the decay factor in the trust propagation formula (15), we 
can compute the global trust at the (k+1)th iteration as follows:  

!
t k+1 = d × (1− a)LT

!
t k + a!p                                                  (16) 

By examining closer at the matrix computation, each element ti in the global trust 
vector is computed as follows:  

ti
k+1 = d × (1−α )(l1it1

k + l2 it2
k + ...+ lnitn

k ) +α pi                                   (17) 

We illustrate the effect of decay factor by example. By setting d=1/2 in Formula 16 
and Formula 17 above, it implies that as the trust propagation continues from hop 1 
to hop k, the decaying factor is changing from ½ to (½)2, …, (½)k, simulating the effect 
of continuous fading effect as the hop distance increases in each trust propagation 
path. In the first prototype of ServiceTrust++, we choose decay factors ranging from 
1/2, 1/3, 1/5, 1/10. Smaller d value implies faster decaying rate in the trust 
propagation and thus relatively lower global trust value overall. Also smaller decay 
factor d often leads to faster rate of convergence and better resilience to attacks. By 
setting d=1, the decaying effect will be zero in the propagation based global trust 
computation process. We conduct extensive experiments in Section 4 to analyze the 
impact of different settings of the decay factor d on both attack resilience and 
convergence speed of our global trust propagation algorithm. 
 

3.2.3 Other Parameters involved in Propagation based Global Trust Computation 

Formula 16 also shows that, in addition to decay factor d, the global trust 
computation in ServiceTrust++ also involves the damping parameter α, representing 
the probability of jumping out of the link-based propagation mode (hop-based circle of 
friends) during the trust propagation process. This damping factor involves both the 
setting of α value and the jumping strategy in terms of how the jump destination will 
be selected. Combining the damping factor α and the jump strategy offers a number 
of advantages in our trust model. First, it enables the ServiceTrust++ model to break 
the malicious cliques during a trust propagation process. Second, it supports the use 
of pre-trust peers with some given probability. Third, it also guarantees that the 
computation of matrix L is converging at some given probability. Another important 
parameter is the initialization of global trust value vector at the time step of k = 0.  
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Initialization Strategies   

The most commonly used initialization strategy is the uniform distribution based 
initialization, in which every peer in the network of size n will be initialized with the 
trust value of 1/n such that the sum of the global trust values for all n participants 

equals to 1. In this case, the initialization vector is set to t 0 = [1 / n,!,1 / n,!,1 / n] . In 
this paper we refer to this initialization strategy as the average initialization (AI).  

Alternatively, one may also wonder how the pre-trust based initialization strategy 
works in comparison to the uniform distribution based initialization. In pre-trust 
based initialization, each peer, except the pre-trust peers, starts with a global trust 
value of zero and all the pre-trust peers in P will have a global trust value of 1/|P| 
such that the sum of all n participants equals to 1. The initialization vector is 

t 0 = [t1
0 ,t2

0 ,...,tn
0 ]  , ti

0
= 1

|P| if i∈P  and ti
0
= 0 if i∉P . We refer to this initialization 

strategy as the pre-trust based initialization (PI). In order for the pre-trust based 
initialization to work, it requires a bootstrapping (warm-up) procedure in the 
feedback based trust system. For example, in our simulation-based experiments, 
prior to starting the trust propagation, pre-trust peers will send a certain number of 
service requests to the network in order to give other peers chance to obtain feedback 
ratings and global trust values. Without this warm-up process, the trust propagation 
will not be meaningful. Clearly, the PI strategy can cause extra burden for pre-trust 
peers.  

We observe through experiments on both simulation-based and real dataset 
(Epinions) that both initialization strategies deliver the similar effect in terms of 
robustness of trust against attacks, assuming the same jump probability α to 
propagate one’s global trust to a randomly selected participant in the network.  

3.2.4 Jump Strategies   

The jump strategies are related to the decision of where in the network the global 
trust propagation should be jump to given a damping probability α  There are two 
commonly used jump strategies: uniformly random jump or controlled random jump. 
The uniform random jump strategy implies that everyone in the network has an 
equal probability to be chosen as the jump destination. In contrast, the controlled 
random jump strategy constrains to a subset of peers as the candidate destinations of 
a random jump. For instance, in ServiceTrust++, we could use pre-trust peers as the 
subset of participants that serve as the destinations for the jump strategy. Thus, 
each of the pre-trust peers has the equal probability to be chosen as a jump 
destination. Alternatively we could also choose top K most trusted peers as the 
candidate destinations of the controlled jump strategy. Clearly, by restricting jump to 
only a subset of peers, be it pre-trusted peers or top K trusted peers, we provide 
better resilience to attacks compared to uniformly random jump strategy. Note that 
when K > |P|, top K based jump strategy may converge faster, but if a malicious 
peer obtained a sufficiently high global trust value to get into the top K peers, then 
the trust system will no longer be resilient to malicious cliques in Threat models C, D, 
E. Thus, in ServiceTrust++, we use the pre-trust based jump strategy as the default. 

Figure 3 gives a small trust network of 15 participants (peers). We use this 
example network to illustrate how different initialization strategies and different 
jump strategies may influence the global trust values of each peer in ServiceTrust++ 
and also in EigenTrust for the sake of comparison. In this example network, the local 
trust value on each edge is assigned by the zipf distribution and we allow some trust 
links from good users to malicious users. 30% of malicious users are included in this 
example network, which forms a malicious clique.  
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We first compare the time complexity of different combinations of initialization 
and jump strategies under EigenTrust and ServiceTrust++ using this example 
network. Figure 4 shows that different initialization and jump combinations do not 
affect the convergence time of EigenTrust but for ServiceTrust++, the controlled 
random jump to only pre-trusted peers consumes more iteration rounds to reach the 
convergence. This is primarily because the global trust in ServiceTrust++ is computed 
iteratively and the computation in each iteration will compute the pairwise rating 
similarity, leading to more number of iterations to reach the convergence condition.  

    
 

 
 

Figure 5 and Figure 6 show the global trust values for the 15 users after the global 
trust vector converges in EigenTrust and ServiceTrust++ respectively. We observe 
that the choice of the initialization vector does not influence the global trust values 
but the choice of jump strategies does for both trust models. If the uniformly random 
jump strategy is chosen, we can see that malicious users (id 11-15) obtain much 
higher global trust values in both EigenTrust and ServiceTrust++. This demonstrates 
that the controlled random jump strategies, as expected, could provide better attack 
resilience. 

Last but not the least, we would like to show how different α may impact on the 
attack resilience in Threat model C. Figure 7 shows that with the pre-trust initial 
and pre-trust jump strategy, the higher α is, the lower the global trust values of 
malicious users are. However, with higher α value, the high global trust values are 
concentrated in pre-trust users. This may overload the pre-trust users. Since α  
mostly aims to break the malicious collective, in our experiments, we set α  value 
typically between 0.1 and 0.25 with default value of 0.1. 

 
 

Fig.3. An example trust network topology 
under Threat model C 

Fig.4. Time complexity of different initial 
and jump strategies 
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Although the initialization strategy is not essential to the trust propagation 
models, the jump strategy chosen for a given trust model is critical in terms of its 
effectiveness in breaking the malicious cliques.  

4. EXPERIMENTAL EVALUATION 
In this section we evaluate the performance of ServiceTrust++ in terms of both attack 
resilience and service quality. We compare ServiceTrust++ with EigenTrust and 
ServiceTrust in a service network system without the support of trust under the six 
attack models. We evaluate the effectiveness of ServiceTrust++ in terms of attack 
resilience, convergence rate, time complexity by varying the sizes of the service 
networks, varying the decaying factors and propagation control threshold values, and 
by different ways of combining jump strategies and initialization strategies. We 
evaluate the effectiveness of ServiceTrust++ by comparing with two existing 
representative trust models for a number of reasons. First, EigenTrust is the No. 1 
most cited trust model in the literature of trust and reputation management. Second, 
although there are many existing trust models in the literature, none to date except 
ServiceTrust [Su, et al 2013] has shown to prevail over EigenTrust [Kamvar, et al. 
2003] in terms of attack resilience against the four attack models used by EigenTrust. 
Third, ServiceTrust in [Su, et al 2013] is a result of our early research on attack 
resilient trust management. Even though it improves over EigenTrust on the attack 
model C (malicious collectives with camouflage but no spies) and attack model D 
(malicious spies without camouflage), but it fails to handle more sophisticated attack 
models, such as malicious spies with camouflage or malicious collectives with 
camouflage and spies, like Threat models E and F. We show analytically and 
experimentally in this paper that there are a couple of reasons that these two 

Fig.5. Impact of initialization and jump 
strategies in EigenTrust 

Fig.6. Impact of initialization and jump 
strategies in ServiceTrust++ 

Fig.7. Global trust values of 15 peers in with different  values 
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representative earlier trust models perform poorly against complex attack models. 
First, although the use of Eigen vector based trust propagation remains to be the 
leading method for managing trust in large networked systems with rating sparsity, 
both EigenTrust and ServiceTrust directly employ eigenvector based uniform trust 
propagation with no consideration of any form of propagation control. Second, the 
controlled propagation in ServiceTrust++ should combine feedback similarity 
threshold based conditional trust propagation with decaying strategy and jumping 
strategy to conquer the inherent vulnerabilities due to uncontrolled uniform trust 
propagation.  

We organize the experimental results into three parts: (1) Evaluating attack 
resilience of ServiceTrust++ under all six attack-models in Section 4.2 and Section 4.3; 
(2) Evaluating the scalability and time complexity of ServiceTrust++ from two 
perspectives: varying the scale and the number of participants of the service 
networks in Section 4.4 and studying different parameter settings and their impact 
on the effectiveness of ServiceTrust++ in Section 4.5; and (3) Evaluate the 
performance of ServiceTrust++ using Epinions, a real dataset from 
http://snap.stanford.edu/data/soc-Epinions1.html. We show that ServiceTrust++ 
significantly outperforms EigenTrust and ServiceTrust with high attack resilience.  

4.1 Experimental Setup 
We simulate service provision networks of varying sizes by building a decentralized 
file sharing service network where peers can request files from other peers in the 
network (as service consumer) or respond to file download requests from others (as 
service provider). To make sure that a peer i can enter a feedback to another peer j 
only when peer i has received a service provided by peer j, we create a Gnutella-like 
peer to peer file sharing network by interconnecting peers using a power-law network 
(resemble to a real world p2p network). A query issued by a peer will be broadcasted 
hop by hop within the radius of the chosen hop-count horizon of the network, say 7 
hop-horizons.  

Nodes in each service network consist of three types: pre-trust nodes whose initial 
global trust is greater than zero, normal nodes who participate the network for 
download and upload services, and malicious nodes who are the adversaries 
attempting to degrade or destroy the quality and performance of the service network 
system. We use a probabilistic content distribution model where each peer initially 
select a number of content categories and share files only in these categories. Within 
one content category the popularity of files follows Zipf distribution. Files are 
assigned to peers probabilistically at initialization time based on file popularity and 
the content categories the peer plans to share.  

The simulation of the service network dynamics is done through simulation cycles. 
Each cycle consists of multiple query cycles. In each query cycle peers can 
probabilistically choose to ask queries or forward queries or respond to queries. The 
number of queries issued for different file download services are also based on Zipf 
distribution. After issuing a query the peer waits for response. Upon obtaining a list 
of providers that responded to the query, the peer select one provider from the list 
and starts downloading the file. The selection process will be repeated until a user 
has received a satisfied service. The probabilistic-based selection method is used. At 
the end of each simulation cycle, the local and global trust values are computed. We 
run each experiment several times and the results of all runs are averaged. The 
performance metric used in this paper includes the number of inauthentic file 
downloads (unsatisfactory services) v.s. the number of authentic file downloads 
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(satisfactory services). If the global trust values accurately reflect each peer’s actual 
behavior, then high global trust values minimize the number of inauthentic 
downloads. We also report the time complexity and the iteration rounds used for 
trust propagation. To make a fair comparison with EigenTrust and ServiceTrust, we 
choose the same set of configuration parameters as those used in EigenTrust 
[Kamvar, et al. 2003] as shown in Table I. We set pre-trusted peers to have 10 initial 
neighbors. To simulate the same hostile environment as in [Kamvar, et al. 2003], we 
also set malicious peers to have at least 10 initial neighbors and normal peers with at 
least 2 initial neighbors, which allows malicious peers to be connected to the highly 
connected peers and to other malicious peers. 

 
Table I. Simulation configuration 

 Parameter  Value  
Network  # of good users, pre-trust users and malicious 

users 
good-(60-100) pre-trust(3) 
malicious(0-42) 

# of neighbors for pre-trust and malicious users 10 
# of neighbors for regular good users 2 
# of hops for forwarding queries 7 

Service 
distribution  

Number of distinct services of the whole system  20  
fraction of distinct services at good user i  20%  
Set of services categories supported by good peer i  Zipf distribution   

Top % of queries for most popular services 
malicious users respond to  

20%  

Queries of services issued by good user i  Zipf distribution  

System 
Behavior  

% of service requests in which good user i 
provides unsatisfied services  

5%  

% of service requests in which malicious user i provides 
unsatisfied services  

Varied in different threat model  

provider source selection algorithm  Probabilistic based and similarity based  
Probability that user with global trust value 0 is selected 
as service provider  

0%-10% 

 
In the second group of experiments, we extend the size of service networks with 

up to 10,000 peers. We show that the ServiceTrust++ schemes not only perform well 
in small scale networks but also perform proportionally well in large networks. 

4.2  Effectiveness of ServiceTrust++ 
In this section, we evaluate the effectiveness of ServiceTrust++ by comparing it with 
EigenTrust and ServiceTrust in terms of attack resilience. All simulations are 
executed under threat models A, B, C and D. For ServiceTrust++, we set the decay 
factor 0.5d =  and the rating similarity threshold 0.5θ =  for conditional trust 
propagation. The experiment results are depicted in Figure 8. We will report the 
evaluation result for Threat models E and F in Section 4.3. 

For Threat models A and B, all three trust models outperforms non_trust systems 
with consistently about 5%-10% of failed services (malicious downloads) no matter 
how the ratio of malicious nodes varies in the network from 0% to 90%. This is 
primarily because in the simulation based experiments, we have allowed normal 
peers performing unintentionally bad (unsatisfactory) service through the new comer 
policy configuration, which allows a peer with global trust value 0 to be selected as a 
provider at the maximum 10% probability. This also gives the malicious peers with 
zero trust values at most 10% probability of being selected as a provider.  

For Threat models C and D, ServiceTrust++ consistently performs well with only 
5%-10% of failed services (malicious downloads) as the camouflage probability of 
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malicious users is increased from zero percentage to 90% in the network. So does 
ServiceTrust model due to the use of feedback similarity weighted local trust 
computation. However, EigenTrust starts failing in comparison when the camouflage 
probability f% reaches 10% in Threat model C. For Thread model D, under the same 
experimental setting as in EigenTrust, with a network of 103 peers with 60 normal 
peers, 3 pre-trust users and 40 malicious users, divided into two groups, regular 
malicious peers (Type B) and strategically malicious spy peers (type D),  
 

       

       

Fig.8. Fraction of failed services in threat model A, B, C and D (d=0.5, 0.5θ = in ServiceTrust++ 

 
Figure 8 shows the results measured when we vary the ratio of type D and type B 

peers in each experiment from 40 type B users, 0 spy users to 5 type B peers, 35 type 
D peers. Again ServiceTrust++ performs consistently better than EigenTrust in all 
cases. When the number type D peers (spy) reaches 50% of the malicious peers, 
EigenTrust is getting the highest number of failed services, which is about 38% of 
failed services, while ServiceTrust++ constantly performs well with only about 5% 
failed services due to the 10% probabilistic new comer selection policy. The strength 
of ServiceTrust++ against strategic malicious behaviors is attributed to its feedback 
variance weighted local trust computation and its feedback similarity weighted 
global trust propagation, which makes use of the sharp difference between the rating 
behavior of malicious users in the malicious collective and the feedback rating 
behavior of normal peers to control the trust propagation from good peers to 
malicious peers.  

To further illustrate the performance difference between EigenTrust and 
ServiceTrust++ under Threat models C and D, Figure 9 provides visual display of the 
number of services provided by three types of participants in a service network: 
normal peers, pre-trust peers and malicious peers under Threat models C and D. The 

Threat Model A Threat Model B 

Threat Model C Threat Model D 



39:22                                                                                                                            Z, Su et al. 
 
setting for this set of experiments is the same as that in Figure 8. In Threat model C 
(camouflage probability is 70%), we see that the number of services provided by 
malicious peers (red stars) are almost zero in ServiceTrust++ but very high in 
EigenTrust (800 times on average). In Threat model D (# of spy users are 30), the red 
star and the pink triangle represent the number of services provided by type B users 
and type D spy peers respectively, both of which are very low in ServiceTrust++, less 
than 50 but much higher in EigenTrust with on average 1300 for type B peers and 
400 for type D peers. This shows that EigenTrust fails to defend the reputation 
management against the colluding behavior of type D spy peers and type B 
camouflage peers. 

 

 
Fig.9. Number of services provided by different kind of users (d=0.5, 0.5θ = in ServiceTrust++) 

 
To make a fair comparison with EigenTrust and ServiceTrust, for the set of 

simulations above, we take the same experiment settings in ServiceTrust++ as in 
EigenTrust and ServiceTrust. In Threat models C and D, the percentage of malicious 
peers is only 27% and 40%, respectively. In the following experiments, we vary the 
percentage of malicious peers in Threat models C and D to evaluate the performance 
of ServiceTrust++ and to compare it with EigenTrust. 

For threat model C and D, we vary the percentage of malicious users from 10%, 
30%, 50% and 70% to show the attack resilience of EigenTrust, ServiceTrust and 
ServiceTrust++. The camouflage probability of malicious peers is 50% in Figure 10(a).  
In Figure 10(b), we split all the malicious users equally into two groups. Namely, the 
number of type D peers and the number of type B users are the same in Threat model 

 

 

EigenTrust(Threat Model C, f=0.7) ServiceTrust++ (Threat Model C, f=0.7) 

EigenTrust (Threat Model D #D=30%) ServiceTrust++ (Threat Model D) #D%=30%) 
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D. Figure 10 shows that ServiceTrust++ consistently performs well even when the 
percentage of malicious peers reaches to 70%.  But the attack resilience of 
EigenTrust declines linearly with the increasing percentage of malicious users. In 
Threat model C, when the percentage of malicious peers reaches 70%, there are 
about 37% of failed services in EigenTrust. Similarly, for Threat model D, the 
percentage of failed services reaches to 55% in EigenTrust, while ServiceTrust++ 
remains to have very low percentage of failed services.  

 

        

 
Fig.10. Fraction of failed services in threat model C and D with different percentage of malicious users 

(d=0.5, 0.5θ = in ServiceTrust++) 

 
The overall design ServiceTrust++ is quite different from that of ServiceTrust in 

[Su, et al. 2013]. ServiceTrust++ advocates two novel and significant features: using 
conditional trust propagation kernel with feedback similarity based threshold and 
combining with decaying strategy and jumping strategy. These innovative techniques 
enable ServiceTrust++ to be highly resilient and effective against all six attack models.  

We include ServiceTrust as the third model in this set of experimental comparison 
to show that for attacks under the categories of Threat models C and D, only relying 
on the feedback similarity weighted local trust computation together with the rating 
variance to aggregate individual transaction ratings is sufficient. However, relying 
on uniform trust propagation without exercising any form of controlled trust 
propagation, ServiceTrust will suffer from inherent vulnerabilities under complex 
attacks like Threat models E and F, as we will show in the next section. 

4.3  ServiceTrust++ under Threat Model E and Threat model F 
In this section, we evaluate the effectiveness of ServiceTrust++ in terms of attack 
resilience under Threat models E and F, which are the two most sophisticated threat 
models. To demonstrate the superiority of ServiceTrust++ design as a whole, we 
compare the performance of  ServiceTrust++ with EigenTrust, ServiceTrust in [Su, et 
al. 2013] and ServiceTrust++(Uni) (with only decay and jump strategy incorporated 
but keeping uniform trust propagation kernel).  In Threat model E, malicious type D 
users try to gain some feedback similarity with good peers by providing m% honest 
feedbacks to good users and malicious type B peers form a malicious chain to boost 
each other's global trust value. In Threat model F, except the malicious behaviors 
depicted in Threat model E, the type D peers also form a malicious chain to boost 
each other’s trust. The experiment results are shown in Figure 11 with 20% 
percentage of type D users and 20% type B users. Figure 11(a) shows the attack 

(a)Threat Model C with f%=50% (b)Threat Model D with number of spy users =20 
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resilience under varying camouflage m%, with decay factor d=1/2 in Threat model E. 
Figure 11(b) shows the attack resilience under varying camouflage m%, with decay 
factor d=1/2. For both Figure 11(a) and (b), the threshold for ServiceTrust++ is 0.5. 
 

     
 

Fig.11. the attack resilience under Threat model E and Threat model F (d=1/2, θ =0.5) 
 

From Fig.11, ServiceTrust++ has very low percentage of failed services and is the 
smallest, about 5%, compared with almost 40% failed services in ServiceTrust++(Uni), 
slightly over 50% failed services in ServiceTrust, and about 80% failed services for all 
cases in EigenTrust. We would like to make two important observations. First, 
although uniform trust propagation kernel is used in both ServiceTrust and 
ServiceTrust++(Uni), by simply incorporating the combination of decaying strategy 
and jumping strategy in ServiceTrust++(Uni), we can weaken the effect of malicious 
chain to some extent, enabling ServiceTrust++(Uni) to have 10% less failed services. 
Second and more importantly, by introducing rating similarity threshold based 
conditional trust propagation kernel combined with decaying strategy, ServiceTrust++ 
can successfully control and prevent the global trust values propagated from good 
peers to malicious peers, leading to high attack resilience of ServiceTrust++ against 
all six attack models. In fact, the difference in attack resilience between 
ServiceTrust++ and EigenTrust will be more pronounced when the size of the service 
network is bigger and the trust network gets sparser.  

Similar observations are found in Figure 11(b) under Threat model F. Only 
EigenTrust under Threat model F performs slightly better, about 2%, than under 
Threat model E. This is because the malicious chain between type D users could help 
improve the global trust values of good peers to which type D participants always 
provide good/authentic ratings. 

From Figure 11 (a) and (b), we also observe that except EigenTrust, all the rest 
three trust models are not sensitive to the changes of m% from 30%, 50% to 70%. For 
EigenTrust, the percentage of failed services is as high as 80% when the m% is less 
than 50%, but when the m% is 70%, the percentage of failed services in EigenTrust 
declines to about 70%. In comparison, for ServiceTrust and ServiceTrust++(Uni), the 
percentage of failed services does not change too much. This is because in EigenTrust, 
the good peers could also obtain some positive global trust values from type D peers 
with the increasing percentage of honest feedbacks of type D participants, which 
boost good peers’ global trust values to some extent. In contrast, due to the variance 
based rating aggregation and rating similarity weighted local trust computation used 
in   ServiceTrust++ and ServiceTrust, we prevent good users obtain high positive 
global trust values from type D participants even type D users provide honest 
feedbacks with a high probability.  

(a) Threat model E (b) Threat model F 
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Figure 12 illustrates why ServiceTrust++(Uni) could significantly outperform 
ServiceTrust naïve model with d=1 (no decaying strategy) under Threat model E 
compared with ServiceTrust++(Uni), where the percentage of type D and type B 
malicious peers are both 20% and the decay factor d=1/2. We observe from Figure 12, 
type B malicious peers in ServiceTrust++(Uni) have much lower global trust values 
than those in ServiceTrust. Also the global trust values of malicious type B peers (id 
1-20) in ServiceTrust are about 0.02, which is much higher than all the other non-
pre-trust peers. In contrast, the global trust values of type B peers (id 1-20) in 
ServiceTrust++ are only about 0.01, which is lower than or same as good peers.  

 

     
 
 

 
 

For type D peers and normal good peers, there is no significant difference between 
global trust values in both ServiceTrust and ServiceTrust++(Uni). However, pre-trust 
peers in ServiceTrust++(Uni) have much higher global trust values than those in 
ServiceTrust. We also observe that incorporating the decay factor does not improve 
the global trust values of normal peers but it will prevent or constrain the global 
trust values to be propagated to type B malicious peers from pre-trust peers and good 
peers, which alleviates the detrimental effect of the malicious chain formed by type B 
participants. 

Figure 13 illustrates why ServiceTrust++ performs significantly better than 
ServiceTrust++(Uni) under Threat model E. The percentage of type D and type B 
malicious peers are both 20% with decay factor d=1/2 in ServiceTrust++. The rating 
similarity threshold value is set to 0.5θ = . From Figure 13, we observe type B 
malicious peers in ServiceTrust++ could hardly get any positive global trust values 
but in ServiceTrust++(Uni), their global trust values are about 0.01. But the global 
trust values of normal good participants in ServiceTrust++ are much higher than they 
are in ServiceTrust++(Uni) thanks to the utilization of conditional trust propagation 
kernel.  

To make a better comprehension of how ServiceTrust++ prevents the global trust 
values propagating from good users to malicious users, we depicted the similarity 
matrix between good users and malicious participants of ServiceTrust++ under threat 
model E in Figure 14. We show the pair-wise similarity values between different 
types of participants under Threat model E for ServiceTrust++. We can clearly see 
that almost all of the similarity values between good ones and malicious ones are 
below 0.5 in Figure 14(a) and most of the similarity values between good ones and 
good ones are above 0.5 in Figure 14(b). Therefore, if we take the threshold value of 
0.5 as the threshold condition for controlled trust propagation, it will help us prevent 

Fig.12. Global trust value of each user in 
ServiceTrust and ServiceTrust++(Uni) under 

Threat model E 

Fig.13. Global trust value of each user in 
ServiceTrust++(Uni) and ServiceTrust++ 
under Threat model E (d=1/2, 0.5 ) 
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trust values of good peers to be propagated to malicious ones. At the same time, this 
conditional trust propagation will continue to enable the trust propagation process 
between good peers, making ServiceTrust++ an effective trust model for encouraging 
good service and feedback rating behavior and punishing against strategic attacks. 

 
 
 
 
 

In order to gain a better understanding the role of decaying strategy in 
Eigenvalue based uniform trust propagation models, in the next set of experiments 
shown in Fig.15, we evaluate how different decay factors affect the performance of 
trust models in terms of attack resilience under Threat model E for four different 
trust models: EigenTrust, EigenTrust extended with a decaying strategy 
(EigenTrust+decay), ServiceTrust++(Uni) and ServiceTrust++.  

 

    
 

 
 
 
The camouflage probability for type D users is 0.3 and there are 20% type D users 

and 20% type B users. The threshold value used in ServiceTrust++ is θ =1/2. From Fig. 
15, the first interesting observation is that ServiceTrust++ with θ =0.5 threshold 
value delivers consistently good performance under varying decay rates from 1, 1/2, 
1/3, 1/5 to 1/10 in terms of attack resilience under Threat model E. This is because 
with the threshold value of 1/2, the malicious chain could hardly be effective and few 
of type D peers could obtain global trust values from good peers. However, by 
observing the effect of different decaying rates for EigenTrust+decay and 
ServiceTrust++(Uni), we can clearly see that smaller decay factor can significantly 
reduces the percentage of failed services for both EigenTrust+decay and 
ServiceTrust++(Uni) and making the two models more attack resilient than 
otherwise.  

Fig.15. Attack resilience of EigenTrust and 
ServiceTrust++(Uni) with different decay 
factors under threat model E ( 0.5 ) 

Fig.16. Attack resilience of ServiceTrust++ 
with different threshold values under threat 

model E (d=1/2) 

Fig.14. (a) Pair-wise similarity value 
between good participants and malicious 

participants (d=1/2, 1/2 ) 

Fig.14. (b) Pair-wise similarity value 
between good participants and good 

participants (d=1/2, 0.5) 
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In all the experiments on ServiceTrust++ reported in this section, we set the 
default rating similarity threshold value as 0.5 for conditional trust propagation 
unless explicitly stated otherwise. In the set of experiments shown in Fig. 16, we will 
show how different threshold values affect the attack resilience of ServiceTrust++. 
The decay factor is set to d=1/2, and the camouflage probability for type D users is 
0.7. There are 20% type D participants and 20% type B participants. From Fig.16, we 
observe that the percentage of failed services in ServiceTrust++ is around 35% when 
conditional trust propagation is based on the rating similarity threshold value of 0.3 
and the percentage of failed services is even higher when 0.1,  0.2θ = . This shows that 
with a low threshold value, ServiceTrust++ could not effectively prevent the malicious 
type D peers from using spies and camouflage to obtaining high global trust values 
from good peers. Only when the θ  value is set to 0.4, we observe a sharp reduction in 
the percentage of failed services and the reduction continues when we increase the θ  
value from 0.4 to 0.5. We can illustrate this result by recalling Figure 14, where we 
can see that most of the pair-wise similarities between good peers and malicious type 
D peers are above 0.3 and below 0.5. 

4.4 Time Complexity and Impact of Network Scale 
In order to reflect the best results given in [Kamvar, et al. 2003] on EigenTrust, in all 
previous experiments, we use the same size of networks as those in [Kamvar, et al. 
2003] to provide a fair comparison with the best of EigenTrust. In this section, we 
would like to point out that the network density in EigenTrust is fairly dense with 
the degree of 10 for malicious peers for the small-scale networks. In this section we 
evaluate ServiceTrust++ by comparing with EigenTrust using varying sizes of service 
networks, ranging from 100, 500, 1000, 5000 to 10,000 participants, all with node 
degree on average of 5.  

Figure 17 shows that when the scale of network is 100, only 4 iteration rounds are 
needed to reach to all other peers from every peer through a trust propagation kernel. 
However, we can only reach 14% and 7% of all peers in the network within 4 
iteration rounds when the scales of network are 5,000 and 10,000 respectively. As the 
size of the service network increases, the number of hops we need in order to reach 
other nodes in the network through the hop-based query broadcast mechanism also 
increases. Even with the very sparse networks, ServiceTrust++ can finish the hop-
based process in 7 iteration rounds (hops) for all the network scales in this 
experiment. This shows that even with a network of size 10,000 and average degree 
of 5, most nodes can reach out to a large population in 7 hops.  

       
 

 
Figure 18 shows the time complexity of hop-based broadcasting in ServiceTrust++. As 
the network size increases from 100 to 10,000, the time needed to reach to all 

Fig.17. the ratio of reached peers in different 
iteration rounds with different network scales 

Fig.18. Time complexity of reachability for 
varying network size 
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participants will increase. Compared with the network of size 10,000, the time 
complexity for the network of 100 participants is very tiny. In 7 hops, the time 
complexity of trust propagation over a network of 100 participants is 0.00282 seconds 
and the time complexity increases to 20 seconds when the size of the service network 
reaches 10,000 participants. From Figure 18, we also observe that when the number 
of participants reaches to 10000, it takes much longer time for a node to reach every 
other node in the network. However, when the number of nodes in the network is 
10000, with only 6 hops we can reach to 80% of other nodes in the network, which are 
sufficient in terms of the number of participants to be involved in the global trust 
computation of a given peer. The time complexity for iterations of 6 hops is only 7 
seconds, very reasonable and acceptable runtime, considering that we use a personal 
laptop with i5 CPU 2.5GHZ for the experiments. the time complexity will be much 
lower if the experiments were run on a much faster commercial server with higher 
CPU and memory capacity.  

Figure 19 shows the time complexity of trust propagation when the propagation 
process converges for ServiceTrust++ by comparing it with EigenTrust, ServiceTrust. 
For ServiceTrust++, we use the decay factor as 1/2 and the threshold value as 0.5. As 
the network size increases from 100 to 10000, the convergence time for the trust 
propagation will increase for all trust models. However, when the network size 
increases from 1000 to 5000 and 10,000, ServiceTrust++ consistently shows the best 
performance with lowest convergence time, whereas EigenTrust takes much longer 
time to converge for uniform trust propagation compared to ServiceTrust. There are 
two important factors that have significant impact on the time complexity of trust 
propagation process and its convergence speed: the length of malicious collective and 
the size of the network. In EigenTrust, the malicious peers could obtain positive 
global trust values from good peers by camouflage behavior or spy behavior. Both 
could make the malicious chain more effective in boosting the trust scores of 
malicious peers. Also the longer this malicious chain is,  the harder it will take for 
the trust propagation process to converge since the global trust values of malicious 
peers in this malicious clique keep increasing. We can see that when the network size 
reaches to 10,000 participants, the time complexity of EigenTrust to converge its 
global trust computation is 15.43 seconds while it takes 6 seconds and 4 seconds 
respectively for ServiceTrust and ServiceTrust++ to reach the same convergence 
condition.  

 

         
 

 
 
 
The result from Fig. 19 demonstrates that ServiceTrust++ is effective in breaking 

the malicious colluding cliques with spies and camouflages by exercising a suite of 
novel attack resilient techniques: variance based feedback aggregation, feedback 
similarity weighted local trust computation, conditional trust propagation by tunable 

Fig.19. Time complexity of each trust model 

with different network scales(d=0.5,
in ServiceTrust++) 

Fig.20. Time complexity of EigenTrust in 
10000 nodes network with different decay 

factors 
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rating similarity threshold, and decaying strategy combined with jump strategy and 
initialization strategy. The ability to break the malicious cliques at early stage of the 
iterative global trust computation through Eigenvalue based propagation kernel, the 
faster the propagation process will converge, making ServiceTrust++ scalable to trust 
management in large scale service networks. 

The next set of experiments shown in Fig. 20 is to study how decay factor may 
affect the time complexity of the uniform trust propagation process. We measure the 
convergence time for EigenTrust model with varying decay factors using the network 
of 10,000 participants. From Fig. 20, we see that the smaller the decay factor is, the 
faster the global trust computation will converge and the smaller the time complexity 
will be. When the decay factor is 1, there is no decaying strategy is employed, the 
time to converge is close to 16 seconds. When the decay factor is 1/10, the time 
complexity of EigenTrust for the network size of 10,000 participants is reduced to 
4.22 seconds. This shows that, in addition to increase the attack resilience as shown 
in Fig. 15, the decaying factor can also significantly improve the convergence speed of 
the global trust computation even with uniform trust propagation kernel. 

Next we evaluate the performance of ServiceTrust++ in sparse network and dense 
network respectively by comparing it with EigenTrust and ServiceTrust. Due to 
space constraint, we only show the experimental results under Threat model C with 
the camouflage probability f% set to 0.4 and Threat model D with 20 type D 
malicious peers. Figure 21 (a) and (b) show that ServiceTrust++ has the lowest 
percentage of failed services, ServiceTrust has slightly higher percentage of failed 
services for both sparse and dense networks but EigenTrust has significantly higher 
percentage of failed services, about 25% failed services for dense network and 36% for 
sparse networks, compared to 6% and 14% for ServiceTrust++ and 6.5% and 14.3% for 
ServiceTrust in dense network and sparse network respectively.   

 

        
 

Fig.21. Percentage of failed services in the sparse feedback rating network under different trust models. 
(d=0.5, 0.5θ = in ServiceTrust++) 

 
Another observation is that for all three systems, the percentage of failed services 

in the sparse network is consistently higher (about 8%) than that in a dense network 
under both Threat models C and D. Also under Threat model D, the percentage of 
failed services in the sparse network is very high, about 67%, for EigenTrust, 
compared to 35% in the dense network. Also EigenTrust performs worse under 
Threat model D (67% failed services) than under Threat model C (36% failed 
services). In comparison, ServiceTrust++ performs better under Threat model D than 
under Threat model D for both dense and sparse networks. Namely 14% failed 
services under Threat model C versus only 8% failed services under Threat D for 
sparse networks and 6% failed services in sparse networks versus 4% failed services 

(a)Threat model C f=0.4 (b)Threat model D type D=20 
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in dense networks. One reason that all three trust models perform less well in sparse 
network than in dense network is because, compared with a dense network, a sparse 
network usually needs more rounds to complete the warm-up process and under the 
same experimental setting, trust models in sparse network could not get enough 
history transactions as well as similarity information. However, even with this 
situation, ServiceTrust++ shows much more attack resilience than EigenTrust.  

4.5  Impact of Different Parameters  
In this section, we study how different choices of decay factor, initialization strategy 
and jump strategy may impact on the effectiveness of ServiceTrust++ compared to 
EigenTrust. The first set of experiments evaluates how different settings of the 
decaying factor and different combinations of initialization strategy and jump 
strategy may impact on the effectiveness of both conditional trust propagation in 
ServiceTrust++ and uniform trust propagation in EigenTrust. 
 

  
 

 
 
 
 

Figure 22 shows the impact of decay factors on attack resilience of EigenTrust and 
ServiceTrust++. We studied the impact of varying decay factors under three 
combinations of initialization and jump strategies: 1/N:1/N, 1/N:1/|P|, 1/|P|:1/|P|. 
We omit the combination of 1/|P|:1/N because it has similar performance as 1/N:1/N 
in terms of attack resilience. By measuring the percentage of failed services with 
different settings of decay factor ranging from 1, 1/2, 1/3, 1/5 to 1/10, we observe that 
for both Threat model C and Threat model D, the decay factor can help EigenTrust to 
be more attack resilient. More interestingly, using decay factor, ServiceTrust++ can 
achieve higher attack resilience than EigenTrust with the pre-trust based controlled 
jump (JP) strategy, regardless whether the initialization strategy is AI (uniform 
initialization) or PI (pre-trust controlled initialization). However, combining the AI 
initialization strategy (uniform) with the uniform distribution based jump strategy 
helps neither ServiceTrust++ nor EigenTrust in terms of attack resilience.  

In the next set of experiments, we study the effect of different settings of the 
decay factor on the convergence rate of trust propagation ServiceTrust++ and 
EigenTrust. Since we want to evaluate the effectiveness of decay factor under 
uniform trust propagation, we use ServiceTrust++(Uni) for comparison in order to 
eliminate the influence of rating similarity threshold value in the trust propagation. 

Fig.22 (a). Impact of decay factor and Initial-
Jump strategies on Attack resilience with 27% 
malicious peers in Threat model C ( =1/2 in 

ServiceTrust++) 

Fig.22 (b). Impact of decay factor and 
Initial-Jump strategies on Attack resilience 
with 20% type D peers in Threat model D 

( =1/2 in ServiceTrust++)  
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Figure 23 (a) and (b) show the iteration rounds of ServiceTrust++(Uni) by varying the 
settings of the decay factor d under Threat models C and D respectively.  

From Figure 23(a), we observe that the lower the decay factor is, the faster the 
propagation process converges under Threat model C. Also we observe that with the 
same decay factor, the higher the camouflage probability is, the slower the trust 
propagation converges. This is because malicious peers could get higher global trust 
values with higher camouflage probability and boost each other's trust values, which 
in turn slows down the speed to convergence in the global trust computation. 
Similarly, under Threat model D, we observe that under the same decay factor, the 
more type B peers are, the more iteration rounds will be needed to reach convergence. 
These observations are consistent with our analysis of decay factor in Section 3.3. 

 

       
 

Fig.23. Convergence speed of ServiceTrust++(Uni) w. different decay factors  
 

Finally, we evaluate the impact of different ways of combining initial and jump 
strategies on the convergence rate of trust propagation without the impact of both 
decay factor and threshold value. Thus we conduct this set of experiments using  
ServiceTrust. Figure 24 shows the convergence speed of ServiceTrust for different 
combinations of initial and jump strategies under Threat model C when the 
camouflage probabilities are set to 0.3, 0.4, 0.5 and 0.6, and under Threat model D 
when the percentage of type D peers are set to 10% 20% and 30%, respectively.  

From Figure 24 (a), we observe that for the combination of uniform distribution 
based initialization and pre-trust based random jump strategy, it will take more time 
to converge, compared to other combinations. This is mainly because of the existence 
of malicious chain. When malicious peers with high trust value jump to pre-trust 
peers, it will cause more rounds to reach the convergence. Though 1/N:1/N converges 
faster, it is less resilient to attacks (recall Figure 22). With 1/|P|:1/|P| combination, 
it is more attack resilient and converges fast but it needs some warm-up time to 
boost-trap the trust model (recall Section 3.3).  

Figure 24(b) shows that without the malicious chain, different combinations of 
initialization and jump strategies have similar influence on the convergence speed. 
This result also proves that when malicious peers forming a malicious collective, the 
attack to a trust model, such as those under Threat models E and F, can be much 
more detrimental. This motivates us to develop ServiceTrust++.  

 

Threat Model C Threat Model D 
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Fig.24. Convergence Speed of different combinations of initialization and jump strategies  
 

4.6 Evaluating ServiceTrust++ using real dataset Epinions  
Epinions is a platform for people to share their experiences, both good and bad, about 
a variety of topics, ranging from daily life consumptions (such as cars and coffees) to 
media objects (such as music and movies). Users could write reviews, rate the 
reviews of other authors and indicate trust or distrust for another user. The Epinions 
dataset (http://snap.stanford.edu/data/soc-Epinions1.html) represents a very sparse 
network with about 75,879 nodes. The degree distribution follows the power-law 
distribution. Most of the nodes only have limited trust links with other nodes. Thus, 
the Epinions dataset is an ideal sparse network for evaluating the effectiveness of 
ServiceTrust++. Figure 25 shows the in-degree and out-degree distribution of 
Epinions dataset network.  

 
Fig.25. The degree distribution of Epinions Dataset. 

In our experiments reported in this paper, we only consider the top 1000 nodes 
with highest degree. Among the 1000 nodes, there are 134 nodes without any in-
degree, which means that they are not trusted by any of the 1000 nodes. Three nodes 
have no out-degree, which means that they do not trust anyone in the system 
composed of these 1000 nodes. The maximum out-degree for this network of 1000 
nodes is 478 and the maximum in-degree is 366. The minimum out-degree and the 
minimum in-degree of the network are both 0. The average degree of the network is 
40.24. The degree of this sample Epinions network remains to follow the power-law 
distribution and is a sparse network. The real pre-existing directed link from one 
node to another node in Epinions represents a direct trust relationship between the 
two nodes. In our experiments, we take the 134 nodes as the malicious nodes for 
launching attacks, including attempting to degrade or destroy the quality and 
performance of the service network system. We consider the top 30 users as our pre-
trust peers whose initial global trust is greater than zero. All the rest are normal 
good users in the network for asking and responding to service requests. We simulate 

(a)Threat Model C (b)Threat Model D 
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the transactions by using the query-answering mechanism. Every node could send 
requests and we suppose that all 134 malicious users could answer any of the 
requests. Only when peer i has received a service provided by peer j, peer i is allowed 
to give j one feedback rating. Due to space constraint, we measure the effectiveness of 
ServiceTrust++ against Threat models B, C and E against malicious collectives with 
malicious chain, malicious camouflage and malicious spies. 

Figure 26 how ServiceTrust++ performs over Epinions Dataset compared with 
EigenTrust and ServiceTrust. We observe the same performance (about 20% failed 
service requests) for all three trust models, which is consistent with the results of our 
simulation-based experiments. By carefully analyzing the global trust values and the 
topology of trust network, we see that the global trust values of all the malicious 
users are much lower in all three trust propagation models. But constrained by the 
network topology, there are several good users, which have only one other good 
neighbor to respond to their service requests. If the only good neighbor involuntarily 
provides unsatisfied services, the good users will keep trying all the other responders 
even they are all malicious users due to our experimental settings. 

 
Fig. 26 Effectiveness of ServiceTrust++ under threat model B (1000 Epinions nodes, 134 malicious nodes) 

compared with EigenTrust and ServiceTrust 

       

         
Fig 27 shows that with a malicious clique formed by 134 malicious users with 

camouflage behavior, ServiceTrust++ significantly outperforms EigenTrust and 
ServiceTrust. This is because even the malicious users under Threat model C could 

Fig. 27 Performance of ServiceTrust++ under 
Threat model C over Epinions dataset (1000 

nodes, 134 malicious nodes with 10%, 30%, 50% 
and 70% camouflage probability) 

Fig. 28 Performance of ServiceTrust++ under 
Threat model E over Epinions dataset(1000 

nodes, 134 malicious nodes with 34 type D users 
and 100 type B users) 
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gain some small pair-wise similarity values with good peers, the conditional trust 
propagation mechanism designed in ServiceTrust++ can prevent positive global trust 
values being propagated from good users to malicious ones. In comparison, 
EigenTrust and ServiceTrust perform very poorly with significantly higher 
percentage of failed services. It is interesting to note that ServiceTrust performs 
much worse compared to the small and simulated dense network shown in Figure 8. 
This is due to the very sparse network for Epinions dataset and the fact that 
compared to the malicious users, too many good users have very small number of 
trusted neighbors, thus only relying on feedback similarity weighted location trust 
computation is no longer effective. This result once again demonstrates that 
ServiceTrust++ is highly effective in attack resilience and scalability in terms of both 
dense and spare networks of different sizes, thanks to the novel techniques, such as 
conditional trust propagation based on rating similarity threshold combined with 
decaying strategy and jump strategy, which prevents malicious users from boosting 
their global trust values from good users through camouflage. 

Fig 28 shows that under Threat model E, the conditional trust propagation 
mechanism can successfully prevent the malicious spies or malicious type B users to 
boost their global trust values from good users. In comparison, both EigenTrust and 
ServiceTrust failed miserably under Threat model E because they cannot identify 
type D malicious spy users when the camouflage rating behavior is turned on with 
varying camouflage probability values ranging from 10%, 30%, 50% to 70%. As a 
result, the attack resilience of ServiceTrust under Threat model E is very poor, 
especially when the camouflage probability is 50%.  

Fig.29 provides an illustration by plotting the statistics of global trust values 
under Threat model E for ServiceTrust++, with the threshold value=0.5 and the 
decay factor=0.5 (see the right figure) and ServiceTrust (see the left figure) for the 
sake of comparison.  

 
 

Fig 29 Global trust value of each user in ServiceTrust and ServiceTrust++ under the attack model E on 
Epinions dataset (1000 nodes, 134 malicious nodes with 34 type D users and 100 type B users) 

 
In the right figure of Figure 29, we can see that with a higher threshold value 

(0.5), the malicious users including spy users and malicious type B users have the 
lowest global trust values and thus they cannot use any high global trust values to 
subvert the trust management system. However, ServiceTrust model cannot 
effectively cut the propagation paths from good users to spy users. From the left 
figure in Fig. 29, both the malicious type B users and spy users get much higher 
global trust values under the uniform trust propagation model. This also illustrates 
why ServiceTrust and EigenTrust perform very poorly under Threat model E.  

By evaluating ServiceTrust++ using Epinions dataset, we show that 
ServiceTrust++ significantly and consistently outperforms EigenTrust and 

ServiceTrust++ with threshold value=0.5 ServiceTrust 
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ServiceTrust in sparse and large network in terms of attack resilience, thanks to  the 
variance-based rating aggregation, feedback similarity weighted local trust powered 
by the similarity threshold controlled conditional trust propagation combined with 
decaying strategy and jumping strategy.    

5. RELATED WORK  
Trust and reputation management research has attracted attentions from several 
areas of computer science over the last decade, ranging from eCommerce [Witkowski, 
et al. 2011, Liu, et al. 2011, Zhang, et al. 2011], mobile networks [Jin-Hee, et al. 
2009], peer to peer networks, sensor networks to social networks and applications 
[Feng, et al 2012, Mobasher, et al. 2007, Albanese, et al. 2013, Lathia, et al. 2008]. 
An overview of some key issues in reputation management is given in [Dwyer, et al. 
2007, Hoffman, et al. 2007, Resnick, et al. 2000, Sherchan, et al. 2013, Yu, et al. 
2013]. Trust relationships in Web-based social networks are studied in [Caverlee, et 
al. 2010, Su, et al, 2013, Golbeck, et al. 2006, Page, 1998]. [Roy, et al. 2010] 
attempted a space efficient solution for trust management. The notion of transitive 
trust through trust propagation was initially presented in [Beth, et al. 1994] with 
trust metrics on graphs, and was made popular by [Kamvar, et al. 2003] through the 
use of Eigenvector based uniform propagation kernel in EigenTrust.  

Trust management consists of both trust computation and maintenance, which 
establish and maintain trust from one participant to another, and trust evaluation, 
which measures and validate the effectiveness of trust modeling and trust 
computation in terms of attack resilience. The four basic attack models introduced by 
EigenTrust [Kamvar, et al. 2003] has been the main platform to date for evaluating 
attack resilience, though a majority of the trust models to date only evaluate their 
approaches against simple attacks, assuming malicious adversaries are independent 
and a small minority. Very few validate their approaches in terms of attack resilience 
to colluding collectives with different degrees of camouflage or different number of 
spies. The trust computation research in literature can be broadly classified into two 
categories: (1) Global trust computation based on feedback ratings and transactional 
contexts and (2) Global trust computation based on feedback ratings and trust 
propagation kernels.  

Research in the first category primarily focused on how to aggregate feedback 
ratings and how to use transactional contexts to compute trust. Many trust models 
have been proposed based on different trust computation techniques, ranging from 
statistical and machine learning techniques, heuristics-based techniques, behavior-
based techniques, to probabilistic-based techniques. They also differ from the set of 
factors used for modeling and computing trust, such as personalized trust and 
collective trust, time window of trust modeling, types of trust relationships, and so 
forth. For example, a simple solution for measuring the credibility of the feedback 
rating from a participant is to use its reputation value [Kamvar, et al. 2003, Zhou et 
al. 2007]. However, a malicious peer could easily maintain a good reputation by 
providing good quality services and collecting good feedback ratings from good peers, 
but provide dishonest feedbacks, to subvert the trust system. PeerTrust in [Xiong, et 
al. 2004] is the first to introduce the feedback credibility concept and to use 
personalized feedback similarity as the credibility of feedbacks to increase the attack 
resilience of dishonest feedbacks and to differentiate trusts for different types of 
transactional contexts. [Can, et al. 2013] explicitly distinguishes the service context 
and recommendation context, and uses a personalized similarity metric augmented 
by the fading effect in the service context for trust computing such that historical 
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trust values are less valuable in computing the trust of a peer than the most recent 
trust values. [Li, et al. 2012] introduced the attenuation function with a threshold-
based mechanism to discard dishonest feedbacks in trust computation. [Wang, et al. 
2012] presented a general trust model RLM. RLM considers two kinds of values in 
trust computation: reputation value and reputation prediction variance, which could 
be considered as the credibility of reputation value. Kalman feedback aggregation 
method and Expectation Maximization algorithm are introduced for a robust and 
attack resilient trust evaluation. But the consistency of the reputation prediction is 
affected. [Witkowski, et al. 2011] argued that the reputation-based trust models rely 
on the seller being long-lived and thus susceptible to whitewashing. An ‘escrow 
mechanisms’ is proposed to avoid the problems by installing a trusted intermediary, 
which forwards the payment to the seller only if the buyer acknowledges that the 
good arrived in the promised condition. However, no consideration is given to 
malicious feedbacks and malicious collectives that bad-mouth their competitors in 
the system. Recently, [Jøsang, et al. 2013] proposed to use mappings of values 
produced by recommender systems and from scores produced by reputation systems 
to subjective opinions, and combine the resulting opinions within the framework of 
subjective logic. However, all the trust models in this category only work well in the 
presence of sufficient feedbacks from a large number of peers but fail drastically 
when the feedback ratings are sparse or when a participant is new or has not 
received any rating at all. Both sparseness and cold start are well known issues in 
any feedback rating based trust and quality management systems. Furthermore, 
these trust models show serious vulnerabilities when confronting sophisticated 
malicious attacks or when the number of malicious peers is not small. In comparison, 
ServiceTrust++ has shown the combination of variance based aggregation of multi-
scale ratings with feedback similarity weighted local trust computation offers higher 
attack resilience than existing approaches.   

The research efforts in the second category have focused more on addressing the 
feedback sparseness and cold start problems by utilizing Eigenvalue based 
propagation kernels to compute global trust values for every participant. [Kamvar, et 
al. 2003] introduced EigenTrust to show Eigenvalue based uniform trust propagation 
can be resilient to independently malicious peers and chained malicious collectives in 
all cases but only resilient to malicious camouflages and malicious spies when the 
malicious participants are a minority. [Guha, et al. 2004] described a trust system to 
study how distrust is propagated. [Ortega, et al. 2012] proposed a global trust system 
to propagate both positive and negative opinions of the users through the feedback 
network. [Su et al. 2013] used the feedback similarity as a credibility to weight the 
local trust value of each peer combined with uniform trust propagation, which 
displayed more robustness against the four basic attack models compared to 
EigenTrust. However, most existing trust propagation models in the literature rely 
on the Eigenvalue based uniform propagation kernel to compute global trust with 
some variation on how the feedback ratings are aggregated and how to use the 
aggregate rating to compute the local trust for each peer. To the best of our 
knowledge, ServiceTrust++ is the first trust management system that employs 
pairwise feedback similarity in both aggregating the local trust assessments and 
managing the trust propagation for global trust computation. By introducing rating 
similarity based conditional trust propagation kernel to replace the uniform 
propagation kernel, combined with tunable decay factor and jump strategy on top of 
feedback similarity weighted local trust, we show that ServiceTrust++ is more robust 
against all six Threat models, and offers superior performance in terms of attack 
resilience, compared to two existing representative trust systems ServiceTrust and 
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EigenTrust, both use uniform trust propagation kernels and both reported good 
performance against the four basic attack models.  

Finally, we would like to note that although utilizing feedback similarity in both 
local trust assessment and propagation based global trust computation is effective for 
reliable and resilient trust management, computing and storing the pair-wise 
feedback similarity for every pair in the network of n peers can be expensive in terms 
of both computation and space efficiency, especially for a very big n. We are 
interested in incorporating optimization techniques that can speed up the pairwise 
similarity computation and at the same time reduce the storage consumption for 
large scale networks.  

CONCLUSION 
We have presented ServiceTrust++, a feedback quality aware and attack resilient 
trust model and trust management mechanism for decentralized service networks. 
ServiceTrust++ is unique by its three novel trust establishment techniques. First, it 
incorporates the variances of user's rating behaviors to aggregate feedbacks into the 
local trust algorithm. Second, it utilizes the pairwise feedback similarity to weight 
the contributions of local trust values. Third, it introduces a threshold based 
conditional trust propagation kernel in the global trust computation algorithm to  
control and prevent malicious peers to boost their global trust scores from good peers. 
Finally, ServiceTrust++ combines the threshold based conditional trust propagation 
with decaying strategy and jump strategy to further strengthen the effectiveness of 
ServiceTrust++ against all six attack models. Experimental evaluation using both 
simulation and real dataset under six attack models has shown that ServiceTrust++ 
is highly resilient to both independent and strategically colluding attacks and highly 
effective in both dense and sparse networks of varying sizes, compared to existing 
representative trust propagation models.  
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