
Privacy-preserving Data Publishing in the Cloud: A
Multi-level Utility Controlled Approach

Balaji Palanisamy and Ling Liu†

School of Information Sciences, University of Pittsburgh, College of Computing, Georgia Tech†
bpalan@pitt.edu, lingliu@cc.gatech.edu

Abstract—Conventional private data publication schemes are
targeted at publication of sensitive datasets with the objective
of retaining as much utility as possible for statistical (aggregate)
queries while ensuring the privacy of individuals’ information.
However, such an approach to data publishing is no longer
applicable in shared multi-tenant cloud scenarios where users
often have different levels of access to the same data. In this paper,
we present a privacy-preserving data publishing framework for
publishing large datasets with the goals of providing different
levels of utility to the users based on their access privileges. We
design and implement our proposed multi-level utility-controlled
data anonymization schemes in the context of large association
graphs considering three levels of user utility namely: (i) users
having access to only the graph structure (ii) users having
access to graph structure and aggregate query results and (iii)
users having access to graph structure, aggregate query results
as well as individual associations. Our experiments on real
large association graphs show that the proposed techniques are
effective, scalable and yield the required level of privacy and
utility for user-specific utility and access privilege levels.

I. INTRODUCTION

Publishing data that contains sensitive information about
individuals is an important problem. Conventional data
publication schemes are targeted at publishing sensitive data
either after a k-anonymization process [9], [10] or through
differential privacy constraints [24] to allow users to perform
ad-hoc analysis on the data. However, such an approach
to data publishing becomes no longer applicable in shared
multi-tenant cloud scenarios where users often have different
levels of access to the same data. In tabular datasets, each
record has a number of attributes, some of which identify
or can potentially identify individuals (e.g., social security
number, address, Zip-code, Birth-date) and some of which
are potentially sensitive (e.g., disease or salary). Private data
also arises in the form of associations between entities such
as the drugs purchased by patients in a pharmacy store.
Here, the associations between the entities (such as the drugs
purchased by a patient) are considered sensitive and they
can be naturally represented as large, sparse bipartite graphs
with nodes representing the drugs and the patients and the
edges representing the purchases of the drugs made by the
patients. Such data may be of high value and importance for a
number of purpose. For instance, medical scientists may want
to study the outbreaks of new diseases based on the types
of drugs purchased by patients; drug manufacturers may wish
to perform business analytics based on the sale trends and

purchase patterns of various drugs.
To effectively limit disclosure, we need to measure

the disclosure risk of the published information. The
conventional focus on the problem of data anonymization
has been on tabular data, via k-anonymization [9], [10]
and subsequent variations [13], [23], [17]. While a number
of variations of such techniques focused on perturbing the
graph structure to minimize disclosure risks, some existing
work had also concentrated on retaining the graph structure
but preventing the inference of the connections between
individuals (represented by nodes in the graph) [6], [3]. The
idea behind these techniques is to group nodes of the graph
into disjoint sets and to expose the associations only between
the groups instead of individual nodes.

In this paper, we argue that most existing work on
privacy-preserving data publication targets at releasing safe
versions of the dataset to provide accurate results to aggregate
queries while protecting individual associations. Such data
releases implicitly assume that all users of the data share the
same access privilege levels which is no longer applicable in
shared multi-tenant cloud storage systems where users often
have different levels of access to the same data. For instance,
in a drug purchase association graph, one may need to protect
privacy and utility at different protection levels depending
on the access privilege of the users. While some users (e.g.,
less privileged data analysts) may be allowed to obtain only
graph structure related queries, some others (e.g., medical
scientists) may have access to results of aggregate queries
in addition to graph structure. In the same way, some highly
privileged users (like the pharmacy store manager) may have
access to even the individual associations in the graph that
is considered sensitive to be exposed to other users. Current
data publication schemes release a version of the dataset
that can provide privacy-utility tradeoffs for at most one of
the above-mentioned privacy/utility levels. If an association
graph is anonymized to provide aggregate query results while
retaining exact graph structure, then a user who does not have
access to the graph structure will still be able to obtain graph
structure information leading to increased disclosure of private
information and similarly, a highly privileged user who needs
to access the individual associations in the graph will be unable
to do so since the individual association information is lost
during the anonymization process.

In this paper, we propose a novel framework for

anonymizing large association graphs with the goals of
supporting multi-level utility-privacy tradeoffs based on user
access privilege rights. In contrast to existing anonymization
techniques that lose information during the anonymization
process, our proposed schemes retain the sensitive information
in an anonymous form. Privileged users having access to
higher level of sensitive information can obtain it through
a proposed key-based data access mechanism. First, we
develop a key-based reversible graph structure perturbation
technique that prevents less privileged users from accessing
graph structure while allowing the original graph structure
to be restored by privileged users. We use a safe grouping
technique for grouping nodes of the graph to support aggregate
queries. Finally, we devise a key-based node label permutation
mechanism that allows the original ordering of the nodes to
be restored such that highly privileged users obtain individual
associations in the graph. To the best of our knowledge, this is
the first research effort that is aimed at developing a systematic
approach to supporting multi-level utility controlled private
queries on anonymized datasets. The rest of the paper is
organized as follows: We describe the multi-level association
graph anonymization problem and various existing approaches
in Section II. Section III presents a suite of key-based
reversible graph anonymization techniques that protect privacy
at different utility and privacy levels. Section IV presents our
experimental evaluation on real large association graphs. We
discuss related work in Section V and we conclude in Section
VI.

II. BACKGROUND AND PRELIMINARIES

In this section, we review the fundamental concepts
related to association graphs and define the multi-level
graph anonymization problem. We also discuss various
known approaches and their limitations to protecting sensitive
information in multi-level access limited scenarios.

We assume a bipartite graph dataset represented by G =
(V,W,E). The graph G consists of m = |V | nodes of
first type and n = |W | of second type and a set of edges
E ⊆ V ×W . For instance, the bipartite graph could represent
the associations of patients and drugs based on the purchases
made by them. In that case, the set of nodes, V represents
patients and W represents drugs and any edge (p, d) in E
will represent the association that the patient p bought the
drug d. In a similar way, the bipartite graph G can represent
the papers written by authors. In that case, the set V would
represent the authors and the set W would represent the papers
and edges will represent which papers were co-written by a
set of authors. Other examples of such association relationship
include movies watched by viewers, courses taken by students,
places visited by people etc. We show an example of such
a bipartite graph in the figure in Table 1 where the nodes
represent drugs and patients and the edges represent the drugs
purchased by the patients. The details of the patients and drugs
are shown in Tables I and II and the associations captured by
the bipartite graph is shown in Table III. We assume there are
users with four different levels of access, each having its own

TABLE I: Patients

PID DOB Sex Zipcode
P1 7/18/87 F 30323
P2 2/17/83 M 30323
P3 5/07/77 M 30327
P4 1/5/76 F 30328
P5 8/4/82 M 30330
P6 3/9/79 M 30331
P7 4/10/64 M 30331
P8 2/6/81 F 30334
P9 7/14/72 F 30337
P10 9/25/74 M 30338
P11 4/28/80 M 30338
P12 3/12/78 M 30339

privacy-utility requirement. It leads us to classify the possible
queries that can operate on the published graph.

A. Multi-level Utility/ Privacy Model
In general, there are 4 types of queries that can operate in

a large association graph dataset.
• Type 0 - Queries on graph structure: these queries require

only the graph structure to be answered accurately.
E.g.: the maximum number of drugs purchased by an
individual customer.

• Type 1 - queries involving attribute predicates on one
side. E.g.: the average sales on antibiotic drugs in Zipcode
95123?

• Type 2 - queries involving attribute predicates on both
sides. E.g.: total number of antibiotic drugs bought by
patients in the city of Pittsburgh.

• Type 3 - queries involving actual associations. E.g.: who
are the buyers of the drug, ’Setraline’ ?

This classification of the queries leads us to define the
privacy levels of various users.

1) Privacy levels: We consider 4 levels of privacy/utility
corresponding to the 4 types of queries described above.

• Level 0 - No access users: users having no access to
the dataset including graph structure, queries involving
predicates and actual associations.

• Level 1 - Graph Structure users: these users obtain
accurate answers to type 0 queries but do not get
approximate or accurate answers to type 1 and type 2
queries.

• Level 2 - Aggregate query users: level 2 users have access
to queries of type 0, type 1 and type 2. However these
users can not access individual associations and hence do
not get results for type 3 queries.

• Level 3 - All access users: users obtain accurate answers
to all 4 types of queries. It represents the highest level of
access to the dataset.

Next we discuss some existing approaches for graph
anonymization and their applicability for the multi-level graph
access problem considered in this work.

B. Existing techniques
Existing techniques for sensitive graph data publication

can be broadly classified into two categories namely (i)
k-anonymity-based graph anonymization and (ii) differential
privacy-based graph publication.

TABLE II: Drugs

CID Drug name Category
D1 epinephrine bronchodilator
D2 ibuprofen analgesic
D3 Zovirax antiviral
D4 Tylenol analgesic
D5 erythromycin antibiotic
D6 cortisone steroid
D7 gentamicin antibiotic
D8 insulin hypoglycemic
D9 sertraline antidepressant
D10 tramadol analgesic
D11 cetirizine antihistamine
D12 zolpidem hypnotic

TABLE III: Patients-Drugs Association

PID CID
P1 D5
P2 D8
P2 D9
P5 D11
P7 D5
P9 D3
P9 D12
P11 D11

1) k-anonymity-based approaches: A large number of
existing techniques anonymize data based on the concept
of k-anonymization [8], [9]. A direct application of tabular
anonymization to graph data would require the graph to be
represented using three relations. For instance, we can create
three tables (Table I - Table III) for the patient-drug association
graph shown in the figure in Table 1. In the k-anonymization
process, first all patient and drug information that serves as
quasi-identifiers are removed and then the drugs bought by
the patients are grouped so that there are k or more subjects
within each k-anonymity group. The k-anonymized version of
this table must use generalization and suppression to ensure
that each row is indistinguishable from k−1 other subjects [8],
[9]. A more sophisticated approach to graph anonymization is
to group the nodes of the graph to create disjoint groups so
as to hide the individual association between the nodes of
different groups [5]. This technique preserves the underlying
graph structure, but masks the exact mapping from entities to
nodes, so for each node we know a set of possible entities that
it corresponds to. Unfortunately, both the above-mentioned k-
anonymity approaches are not suitable when all users do not
share the same access privilege levels as these schemes lose
the sensitive information during the anonymization process.

2) Differential privacy-based techniques: An alternate
approach to k-anonymity-based data publication is to release
statistics of the dataset through differential privacy constraints
[21]. Precisely, the differential privacy constraint ensures that
the published statistical data does not depend on the presence
or absence of an individual record in the dataset. Recent work
had focused on publishing graph datasets through differential
privacy constraints so that the published graph maintains as
much structural properties as possible as the original graph
while providing the required privacy [16]. However, such
statistical data publishing does not support multi-level utility
control as considered in our problem setting. Therefore, when
aggregates are released through differential privacy constraint,

Fig. 1: Original graph

the released information can match the privacy/utility needs
for at most one privacy/utility level and hence users at other
privacy/utility levels either encounter increased disclosure
of private information or obtain information at reduced
utility levels. To overcome these limitations, we propose a
suite of key-based multi-level anonymization schemes that
retain sensitive information in the anonymized version so
that privileged users de-anonymize it on the fly through a
key-based access control mechanism.

III. MULTI-LEVEL GRAPH ANONYMIZATION

This section presents our proposed key-based multi-level
anonymization schemes for supporting multi-level utility/
privacy tradeoffs in association graphs. We begin with an
illustrative example for the association graph shown in Figure
1. The multi-level anonymization process applies a series of
anonymization and perturbation techniques on the raw graph
to obtain the final perturbed graph. The anonymized graph
corresponding to the privacy/utility of level 0 users is shown
in Figure 2. As we know, level 0 users have the lowest access
utility levels and therefore can not derive any utility in terms
of graph structure or aggregate results or exact associations.
Level 1 users possess the structure key and use that to decode
the exact graph structure and thus level 1 users obtain accurate
results to queries on graph structure (Figure 2). Similarly, level
2 users possess the utility key in addition to structure key
and therefore obtain accurate answers to aggregate queries in
addition to queries on graphs structure (Figure 3). In the same
way, level 3 users use their association key to obtain access to
exact associations in the graph, thereby obtaining the highest
utility out of the dataset. In the subsequent sections, we will
discuss the detailed techniques for protecting graph structure
from level 0 users, protecting aggregate query results from
level 1 users and protecting individual associations from level
2 users respectively.

A. Protecting graph structure

The first step in the multi-level anonymization process is
to obtain a reversible perturbation of the graph structure in
order to protect the graph structure characteristics from level
0 users.

1) Protecting graph structure from level 0 users: The
graph structure perturbation process begins with perturbing
the associations between the nodes of the graph. It injects

Fig. 2: Access for Level 1 users

a number of fake edges in the perturbed graph in order to
hide the real structure of the underlying graph. The algorithm
uses the graph structure key, Ks and another arbitrary integer
to obtain a random seed which is used to generate a stream
of pseudo-random numbers. This random stream drives the
injection of fake edges into the graph. Concretely, if Ri is the
ith random number generated by a pseudo-random number
generator, then the ith fake edge in the graph is given by

(v, w) = (R2imod|V |, R2i+1mod|W |)

We define Ri as the ith non-colliding random number such
that the random numbers Ri and Ri+1 are able to form
an edge (R2imod|V |,R2i+1mod|W |) such that (R2imod|V |,
R2i+1mod|W |) is not a member of the original graph, G. But
as we may note, the perturbation process may come across
some Ri or R2i+1 such that (R2imod|V |, R2i+1mod|W |)
already belongs to G. In such cases, the algorithm changes
the seed of the pseudorandom generator to generate a different
edge. Since the seed is generated as a function of the structure
key and another arbitrary integer, m, the algorithm changes the
integer, m in order to change the random seed. It therefore
writes an entry (i,m) to a table T , where m denotes the
integer used for generating the seed which is in turn used
for generating the pseudorandom number, Ri. This table of
entries is used during the de-perturbation process to restore the
original graph when level 1 users provide the graph structure
key, ks.

The de-anonymization process works in a similar way.
For decoding the perturbed graph, the level 1 users provide
the graph structure key, Ks. The decoding process uses
the same process for generating the random stream, Ri

and uses this random stream to delete the fake edge
(R2imod|V |, R2i+1mod|W |). From the seed table, T we
know that, if there is an entry (i,m) in the seed
change table, T , then the seed used for generating Ri

should be derived using the integer, m and the structure
key, ks. Thus, the decoding process generates the exact
stream of pseudo-random numbers and thus all the fake
edges,(R2imod|V |, R2i+1mod|W |) are generated in the same
sequence and deleted to restore the original graph.

Algorithm 1 Key-based Graph Structure Perturbation

1: V,W : Array of vertices
2: E: Set of edges in graph G
3: Ks: Graph structure key
4: n:Number of fake edges to add
5: Ri: ith random number
6: procedure GRAPHPERTURB(G, Ks, n)
7: for i = 1 to n do
8: m = 0
9: seed = F (Ks,m)

10: R2i = PseudoRandom(2i, seed)
11: R2i+1 = PseudoRandom(2i+ 1, seed)
12: while (R2imod|V |, R2i+1mod|W |) ∈ E) do
13: seed = F (Ks,m)
14: R2i = PseudoRandom(2i, seed)
15: R2i+1 = PseudoRandom(2i+ 1, seed)
16: m = m+ 1
17: end while
18: if m > 0 then
19: add T (i,m)
20: end if
21: end for
22: end procedure

B. Protecting aggregate query results

The second step in the multi-level graph anonymization is
to protect the aggregate query results from level 1 users. For
example, level 1 users after decoding the graph structure may
attempt to infer the results of aggregate queries if the graph
maintains an ordering of the nodes based on some attributes.
To overcome this, a global permutation is done on the nodes so
that range queries involving attributes can not be inferred. We
note that this global permutation needs to be done on both set
of nodes V and W to prevent level 1 users from obtaining
results to aggregate queries. The algorithm uses the utility
key of level 2 users to generate a stream of pseudorandom
numbers and this random stream drives the permutation of the
nodes in the graph. Concretely, we use the modern version of
FisherYates[6] shuffling algorithm to generate the permutation

Fig. 3: Access for Level 2 users

Algorithm 2 Decoding Perturbed Graph

1: V,W : Array of vertices
2: E: Set of edges in graph G
3: Ks: Graph structure key
4: n:Number of fake edges to delete
5: Ri: ith random number
6: procedure GRAPHPERTURB(G, Ks, n)
7: for i = 1 to n do
8: if T (i,m)! = null then
9: m = T (i,m)

10: else
11: m = 0
12: end if
13: seed = F (Ks,m)
14: R2i = PseudoRandom(2i, seed)
15: R2i+1 = PseudoRandom(2i+ 1, seed)
16: remove edge (R2imod|V |, R2i+1mod|W |) from

E)
17: end for
18: end procedure

of the vertices. The algorithm generates a stream of pseudo
random numbers using a seed generated by the aggregate
utility key, Ku. For each i ranging from |V | to 1, a pseudo
random number, Ri is generated and the algorithm swaps the
vertices V [i], V [j]. At the end of |V | iterations, we obtain a
random permutation of the ordering of the nodes. For decoding
this random permutation, level 2 users use the aggregate utility
key, ku and generate the same seed that was used to drive
the random permutation. When the seed is fed to the pseudo
random number generator, it produces the same sequence of
random numbers which indeed decides the set of vertices to
be swapped in each iteration. Therefore, at the end of |V |
iterations, we obtain the original node ordering back. Note
that randomly changing the ordering of the nodes prevents
level 1 users from inferring aggregate query results. While
level 2 users can decode this random ordering, we still need
to ensure that level 2 users obtain only aggregate query results
but not the individual associations in the graph. To enable

this, the nodes in the graph are grouped into different sets
of nodes prior to this global node label permutation process
so that the associations between the nodes in the individual
groups are safe to be exposed to level 2 users. We describe
our proposed order-preserving safe grouping technique in the
next subsection.
Algorithm 3 Key-based Attribute Permutation

1: V : Array of vertices
2: Ku: Aggregate utility key
3: Ri: ith random number
4: procedure NODESHUFFLE(V , Ku)
5: for i = |V | down to 1 do
6: Ri = PseudoRandom(i,Ks)
7: j = Rimod|V |
8: Swap(V [i], V [j])
9: end for

10: end procedure

Algorithm 4 Reverse Permuatation

1: V : Array of vertices
2: Ku: Aggregate utility key
3: Ri: ith random number
4: procedure NODESHUFFLE(V , Ku)
5: for i = 1 to |V | do
6: Ri = PseudoRandom(i,Ks)
7: j = Rimod|V |
8: Swap(V [i], V [j])
9: end for

10: end procedure

C. Protecting individual associations
The idea behind the proposed individual association

protection mechanism is to group the nodes of the graph into
disjoint sets and to expose the edges only between the different
groups while the labels of the nodes in the individual groups
are permuted to prevent the inference of the exact associations.
Therefore, for a level 2 user, the exposed groups will enable
to compute aggregate query results while the individual edges
can not be inferred as the node labels within each group are

permuted. In general such a grouping is called a k-grouping if
the number of nodes in each group is greater than or equal to
k [5]. Formally, a k-grouping of a graph is defined as follows:

Definition 1: Given a set V , a k-grouping is a function
H mapping nodes to group identifiers (integers) so for any
v ∈ V , the subset Vv = {vi ∈ V : H(vi) = H(v)} has
|Vv| ≥ k. Formally, ∀v ∈ V : ∃Vv ⊆ V : |Vv| ≥ k ∪ (∀vi ∈
Vv : H(vi) = H(v))
That is, H partitions of V into subsets of size at least k.
Thus the nodes are partitioned into sets of non-overlapping
groups. Inside each group, the node labels are permuted using
the same technique discussed in Section III-B so as to provide
k-anonymity.

IV. EXPERIMENTAL EVALUATION

Our experimental evaluation consists of evaluating both
privacy as well as performance efficiency of the proposed
anonymization schemes. We first evaluate the effectiveness of
the proposed techniques in terms of the privacy protection
by measuring the level of perturbation offered by them. We
then evaluate the performance of the proposed key-based
anonymization schemes in terms of anonymization and de-
anonymization time for various privacy and utility levels.

The proposed anonymization and de-anonymization
schemes are implemented as a Java library. The primary
dataset used in the experiments is the DBLP data
representing all conference publications. It is retrieved
from http://dblp.uni-trier.de/xml/. The DBLP data set consists
of |V | = 402023 distinct authors, |W | = 543065 distinct
papers, and |E| = 1401349 (author, paper) edges. We
consider all four types of queries and we use the following
queries for each query type:

• Type 0 Query: Cumulative distribution of the number of
papers of each author.

• Type 1 Queries: We use two type 1 queries: Query A: find
the total number of authors in the publications satisfying
predicate Pw, Query B: the total number of publications
having only one author and satisfying predicate Pw.

• Type 2 Query: find the number of publications satisfying
predicate Pw having authors satisfying P ′

w.
• Type 3 Query: Is author x co-author of publication y?

We study the privacy and performance of the queries for
various access privilege levels by varying a number of other
parameters such as group size and the degree of graph structure
perturbation.

A. Effect of Graph Structure Perturbation

Our first set of experiments study the protection for
graph structure provided by the key-based graph perturbation
techniques on the utility for level 0 users. We measure three
distributions related to the structure of the graph namely
(i) the distribution of the number of authors based on the
number of publications they have, (ii) the distribution of the
number of co-authors based on the number of publications
they have co-authored, (iii) the distribution of the number
of publications based on the number of authors in them.
Figure 4(a) represents the distribution of the authors based on

the number of publications they have. The Y-axis represents
the number of authors who have total publications shown
in X-axis. The distribution is shown for different number of
fake edges injected into the graph (ranging from 300,000 to
900,000). We find that when the graph structure is perturbed
with randomly injected edges, the distribution is significantly
altered. Thus level 0 users are not able to obtain the exact
distribution present in the original graph. Also, we note that
the distribution in the perturbed graph changes for different
number of fake edges added into the graph. Therefore, if a
randomly chosen number of fake edges are injected into the
graph, an adversary does not have a clue on the amount of
random perturbation done to the original graph and hence can
not obtain accurate results to queries involving only graph
structure. Here, the number of fake edges to be injected
can be decided through a random distribution which is
chosen based on the degree of perturbation required for the
original graph. Similarly, Figure 4(b) shows the distribution
of the number of co-authors (Y-axis) based on the number of
publications they have co-authored (X- axis). Here also, we
notice that the distribution is significantly changed after the
graph perturbation process. We present the distribution of the
number of publications based on the number of authors in
the publications in Figure 4(c). The perturbed graphs again
show that level 0 users do not obtain accurate results to this
distribution.

B. Performance of Perturbation and Grouping techniques

Our next set of experiments is focused on studying the
performance of the proposed key-based multi-level graph
perturbation and grouping techniques based on anonymization
time. We first study the time taken by the graph perturbation
algorithm for various number of fake edges injected in the
perturbed graph. Figure 5(a) shows the time taken by the
graph structure perturbation process. The X-axis represents
the percentage of fake edges injected compared to the total
number real edges in the graph. We find that the perturbation
process is quite fast with the average perturbation and de-
perturbation time well within 10 seconds for the whole dataset.
We present the time taken for the node grouping process in
Figure 5(b) where the X-axis represents the group size, k.
Here the value of l is kept as constant at 20. We find that the
node grouping algorithm takes only a small amount time in
the overall anonymization process. Similarly, the time taken
for the node label permutation operation is shown in Figure
5(c) and it indicates that the process is quite fast and scales
well for various group sizes.

V. RELATED WORK

The problem of information disclosure has been studied
extensively in the framework of statistical databases. Samarati
and Sweeney [8], [9] introduced the k-anonymity approach
which has led to new techniques and definitions such as
l-diversity [11], (α, k)-anonymity [20],t-closeness [15] and
anonymization via permutation [22], [24]. However, these
schemes are primarily targeted for data publishing with the
goal to provide aggregate queries while protecting individual

(a) Distribution of No of papers (b) Distribution of collaborator count (c) Distribution of Publication count

Fig. 4: Effect of Graph Structure perturbation

(a) Edge Perturbation (b) Node grouping (c) Node label permutation

Fig. 5: Performance of perturbation and grouping techniques

information. There had been some work on anonymizing graph
datasets with the goal of publishing statistical information
without revealing information of individual records. In
[25], the authors propose a graph anonymization scheme
that ensures that each node has k others with the same
(one-step) neighborhood characteristics to prevent unwanted
disclosure. Ghinita et al. present an anonymization scheme for
anonymizing sparse high-dimensional data using permutation
based methods [10] by considering that sensitive attributes
are rare and at most one sensitive attribute is present in each
group. While most of the above mentioned work address the
privacy risks in releasing unlabeled graphs, the safe grouping
techniques proposed in [5], [2] consider the scenario of
retaining graph structure but aim at protecting privacy when
labeled graphs are released. However, as discussed earlier,
these safe grouping techniques can not provide accurate results
to aggregate queries. Also, the above-mentioned techniques are
targeted at publishing a single safe version of the graph dataset
which protects privacy at just one privacy/utility level.

Another promising direction of privacy research is
represented by differential privacy techniques. Based on the
concept of differential privacy introduced in [21], there had
been many work focused on publishing aggregates of sensitive
datasets through differential privacy constraints [23], [3],
[7]. Differential privacy had also been applied to protecting
sensitive information in graph datasets such that the released
information does not reveal the presence of a sensitive element
[12], [13], [18]. Recent work had focused on publishing graph
datasets through differential privacy constraints so that the
published graph maintains as much structural properties as

possible as the original graph while providing the required
privacy [16]. But, as mentioned earlier, these existing schemes
do not support multi-level access to the same published dataset
as the published dataset represents just one privacy level. To
the best of our knowledge, our work presented in this paper
is the first significant effort on providing multi-level privacy
and utility control in a shared published dataset. We believe
that many principles and ideas developed in this work will be
complementary to both differential privacy-based as well as
anonymity-based sensitive data publication schemes.

VI. CONCLUSION

This paper presents an anonymization framework for
publishing large association graph datasets with the goal of
supporting multi-level access controlled query processing in
shared storage systems. Conventional data publication schemes
target at releasing sensitive datasets through an anonymization
process to support aggregate queries while protecting the
information contained in individual records. We argue that
such schemes are not suitable when different users have
different levels of access to the same data. We propose a
suite of anonymization techniques and a utility-preserving
grouping technique to support multi-level access controlled
query processing on published datasets. Our experiments on
real association graphs show that the proposed techniques are
efficient and scalable and support multi-level privacy-utility
tradeoffs. Our future work is focused on applying the
principles and concepts presented in this work to develop a
multi-level private data publication scheme with differential
privacy guarantees.

REFERENCES

[1] C. Aggarwal. On k-Anonymity and the Curse of
Dimensionality. In VLDB, 2005.

[2] S. Bhagat, G. Cormode, B. Krishnamurthy, D.
Srivastava. Class-based graph anonymization for social
network data. In VLDB, 2009.

[3] R. Chen Publishing Set-Valued Data via Differential
Privacy. In VLDB, 2011.

[4] G. Cormode, D. Srivastava, N. Li, T. Li. Minimizing
Minimality and Maximizing Utility: Analyzing
Method-based attacks on Anonymized Data. In VLDB,
2010.

[5] G. Cormode, D. Srivastava, T. Yu, Q. Zhang.
Anonymizing Bipartite Graph Data using Safe Groupings
In VLDB, 2008.

[6] http://en.wikipedia.org/wiki/Fisher-Yates shuffle
[7] A. Friedman and A. Schuster Data mining with

differential privacy In SIGKDD, 2010.
[8] Samarati. Protecting respondents identities in microdata

release. In TKDE, 2001.
[9] L. Sweeney. k-anonymity: a model for protecting privacy.

In International Journal on Uncertainty, Fuzziness and
Knowledge-based systems, 2002.

[10] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization
of sparse high-dimensional data. In ICDE, 2008.

[11] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-Diversity: Privacy Beyond
k-Anonymity. In ICDE, 2006.

[12] V. Karwa, S. Raskhodnikova, A. Smith, G.
Yaroslavtsev. Private Analysis of Graph Structure. In
VLDB, 2011.

[13] S. Kasiviswanathan, K. Nissim, S. Raskhodnikova
and A. Smith. Analyzing Graphs with Node Differential
Privacy. In TCC, 2013.

[14] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Incognito: Efficient Full-Domain K-Anonymity. In
SIGMOD, 2005.

[15] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k- anonymity and l-diversity. In ICDE,
2007.

[16] A. Sala et. al Sharing Graphs using Differentially Private
Graph Models In IMC, 2011.

[17] A. Serjantov and G. Danezis. Towards an Information
Theoretic Metric for Anonymity. In PETS, 2002.

[18] C. Task and C. Clifton. What should we protect?
Defining differential privacy for social network analysis.
In Social Network Analysis and Mining, 2013.

[19] R. C. Wong, A. W. Fu, K. Wang, J. Pei. Minimality
Attack in Privacy Preserving Data Publishing. In VLDB,
2007.

[20] R. Wong, J. Li, A. Fu, and K. Wang. (α, k)-anonymity:
An enhanced k-anonymity model for privacy-preserving
data publishing. In SIGKDD, 2006.

privacy preservation. In VLDB, 2006.

[23] Y. Yang et. al. Differential Privacy in Data Publication
and Analysis. In SIGMOD, 2012.

[24] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu.
Aggregate query answering on anonymized tables. In
VLDB, 2007.

[25] B. Zhou and J. Pei. Preserving privacy in social
networks against neighborhood attacks. In ICDE, 2008.

VII. ACKNOWLEDGEMENTS

This material is based upon work partially supported by the
National Science Foundation under Grants IIS-0905493,
CNS-1115375, IIP-1230740, and a grant from Intel ISTC on
Cloud Computing.

[21] C. Dwork. Differential Privacy In ICALP, 2006.
[22] X. Xiao and Y. Tao. Anatomy: Simple and effective
privacy preservation. In VLDB 2008.

