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Abstract—This paper presents an in-depth measurement study
of in-memory key-value systems. We examine in-memory data
placement and processing techniques, including data struc-
tures, caching, performance of read/write operations, effects
of different in-memory data structures on throughput per-
formance of big data workloads. Based on the analysis of
our measurement results, we attempt to answer a number of
challenging and yet most frequently asked questions regarding
in-memory Kkey-value systems, such as how do in-memory
key-value systems respond to the big data workloads, which
exceeds the capacity of physical memory or the pre-configured
size of in-memory data structures? How do in-memory key
value systems maintain persistency and manage the overhead
of supporting persistency? why do different in-memory key-
value systems show different throughput performance? and
what types of overheads are the key performance indicators?
We conjecture that this study will benefit both consumer
and providers of big data services and help big data sys-
tem designers and users to make more informed decision on
configurations and management of key-value systems and on
parameter turning for speeding up the execution of their big
data applications.

1. Introduction

As big data penetrating both business enterprises and sci-
entific computing, in-memory key-value systems are gaining
increased popularity in recent years. In contrast to disk-
based key-value systems, such as HBase, Mongo, Cas-
sandra, in-memory key-value systems, such as Redis [1],
Memcached [2], rely on memory to manage all their data
by utilizing virtual memory facility when the dataset to
be loaded and processed is beyond the capacity of the
physical memory. In memory key-value systems are about
6 orders of magnitude faster than disk-optimized key-value
systems [16]. Thus, the ability to keep big data in-memory
for processing and performing data analytics can have huge
performance advantages.

The recent advances and price reduction in computer
hardware and memory technology have further fueled the
growth of in-memory computing systems. In-memory key-
value systems become one of the most prominent emerging
big data technologies and an attractive alternative to disk-
optimized key-value systems for big data processing and
analytics [1, 2, 15, 16]. However, there is no in-depth
performance study with quantitative and qualitative analysis
on in-memory key-value systems in terms of the design
principle, the effectiveness of memory utilization, the key

performance indicators for in-memory computing, and the
impact of in-memory systems on big data applications.

In this paper, we present the design and the results
of a measurement study on in-memory key-value systems
with two objectives: First, we plan to perform a compar-
ative study on two most popular and most efficient in-
memory key-value systems, Redis [1] and Memcached [2],
in terms of the in-memory data placement and processing
techniques. This includes internal data structure in memory,
fragmentation, caching, read and write operation perfor-
mance. Second, we plan to provide experimental evaluation
and analysis on the performance impact of different in-
memory data structures on different workloads, including
a comparison on commonality and difference in the design
of Redis and Memcached with respect to memory efficiency.
As a result of this study, we attempt to answer a number
of challenging and yet most frequently asked questions
regarding in-memory key-value systems through extensive
and in-depth experimentation and measurements. Example
questions include but not limited to: (1) What types of data
structures are effective for in-memory key value systems?
(2) How do in-memory key-value systems respond to the
big data workloads, which exceeds the capacity of physical
memory or the pre-configured size of in-memory data struc-
tures? (3) What types of persistence models are effective for
maintaining persistency of in-memory key value systems?
And (4) Why do different in-memory key value systems
have different throughput performance and what types of
overheads are the key performance indicators? To the best
of our knowledge, this is the first in-depth comparative
measurement study on in-memory key-value systems. We
conjecture that this study will benefit both consumer and
providers of big data services. The results of this study can
help big data system designers and users make informed
decision on configurations and management of key-value
systems and on performance turning for speeding up the
execution of their big data applications.

2. Overview

2.1. In-Memory Key-Value Systems

The key-value systems achieve high performance
through three common systems-level techniques: (i) parallel
request handling, (ii) efficient network I/O, and (iii) con-
current data access. Concretely, through hashing, key-value
pairs can be distributed almost evenly to each compute node
of a key-value system cluster. Client requests are served
concurrently by accessing different servers with minimum



performance interference. To deal with the latency of net-
work I/Os, key-value systems employ pipeline to support
asynchronous request processing. It allows multiple requests
to be sent to the server without waiting for the replies, and
batch deliver the replies in a single step. In addition to
utilize multiple CPU cores and multithreading for concurrent
data access, key-value systems maintains data integrity using
mutexes, optimistic locking, or lock-free data structure.

Unlike disk-optimized key-value systems, in-memory
key-value systems rely on internal memory data structures to
manage all application data and intelligently utilize virtual
memory facility to handle large datasets that exceed the
size of allocated physical memory. In-memory key-value
systems also employ logging and snapshot techniques to
provide persistency support. The in-memory key-value sys-
tems differ from one another in terms of their memory
management strategies, such as memory allocation, virtual
memory facility, concurrent access methods, and their per-
sistency implementation models. To handle the volatility of
DRAM memory and data loss due to reboot or power outage,
in-memory key-value systems need to provide durability
support by either implementing some persistent models,
such as snapshot, transaction logging, or deploying non-
volatile random access memory or other high availability
solutions. However, the persistency model also introduces
another source of system overhead.

2.2. Redis Overview

Redis is an open source, in-memory data structure store,
used as database, cache and message broker. It is imple-
mented in C and adopts jemalloc [7, 10] as its memory
allocator since version 2.4, although its early versions use
glibc [17] as the default memory allocator. The quality of
a memory allocator is determined by how effectively it can
reduce the memory usage for storing the same amount of
dataset and alleviate the impact of fragmentation. Redis
supports four sets of complex data structures to allow appli-
cation developers to select the best memory data structures
based on their dataset sizes and workload characteristics:
(1) Lists - collections of string elements sorted by the order
of insertion; (2) Sets - collections of unique, unsorted string
elements; (3) SortedSets - similar to Sets but every string
element is also associated with a floating number value,
called score. The elements are sorted by their score; and
(4) Hashes - which are maps composed of fields associated
with values. For each of the four types of data structure,
two implementations are provided, each with its unique
characteristics. For example, linked list and ziplist are two
implementations of the list data structure. Previously, Redis
had its own virtual memory facility to handle swap-in and
swap-out bypassing the OS virtual memory management.
The latest version 4.2 has changed to provide the in-memory
dataset to host all data in DRAM and let OS handle all
swap-in and swap-out paging requests when the dataset size
exceeds the allocated physical memory. We will analyze the
reasons for this change in our measurement study. Redis also
supports five different persistency models: nosave, snapshot,
AOF-No, AOF-Everysec, and AOF-Always. nosave denotes

no support for persistency. snapshot periodically takes snap-
shots of all the working dataset hosted in memory and then
dumps the snapshots into persistence storage system stored
as the latest snapshot files. The three AOF models refer to
log-immediate, log-periodical and log-deferred, with Log-
Periodical as the tradeoff of persistence and write perfor-
mance between log-immediate and log-deferred.

2.3. Memcached Overview

Memcached is a general-purpose distributed memory
caching system [2]. It is often used to speed up dynamic
database-driven websites by caching data and objects in
DRAM to improve the performance of reading from an ex-
ternal data source. Data items in Memcached are organized
in the form of key and value pair with metadata. Given
the varying sizes of data items, a naive memory allocation
scheme could result in significant memory fragmentation
problem. Memcached addresses this problem by combining
glibc with slab allocator [9], since glibc alone cannot handle
the memory fragmentation problems. In Memcached, the
memory is divided into 1MB pages. Each page is assigned
to a slab class, and then is broken down into chunks of a
specific size for the given slab class. Upon the arrival of
new data items, a search for the slab class of the best fit
in terms of memory utilization is initiated. If this search
fails, a new slab of the class is allocated from the heap
and otherwise the new item is pushed into a chunk in the
chosen slab class. Similarly, when an item is removed from
the cache, its space is returned to the appropriate slab, rather
than the heap. Memory is allocated to slab classes based
on the initial workload and its item sizes until the heap is
exhausted. Therefore, if the workload characteristics change
significantly after the initial phase, the slab allocation may
not be appropriate for the workload, which can results in
memory underutilization. Memcached only supports key-
value pairs without sorting or complex data structures. Also
it does not support any persistency model like Redis does,
No failure and data loss recovery in Memcached due to
reboot and power outage.

Memcached stores key and value pairs along with en-
try structure within a single allocation, reducing memory
overhead, improving access locality, lowering memory al-
location pressure (frequency), and reducing fragmentation.
However, this may also cause some problems: First, it is
not straightforward to extend Memcached to support di-
verse data structures like Redis, because this fundamental
design constrains its extension. Second, with slab allocator,
although Memcached no longer needs to allocate memory
as frequently as Redis, the use of slab allocator incurs more
computation on memory allocation and leads to a more rigid
memory allocation policy.

3. Methodology

3.1. Workload Design

YCSB [3] is a popular workload generator for disk-
resident key-value systems. Given that in-memory key-
value systems are emerging in recent years, only a few
benchmarking tools support both Redis and Memcached,



and unfortunately YCSB does not. In our measurement
study, all workloads are generated by Memtier_benchmark
[13] produced by RedisLab, or GIT_KVWR, developed by
authors using Jedis interacting with Redis.

Memtier_benchmark is used to generate two types of
workloads: (1) each record is 100x10 bytes and (2) each
record of 1000x10 bytes. The 1% set of experiments uses
the record size of 1KB and the 2" set of experiments uses
the record size of 10KB. For both sets of experiments,
Memtier_benchmark is used to generate 5GB and 10GB
workloads, corresponding to 5,000,000x 1KB records and
10,000,000 x 1 KB records respectively.

GIT_KVWR is designed for generating workloads to
measure the performance of the manifold data structure
options in Redis, since none of the existing benchmarks, in-
cluding Memtier_benchmark, can create workloads to mea-
sure the performance for all four types of data structures.

Experimental Platform Setup. All experiments were
performed on a server platform with 3.20GHz Intel Core-
i5-4460 CPU (4 cores and 4 hyperthreads), which has
32KB L1d caches, 32KB L1i caches, 256KB L2 cache,
and 6144KB L3 caches, 16GB 1600MHz DDR3 memory,
and a Samsung SATA-3 250 GB SSD. Ubuntu 14.04 with
Linux kernel 3.19.0-25-generic is installed. We use Redis
3.0.5 standalone mode with default settings, and Memcached
1.4.25 with the configuration of maximum 1024 connections
and maximum 20480MB (20GB) memory allocation.

3.2. Evaluation Models

Our evaluation examines four types of performance over-
heads commonly observed in key-value systems.

Measuring the overheads of handling large scale
datasets. We use the bulk insertion workloads for this
type of overhead measurement. For the 5GB (light
load) and 10GB (heavy load) workloads generated by
Memtier_benchmark, we track the throughput and fine-
grained CPU and memory consumptions for three types of
activities (user-level, kernel system level, I/O level) during
insertion phase and generate fine-grained system perfor-
mance statistics using SYSSTAT [4] and Perf [12]. Moreover,
we also examine the memory swapping overheads during
bulk insertion of 10GB workloads by allocating only 8GB
physical memory. We examine both swap-in and swap-out
activities and compare the physical memory utilization with
the amount of swapping memory pages.

Measuring the overheads of different persistency
models. Snapshot and logging are the two popular persis-
tency models. Although it is widely recognized that support-
ing persistency can introduce performance overheads for in-
memory key-value systems, very few studies the efficiency
of different persistency models and how they impact on the
performance of different workloads and how they compare
with the scenarios of no persistency support in terms of
CPU and memory consumptions. We measure nosave in
Redis as no-persistency support scenario, Snapshot, and
three different logging scenarios: AOF-No for log-deferred,
AOF-Everysec for log-periodic, and AOF-Always for log-
immediate.

Measuring data structure overheads. First of all, there
is no detailed documentation on internal data structures
for Redis and Memcached. In order to conduct in-depth
measurement on overheads of different in-memory data
structures, we go through the source code of both Redis and
Memcached in order to identify and analyze the detailed lay-
out and implementation of different internal data structures.
In addition, we also measure the space overhead, the cache
overhead, the overhead of read and write operations on each
of the data structures, and the fragmentation overhead of
different data structures.

3.3. Evaluation Metrics

We collect six system-level and three application-level
characteristics from workloads using SYSSTAT, Itrace, Val-
grind, Perf and Redis internal benchmarking commands.
These characteristics collectively reveal the underlying
causality details of various performance overheads, enabling
an in-depth understanding of different performance over-
heads inherent in the in-memory key-value systems. Con-
cretely, the following different workload characteristics are
collected under different workloads, different persistency
models, and different data structures:

CPU utilization (%): Three metrics are used to measure
CPU utilization in user space, kernel space or storage 1/0O
are %user, %system and %iowait, which show the CPU
overhead occurred for performing tasks in user space, kernel
space or storage 1/0.

Memory and Swap usage (KB): These metrics are
measuring the dynamics of memory usage and swap events
per second.

Swap-in and Swap-out (page/sec): These metrics cap-
ture the number of page swap-out events and swap-in events
per second, reflecting the overhead of swapping and virtual
memory management during memory shortage.

L1 and Last Level Cache miss rate (%): These metrics
refer to the miss rate of L1 and the miss rate of LLC cache
during read operation execution for different data structures,
showing the efficiency of cache line locality.

Memory fragmentation rate: this metric reflects the
degree of memory fragmentation, which is calculated as the
amount of memory currently in use divided by the physical
memory actually used (the RSS value).

Heap allocation (byte): we measure both the total
amount of memory and the total number of blocks allocated
by application in heap, showing the efficiency of application
memory allocation policy.

Throughput (ops/sec): this metric shows the number of
operations per second for a given workload, reflecting the
efficiency of request processing.

Data structure overhead (byte): we measure the max-
imum and the minimum space overhead of entry insertion,
and these two metrics clearly reflect the space overhead of
different data structures.

Operation execution time (usec): this metric captures
the CPU time of baseline read/write operation execution
for a given data structure under a given workload and
dataset, allowing the performance comparison for different
data structures, different datasets and workloads.



’gS.EﬂM S 2 A W e N S 2

kS
m
T
s
g

—NoSave
-Snapshot
=AOF-No
—AOF-Everysec
--AOF-Always
-‘Memcached
0.E400 === memm e ommem e eeeemseemeoooos-soosoSooSToToss
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

3.E+04

LE+04.

Throughput (ops/s:
2

—NoSave
-‘Snapshot
—AOF-No
--AOF-Everysec
--AOF-Always

)
m
T
s
8

a.6+0a \\["

w

LE+04

~

E+04

Throughput (ops/sec)
2

0.E+00

(b) Heavy load
Figure 1: The throughput of load with different overhead.

4. Experimental Results and Analysis

4.1. Overhead for Bulk Insertion of Large Datasets

In this set of experiments, we present the measurement
results for dictionary expansion overhead for two scenarios:
(1) bulk insertion of dataset within the allocated memory
capacity and (ii) bulk insertion of dataset exceeding the
allocated memory capacity. One internal threshold is set in
Redis and Memcached for controlling when dictionary ex-
pansion is necessary. Once the threshold is met or exceeded,
the system will start creating a double-size hash bucket
and gradually moving data from existing bucket to the new
one. To understand the impact of the dictionary expansion
overhead on the throughput of Redis workloads, we measure
the throughput of both 5GB and 10GB workloads. Fig-
ure 1(a) shows five dents, showing that the SGB workload
experienced 5 times of dictionary expansion. Table 1 shows
that the average throughput with dictionary expansion is
46597 ops/sec and the average throughput without dictio-
nary expansion is 50206. Thus the throughput degradation
due to dictionary expansion is about 7.19% (i.e., 50206-
46597)/50206=0.0719).

Another interesting observation from Figure 1(a) is that
the Memcached throughput is more stable for the same
workload, even with dictionary expansion. This is because
Redis is using single thread for request serving, and this
single thread has to deal with both data loading and dictio-
nary expansion. However, Memcached uses multi-threading
for request serving, and dedicates one exclusive expanding
thread, always ready to perform dictionary expansion task,
reducing the overhead significantly. Although they both
use the similar rehashing strategy — incremental rehashing,
Memcached with multi-threading solution clearly outper-
forms Redis with single-thread solution. Table 2 presents the
average throughput detail for Memcached under 5GB (non-
swapping) and 10GB (swapping) workloads. Figure 2(a) and
Figure 2(b) show that the CPU utilization of Memcached
is less stable compared to Redis, with several spikes for
CPU %user level metric. Figure 1(b) shows that with 10GB
workloads, the allocated memory of 8GB can no longer host
all the data in memory. When persistency models are turned
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on, the throughput performance of all persistency models is
decreasing sharply at the elapse time of 125th sec or so,
compared to no persistency support scenario (NoSave). We
will analyze the impact of different persistency models on
workload performance in the next subsection.

4.2. Overheads of Persistency Models

4.2.1. Snapshot Overhead. Redis performs snapshot from
elapse time 55 to 63" second as shown in Figure 1(a).
The average throughput overhead is about 1%. The reason
for such a small and negligible overhead is that Redis forks
a child process by using copy-on-write for the background
save purpose, thus loading data and snapshotting can run
concurrently. As a result, the performance of snapshot is sur-
prisingly good in Redis. To further understand the overhead
of snapshot, we zoom in the period from 55" to 63" second
in Figure 3(a), observing that snapshotting generates spikes
for both CPU %user and CPU %iowait. The spike of CPU
consumption to over 30% in user space shows the changes
caused by the background RDB (snapshor) save process,
which is forked from Redis main process, responsible for
writing log files to disk and running in user space. The small
spike in CPU %iowait means that the writing of snapshot
files to disk (SSD in our test platform) are causing some
I/O waits compared to the time period with no snapshotting.
Figure 3(b) shows the sudden increase of memory consump-
tion at 55" second, which is again caused by the background
RDB save process. Although Redis adopts copy-on-write for
eliminating additional memory consumption, the memory
change rate is still significant with 209.51% increase (i.e.,
(168753-54522)/54522=2.0951).

4.2.2. AOF-No Overhead. AOF-No means never fsync,
and instead relying on the Operating system for flush-
ing log files. We also refer to this model as log-deferred

(a) CPU Utilization
Figure 4: The overhead of AOF-No.

(b) Memory consumption



TABLE 1: Overhead of Redis during Bulk Insertion

cPU cPU cPU Memory/Swap Swap-in Swap-out
Overhead Throughput Youser Yosystem oiowait changing (page/sec) (page/sec)
) (KB/sec)
nosave 50206 739 2143 0.66 54522 Wa Wa
dict expansion 76597 749 2152 067 58558 a a
sSnapshot 79703 3217 34 379 168753 a a
non-swapping (SGB) AOF-No 71670 938 2195 268 87489 a a
AOF-No + Rewriting 25419 21.61 24.18 17.27 187148 n/a n/a
AOF-Everysec 31649 9545 2151 357 83896 a a
AOF-Everysec + Rewriting 78018 21.89 25.08 1827 197104 a a
nosave 76937 1048 27 34 50028 245 12939
dict expansion 335 11 2286 T1.05 36701 T71 12646
snapshot 75272 26.04 24.19 2312 63241 7758 0471
swapping (10GB) AOF-No 70842 962 2164 10 33654 T 12380
AOF-No + Rewriting 10465 1643 2481 2897 50146 2375 3178
AOF-Everysec J0813 10.02 2026 Al 1876 759 12397
AOF-Everysec + Rewriling 19460 16.43 2473 287 50072 2401 13642
TABLE 2: Overhead of Memcached during Bulk Insertion
) cPU cPU cPU Memory/Swap Swap-in Swap-out
Overhead Throughput Jouser Yosystem Foiowait changing (page/sec) (page/sec)
) (KB/sec)
e ing (5GB) baseline 50611 10.45 20.69 1.51 59337 n/a n/a
e dict expansion 50461 15.16 20.92 1.62 60630 n/a n/a
ing (10G5) baseline 34250 12.25 20.05 761 32978 203 11990
PI dict expansion 13922 6.66 861 3636 13922 7435 13685

model. Compared to nosave mode (no persistency sup-
port), recall Figure 1(a) and Table 1, we observe that
AOF-No incurs 17% throughput degradation (i.e., (50206-
41670)/50206=0.17). The AOF file gets bigger as more write
operations are performed, so Redis provides AOF Rewrite
to rebuild the AOF in the background without interrupting
its client services. Whenever BGREWRITEAOF is issued
or AOF file is big enough, Redis will generate the shortest
sequence of commands needed to rebuild the current dataset
in memory. We call this AOF Rewrite, which happens from
17" to 20" second and from 41% to 58" second in Figure
1(a), showing a nearly 50% throughput degradation using
statistics collected in Table 1. Since during AOF Rewrite
Redis rewrites all commands into a new temp file, while
new commands are stored in server.aof_rewrite_buf_blocks.
The temp file will finally replace the original AOF file and
data stored in serveraof rewrite_buf blocks will open the
new AOF file as append mode and insert into the end of it.
All these tasks create more computation and I/O cost, re-
sulting in significant performance degradation. AOF Rewrite
combined with dictionary expansion can make the average
throughput even worse as shown during the elapse time
duration from 41 to 58" second in Figure 1(a). This is also
a good example to show that multiple overheads combined
together could lead to seriously worse performance result.

Figure 4(a) and Figure 4(b) further zoom into the over-
head of AOF-No. By Table 1, for AOF-No, its CPU %user
increases by 33.69%; CPU %system increases by 2.43%;
and CPU %iowait increases by 306.06%. This is because
additional operations for AOF writes (writing server.aof_buf
data into disk file) leads to more user space computa-
tion. Whenever these writes flushed to disk by operating
system, it results in large CPU %iowait. For the memory
consumption of AOF-No, by Table 1, AOF-No allocates
60.47% more memory space than nosave mode (i.e., (87489-
54522)/54522=0.6047), which are needed for storing all
executed but not yet persisted commands in server.aof_buf.
When AOF-No is combined with AOF rewrite, it allo-
cates 243.25% more memory space than nosave mode (i.e.,

(187148-54522)/54522=2.4325), because the mass of I/O
operations created by AOF rewrite occupies huge amount
of memory buffer and cache space. Figure 4(b) shows the
memory consumption changes during the following elapse
time durations: 2"-3' second, 7M-8™ second, 17"-20™ sec-
ond, 41%-58™ second, and 112-141% second.

The overhead AOF-Everysec is very similar to that of
AOF-No, because they both uses almost same AOF code,
except AOF-Everysec executing fsync() every second.

4.3. Swapping Overhead

Recall Figure 1(b), the workloads of 10GB dataset under
the available 8GB memory allocation will incur swapping
during the bulk insertion. We below analyze the swapping
overhead under dictionary expansion, snapshot and AOF-
No. For dictionary expansion, the throughput degradation
of Redis is about 9.15% compared with non-swapping sce-
nario according to Table 1. From Figure 1(b), the degrada-
tion occurs from 177" to 202" second. More interestingly,
the impact of swapping on Memcached is even bigger, and
the throughput degradation of Memcached is about 72.41%,
compared to non-swapping scenario. The throughput of
Memcached decreases to about 13,922 ops/sec by Table 1,
which is lower than the lowest throughput for the Redis
AOF model. From Figure 5(c) and Figure 6(c), we observe
that after the 111" second, due to the shortage of physical
memory, operating system starts to swap-out some data
into disk in order to load new data. Bulking loading and
dictionary expansion fiercely compete memory resource.
Also Memcached shows a lot more swap-in pages than
Redis, a reason for sharp performance drop of Memcached
as shown in Figure 1(b).

For snapshot, the throughput of snapshot with swapping
is 45272 and the throughput of nosave with swapping is
46937. We conclude that snapshot consumes very little
system resource, and generates almost same throughput
as nosave mode. However, snapshotting while expanding
dictionary can significantly slow down the system, as shown
in Figure 1(b) and Figure 7. In this case, CPU %iowait
increases to about 23.12%. In Figure 7(b), the slope of mem-
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ory changing with swapping is 37.48% of non-swapping
case. This is partly caused by the slow swap allocation and
the huge swap-out operations, as shown in Figure 7(c).

For AOF-No and AOF-Everysec, similar throughput can
be observed. By Table 1, the throughput overhead of AOF-
No, is 12.99%, compared to nosave with swapping. Figure
8 provides the measurements of CPU utilizations, memory
usage and swapping events for AOF-No. It is observed that
the physical memory is full at the 80" second and the
swapping starts. After 119" seconds, AOF rewrite starts
running, the memory is totally full at the 119" second.
This further illustrates sharp decrease of AOF-No throughput
at 119" second in Figure 1(b). Moreover, as AOF rewrite
job includes large amount of read and write operations,
operating system has to swap-in and swap-out constantly as
shown in Figure 8(c), leading to memory thrashing, which
seriously worsens the system performance.

The insight we gained from this set of experiments
is four folds. First, adding one additional thread dedi-
cated to dictionary expansion could improve throughput for
in-memory key-value systems like Redis. Second, AOF-
Rewrite is a CPU and memory intensive task, which results
in obvious degradation of system performance. If swapping
also occurs, it can generate severely worse throughput.
Third, swapping seriously impacts on the performance of
Memcached. Finally, snapshot based persistency model in
comparison shows the best throughput performance com-
pared with other persistent models for both non-swapping
and swapping workloads.

4.4. Overhead of Different Data Structures

We examine four types of overheads for different
data structures: memory space overhead, cache overhead,
read/write operation overhead and fragmentation.

4.4.1. Space Overhead. For the same dataset, the mem-
ory space allocated by linkedlist is 3.02 times of the size
of ziplist. By using the compact internal structure, ziplist
saves lots of physical memory. Although linkedlist is more
flexible for insertion and deletion operations, it uses several
additional data structures. Figure 9(a) shows that the size of

linkedlist RDB file is only 25.87% of its memory allocation.
These design principles also apply to set, sortedset and
hash. Figure 9(b) shows that Intser memory allocation is
only 11.73% of hashtable. Intset AOF file is about 2.4
times bigger than its memory allocation (Figure 9(b)). Data
Structure of skiplist can be viewed as a combination of
hashtable and skiplist to enhance both search and sort
performance. However, the drawback is obvious on its high
memory consumption. It occupies 7.50GB for 1GB dataset
(see Figure 9(c)), which is highest memory allocation among
all data structures supported by Redis. In comparison, ziplist
is a good choice, since for 1GB dataset, it only occupies
2.08GB memory. For hashtable, although it has great search
performance, it consumes too much space. For 1GB dataset,
it occupies about 6.10GB memory (Figure 9(d)), 6 times
of the original dataset size. Figure 10(a) shows that Mem-
cached uses 1.26% and 1.30% more memory than Redis for
loading 1,000,000 and 2,000,000 dataset records generated
by memtier_benchmark, each of 1KB.

4.4.2. Caching Overhead. Caching locality is one of key
factors when designing system data structure since main
memory reference is 200x lower than L1 cache reference.
Array like data structures, ziplist and intset, are contiguous
memory blocks, so large chunks of them will be loaded into
the cache upon first access. linkedlist, hashtable, and skiplist
on the other hand are not in contiguous blocks of memory,
and could lead to more cache misses.

4.4.3. Read/Write Operation Performance. Different data
structures have their own pros and cons. Table 3 compares
various data structures with read/write operations. For list
data structures, we mesured the performance of push/pop
operation on both left-side and right-side, since ziplist shows
maximum 3 times performance variation on different side
operation, which is caused by the internal design of zi-
plist. For set data structures, we found that performance of
intset operations is sensitive to the size of dataset, unlike
hashtalbe. For sortedset data structures, we tested the add,
remove, check, and iterate operations, showing that skiplist
outperfoms ziplist for all operations except iterate opera-
tion, since the continuous memory structure makes ziplist
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better suited for scanning records. For hash data structures,
we benchmarked set, get, remove, and iterate operations,
showing that hashtalbe always keeps excellent performance
for expanding dictionary. In summary, linkedlist performs
well for both experiments, the performance has nearly no
connection with dataset size except [range operation. Since
ziplist needs additional time to move memory, it shows
worse result as the increasing number of entries, especially
for Ipush and Ipop operations.

Finally, we compare Redis and Memcached by using
set and get operation. Figure 11 shows that the performance
difference between Redis and Memcached is only 0.0059%.
The set throughput of Redis is unstable, which is caused by
dictionary expansion and its single thread design. Redis has
better performance than Memcached without dictionary ex-
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Figure 11: set/get performance of Redis and Memcached

pansion. But when dictionary expansion occurs, Memcached
outperforms Redis on ser operation by 1.08%. This further
proves that optimization for dictionary expansion, such as
using a dedicated thread, is critical for improving throughput
performance of Redis.

4.4.4. Fragmentation. We measure the heap allocation for
comparing the fragmentation of Redis and Memcached as
shown in Table 4. The total allocation for Redis is slightly
larger than that of Memcached, since Redis uses lots of
structs representing different intermediate objects, which
is relatively more complex than Memcached. However,
Redis releases 7.19% (1,000,000 records test) and 7.49%
(2,000,000 records test) memory during its runtime and
Memcached only releases 0.58% (1,000,000 and 2,000,000
records test), thus the final memory usages of both are
almost the same. As a result, Memcached uses 1.27%
(1,000,000 records test) and 1.32% (2,000,000 records test)
more memory than Redis. Moreover, since Redis and Mem-
cached both have similar memory usage and Redis allo-
cates 5449 (1,000,000 records test) and 5795 (2,000,000
records test) times more memory blocks than Memcached,
it shows that Redis allocates lots of small memory blocks
and however Memcached allocates only huge blocks. The
average block size of Redis is 181 (both tests) bytes and
that of Memcached is 933320 (1,000,000 records test) and
993398 (2,000,000 records test) bytes, showing a totally
different memory management strategy between Redis and
Memcached. From this set of experiment, we make the
following important observations: (1) Array-like structure
makes ziplist and intset good for memory consumption and



TABLE 3: Operation Performance (all results are average CPU time (usec) consumed by commands)

Dataset-1 (each record = 100 X 10byte) Dataset-2 (each record = 1000 X 10byte)
List Data Structure rpush pop Tpush Tpop Trange rpush pop Tpush Tpop Trange
ziplist 0.8 0.84 1.01 1.07 5.04 0.93 1.01 291 2.92 45.5
linkedlist 0.63 1 0.65 0.98 4.84 0.69 1.21 0.69 1.12 38.44
Set Data Structure sadd scard smembers sismember srem sadd scard smembers sismember srem
intset 1.01 0.52 13.98 0.73 0.85 1.82 0.66 114.61 1.02 1.59
hashtable 1.28 0.56 28.33 1.23 1.11 1.12 0.69 238.21 1.1 0.97
SortedSet Data Structure zadd zrem zrange zrank zscore zadd zrem zrange zrank zscore
ziplist 3.11 2.63 5.91 1.91 3.74 14.36 15.67 55.08 10.92 12.34
skiplist 1.73 1.64 9.92 1.95 2.71 2.02 2.41 84.98 2.88 2.9
Hash Data Structure hset hget hgetall hdel hexists hset hget hgetall hdel hexists
ziplist 2.33 1.49 10.29 1.94 1.99 15.33 7.13 152.89 11.19 14.95
hashtable 1.67 1.32 15.25 1.42 1.16 1.19 1.01 204.36 1.32 1.18

TABLE 4: Heap Measurement

Memory Memory Heap
key-value system Usage Wasted Total Total Block Max Live Max Live Num of Num of Block Size
(byte) (byte) Allocation Allocated Allocation Block Malloc() Free() (byte)
(byte) (byte)

Redis1,000,000 records 1,180,042,265 na 1,271,538,266 7,013,016 1,112,739,857 4,011,659 7,001,265 3,000,691 181
Memcached 1,000,000 records 1,195,074,650 102,131,302 1,201,184,070 1,193,318,638 1,276 1,136 4 933320

Redis 2,000,000 records 2,356,863,304 na 2,547,742,990 14,013,327 2,226,148,187 8,011,918 14,002,762 6,001,225 181
Memcached 2,000,000 records 2,388,001,817 203,214,028 2,402,036.870 2,385,782,830 2,406 2,266 5 993398

cache locality at the expense of low performance for big
dataset. (2) The operation performance is really related to
specific data structure and workload. (3) The performance
of right-side operations (rpush, rpop) of ziplist are always
better than that of left-side operations (lpush, Ipop). (4)
Thanks to dictionary expansion, hashtable might even show
better performance with bigger dataset. (5) skiplist is a lot
faster than ziplist for large datasets, such gap cannot be
compensated by the use of continuous memory space. (6)
By using different memory management policy, jemalloc
vs. slab allocator and arbitrary allocation vs. pre-allocation,
both Redis and Memcached achieve good performance while
reducing the fragmentation.

5. Conclusion

We have presented a performance evaluation and anal-
ysis of in-memory key-value systems. To the best of our
knowledge, this is the first in-depth measurement study on
critical performance and design properties of in-memory
key-value systems, such as the use of different internal data
structures, different persistency models and different policies
for memory allocators. We measure a number of typical
overheads such as memory space, caching, read/write oper-
ation performance, fragmentation, and workload throughput
performance, to illustrate the impact of different data struc-
tures and persistency models on the throughput performance
of in-memory key-value systems. We conjecture that the
multiple factors on memory efficiency will provide system
designers and big data users with a better understanding on
how to configure and tune the in-memory key-value systems
for high throughput performances under different workloads
and internal data structures.
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